
HAL Id: hal-03396275
https://hal.science/hal-03396275

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine learning for fluid flow reconstruction from
limited measurements

Pierre Dubois, Thomas Gomez, Laurent Planckaert, Laurent Perret

To cite this version:
Pierre Dubois, Thomas Gomez, Laurent Planckaert, Laurent Perret. Machine learning for fluid flow
reconstruction from limited measurements. Journal of Computational Physics, 2022, 448, pp.110733.
�10.1016/j.jcp.2021.110733�. �hal-03396275�

https://hal.science/hal-03396275
https://hal.archives-ouvertes.fr

Machine learning for fluid flow reconstruction from limited measurements

Pierre Duboisa,∗, Thomas Gomeza, Laurent Planckaerta, Laurent Perretb

aUniv. Lille, CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, UMR 9014 - LMFL -
Laboratoire de Mécanique des fluides de Lille - Kampé de Fériet, F-59000 Lille, France

bCentrale Nantes, LHEEA UMR CNRS 6598, Nantes, France

Abstract

This paper investigates the use of data-driven methods for the reconstruction of unsteady fluid flow
fields. The proposed framework is based on the combination of machine learning tools: dimensionality
reduction to extract dominant spatial directions from data, reconstruction algorithm to recover encoded
data by limited measurements and cross-validation for hyperparameter optimization. For the encoding
part, linear and nonlinear extraction of patterns are considered: proper orthogonal decomposition
(POD), linear autoencoder (LAE) and variational autoencoder (VAE). For the reconstruction part,
regressive reconstruction (neural network, linear, support vector, gradient boosting) and library-based
reconstruction are compared, each method being cross-validated to ensure good generalization on
testing data. The position of sensors is optimized using an enhanced clustering algorithm. The
robustness of regressive reconstructions to noise measurements is also addressed, showing the benefits
of variational approaches in the reduction phase. The strategy is tested for three increasing complexity
flows: 2D vortex shedding (Re = 200), 2D spatial mixing layer and 3D vortex shedding (Re = 20000).
The results suggest that proper machine learning approaches to fluid flow data can lead to effective
reconstruction models that can be used for the rapid estimation of complex flows.

Keywords: data-driven, machine learning, dimensionality reduction

1. Introduction

1.1. Flow reconstruction

Understanding fluid physics is possible
through numerical or experimental analysis of
canonical flows. Both approaches are however
limited: accurate numerical solving of Navier
Stokes equations is computationally expensive
[1] and experimental flow visualization requires
significant resources [2]. As a consequence,
reconstruction methods have emerged: limited
measurements at time t are used to estimate
the full velocity field at the same time [3].
Mathematically, the problem consists in
finding the relationship G between punctual
measurements y(xc, t) ∈ Rp and the complete

∗Corresponding author: pierre.dubois@onera.fr

flow field U(x, t) ∈ Rn where p denotes the
number of sensors, xc their locations and
n is the dimension of the field (see Fig 1).
The measurement operator H being likely ill
conditioned thus not invertible, data-driven
procedures have been developed to estimate the
G operator from data [4].

A first possible approach is the regressive
reconstruction. Supervised learning methods
[5] are used to infer the mapping between the
measurement space and the field space. Given a
formulation for the G operator, a cost function
evaluating the error between training examples
(snapshots with associated measurements) and
their reconstruction is minimized. Earlier
investigations of regressive reconstruction include
the stochastic estimation (SE) where the
reconstructed field is a multi-linear function of

Preprint submitted to Journal of Computational Physics July 12, 2021

Measure
y[:,t] ∈ Rp

Full state
u[:,t] ∈ Rn

G

H

Figure 1: Representation of the reconstruction problem:
recover the high dimensional velocity field from limited
measurements

available measurements [6]. SE has been applied
to a wide variety of flows, including isotropic
turbulence [7], boundary layers [8], open cavities
[9], backward-facing steps [10], jets [11] and urban
flows [12]. A recent extension is proposed by
Erichson et al. [13] with the regressive function
being nonlinear and defined by a shallow neural
network. The authors have successfully estimated
the vorticity field in the wake of a 2D cylinder
using very few wall pressure measurements.

A second possibility is the direct
reconstruction based on an optimization
problem P [14]. In this model-free method,
limited measurements are used to estimate
the flow field as a linear combination of
reference modes [15]. These modes are often
tailored to the considered flow and found by
modal decomposition [16]. Gappy POD [17]
is a popular algorithm: reference modes are
dominant orthogonal directions of the flow
(POD modes) and the best linear combination
is found by solving a least-square problem built
on masked data. Lusseyran et al. [18] used
this technique to reconstruct the 3D flow past
a cavity, choosing as many sensors as reference
modes to obtain a unique solution. A recent
extension is GOBAL [19] where reference modes
balance the controllability and the observability
of the considered flow. Deep learning is
also an emerging tool to build libraries: taking
advantage of neural networks flexibility, nonlinear
manifolds capturing dominant flow structures

can be leveraged [20] [21]. Finally, enforcing
sparsity in the solution (compressed sensing
and sparse reconstruction) is a usual technique
to improve the robustness to measurement
corruption. This however requires prohibitively
many measurements and expensive computations,
leading to the development of local reconstruction
strategies [3].

The last category of flow field estimation
is data-assimilation [22]. In this approach,
a dynamical model evolves the field estimate
while measurements improve the forecasts. The
dynamical model may be a reduced-order
approximation of Navier-Stokes equations, found
by a Galerkin projection onto a data-driven basis
[23] or by model identification [24]. Typical
applications of data-assimilation include the use
of Kalman filters for mean flow reconstruction [25]
and full flow field estimates [26].

The three approaches to obtain a data-
driven estimation (denoted Û) of the velocity
field U are summarized in table 1. For
the regressive reconstruction, the operator G
is directly inferred from data, thus requiring
a machine learning procedure. For the direct
reconstruction, the G operator is evaluated at a
given measurement vector via the use of convex
optimization tools. For the data assimilation,
measurements update predictions of a dynamical
model via a least square combination of prediction
and measurements errors.

1.2. Dimensionality reduction

The field to estimate is U ∈ Rn where
n is the dimension. Despite complex spatio-
temporal dynamics, fluid systems exhibit low
dimensional features making relevant the use
of dimensionality reduction. The objective is
to extract spatial patterns characterizing the
fluid flow: vortex shedding for wake flows,
Kelvin Helmotz instability for shear layers,
coherent structures for boundary layers, etc [27].
This extraction may be performed by linear
or nonlinear encoding transformations e. If
the decoding transformation d is known, the
reconstruction problem reduces to the estimation
of latent structures dynamics a(t) ∈ Rr via the

2

Method Idea Description Formulation

Direct
reconstruction

evaluate G(y)
solve optimisation

problem P Û = minU P [H(U)]

Regressive
reconstruction

estimate G learn operator G Û = G(y)

Data
assimilation

update predictions
using y

propagate state
(get background U b)

and analyze the forecast
(kalman gain K)

{
Prediction→ U b

Analysis→ Û = U b +K[y −H(U)]

Table 1: Reconstruction algorithms from the literature. Data assimilation is not used in this paper.

f operator, as illustrated in figure 2. The G
operator is then decomposed into d ◦ f .

Measure
y[:,t] ∈ Rp

Latent state
a[:,t] ∈ Rr

Full state
u[:,t] ∈ Rn

d

e

fr

H

Figure 2: Representation of the reconstruction problem
with dimensionality reduction: measurements are used to
recover dynamics of dominant structures

The most common reduction technique is the
proper orthogonal decomposition (POD) which
is the name given to principal components
analysis (PCA) applied to fluid flow fields. POD
modes are uncorrelated directions that optimally
describe variability in data, massively used for
reconstructive [28] and predictive tasks [29]. Deep
learning [30] has made possible considerable
progress in dimensionality reduction by using
autoencoders. It consists of two neural networks
trained together to minimize a reconstruction
error: an encoder encodes high dimensional data

to low dimensional data (called latent data living
in latent space) and a decoder decodes latent data
to recover the high dimensional state. Xu et al.
[20] took advantage of convolutional autoencoders
to leverage nested nonlinear manifolds and predict
the transient flow over a cylinder and in the
wake of a ship. Morton et al [31] used
variational autoencoders to learn a reduced-order
model (ROM) for the flow behind two counter
rotating cylinders. Using the power of generative
modeling, the authors were able to generate
relevant flow data for non-simulated cases.

Given a dimensionality reduction method,
it is possible to learn a reduced-order model
for latent variables. Some examples from the
literature include the approximation of Koopman
operator eigenfunctions with dynamical mode
decomposition (DMD [32]) or neural networks
[33] and the approximation of Perron Frobenius
operator using clustering algorithm (CROM [34]).

1.3. Sensors placement

The position of sensors plays a crucial role
in the reconstruction performance. Supposing
that measurements are known discrete positions
of the field to reconstruct, the measurement
operator H is a matrix. For regressive
methods, sensors must measure non-redundant
signals, otherwise multicollinearities in explaining
variables will affect the estimation [35]. For direct
reconstruction methods, the measurement matrix

3

C must be incoherent with the reference library φ.
Most algorithms therefore search the product Cφ
with the lowest condition number to easily solve
the minimization problem [36]. Main approaches
include data-driven sparse placement such as QR
sensing so that Cφ satisfies the restricted isometry
principle [4].

1.4. Objectives
This paper compares regressive and direct

reconstruction methods for the estimation of
increasing complexity flow fields: wake of a
2D circular cylinder (Re = 200, 2D domain,
case 1), spatial mixing layer (Reynolds based on
initial vorticity thickness Re = 500, 2D domain,
case 2) and wake of a square cylinder (Re =
20000, 3D domain, case 3). The estimation
is performed on the two or three components
of the fluctuating velocity field, which was
reduced using linear (POD, linear autoencoder
LAE or linear variational autoencoder LVAE)
or nonlinear (variational autoencoder VAE)
reduction techniques. Measurements are velocity
signals at known positions, with sensor placement
being performed by an unsupervised algorithm.
There is a focus on reduction and reconstruction
errors for all methods. All models are cross-
validated using grid search, randomized grid
search or genetic optimization. The sensitivity
to noisy measurements is also investigated. The
main interests of this work lie in the complete
machine learning strategy used, the investigation
of variational autoencoders to reduce fluid
flow data and an analysis of the regressive
reconstructions robustness.

2. Methodology

The proposed strategy is purely data-driven:
simulation data are used to define the grid
of sensors, extract low-dimensional patterns,
create the library of reference elements for
direct reconstruction and learn the regressive
function for regressive reconstruction. The
global framework for fluid flow estimation from
measurements is summarized in figure 3. This
section provides mathematical details for each
block.

2.1. Notations

Simulation data are written as a matrix U ∈
Rn×m where n is the dimension (number of cells nc
multiplied by number of velocity components nv)
and m is the number of snapshots. Considering a
70/30 split, mtrain = 0.7m and mtest = 0.3m are
respectively the number of training and testing
snapshots. The fluctuating velocity field matrix
is defined as u = U − Ū where Ū is the mean flow
computed over all snapshots. This tall but skinny
matrix (n � m) is split into zero mean matrices
utrain and utest. Considering that measurements
are p known locations in the fluctuating field to
estimate, the measurement matrix is C ∈ Rp×n

with Ci,j = 1 if yi = uj and 0 otherwise. Training
and testing measurements are therefore ytrain =
Cutrain and ytest = Cutest. The high dimensional
field u is reduced to the low dimensional field
a ∈ Rr×m where n � r and r is the number
of modes. Given a measurement vector at time
t (denoted y[:,t] and not necessary in the testing
set), the estimated reduced state is written â[:,t]
and the estimated fluctuant velocity field is û[:,t].

2.2. Metrics

The determination coefficient R2 is used to
compare all training or testing reduced snapshots
with their estimation. It is defined by the
ratio between the variance recovered in estimated
snapshots and the true variance. For the ir ∈
[1..r] component of the reduced state and all me =
mtrain or me = mtest estimations, the coefficient
reads:

R2
ir = 1−

me∑
t=1

[
a[ir,t] − â[ir,t]

]2

me∑
t=1

[
a[ir,t] − a[ir]

]2

The reduced state being computed from a
fluctuating field, a is the null vector. The
normalized mean square error is used to compare
all training or testing high dimensional flow fields
with their estimation. It is a normalized version of
the mean square error between true snapshots and
reconstructed ones. For the in ∈ [1..n] component
of the field and me estimations, it is computed as:

4

Simulation data

U , Ū train, utrain, utest

Clustering

C, ytrain, ytest

Reduction

e/d pair, atrain, atest

Prepare data
Learn statistics, define measurement matrix and reduce data

Reconstruction
Measurements are used to estimate the reduced state

Direct reconstruction

â[:,t] = minaP
(
y[:,t]
)

Regressive reconstruction

â[:,t] = f
(
y[:,t]
)

Final
Evaluate performance and reconstruct the high dimensional field

Reconstruction quality

R2
train and R2

test

High dimensional field

Û[:,t] = Ū train + d
[
â[:,t]

]
Global error

NMSEtrain and NMSEtest

Figure 3: Global framework for the reconstruction of a fluid flow field using measurements.

NMSEin =

me∑
t=1

[
U[in,t] − Û[in,t]

]2

me∑
t=1

[
U[in,t] − U [in]

]2

By averaging over the number of modes or
the number of cells, it is possible to appreciate
the quality of the reconstruction via a single
number. Therefore, the following metrics are also
computed:

R2 =
1

r

r∑

ir=1

R2
ir

NMSE =
1

n

n∑

in=1

NMSEin

These metrics are complementary: the
determination coefficient scores the y → â

step while NMSE quantifies the y → û error.
For R2 close to unity, estimated reduced states
recover nearly all the variance observed in
expected reduced states. For NMSE close to
zero, all estimated fields are on average close
to real ones. Results should be close for
both training and testing estimations, otherwise
reconstruction or reduction methods were badly
designed (overfitting or underfitting).

2.3. Enhanced clustering

The spatial location of sensors is determined
by enhanced clustering [37]. To be consistent
with the definition of the state u[:,t] ∈ Rnv×nc ,
the simulation mesh with nc centres is repeated
nv times. This gives the set {x[in,:] ∈ Rnv}in∈[1..n]
to be clustered into Kc voronoi cells {Vk}k∈[1..Kc]

defined by their centroids {µ[k,:] ∈ Rnv}k∈[1..Kc].
The partitions are solutions of the following
optimization problem:

5

arg min
V1,...,VKc

Kc∑

k=1

∑

x[in,:]∈Vk
||x[in,:] − µ[k,:]||22

where ||.||22 is the square of the l2 norm and
represents the sum of squared components. Most
energetic clusters (in terms of velocity variance)
are then defined as sensors. The complete
procedure is presented in algorithm 1. In this
paper, the number of clusters is set to Kc =
500 and sensors correspond to Voronoi centroids
recovering 20%, 40% or 80% of the total training
field variance.

2.4. Dimensionality reduction

An encoder/decoder procedure for
dimensionality reduction is considered. The
encoder e compresses the data from initial space
(dimension n) to a latent space (dimension r) and
the decoder d decompresses encoded data. The
objective is to find the e/d pair that maximizes
the information when encoding and minimizes
the reconstruction error ε when decoding. The
latent space must also be smaller than the
physical space (r � n) to avoid the trivial
but irrelevant solution e = d = In×n. Given a
family of candidate encoders E and a family of
candidate decoders D, the best e/d pair is:

(e∗, d∗) = arg min
(e,d)∈E×D

ε(u[:,t], d
[
e(u[:,t])

]
)

In proper orthogonal decomposition (POD),
the encoder and decoder are unitary matrices
obtained from the spectral decomposition of the
training covariance matrix Cu = utrain[utrain]T .
This decomposition yields CuΦ = ΦΛ where
the transfer matrix Φ ∈ Rn×n transforms initial
basis vectors into uncorrelated directions. These
modes are hierarchically sorted according to the
variance Λii they recover. When truncating the
transformation to first r modes, initial data are
written in the best r dimensional subspace to
describe variability in utrain.

Algorithm 1 Enhanced clustering

Require: Kc number of clusters and {x[in,:] ∈
Rnv}in∈[1..n] mesh points and utrain training
velocity field

1: define Kc initial centroids:

{µ(0)
[k,:] ∈ Rnv}k∈[1..Kc]

2: while convergence is not reached do
3: find Voronoi cells

V
(l)
k =





x[in,:] ∈ Rnv :
∣∣∣
∣∣∣x[in,:] − µ(l)

[k,:]

∣∣∣
∣∣∣
2

2

≤
∣∣∣
∣∣∣x[in,:] − µ(l)

[k∗,:]

∣∣∣
∣∣∣
2

2

∀k∗ ∈ [1..Kc]





4: compute new centroids

µ
(l+1)
[k,:] =

1

|V (l)
k |

∑

in with
x[in,:]∈Vk

x[in,:]

where |V (l)
k | is the cardinality of V

(l)
k .

5: end while
6: compute the variance of training velocity

fields in each cluster

σ2
Vk

=
1

mtrain

mtrain∑

t=1

∑

in with
x[in,:]∈Vk

[
utrain[in,t]

]2

7: keep p most energetic clusters

In recent applications, encoders and
decoders are neural networks. They consist in
interconnected units (called neurons) propagating
the input information via weighted connections.
With a good choice for hyperparameters (number
of layers, activation functions, regularization) and
optimal parameters (weights between neurons
and biais for each neuron), a neural network can
approximate any function [38]. When considering
neurons with linear activations, encoding and
decoding transformations are matrices but no
orhogonality constraint is imposed. Optimal
weights and biases minimize the mean square

6

error between training samples and autoencoded
ones. For one training sample, the cost function
reads:

ε = ||utrain[:,t] − ûtrain[:,t] ||22 =
n∑

in=1

[
utrain[in,t] − ûtrain[in,t]

]2

In the variational formulation of autoencoders,
inputs u[:,t] are encoded as multivariate Gaussian
distributions N (aµ[:,t], aσ [:,t]) instead of single
points. The encoded distributions are encouraged
to be close to standard Gaussian N (0, Ir×r), thus
enforcing the regularity (in terms of continuity
and completeness) in the latent space and
uncorrelatedness between latent features. The
cost function therefore encompasses two errors
to minimize: the reconstruction error and the
Kullback Leibler divergence between the encoded
input distribution and a standard Gaussian. This
error reads [39]:

ε = ||utrain[:,t] − ûtrain[:,t] ||22
= +DKL

[
N (aµ

train
[:,t] , aσ

train
[:,t]) || N (0, Ir×r)

]

=
n∑

in=1

[
utrain[in,t] − ûtrain[in,t]

]2

=− 1

2

r∑

ir=1

[
1 + log

(
a2σ [ir,t]

)
− a2σ [ir,t] − a

2
µ[ir,t]

]

In this paper, POD, linear autoencoder
(LAE), linear variational autoencoder (LVAE)
and variational autoencoder (VAE) are
implemented for dimensionality reduction.
The latent space dimension is chosen according
to an energetic criterion: the number of neurons
in the latent layer is the number of POD modes
required to recover 40%, 80% and 95% (for
mixing layer and vortex shedding Re = 20000)
or 99% (for vortex shedding Re = 200) of the
variability observed in training data. Chosen
architectures for autoencoders are given in
figures 4 and 5. Mathematical formulations of
the encoding/decoding process are detailed in
table 2.

We Wd

u[:,t] ∈ Rn
û[:,t] ∈ Rn

↗a[:,t] ∈ Rr

↗

Figure 4: The linear autoencoder (LAE) is composed of
one hidden layer and linear (↗) activation functions

2.5. Direct reconstruction

Given a measurement matrix C, the field
is measured by y[:,t] = Cu[:,t]. Using the
known (lossy) decoder d, one can approximate
the measurement via ŷ[:,t] = Cd

[
a[:,t]

]
. The

objective is to find the reduced state a[:,t] that
minimizes the error between y[:,t] and ŷ[:,t]. This
optimization problem is denoted P(y[:,t]). For
linear decoders such as POD, LAE or LVAE,
the direct reconstruction (DR) can be performed
using linear algebra tools. For nonlinear decoders
such as VAE, nonlinear optimization is required,
significantly increasing the complexity. The
present paper therefore limits investigations to
linear decoders. Following this restriction,
general forms for the decoding and the recovered
measurement are adopted:

{
d
[
a[:,t]

]
= Wa[:,t] + b

ŷ[:,t] = CWa[:,t] + Cb

Given the number of sensors (p equations)
and the number of modes (r unknowns), the
optimization strategy is different. If the problem
is underdetermined (r ≥ p), there exists an
infinity of solutions and the one with minimal l1
norm is selected. The problem reads:

â[:,t] = P(y[:,t]) =

{
min
a
||a||1

y[:,t] = CWa+ Cb

7

POD LAE LVAE VAE

Find Φr ∈ Rn×r We ∈ Rn×r and be ∈ Rr

Wd ∈ Rr×n and bd ∈ Rn

W1 ∈ Rn×r and b1 ∈ Rr

W2 ∈ Rr×r and b2 ∈ Rr

W3 ∈ Rr×r and b3 ∈ Rr

W4 ∈ Rr×n and b4 ∈ Rn

Same as LVAE

Encoding a[:,t] = ΦT
r u[:,t] a[:,t] = Weu[:,t] + be





h[:,t] = W1u[:,t] + b1

aµ[:,t] = W2h[:,t] + b2

aσ [:,t] = σ
[
W3h[:,t] + b3

]





h[:,t] = tanh
[
W1u[:,t] + b1

]

aµ[:,t] = W2h[:,t] + b2

aσ [:,t] = σ
[
W3h[:,t] + b3

]

Decoding û[:,t] = Φra[:,t] û[:,t] = Wda[:,t] + bd

{
a[:,t] ∼ N

(
aµ[:,t], aσ [:,t]

)

û[:,t] = W4a[:,t] + b4

{
a[:,t] ∼ N

(
aµ[:,t], aσ [:,t]

)

û[:,t] = tanh
[
W4a[:,t] + b4

]

Noteworthy
Orthogonal modes

ΦT
r Φr = Ir×r

Non orthogonal modes

We = W †
d

- Nonlinear reduction

Modes Φr W2 W4 Extracted via SVD on W4

Table 2: Encoding and decoding formula for considered reduction methods. Parameters W are weights while parameters
b are biases.

W1

W2

W3

W4

u[:,t] ∈ Rn
h[:,t] ∈ Rr
↗ or tanh

aµ[:,t] ∈ Rr
↗

û[:,t] ∈ Rn
↗ or tanh

aσ[:,t] ∈ Rr
sigmoid

a[:,t] ∼ N
(
aµ[:,t], aσ[:,t]

)
∈ Rr

Figure 5: The variational autoencoder encodes the input data as a Gaussian distribution. Before computing the mean
and the standard deviation of the input, a first hidden layer linearly (LVAE, ↗) or nonlinearly (VAE, tanh) compresses
the data. In the training phase, a sample drawn from the encoded distribution is decoded via a linear (LVAE) or
nonlinear (VAE) decoder. When the autoencoder is deployed for a reconstruction task, only the decoder is of interest.

If the problem is overdetermined (r ≤ p),
no solutions exist. A least squares approach is
used to find the closest solution in the subspace

spanned by colums of the reference library CW .
A regularization term λ||a||1 may be added to
promote robustness to outliers in data. Several λ

8

hyperparameters are tested when reconstructing
training snapshots and the one leading to the
maximum R2train score is kept in the testing
phase. The overdetermined problem therefore
reads:

â[:,t] = min
a
||y[:,t] − [CWa+ Cb] ||22 + λ||a||1

All optimization problems for direct
reconstruction are solved using the cvxpy
library [40].

2.6. Regressive reconstruction

In regressive reconstruction methods, the
objective is to learn the mapping between the
measurement space and the latent space. Suppose
the true relationship is a[:,t] = f

[
y[:,t]
]

+ ε with
ε ∼ N (0, σ2) an irreductible error. In the context
of machine learning, f is approximated by f̂
using training data points D. The model f̂ may
combines measurements (parametrized method)
or make a decision (non parametrized) and
perform multi-task (simultaneous reconstruction
of all modes) or not (modes reconstructed
independantly). To ensure good performance on
training data points but also on unseen (testing)
data points, the model must meet a bias-variance
tradeoff. These terms appear when decomposing
the quadratic error on a testing point with an
explicit dependance on D:

ED
[[
a[:,t] − f̂

[
y[:,t];D

]]2]
= Bias

[
f̂
[
y[:,t]
]]2

+ Var
[
f̂
[
y[:,t]
]]

+ σ2

The bias of the learning method indicates if
the model is a good candidate for approximating
the true function. The more flexible the
candidate, the lower the bias. Its expression
reads:

Bias
[
f̂
[
y[:,t]
]]

= ED
[
f̂
[
y[:,t];D

]
− f

[
y[:,t];D

]]

The variance measures the difference in fits
when changing the data set. Its expression reads:

Var
[
f̂
[
y[:,t]
]]

=

ED
[{
f̂
[
y[:,t];D

]
− ED

[
f̂
[
y[:,t];D

]]}2
]

The bias-variance tradeoff is presented
in figure 6. This decomposition has mainly
theoritical uses because one can rarely afford to
have different training sets. In the following,
four regressive models are presented: linear
regression, support vector regression, artificial
neural network and gradient boosted decision
trees. Cross-validation strategies are also
discussed. Note that a visual comparison of all
investigated regressive methods is given in figure
7.

Linear regression (LM). The model
assumes a linear relationship between the
measurement and all components of the reduced
state, yielding a reconstruction â[:,t] = βTy[:,t].
The parameter to optimize is the β ∈ Rp×r

matrix. The cost function is the mean square
error which is Lasso penalized using a l21 norm
[41].

C(β) =
1

2mtrain

||R(β)||2F + α||β||21

In doing so, most relevant measurements are
selected thus promoting sparsity in the solution
vector β. Here, the residual R, the Frobenius and
the l21 norms are defined as follows:





R(β) =
{
atrain

}T −
{
ytrain

}T
β

||R(β)||F =

√∑

t,ir

[
R(β)[t,ir]

]2

||β||12 =

p∑

ip=1

√√√√
r∑

ir=1

[
β[ip,ir]

]2

In the single-task formulation (LS), the

9

Error

Model complexity

Underfit Overfit

Variance

Noise
Bias

Total

Optimal
model

Lose on training but win on testing
High bias but low variability

Win on training but lose on testing
Low bias but high variability

Figure 6: Illustration of the bias variance tradeoff. Filled circles represent training data while empty circles represent
testing data.

reconstruction yields â[ir,t] = βT[ir,:]y[:,t] with

β[ir,:] ∈ Rp×1 for each mode ir. Selected
measurements are different for each target and
cross-validation must be performed r times.
Without the regularization term, the method is
known as linear stochastic estimation [6].

Support vector regression (SVR). In its
linear formulation, each component of the reduced
state is linearly explained by the measurements.
For the mode ir, the regression yields â[:,t] =
βTiry[:,t] with βir ∈ Rp×1 ensuring at most an ε
deviation from true targets. Optimal parameters
are found by solving the primal formula:





min
βir ,ξ,ξ

∗

1

2
βTirβ + CB

mtrain∑

t=1

(ξt + ξ∗t)

atrain[ir,t] − βTirytrain[:,t] ≤ ε+ ξt ∀t
βTiry

train
[:,t] − atrain[ir,t] ≤ ε+ ξ∗t ∀t

ξt, ξ
∗
t ≥ 0 ∀t

where slack variables ξ and ξ∗ penalyze
observations out of the ε tube. This
regularization is controlled by the box constraint
CB. Introducing α and α∗ as Lagrange

multipliers, the dual formula reads:





min
α
C(α)

mtrain∑

t=1

(αt − α∗t) = 0 with 0 ≤ (αt, α
∗
t) ≤ CB

Denoting e the vector of all ones and Q ={
ytrain

}T
ytrain ∈ Rp×p the semidefinite matrix

computing relationships between measurements
in the measurement space, the cost function reads:

C(α) =+
1

2
(α− α∗)T Q (α− α∗)

+ εeT (α + α∗)− ytrain(α− α∗)

According to Karush-Kuhn-Tucker conditions
[42], observations inside the ε tube have a zero
multiplier. Other observations are refered as
support vectors. These conditions are written:

∀t





αt
(
ε+ ξt − atrain[i−r,t] + âtrain[i−r,t]

)
= 0

α∗t
(
ε+ ξ∗t + atrain[i−r,t] − âtrain[i−r,t]

)
= 0

ξt (CB − αt) = 0

ξ∗t (CB − α∗t) = 0

10

â[:,t] = βTy[:,t]

square residual

(a) Linear regression: minimize the total sum of square
residuals

ξ

ξ∗

ε
ε

â[ir,t] = βTy[:,t]

Point contributing
to final cost

with penalty CB

(b) SVR: ensure at most ε deviation

Hidden
layerInput

layer Output
layer

â[:,t] = NN
[
y[:,t]

]σ
tanh
etc.

(c) Neural network: find weights and biases minimizing
the mean square error

thresholds

final activation

(d) Neural network with one hidden layer composed of
two σ neurons: output with two s-shapes

Qleft

Qright

threshold

(e) Decision tree with max depth 2

+ λ + λ + ...

â
(1)
[ir,:]

â
(2)
[ir,:]

= â
(1)
[ir,:]

+ λr(1) â
(3)
[ir,:]

= â
(2)
[ir,:]

+ λr(2)

Learning rate scaling
the contribution of each tree

Decision
for residual

Question about y[:,t]

(f) Gradient boosting. A decision tree predicts residuals to update a first guess

Figure 7: Illustrations of the supervised learning functions investigated in this paper. Black dots represent training data.

11

Linear ε-SVR can also be used to perform a
nonlinear regression in the measurement space.
To do so, training measurements are implicitely
mapped to a higher dimensional space where a
linear ε-SVR is relevant. A kernel function G is
used to compute higher dimensional interactions
without actually transforming variables. The
estimation for mode ir reads:

â[ir,t] =

mtrain∑

t=1

(α∗t − αt)G(ytrain[:,t] , y[:,t])

The Q matrix in the cost function is therefore

modified to Q[t1,t2] = G
(
ytrain[:,t1]

, ytrain[:,t2]

)
where the

G function may be polynomial or Gaussian.
The reader can find the complete derivation of
equations in the tutorial of Smola et. al [43].

Neural networks (NN). The reduced
state is explained by the measurement vector
passing through units organized in layers. The
propagation operator is built on activation

functions (sigmoid σ(x) =
1

1 + e−x
, hyperbolic

tangent tanh, rectified linear unit relu(x) =
max(0, x), etc.), weights and biases. The interest
in neural networks is largely attributed to their
flexibility [44]. Any function can indeed be
approximated by a sufficiently large and deep
network: a lot of neurons in hidden layers increase
nonlinearities while a lot of hidden layers create
a hierarchical representation of features. The
neural network estimate being â[:,t] = NN

[
y[:,t]
]
,

the mean square error to minimize is:

C(W) =
1

2mtrain

||
{
atrain

}T −NN
[{
ytrain

}T] ||2F

where W refers to all weights and biases in
the network. To avoid overfitting the training
data, neurons are randomly dropped out at
each parameter update [45]. This improves
generalization by enforcing the network to learn
how to use all of its inputs. To speed up
the learning process, batch gradient descent is
performed: the global gradient is the average

gradient evaluated on batches of data. Denoting
B the number of batches and Cb the cost for batch
b, a gradient update then reads:

W ← W − η

B

B∑

b=1

(
∂Cb
∂W

)

Backpropagation is used to compute gradients.
To be concise, a training sample is denoted
(yt, at). When reaching layer l in the network,
the input il is treated by neurons according to
ol = nl(i

l) where nl is the activation function.
At the final layer L, the cost for one sample is
evaluated via Ct = 1

2
||at − oLt ||2. The contribution

of neuron j in layer l to this error is [δlj]t. Finally,
weights between layer l − 1 and l are wl

while neuron biases for layer l are bl. The
complete backpropagation [46] procedure for
gradient computation is in algorithm 2. The
interested reader can refer to [47] for more details.

Algorithm 2 Backpropagation

Require: Prior parameters and a sample (yt, at)

1: Set corresponding activation of first layer

o1 = yt

2: Forward propagation - ∀l compute

ol = nl(i
l) = nl(w

lol−1 + bl)

3: Errors in the last layer - compute

δL = ∇aCt � n′l
(
iL
)

= (at − oL)� n′l
(
iL
)

4: Backpropagation of errors - ∀l compute

[δl]t =
(
[wl+1]T δl+1

)
� n′l

(
il
)

where n′l is the derivative of the activation
function

5: Gradient estimation - compute

∂Ct
∂wljk

= ol−1k [δlj]t and
∂Ct
∂blj

= [δlj]t

Gradient Boosting (GB). For each mode

12

ir, decision trees are combined to decide the
value of â[ir,t] from simple decision rules applied
to y[:,t]. At the opposite of adaptative boosting
where the decision is made from very short trees
(called stumps) with different amount of say (see
[48] for details), gradient boost builds bigger and
fixed-sized trees scaled by the same parameter.
A visual explanation is given in figure 7.

Decision trees are non parametric supervised
learning methods where the measurement
space is recursively split by minimizing an
inpurity function (see algorithm 3 and [49]).
Gradient boosted trees combine such trees while
considering previous trees’ errors in the learning
process [50]. The detailed process is presented in
algorithm 4. Here, the differentiable loss function
is the mean square error:

L
[
a[ir,t], F (y[:,t])

]
=

1

2

(
a[ir,t] − F

[
y[:,t]
])2

With this loss function, F0 is the mean value
of atrain[ir,:]

, corresponding to an initial guess for
any measurement y[:,t]. The residual for each
training sample (when building the m-th tree)

reads rtm = F
[
ytrain[:,t]

]
− atrain[ir,t]

. Terminal regions

Rjm are created, corresponding to leaves in the
tree. Leaves may contain several residuals so
the mean of residuals γjm is computed. The
final estimation combines the M trees scaled by
same amount, yielding â[ir,t] = FM

[
y[:,t]
]
. The

hyperparameter λ is called the learning rate and
empirical evidence shows that the smaller the λ
(i.e. a lot of small steps in the right direction),
the lower the variance of the model. The learning
rate is therefore a regularization parameter.

Cross-validation. For each reconstruction
methods, hyperparameters must be specified.
Cross-validation (CV) consists in learning as
many models as hyperparameter candidates and
select the one leading to the best generalization
score. The procedure is presented in algorithm
5. In this paper, 3 fold CV is performed, with
different strategies for choosing candidates.

Algorithm 3 Decision tree

Require: maximum depth dmax
1: At node k, represent Nk available data by Q
2: Select parameters θ = (feature, threshold)

minimizing the impurity function I defined
by:

I(Q, θ) =
kleft
Nk

X (Qleft(θ))

+
kright
Nk

X (Qright(θ))

where kleft is the number of samples placed in
left node, X is the mean square error function
and Qleft(θ) are training data in the left node.

3: Best parameters are θ∗ = arg minθ I(Q, θ)
4: Recurse for Qleft(θ∗) and Qright(θ∗) until dmax is

reached

For Lasso linear regression, a simple grid
search is carried out. The only hyperparameter
to optimize is α and candidates are taken in a
discretized [0, 1] interval.

For SVR and gradient boosting, a randomized
grid search is performed [51]. A random search
with N = 25 trials will find the 5% optimal
region of hyperparameters with a probability
greater than 0.7, as explained in figure 8.
SVR hyperparameters are the box constraint
(CB, sampled from an exponential distribution
with scale 15) and the kernel (polynomial with
degree q = 2 to q = 10 or Gaussian with
γ drawn from an exponential distribution with
scale 0.01). Gradient boosting hyperparameters
are the learning rate (λ, sampled from uniform
distribution in [0, 1]), the number of estimators
(M , random integer between 10 and 50), the
minimum samples in a leaf (random integer
between 5 and 15) and the maximum depth (dmax,
integer between 0.1p and 0.8p).

For neural network, a genetic optimization
based on a selection/breeding/mutation scheme
is implemented. Hyperparameters leading to
best generalization scores survive and evolve. In
this paper, a population of 15 networks evolves

13

Algorithm 4 Gradient boosting

Require: data (ytrain, atrain[ir,:]
), differentiable loss function L

1: Initialize reconstruction function F0(y) = arg minγ
mtrain∑
t=1

L
[
atrain[ir,t]

, γ
]

2: for m = 1 to M do

3: ∀t ∈ [1,mtrain] compute rt,m = −




∂L
[
atrain[ir,t]

, F (y)
]

∂F (y)




F (y)=Fm−1

(
ytrain
[:,t]

)
4: Fit a regression tree to residuals values rtm (algorithm 3)

5: Create terminal regions Rjm for j = [1, Jm]

6: ∀j ∈ [1, Jm] compute γjm = arg minγ
∑

ytrain
[:,t]
∈Rjm

L
[
atrain[ir,t]

, Fm−1(yt) + γ
]

7: Update reconstruction function Fm(y) = Fm−1(y) + λ
Jm∑
j=1

γjmI(y ∈ Rjm)

8: end for

through 7 generations. Hyperparameters are the
number of hidden layers (1,2 or 3), the number
of neurons in each layer (r, 2r, p, p/2 or r + p),
the activation function (relu, tanh, σ or linear),
the dropout rate (0.0, 0.1, 0.2 or 0.3) and the
learning rate (10−4, 10−3, 10−2 or 0.1).

Algorithm 5 K-fold cross-validation

Require: training data, a form of a model with
given hyperparameters

1: divide all training data into Kv folds of
equal size

2: define Kv different train - validation
partitionings

3: for k = 1 to Kv do
4: learn model k on train data
5: evaluate model k on validation data via

scoreval k e.g. -MSE or R2

6: end for
7: compute the generalization score as the

average of validation scores
8: train the final model using all training data

and hyperparameters leading to best cross-
validation score

Normalization. To speed up learning and
convergence, regressive models are learned on
normalized data (zero mean, unit variance).

Defining fs the fitted function, the reconstruction
procedure is:

y[:,t] ys =
y − ȳtrain
σtrain
y

âsâ[:,t] = σtrain
a âs + ātrain

scale

fs

descale

f

A summary of all investigated regressive
methods is given in table 3. Models are
implemented using scikit-learn [52] and keras [53]
libraries.

3. Presentation of cases

This section presents the three cases
investigated in this paper. Simulations were
performed using OpenFOAM.

3.1. Case 1

A 2D cylinder is placed in a uniform flow. The
diameter is D = 2m and the reference velocity is
U∞ = 1 m/s. The Reynolds number based on
D and U∞ is 200 and the computational domain
is x ∈ [−10D; +15D] and z ∈ [−10D; +10D]
with x the longitudinal direction and z the
vertical. The domain is discretized into 9200

14

Hyperparameter
space

N random samples •
The probability to miss

the blue interval is (1− 0.05)N

5% interval around the
optimal combination. The

probability to sample
here is 1− (1− 0.05)N

Success ≥ 70%

⇐⇒ N ≥ ln (1− 0.7)

ln (1− 0.05)
≈ 23.5

Figure 8: Randomized grid search. To hit the optimal hyperparameters space region with 70% of success and 95%
confidence, a random exploration of the grid space with N ≈ 24 points is enough

Method Linear regression Support Vector Regression Neural Network Boosted Trees

Description
Latent state

linearly explained
by measurements

Linear regression
performed in

higher dimension

Interconnected neurons
with nonlinear

activations

Decision trees
trained based on

previous trees’ errors

Multitask Possible No Yes No

Parameters β α weights and biases Non parametric

Regularization Lasso Box constraint Dropout Learning rate

Hyperparameters Lasso coefficient
Kernel

Box constraint

Dropout rate
Number of hidden layers

Activation functions
Learning rate

Number of estimators
Maximum depth of trees

Learning rate

Hyperparameters
optimization

Grid search Randomized grid search Genetic algorithm Randomized grid search

Benefits
One regression
Simple method

Kernel trick Flexibility Input space partionning

Drawbacks Too simple? r regressions Black box to tune
Instability
r regressions

Table 3: Table of regressive functions to recover the reduced state from limited measurements.

cells and a DNS simulation is performed. The
time step is ∆t = 0.05s and 450s are simulated.
To reach periodic vortex shedding, around 200s
are required. The remaining 250s are kept for
training and testing reconstruction methods. The
solution is sampled each ∆t∗ = 1 where the

non-dimensional time is defined as t∗ = tU∞/D.
The 250s of simulation therefore accounts for 125
snapshots. The Strouhal number is estimated
from the power spectrum of the instantaneous lift
coefficient (Fig. 9b). It is found equal to 0.191,
which is close to values observed in the literature

15

[54]. One shedding cycle corresponds to a non-
dimensional period T ∗ = 5.23 and approximately
24 shedding cycles are observed in simulation
data. Given the 70/30 splitting strategy, 16
shedding cycles are observed in training data.
This seems reasonnable to fully characterize the
dynamics considering the simplicity of the flow.
Reduction and reconstruction are performed in
the region centered around the cylinder and
the wake i.e. x ∈ [−5D; +15D] and z ∈
[−3.75D; +3.75D] which accounts for 5840 cells.

3.2. Case 2

A DNS of a 2D spatial mixing layer is
performed. The upper (fast) and lower (slow)
stream velocity are respectively U1 = 30m/s and
U2 = 10m/s. The initial vorticity thickness is
δω,0 = 1m and the inlet profile is a hyperbolic
tangent reading:

U(x = 0, z) = Uc +
1

2
∆U tanh

(
2z

δω,0

)

where the velocity difference is ∆U = U1 −
U2 = 20m/s and the convective velocity is
Uc = (U1 + U2)/2 = 20m/s. The Reynolds
number based on δω,0 and ∆U is Re = 500.
Stochastic perturbation is added to the inlet
profile to trigger the Kelvin Helmotz instability.
The flow is simulated with a physical time step
dt = 0.01s and two runs are performed: first, 250s
are simulated to ensure convergence of statistics
(mean flow and standard deviation); second, 135s
are simulated from the first solution to produce
relevant snapshots. For validation purposes, the
streamwise momentum thickness with respect to
initial vorticity thickness is plotted in fig. 9d.
The linear growth region (least square fit) with
dδθ(x)/dx ≈ 0.020 is in the range of values from
the literature [55]. The non-dimensional time
is defined as t∗ = t∆U/δω,0 and the solution is
sampled each nondimensional time unit, leading
to a total of 2700 snapshots. This number is
consistent with the choices from the literature [34,
3]. The complete domain x ∈ [0; 180δω,0] and z ∈
[−28δω,0; 28δω,0] is reconstructed, corresponding
to 13680 cells. Given the unsteady location of the

mixing layer, one convection cycle takes at most
L/Uc = 9s where L is the length of the domain.
This corresponds to 180 non dimensional time
units, leading to an ensemble of snapshots that
covers at least 15 convection cycles with possible
vortex pairing.

3.3. Case 3

Reconstruction methods are applied in the
wake of a square cylinder. This flow is
computed with a large eddy simulation (LES)
performed in a three-dimensional domain. A
Smagorinsky model is used to account for the
subgrid scales. The diameter is H = 0.04m
and the reference velocity is U∞ = 0.5 m/s.
The Reynolds number based on H and U∞ is
20000 and the computational domain is x ∈
[−4H; 15H + H/2], y ∈ [−5H; +5H] and z ∈
[−7H; +7H] with the cylinder defined by the box
(−H/2;−5H;−H/2) → (+H/2; +5H; +H/2).
The computation is initialized with a RANS k−ω
solution and periodic boundary conditions are
applied in the y direction. The time step for the
LES is ∆t = 0.0005s and 120s are simulated.
Only the last 105s are kept for reconstruction.
The total number of cells is 271 040. The
nondimensional time is defined as t∗ = tU∞/H
and the solution is sampled each nondimensional
time unit, leading to a total number of 1312
snapshots. From the spectra in fig. 9f,
St = 0.132 which is close to values observed
in several experiments [56]. One shedding
cycle therefore corresponds to T ∗ = 7.58 and
approximately 173 shedding cycles are observed
in simulation data. With the 70/30 splitting
strategy, 120 cycles are then used to learn
dominant patterns and reconstruction models.
Reduction and reconstruction are performed in
the box delimited by (−1.25H;−1.25H;−3H)
and (+12.5H; +1.25H; +3H), accounting for
48023 cells.

4. Results

The enhanced clustering algorithm gives 500
clusters that optimally describe variability in the
training data. Sensors are defined as centroids

16

(a) Velocity magnitude (m/s) for case 1

0.0 0.1 0.2 0.3 0.4 0.5
frequency [Hz]

10 9

10 6

10 3

100

PS
D

Cl
Cd
f [Hz]

(b) PSD of lift and drag coefficients (case 1)

(c) Vorticity magnitude (s−1) for case 2

0 50 100 150
x/ 0 [-]

0.5

1.0

1.5

2.0

2.5

/
0 [

-]

Growth of mixing layer
Least squares
DNS

(d) Growth rate (case 2)

(e) Slice colored by velocity magnitude (m/s) for case 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
frequency [Hz]

10 9

10 7

10 5

10 3

10 1

101

PS
D

Cl
Cd
f [Hz]

(f) PSD of lift and drag coefficients (case 3)

Figure 9: Visualizations of the three cases considered in this paper. For all cases, x is the longitudinal direction, z is the
vertical direction and y is the spanwise direction.

17

Case p0.2 p0.4 p0.8

1 8 22 92

2 18 42 122

3 39 99 372

Table 4: Number of sensors for each case

recovering 20%, 40% or 80% of the variance.
Considering the two or three components of the
velocity field to estimate, the total number of
sensors p is summarized in table 4. The choice
of Kc = 500 is arbitrary and could be optimized
using the heuristic elbow criterion [57]. Figure
10 gives some visualizations of clustering results.
For case 1, Voronoi cells close to the cylinder
are displayed. The four sensors corresponding
to p0.2 = 8 are also indicated in red. For the
mixing layer, sensors for p0.8 are indeed located
where the variability (i.e. the root mean square)
of training data is the most important. For the
3D cylinder, sensors for p0.8 are placed in the 3D
domain, in the near wake of the square cylinder.

To reduce the dimension from n to r � n,
POD and autoencoders are considered. The
latent space dimension is determined by the
number of POD modes required to recover 40%,
80% and 99% (case 1) or 95% (other cases) of
the training data variance. This choice may
overestimate the optimal latent space dimension
for the VAE but this prevents from heavy
cross validation. Latent space dimensions are
summarized in table 5.

Case n r0.4 r0.8
r0.99 (case 1)

or r0.95

1 11 680 1 2 5

2 27 360 3 11 32

3 144 069 2 21 177

Table 5: Latent space dimension for each case

Given a dimension for the latent space and

a reduction method, a set of spatial modes with
associated dynamics is extracted from training
data. For the POD method, spatial patterns
are hierarchically sorted by the recovered
variance and first modes are defined as coherent
structures. For iterative autoencoders methods,
no order and no orthogonality constraint is
imposed. Fig. 11 compares first and fifth POD
modes for the mixing layer and supports that
most (respectively lower) energetic modes are
associated to low (respectively high) frequency
dynamics. Fig. 12 shows an LAE mode and
confirms that nonorthogonality makes more
visible the vortex shedding process as argued in
[13]. The evolution of the cost function is also
shown to verify that learned modes are converged
and relevant for testing data. Fig. 13 shows two
dominant modes of 3D cylinder with the VAE
reduction. Despite close resemblances between
the first dominant VAE mode and the first POD
mode, higher order modes are different because
the VAE focus both on an energy constraint and
a regularity constraint.

Interestingly for cylinder cases, most of the
modes captured by autoencoders are associated
with the vortex shedding period. To support this
result, the power spectra for each component
of the latent state is performed. Histograms of
dominant frequencies are plotted in figure 14.
While the POD algorithm extracts hierarchical
structures with different frequencies, most of
the time series found by neural encoders have
a dominant frequency corresponding to the
one used for the Strouhal computation i.e.
f = 0.0952 Hz for case 1 and f = 1.65 Hz for
case 3. As an illustration, using VAE on the
square cylinder yields more than a hundred
modes out of 177 fundamentally oscillating at
the vortex shedding frequency.

To quantify the error in the reduction process,
the NMSE of auto-encoded velocity fields is
computed. Results are summarized in table
6. As expected, the reduction error is lower
when increasing the dimension of the latent
space. Besides, spatial modes learned on training

18

5 0 5 10 15 20
x [m]

2.5
0.0
2.5

z [
m

]

(a) Voronoi cells and p0.2 sensors for case 1

50 100 150
x [m]

25

0

25

z [
m

]

(b) p0.8 sensors and contours of [urms]x for case 2

(c) p0.8 sensors and isosurfaces of [urms]x for case 3

0 100 200 300 400 500
Number of clusters

0

25

50

75

100

Re
co

ve
re

d
va

ria
nc

e
(%

)
variance
20%
40%
80%

(d) Cumulative variance for case 3

Figure 10: Some visualizations of the enhanced clustering algorithm results

data generalize to testing data with a good
extent (testing errors are close to training errors).
Concerning the reduction strategy, POD and
LAE yield close reduction errors which is legit
given that LAE and POD modes span the same
subspace [58]. With variational approaches,
reduction errors are much higher but this is
compensated by a better organized latent space.
To perform visualizations, the first two dominant
signals (in terms of variance) are extracted by
the singular value decomposition of latent time
series. The associated 2D scatter plot is colored
according to a three cluster membership with
clusters being learned on POD dynamics. Ellipses
correspond to ±2aσ intervals projected onto the
latent space (see fig. 15). These visualizations
show that the range for variationnal spaces is
narrower compared to the LAE space. Besides,
samples located in the confidence intervals should

have a meaningful decoding by construction
which is sought for robustness. To verify this, the
impact of noisy latent states during the decoding
process is investigated. Noise is applied to each
latent time series following:

a[ir,:] ← a[ir,:] + ε

with ε ∼ N
(
0, Ia

[
max atrain[ir,:]

])

where Ia is the noisy instensity. Noisy time series
are then decoded and reconstruction errors are
computed. The robustness ratio is defined as:

γ =
NMSE0

NMSEIa

where NMSE0 is the error when no noise is
applied and NMSEIa is the error with noisy
time series. When γ is close to 1, noise has no
influence in the decoding process while γ close

19

50 100 150
x [m]

25

0

25
z [

m
]

Mode 0

50 100 150
x [m]

25

0

25

z [
m

]

Mode 5

0 500 1000 1500 2000 2500
t* [-]

200

0

200

a(
t)

[-]

Dynamics of mode 0

0 500 1000 1500 2000 2500
t* [-]

200

100

0

100

200

a(
t)

[-]

Dynamics of mode 5

Figure 11: Two POD modes (x component) for the mixing layer and their associated dynamics. The latent variable is
colored in blue for the training part and orange for the testing part.

0 10 20
x [m]

5

0

5

z [
m

]

LAE mode

(a) One LAE mode

0 10 20 30
Epoch

0

50

100

Ac
cu

ra
cy

 (%
)

History of the cost function

train R2
val R2

0

50

100

Lo
ss

 (%
)train loss

val loss

(b) Learning history of the LAE

Figure 12: Some LAE results for case 1. For the history of the cost function, ”accuracy” (continued lines) refers to
the determination coefficient. Reaching 1.0 for the training and the validation score is not surprising given the simple
periodic behaviour of the flow. Note that the validation set corresponds to the last 20% of training data and serve as a
monitor to early stop the learning.

to 0 means a high sensitivity to noise. In the
latter case, it means that decoding directions
are not robust and lead to meaningless velocity
fields û. Testing results for the mixing layer
and the 3D cylinder reduced with r0.8 modes are
shown in figure 16. Despite higher global errors
when autoencoding velocity fields with VAE, the

nonlinear decoder proves to more robust when
decoding noisy latent dynamics.

Reduction methods can also be compared in
terms of recovered spectra. Fig. 17 shows the
singular values of testing auto-encoded velocity
fields with r0.8 modes. For linear reduction

20

0.0 0.1 0.2 0.3 0.4
x [m]

0.1

0.0

0.1
z [

m
]

POD Mode 0

0.0 0.1 0.2 0.3 0.4
x [m]

0.1

0.0

0.1

z [
m

]

VAE Mode 0

0.0 0.1 0.2 0.3 0.4
x [m]

0.1

0.0

0.1

z [
m

]

POD Mode 10

0.0 0.1 0.2 0.3 0.4
x [m]

0.1

0.0

0.1

z [
m

]

VAE Mode 10

(a) Two dominant VAE modes (extracted with singular value decomposition) and the POD
modes of same order.

0 20 40 60
Epoch

30

40

50

60

Ac
cu

ra
cy

 (%
)

History of the cost function

train R2
val R2

60

80

100
Lo

ss
 (%

)train loss
val loss

(b) Learning history of the VAE.

Figure 13: Some VAE results for case 3. POD modes and dominant VAE modes are different because VAE modes are
learned with an energetic criterion and a regularity constraint (as opposed to POD modes, solely based on the variance).

methods, only high singular values are recovered,
the lowest ones being cut according to the latent
space dimension (low-pass filter). The VAE
seeks to reproduce the entire spectra but this
is to the detriment of the coherent structures
estimation. Results could possibily be improved
by considering deep variational autoencoders but
this is out of the scope of this paper. Finally,
some NMSE maps are shown in fig. 18. For
the 2D cylinder reduced with the VAE, the
auto-encoding error is non zero in the wake of the
cylinder which is not surprising given that the

mean square error is not the reduction criterion.
For the mixing layer linearly reduced at 80%
of kinetic energy, the error is maximum at the
origin of the mixing layer. For the 3D cylinder
reduced at 95% of energy, POD and LAE errors
are nearly identical because both set of modes
span the same subspace.

Latent variables are now estimated using
measurements. A total number of 540 regressive
models were trained and cross-validated while
81 direct reconstructions with λ optimization

21

0.0 0.1 0.2 0.3
f [Hz]

0

2

4

6
Nu

m
be

r o
f

 m
od

es

POD

0.0 0.1 0.2 0.3
f [Hz]

0

2

4

6
LAE

0.0 0.1 0.2 0.3
f [Hz]

0

2

4

6
VAE

(a) Dominant frequencies for case 1 and r0.99 = 5

0 2 4
f [Hz]

0

20

40

Nu
m

be
r o

f
 m

od
es

POD

0 2 4
f [Hz]

0

20

40

60

LAE

0 2 4
f [Hz]

0

50

100

VAE

(b) Dominant frequencies for case 3 and r0.95 = 177

Figure 14: Histograms of dominant frequencies in training latent time series. For the POD reduction, each mode oscillates
at a different fundamental frequency. For the LAE and VAE reductions, most of the modes fundamentaly oscillate at
the vortex shedding frequency which is a consequence of non orthogonality.

Method Case r0.4 r0.8
r0.99 (case 1)

or r0.95

POD

1 [12.88 12.60] [1.34 1.32] [0.12 0.12]

2 [22.79 23.50] [8.88 9.59] [2.40 3.13]

3 [45.05 43.26] [29.14 31.17] [9.37 15.40]

LAE

0 [13.00 12.68] [1.34 1.32] [0.12 0.12]

1 [22.83 23.57] [9.22 9.95] [2.87 3.61]

2 [45.65 44.06] [30.29 32.11] [11.65 16.9]

LVAE

0 [12.69 12.51] [1.53 1.50] [1.74 1.72]

1 [22.84 23.60] [9.02 9.80] [2.80 3.55]

2 [45.76 44.17] [32.13 33.75] [25.40 28.35]

VAE

0 [25.09 24.79] [16.6 16.31] [3.72 3.69]

1 [29.77 30.65] [23.38 24.26] [19.43 20.66]

2 [51.59 50.43] [41.16 41.41] [32.86 35.55]

Table 6: NMSE results when autoencoding velocity fields. Values are in percentage and given as [train, test] errors.

22

10 0 10
a2D, 1

5

0

5

10
a 2

D
,2

LAE

5 0 5
a2D, 1

6

4

2

0

2

4

6
LVAE

2.5 0.0 2.5
a2D, 1

3

2

1

0

1

2

3
VAE

(a) 2D cylinder - With r0.99 = 5

100 0 100
a2D, 1

100

50

0

50

100

a 2
D

,2

LAE

25 0 25
a2D, 1

20

0

20

LVAE

10 0 10
a2D, 1

15

10

5

0

5

10

15
VAE

(b) Mixing layer - With r0.80 = 11

20 0 20
a2D, 1

20

10

0

10

20

a 2
D

,2

LAE

10 0 10
a2D, 1

15

10

5

0

5

10

15
LVAE

10 0 10
a2D, 1

10

5

0

5

10
VAE

(c) 3D cylinder - With r0.95 = 177

Figure 15: Latent space visualization for all cases. Ellipses in variational spaces correspond to the 95% interval around
mean encodings. Variational spaces have a narrower range compared to LAE spaces which is consitent with the constraint
of overlapping distributions.

23

0.0 0.2 0.4 0.6 0.8
Noise intensity, Ia

0.00

0.25

0.50

0.75

1.00
N

M
SE

I a
POD
LAE
LVAE
VAE

0.0 0.2 0.4 0.6 0.8
Noise intensity, Ia

0.00

0.25

0.50

0.75

1.00

(a) Mixing layer - With r0.80 = 11

0.0 0.2 0.4 0.6 0.8
Noise intensity, Ia

0.00

0.25

0.50

0.75

1.00

N
M

SE
I a

0.0 0.2 0.4 0.6 0.8
Noise intensity, Ia

0.00

0.25

0.50

0.75

1.00

(b) 3D cylinder - With r0.80 = 21

Figure 16: Influence of noise applied on the latent state when auto-encoding high-dimensional data. Decoding directions
of the VAE appear more robust to noisy latent dynamics.

100 101

mode number

10 12

10 8

10 4

100

sin
gu

la
r v

al
ue

s

(a) 2D cylinder

101 103

mode number

10 11

10 7

10 3

101

(b) Mixing layer

100 101 102

mode number

10 11

10 7

10 3

101

True
POD
LAE
LVAE
VAE

(c) 3D Cylinder

Figure 17: Spectra of autoencoded testing velocity fields. Linear reduction methods act as low-pass filters while the
nonlinear reduction seeks to reproduce the whole spectra.

were performed. Results for all cases, all
reconstruction methods and all reduction
methods are summarized in tables A.8, A.9 and
A.10. Both training and testing errors are given,

the first being of interest for analysis tasks, the
second being more relevant from a practical
viewpoint. Some examples of cross-validation for
the mixing layer are given in figure 19. The linear

24

0 10 20
x [m]

5
0
5

z [
m

]

NMSE_x

0 10 20
x [m]

5
0
5

z [
m

]

NMSE_z

0.0

0.5

1.0

0.0

0.5

1.0

(a) 2D cylinder with r0.99 = 5 modes and VAE
reduction. The error in the wake is non zero as opposed
to other reduction methods.

50 100 150
x [m]

25

0

25

z [
m

]

NMSE_x

50 100 150
x [m]

25

0

25

z [
m

]

NMSE_z

0.0

0.5

1.0

0.0

0.5

1.0

(b) Mixing layer with r0.8 = 11 modes and POD
reduction. The error at the origin of the mixing layer
vanishes for r0.95.

0.0 0.2 0.4
x [m]

0.1
0.0
0.1

z [
m

]

NMSE_x

0.0 0.2 0.4
x [m]

0.1
0.0
0.1

z [
m

]

NMSE_z

0.0

0.5

1.0

0.0

0.5

1.0

(c) 3D cylinder with r0.95 = 177 modes and LAE
reduction.

0.0 0.2 0.4
x [m]

0.1
0.0
0.1

z [
m

]
NMSE_x

0.0 0.2 0.4
x [m]

0.1
0.0
0.1

z [
m

]

NMSE_z

0.0

0.5

1.0

0.0

0.5

1.0

(d) 3D cylinder with r0.95 = 177 modes and POD
reduction. Same as LAE reduction because both modes
span the same subspace.

Figure 18: NMSE maps of auto-encoded testing velocity fields.

regression requires the α hyperparameter which
is optimized by grid search. In its multitask
formulation, α is unique for all the modes,
leading to a βT matrix with some columns
equal to zero. In its single-task formulation, α
may be different for all the modes and βT is
sparse. For the support vector regression and
gradient boosted trees, each component of the

latent space is regressed independently. For each
mode, 25 combinations of hyperparameters are
randomly sampled in the hyperparameters space,
yielding a matrix of cross-validation scores.
Combinations with the highest R2 score (black
dots) are used to train the final models. For
the neural network, candidate hyperparameters
evolve for several generations and only best

25

candidates survive. The final population
contains best neural networks, trained with best
hyperparameters. The direct reconstruction
optimization is illustrated in figure 20 for case
3: several λ hyperparameters are tested when
reconstructing training data and the one leading
to the best determination score is kept for testing.

A deeper analysis of the results tables that
all reconstruction methods yield close errors
for a given case, a latent dimension and a
grid of sensors. Some outliers for the direct
reconstruction can be noticed for case 2 and case
3; this is attributed to the simplex algorithm
used for solving the underdetermined system
of equations. Not surprisingly, increasing the
number of sensors and the dimension of the
latent space leads to lower testing errors. As
an example, the influence of sensors density is
visualised in fig. 21 for the mixing layer.

The effect of noise in measurements is also
explored. Considering a noise intensity Iy, each
component of the measurement vector is modified
according to:

y[ip,:] ← y[ip,:] + ε

with ε ∼ N (0, Iy max[y[ip,:]])

Reconstructions are then performed and
determination coefficients are computed. Results
(averaged over several runs) are illustrated in
figure 22 with the mixing layer and the 3D
cylinder. Not surprisingly, the higher the
noise level, the higher the impact on the
global determination score. Besides, the noise
preferentially impacts high order modes when
considering POD reduction. It can also be
noted that despite differences in formulations
(cost function, hyperparameters), each model
gives similar results which is attributed to the
systematic cross validation of hyperparameters.
The choice of one method towards another
therefore depends on the user specifications:
combination of measurements or decision from the
measurements? black box or white box? few or

lots of parameters? heavy cross-validation or not?
multitask or not? etc. The choice may also be
guided by the computational complexity as shown
in table 7 with the CPU time to learn regressive
models of the turbulent flow around the cylinder1.

5. Discussion and perspectives

Overall, the results suggest that machine
learning methods can be used for fluid flow
reconstruction. The choice of one strategy
towards another depends on the data availability,
the model’s interpretability, the implementation
cost and the computational cost.

The data availibility refers to the snapshots
ensemble used for learning methods. Snapshots
must be representative of the flow and the
number of available samples can play a decisive
role during training. Neural networks are known
to require a tremendeous amount of data to
be efficient, while linear regressions can yield
reasonable performance with a small snapshots
ensemble. In this paper, the number of snapshots
was chosen empirically, based on a macrocospic
scale. This number may be optimised with a
parametric study (do the scores change with an
enriched dataset?) or with a deeper analysis
of the flow. One may consider the use of the
Hurst exponent [29], integral time scales or the
Lyapunov exponent [59].

The interpretability is the degree to which
a machine decision is understandable. Decision
trees are very interpretable since the decision path
to explain the final output is human readable.
At the opposite, deep neural networks are black
boxes where the final output is obtained by a
complex feedforward process. To make machine
learning more interpretable, physical constraints
can be added in the formulation [60, 61]. A good
machine learning model should be interpretable
(few active terms i.e. parcimonious) and
generalisable (robust to new configurations).

1Note that learning all the models to produce tables in
appendix took around 326 CPU hours.

26

0 5 10 15 20 25 30 35 40

Sensor number

0
2
4
6
8

10M
od

e
nu

m
be

r
T matrix (multitask)

0.0 0.2 0.4 0.6 0.8 1.0
alpha

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n
M

SE

Cross-validation error (3 folds)

CV error
alpha = 0.04

(a) Lasso cross-validation (multitask formulation). The contribution of one sensor is
set to zero for all modes (blank column).

0 5 10 15 20 25 30 35 40

Sensor number

0
2
4
6
8

10M
od

e
nu

m
be

r

T matrix (single task)
0.

0e
+0

0
5.

0e
-0

3
7.

5e
-0

3
1.

0e
-0

2
2.

0e
-0

2
3.

0e
-0

2
4.

0e
-0

2
5.

0e
-0

2
6.

0e
-0

2
7.

0e
-0

2
8.

0e
-0

2
9.

0e
-0

2
1.

0e
-0

1
2.

0e
-0

1
3.

0e
-0

1
4.

0e
-0

1
5.

0e
-0

1
6.

0e
-0

1
7.

0e
-0

1
8.

0e
-0

1
9.

0e
-0

1
1.

0e
+0

0
alpha

0

5

10

m
od

e

Cross-validation error (3 folds)

0.5

1.0

(b) Lasso cross-validation (single task formulation). The selection of sensors is different
for each mode.

0.0 40.0 80.0
0.0

40.0

80.0

C

2 6 10
0.0

40.0

80.0

0.00 0.02 0.04
0.0

40.0

80.0

0.0 40.0 80.0
2

6

10

De
gr

ee

2 6 10
2

6

10

0.00 0.02 0.04
2

6

10

0.0 40.0 80.0
C

0.00

0.02

0.04

Sc
al

e

2 6 10
Degree

0.00

0.02

0.04

0.00 0.02 0.04
Scale

0.00

0.02

0.04

Grid of tested hyperparameters

1 5 9 13 17 21 25

Number of tested combination

0
2
4
6
8

10

Nu
m

be
r o

f
 m

od
e

Validation score (3 folds)

0.0
0.2
0.4
0.6
0.8
1.0

(c) Support Vector Regression cross-validation. The procedure is identical when validating Gradient
Boosted Trees. At the opposite of the Lasso optimization, hyper-parameters are randomly tested hence
the chaotic organization of the validation score matrix. On the left figure, blue dots indicate a polynomial
kernel while red dots indicate a Gaussian kernel.

27

1 3 5 7
Generation number

0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n

sc
or

e

Mean validation score
 for each generation

1 3 5 7 9 11 13 15
Member number

1

3

5

7

Ge
ne

ra
tio

n
nu

m
be

r

Validation scores
 matrix

0.0

0.2

0.4

0.6

0.8

1.0

(d) Genetic optimisation of neural network hyperparameters. At the end of the
process, each neural network has a validation score close to unit meaning that bad
hyperparameters didn’t survive across generations.

Figure 19: Examples of cross-validation to optimize hyperparameters of regressive methods. Results are illustrated on
the mixing layer reduced with r0.80 = 11 POD modes and reconstructed with p0.40 = 42 sensors.

Method Noteworthy CPU time

POD SVD computation 1 minute

LAE
Iterative procedure

No hyperparameter optimisation

3 minutes
LVAE 6 minutes
VAE 12 minutes

Direct reconstruction
Reconstruction of all training

and testing data
One optimisation per reconstruction

[5, 5, 5, -] minutes

Neural network
Genetic optimisation

Neural network fitting
[15, 17, 30, 21] minutes

Linear single task
One regression per mode

Lasso with l1 norm
[3, 3, 3, 3] minutes

Linear multi-task
One regression for all modes

Lasso with l21 norm
[43, 39, 36, 23] minutes

Support vectors Random grid search
One optimisation per mode

[6, 6, 6, 12] minutes
Gradient Boosting [26, 25, 26, 24] minutes

Table 7: Computational time to perform r0.8 reductions and p0.8 reconstructions for case 3. Values are given as [POD,
LAE, LVAE, VAE] CPU times. Computations were performed sequentially with one node from NEC SATOR HPC.

The implementation cost refers to the
mathematical formulation of the method. In
general, the more flexible the method, the more
complex the implementation.

The computational cost refers to the
computational ressources required for learning.
Depending on the cross validation strategy
and the number of parameters to learn, the

learning phase can be heavy. Neural networks
are particularly greedy during learning but once
weights and biases are known, the evaluation
of the model is fast. Applied to case 1, linear
regression coupled to POD reduction is a way
more reasonable strategy than neural network
coupled to VAE reduction: both strategies
capture a low dimensional representation of
the vortex shedding but the linear procedure

28

0 5 10 15 20
Mode number

0.00

0.25

0.50

0.75

1.00

R 2

Training scores for several
0.02
0.08
0.14
0.20

Figure 20: Selection of the λ hyperparameter for the direct
estimation of case 3 (POD reduction with r0.8 modes and
p0.8 sensors)

is much faster and interpretable than the
nonlinear one. For case 3, a linear regression
is more discussable if the model is to be used
for real-time estimation. The choice of LVAE
(for robustness to noise estimate) with a neural
network (for rapid evaluation) is more tailored for
such task. The computational cost is probably
the main obstacle for applying the procedure to
industrial flow fields: storing and processing the
matrix of snapshots would require lots of memory
unless reduction and reconstruction are locally
performed2.

It is important to note that models were
learned for fixed inlet conditions: the Reynolds
number for each case and the stochastic
perturbation for the mixing layer. An interesting
extension would consist in learning models
covering several regimes. Following the idea of
Morton et. al [31], generative models could be
used to generate relevant data for an unseen
case, given a context parameter. Applied to
the mixing layer, such a strategy could be used
to learn the sensitivity to inlet conditions and
control the vortex pairing [62]. Another comment

2We could then benefit from parallelization and
dynamic allocation. When investigating the flow around
an isolated building, we found that working with a
1391728 × 1600 snapshots matrix approximately requires
50 GiB of RAM. In such a case, estimation tools may be
learned on a subdomain or a coarser mesh on which the
validated solution is interpolated to.

concerns the scalability of the method. The
proposed framework was applied to increasing
complexity, yet canonical flows. For highly
turbulent flows where nonlinearities dominate,
linear reconstructions may be limited. Given
the flexibility of neural networks, deep learning
models with a good choice for hyperparameters
should yield reasonable results. This however
requires a tremendeous amount of relevant data
and a good learning procedure to avoid vanishing
or exploding gradients [63]. Concerning the
measurement matrix, sensors were positioned
according to an energetic criterion. Instead of
clustering the mesh as a whole (thus putting
all mesh refinements on an equal footing), one
may improve the method by considering local
clusterings. In doing so, the enhanced clustering
algorithm could be more relevant near walls.
Other strategies based on the controllobability
and the observability of the sensors may also
be investigated as this could give better insights
for measuring the flow [19]. Finally, direct and
regressive reconstructions are more likely to be
used for offline applications and flow analysis.
For real-time estimation, data assimilation should
be preferred [64] but this requires a dynamical
model and the estimation of uncertainties. To
learn a probabilistic [34] or deterministic [28, 29]
dynamical model of the latent state, data-driven
procedures may be considered. This requires
the latent state to have a temporal regularity
which was not observed for the variationnal auto-
encoded mixing layer (see fig. 23). Even if it is
not a hurdle when learning reconstruction models
(used for analysis tasks with non sequential
reconstructions), it is necessary to address this
drawback. This could be done by adding a
temporal constraint when learning the VAE e.g
via the use of reccurent units [65]. Another
difficulty to apply data assimilation schemes lies
in the accurate estimation of prediction errors.
Gaussian processes are promising tools for such
tasks [66].

29

50 100 150
x [m]

25

0

25
z [

m
]

Estimated snapshot

1900 1950 2000 2050
t * []

100

0

100

a 9
(t)

Dynamics of ninth mode

Estimation True

(a) Grid of sensors p0.2 = 18

50 100 150
x [m]

25

0

25

z [
m

]

Estimated snapshot

1900 1950 2000 2050
t * []

100

0

100

a 9
(t)

Dynamics of ninth mode

(b) Grid of sensors p0.4 = 42

50 100 150
x [m]

25

0

25

z [
m

]

Estimated snapshot

1900 1950 2000 2050
t * []

100

0

100

a 9
(t)

Dynamics of ninth mode

(c) Grid of sensors p0.8 = 122

20 40 60 80 100 120 140 160
x [m]

20

0

20

z [
m

]

True snapshot

5

0

5

(d) Reference snapshot colored by the longitudinal fluctuating velocity.

Figure 21: Linear Multitask reconstruction of a mixing layer. The estimation is visualised in the physical space (one
testing snapshot) and in the latent state (dynamics of the ninth POD mode). Increasing the density of sensors leads to
a better estimate of the snapshot.

30

0.0 0.2 0.4 0.6 0.8
Noise intensity, Iy

0.0

0.5

1.0

R
2

Linear Multitask

POD
LAE

LVAE
VAE

0.0 0.2 0.4 0.6 0.8
Noise intensity, Iy

0.0

0.5

1.0
SVR

0.0 0.2 0.4 0.6 0.8
Noise intensity, Iy

0.0

0.5

1.0

R
2

Neural Network

0.0 0.2 0.4 0.6 0.8
Noise intensity, Iy

0.0

0.5

1.0
Gradient Boosted Trees

(a) Determination coefficient as a function of noise level in measurements. Illustrated
on the mixing layer with r0.80 = 11 and p0.80 = 122.

950 1000 1050 1100
t* [-]

1

0

1

a 0
(t)

 [-
]

Reconstruction of first mode
 No noise

950 1000 1050 1100
t* [-]

1

0

1

Reconstruction of first mode
 with Iy = 0.5

True Reconstruction

0 5 10 15 20
Mode number

0.0

0.5

1.0

R 2

Score (no noise)

0 5 10 15 20
Mode number

0.0

0.5

1.0
Score (Iy = 0.5)

Train
Test

(b) Linear Multitask reconstruction of the first POD mode for the 3D cylinder with
r0.80 = 21 and p0.8 = 372.

Figure 22: Influence of noisy measurements in the reconstruction of testing latent dynamics.

6. Conclusion

This paper investigates the use of machine
learning tools for fluid flow field estimation from
limited measurements. First, the field is reduced
using reduction techniques. Second, the reduced
state is recovered from limited measurements.

Finally, the estimated latent state is decoded to
reconstruct the full velocity field. The strategy
is applied to three canonical flows: a 2D cylinder
at small Reynolds number, a spatial mixing layer
and a 3D square cylinder at moderate Reynolds.
For the reduction process, linear or nonlinear

31

0 50 100
t * [-]

2

0

a 0
(t)

Dynamics of
 first LAE mode

0 50 100
t * [-]

2

0

2

Dynamics of
 first LVAE mode

0 50 100
t * [-]

2

0

Dynamics of
 first VAE mode

Figure 23: Comparison of latent state time series for the mixing layer. The dynamics of the VAE state shows some
temporal irregularities. This may be an obstacle for real time estimation.

transformations can be used. Linear autoencoders
encode and decode data with high fidelity but
the method is not robust to noise applied to
the latent state. Using a variational approach
can increase the robustness to the detriment of
the reduction mean square error. Besides, the
use of nonlinearities in the reduction phase leads
to a faster identification of dominant frequencies
compared to a classical proper orthogonal
decomposition. For the latent state estimation,
cross-validation during the learning phase enables
good generalization to test data for all methods.
The choice of one reconstruction technique
towards another therefore depends on initial
specifications: data availability, interpretability,
implementation cost and computational cost.
All in all, results on the three canonical flow
fields provide valuable informations for the
development of new reconstruction techniques
based on machine learning and their deployment
on complex geometries that can be encoutered in
industrial issues.

7. Acknowledgments

The authors wish to thank ONERA and
Hauts-De-France region for their funding.

8. References

[1] K. T. Carlberg, A. Jameson, M. J. Kochenderfer,
J. Morton, L. Peng, F. D. Witherden, Recovering
missing cfd data for high-order discretizations using

deep neural networks and dynamics learning, Journal
of Computational Physics 395 (2019) 105–124.

[2] Z. Deng, Y. Chen, Y. Liu, K. C. Kim, Time-resolved
turbulent velocity field reconstruction using a long
short-term memory (lstm)-based artificial intelligence
framework, Physics of Fluids 31 (7) (2019) 075108.

[3] J. L. Callaham, K. Maeda, S. L. Brunton, Robust flow
reconstruction from limited measurements via sparse
representation, Physical Review Fluids 4 (10) (2019)
103907.

[4] K. Manohar, B. W. Brunton, J. N. Kutz, S. L.
Brunton, Data-driven sparse sensor placement for
reconstruction: Demonstrating the benefits of
exploiting known patterns, IEEE Control Systems
Magazine 38 (3) (2018) 63–86.

[5] S. L. Brunton, B. R. Noack, P. Koumoutsakos,
Machine learning for fluid mechanics, Annual Review
of Fluid Mechanics 52 (2020) 477–508.

[6] A. Arnault, J. Dandois, J.-M. Foucaut, Comparison
of stochastic estimation methods with conditional
events optimization for the reconstruction of the flow
around a supercritical airfoil in transonic conditions,
Computers & Fluids 136 (2016) 436–455.

[7] R. J. Adrian, Conditional eddies in isotropic
turbulence, The Physics of Fluids 22 (11) (1979)
2065–2070.

[8] Y. Guezennec, Stochastic estimation of coherent
structures in turbulent boundary layers, Physics of
Fluids A: Fluid Dynamics 1 (6) (1989) 1054–1060.

[9] N. E. Murray, L. S. Ukeiley, Estimation of the
flowfield from surface pressure measurements in an
open cavity, AIAA journal 41 (5) (2003) 969–972.

[10] D. R. Cole, M. N. Glauser, Applications of stochastic
estimation in the axisymmetric sudden expansion,
Physics of Fluids 10 (11) (1998) 2941–2949.

[11] J. P. Bonnet, D. R. Cole, J. Delville, M. N.
Glauser, L. S. Ukeiley, Stochastic estimation and
proper orthogonal decomposition: complementary
techniques for identifying structure, Experiments in

32

fluids 17 (5) (1994) 307–314.
[12] L. Perret, K. Blackman, E. Savory, Combining

wind-tunnel and field measurements of street-canyon
flow via stochastic estimation, Boundary-Layer
Meteorology 161 (3) (2016) 491–517.

[13] N. B. Erichson, L. Mathelin, Z. Yao, S. L. Brunton,
M. W. Mahoney, J. N. Kutz, Shallow learning for fluid
flow reconstruction with limited sensors and limited
data, arXiv preprint arXiv:1902.07358.

[14] J.-C. Loiseau, B. R. Noack, S. L. Brunton,
Sparse reduced-order modeling: sensor-based
dynamics to full-state estimation, arXiv preprint
arXiv:1706.03531.

[15] S. Al Mamun, C. Lu, B. Jayaraman, Extreme learning
machines as encoders for sparse reconstruction,
Fluids 3 (4) (2018) 88.

[16] K. Taira, S. L. Brunton, S. T. Dawson, C. W.
Rowley, T. Colonius, B. J. McKeon, O. T. Schmidt,
S. Gordeyev, V. Theofilis, L. S. Ukeiley, Modal
analysis of fluid flows: An overview, AIAA Journal
55 (12) (2017) 4013–4041.

[17] R. Everson, L. Sirovich, Karhunen–loeve procedure
for gappy data, JOSA A 12 (8) (1995) 1657–1664.

[18] F. Lusseyran, P. Gougat, A reconstruction method
for the flow past an open cavity, Journal of Fluids
Engineering 128 (2006) 531.

[19] L. Mathelin, K. Kasper, H. Abou-Kandil, Observable
dictionary learning for high-dimensional statistical
inference, Archives of Computational Methods in
Engineering 25 (1) (2018) 103–120.

[20] J. Xu, K. Duraisamy, Multi-level convolutional
autoencoder networks for parametric prediction
of spatio-temporal dynamics, arXiv preprint
arXiv:1912.11114.

[21] L. Sun, J.-X. Wang, Physics-constrained bayesian
neural network for fluid flow reconstruction
with sparse and noisy data, arXiv preprint
arXiv:2001.05542.

[22] V. Mons, J.-C. Chassaing, T. Gomez, P. Sagaut,
Reconstruction of unsteady viscous flows using data
assimilation schemes, Journal of Computational
Physics 316 (2016) 255–280.

[23] B. R. Noack, K. Afanasiev, M. Morzyński,
G. Tadmor, F. Thiele, A hierarchy of low-dimensional
models for the transient and post-transient cylinder
wake, Journal of Fluid Mechanics 497 (2003) 335–363.

[24] S. L. Brunton, J. L. Proctor, J. N. Kutz,
Discovering governing equations from data by
sparse identification of nonlinear dynamical systems,
Proceedings of the National Academy of Sciences
(2016) 201517384.

[25] C. Colburn, J. Cessna, T. Bewley, State estimation
in wall-bounded flow systems. part 3. the ensemble
kalman filter, Journal of Fluid Mechanics 682 (2011)
289–303.

[26] T. Suzuki, Reduced-order kalman-filtered hybrid

simulation combining particle tracking velocimetry
and direct numerical simulation, Journal of Fluid
Mechanics 709 (2012) 249–288.

[27] K. Taira, M. S. Hemati, S. L. Brunton, Y. Sun,
K. Duraisamy, S. Bagheri, S. T. Dawson, C.-A.
Yeh, Modal analysis of fluid flows: Applications and
outlook, AIAA journal 58 (3) (2020) 998–1022.

[28] C. W. Rowley, S. T. Dawson, Model reduction for
flow analysis and control, Annual Review of Fluid
Mechanics 49 (2017) 387–417.

[29] A. T. Mohan, D. V. Gaitonde, A deep learning based
approach to reduced order modeling for turbulent
flow control using lstm neural networks, arXiv
preprint arXiv:1804.09269.

[30] J. N. Kutz, Deep learning in fluid dynamics, Journal
of Fluid Mechanics 814 (2017) 1–4.

[31] J. Morton, F. D. Witherden, M. J. Kochenderfer,
Parameter-conditioned sequential generative
modeling of fluid flows, arXiv preprint
arXiv:1912.06752.

[32] P. J. Schmid, Dynamic mode decomposition of
numerical and experimental data, Journal of fluid
mechanics 656 (2010) 5–28.

[33] B. Lusch, J. N. Kutz, S. L. Brunton, Deep learning for
universal linear embeddings of nonlinear dynamics,
Nature communications 9 (1) (2018) 4950.

[34] E. Kaiser, B. R. Noack, L. Cordier, A. Spohn,
M. Segond, M. Abel, G. Daviller, J. Östh,
S. Krajnović, R. K. Niven, Cluster-based reduced-
order modelling of a mixing layer, Journal of Fluid
Mechanics 754 (2014) 365–414.

[35] A. Arnault, J. Dandois, J.-C. Monnier, J. Delva, J.-
M. Foucaut, Analysis of the filtering effect of the
stochastic estimation and accuracy improvement by
sensor location optimization, Experiments in Fluids
57 (12) (2016) 185.

[36] B. Jayaraman, S. Al Mamun, C. Lu, Interplay of
sensor quantity, placement and system dimension in
pod-based sparse reconstruction of fluid flows, Fluids
4 (2) (2019) 109.

[37] B. Jayaraman, C. Lu, J. Whitman, G. Chowdhary,
Sparse feature map-based markov models for
nonlinear fluid flows, Computers & Fluids 191 (2019)
104252.

[38] K. Hornik, M. Stinchcombe, H. White, et al.,
Multilayer feedforward networks are universal
approximators., Neural networks 2 (5) (1989)
359–366.

[39] S. Odaibo, Tutorial: Deriving the standard
variational autoencoder (vae) loss function, arXiv
preprint arXiv:1907.08956.

[40] S. Diamond, S. Boyd, CVXPY: A Python-embedded
modeling language for convex optimization, Journal
of Machine Learning Research 17 (83) (2016) 1–5.

[41] R. Li, X. Wang, L. Lei, Y. Song, l {21}-norm based
loss function and regularization extreme learning

33

machine, IEEE Access 7 (2018) 6575–6586.
[42] H. Kuhn, A. Tucker, Nonlinear programming.

proceedings of the 2nd berkeley symposium on
mathematical statistics and probability, university of
california.

[43] A. J. Smola, B. Schölkopf, A tutorial on support
vector regression, Statistics and computing 14 (3)
(2004) 199–222.

[44] G. Cybenko, Approximation by superpositions of a
sigmoidal function, Mathematics of control, signals
and systems 2 (4) (1989) 303–314.

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
R. Salakhutdinov, Dropout: a simple way to prevent
neural networks from overfitting, The journal of
machine learning research 15 (1) (2014) 1929–1958.

[46] D. E. Rumelhart, G. E. Hinton, R. J. Williams,
Learning representations by back-propagating errors,
nature 323 (6088) (1986) 533–536.

[47] J. Friedman, T. Hastie, R. Tibshirani, et al., The
elements of statistical learning, Vol. 1, Springer series
in statistics New York, 2001.

[48] G. James, D. Witten, T. Hastie, R. Tibshirani,
An introduction to statistical learning, Vol. 112,
Springer, 2013.

[49] L. Breiman, J. Friedman, C. J. Stone, R. A. Olshen,
Classification and regression trees, CRC press, 1984.

[50] T. Chen, C. Guestrin, Xgboost: A scalable tree
boosting system, in: Proceedings of the 22nd
acm sigkdd international conference on knowledge
discovery and data mining, 2016, pp. 785–794.

[51] J. Bergstra, Y. Bengio, Random search for hyper-
parameter optimization, The Journal of Machine
Learning Research 13 (1) (2012) 281–305.

[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot,
E. Duchesnay, Scikit-learn: Machine learning in
Python, Journal of Machine Learning Research 12
(2011) 2825–2830.

[53] F. Chollet, keras, https://github.com/fchollet/

keras (2015).
[54] M. Braza, P. Chassaing, H. H. Minh, Numerical study

and physical analysis of the pressure and velocity
fields in the near wake of a circular cylinder, Journal
of fluid mechanics 165 (1986) 79–130.

[55] A. Attili, F. Bisetti, Statistics and scaling of
turbulence in a spatially developing mixing layer at
Reλ= 250, Physics of Fluids 24 (3) (2012) 035109.

[56] H. Bai, M. M. Alam, Dependence of square cylinder
wake on reynolds number, Physics of Fluids 30 (1)
(2018) 015102.

[57] T. M. Kodinariya, P. R. Makwana, Review on
determining number of cluster in k-means clustering,
International Journal 1 (6) (2013) 90–95.

[58] E. Plaut, From principal subspaces to principal

components with linear autoencoders, arXiv preprint
arXiv:1804.10253.

[59] P. Mohan, N. Fitzsimmons, R. D. Moser, Scaling
of lyapunov exponents in homogeneous isotropic
turbulence, Physical Review Fluids 2 (11) (2017)
114606.

[60] J. Ling, A. Kurzawski, J. Templeton, Reynolds
averaged turbulence modelling using deep neural
networks with embedded invariance, Journal of Fluid
Mechanics 807 (2016) 155–166.

[61] M. Raissi, P. Perdikaris, G. E. Karniadakis,
Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems
involving nonlinear partial differential equations,
Journal of Computational Physics 378 (2019) 686–
707.

[62] J. Ko, D. Lucor, P. Sagaut, Sensitivity of two-
dimensional spatially developing mixing layers with
respect to uncertain inflow conditions, Physics of
Fluids 20 (7) (2008) 077102.

[63] R. Pascanu, T. Mikolov, Y. Bengio, On the
difficulty of training recurrent neural networks, in:
International conference on machine learning, 2013,
pp. 1310–1318.

[64] K. Loh, P. S. Omrani, R. van der Linden,
Deep learning and data assimilation for real-time
production prediction in natural gas wells, arXiv
preprint arXiv:1802.05141.

[65] P. Dubois, T. Gomez, L. Planckaert, L. Perret, Data-
driven predictions of the lorenz system, Physica D:
Nonlinear Phenomena 408 (2020) 132495.

[66] X. Qiu, E. Meyerson, R. Miikkulainen, Quantifying
point-prediction uncertainty in neural networks via
residual estimation with an i/o kernel, arXiv preprint
arXiv:1906.00588.

Appendix A. Reconstruction results

Tables A.8, A.9 and A.10 give training and
testing scores for the three investigated cases.
Different reduction and reconstruction strategies
are combined to estimate the full velocity field
from limited measurements.

34

https://github.com/fchollet/keras
https://github.com/fchollet/keras

Method Reduction r0.4 r0.8 r0.99

DR

POD [14.42 12.84 12.91] [1.53 1.37 1.35] [1.44 0.16 0.13]
LAE [14.19 12.96 13.06] [1.53 1.37 1.35] [0.73 0.16 0.13]
LVAE [15.03 12.71 12.70] [1.73 1.49 1.46] [10.32 9.73 1.32]
VAE Not implemented

LM

POD [12.88 12.88 12.88] [1.44 1.34 1.34] [0.28 0.12 0.12]
LAE [13.01 13.00 13.00] [1.44 1.34 1.34] [0.27 0.12 0.12]
LVAE [12.70 12.69 12.69] [1.63 1.53 1.53] [1.84 1.74 1.74]
VAE [25.09 25.09 25.09] [16.46 16.52 16.52] [3.61 3.47 3.49]

LS

POD [12.88 12.88 12.88] [1.44 1.34 1.34] [0.28 0.12 0.12]
LAE [13.01 13.00 13.00] [1.44 1.34 1.34] [0.27 0.12 0.12]
LVAE [12.70 12.69 12.69] [1.63 1.53 1.53] [1.84 1.74 1.74]
VAE [25.09 25.09 25.09] [16.46 16.52 16.53] [3.61 3.46 3.46]

SVR

POD [12.99 12.95 12.94] [1.46 1.47 1.50] [0.24 0.26 0.29]
LAE [13.11 13.07 13.08] [1.45 1.47 1.50] [0.21 0.20 0.20]
LVAE [12.89 12.87 12.87] [1.82 1.81 1.91] [2.08 2.15 2.25]
VAE [25.11 25.10 25.09] [16.62 16.95 16.86] [3.55 3.67 3.70]

NN

POD [12.88 12.89 12.86] [1.38 1.65 1.34] [0.43 0.13 0.33]
LAE [13.02 13.02 13.00] [1.75 1.42 1.36] [0.31 0.13 0.13]
LVAE [12.68 12.87 12.72] [2.13 1.54 1.54] [1.76 1.76 1.79]
VAE [25.15 25.09 25.08] [16.62 16.67 16.72] [3.77 4.48 3.73]

GB

POD [12.89 12.88 12.89] [1.44 1.41 1.36] [0.25 0.2 0.15]
LAE [13.03 13.02 13.01] [1.44 1.42 1.37] [0.25 0.17 0.18]
LVAE [12.75 12.73 12.71] [1.71 1.60 1.73] [1.93 1.92 1.93]
VAE [25.10 25.10 25.10] [17.42 16.98 16.73] [3.95 3.83 3.86]

(a) Training errors.

Method Reduction r0.4 r0.8 r0.99

DR

POD [14.08 12.56 12.63] [1.52 1.35 1.33] [1.55 0.16 0.13]
LAE [13.81 12.64 12.74] [1.52 1.35 1.33] [0.78 0.16 0.13]
LVAE [14.78 12.54 12.53] [1.73 1.46 1.44] [10.06 9.66 1.29]
VAE Not implemented

LM

POD [12.6 12.6 12.6] [1.44 1.32 1.32] [0.30 0.12 0.12]
LAE [12.69 12.68 12.68] [1.44 1.32 1.32] [0.29 0.12 0.12]
LVAE [12.53 12.51 12.51] [1.61 1.50 1.50] [1.82 1.72 1.72]
VAE [24.79 24.79 24.79] [16.13 16.25 16.22] [3.49 3.45 3.48]

LS

POD [12.6 12.6 12.6] [1.44 1.32 1.32] [0.30 0.12 0.12]
LAE [12.69 12.68 12.68] [1.44 1.32 1.32] [0.29 0.12 0.12]
LVAE [12.53 12.51 12.51] [1.61 1.5 1.5] [1.82 1.72 1.72]
VAE [24.79 24.79 24.79] [16.13 16.23 16.24] [3.49 3.45 3.42]

SVR

POD [12.71 12.68 12.65] [1.44 1.45 1.48] [0.25 0.26 0.29]
LAE [12.79 12.75 12.75] [1.43 1.45 1.47] [0.21 0.2 0.21]
LVAE [12.72 12.71 12.69] [1.80 1.80 1.89] [2.06 2.12 2.22]
VAE [24.80 24.80 24.79] [16.29 16.65 16.56] [3.51 3.65 3.67]

NN

POD [12.60 12.61 12.58] [1.36 1.63 1.32] [0.37 0.14 0.35]
LAE [12.69 12.71 12.68] [1.73 1.40 1.34] [0.30 0.14 0.13]
LVAE [12.52 12.71 12.55] [2.13 1.53 1.52] [1.75 1.74 1.78]
VAE [24.85 24.79 24.78] [16.32 16.36 16.42] [3.76 4.51 3.69]

GB

POD [12.61 12.60 12.62] [1.55 1.44 1.37] [0.40 0.26 0.19]
LAE [12.70 12.73 12.68] [1.49 1.42 1.37] [0.32 0.19 0.2]
LVAE [12.59 12.57 12.55] [1.8 1.61 1.72] [1.96 1.96 1.92]
VAE [24.80 24.79 24.80] [17.18 16.7 16.42] [4.05 3.80 3.78]

(b) Testing errors.

Table A.8: NMSE values for the 2D cylinder. Values are in percentage and given as [p0.2, p0.4, p0.8] errors.

35

Method Reduction r0.4 r0.8 r0.95

DR

POD [26.76 24.98 23.14] [26.44 22.6 10.78] [112. 21.61 7.26]
LAE [27.3 25.1 23.17] [31.64 26.28 11.28] [108.03 27.99 9.86]
LVAE [28.19 25.32 23.18] [30.67 31.12 10.94] [123.56 22.29 8.00]
VAE Not implemented

LM

POD [25.10 23.34 22.80] [21.11 17.61 9.52] [19.96 15.32 5.40]
LAE [25.13 23.36 22.84] [21.37 17.77 9.89] [20.26 15.77 5.8 0]
LVAE [25.16 23.38 22.85] [21.18 17.70 9.63] [20.15 15.59 5.62]
VAE [29.72 29.32 29.28] [27.66 25.97 22.17] [27.05 24.89 19.77]

LS

POD [25.08 23.34 22.80] [21.17 17.28 9.52] [20.27 15.39 5.41]
LAE [25.1 23.36 22.84] [21.5 17.61 9.88] [20.39 15.81 6.01]
LVAE [25.12 23.38 22.85] [21.19 17.45 9.67] [20.26 15.54 5.88]
VAE [29.72 29.33 29.28] [27.55 25.92 22.15] [26.96 24.65 19.71]

SVR

POD [24.59 23.21 22.87] [19.94 16.57 9.32] [18.39 14.07 3.20]
LAE [24.63 23.26 22.91] [20.63 16.38 9.67] [19.19 14.19 4.39]
LVAE [24.89 23.26 22.92] [20.5 16.59 9.46] [18.63 14.00 4.55]
VAE [29.58 29.42 29.53] [27.16 25.52 22.55] [26.22 24.05 19.14]

NN

POD [25.16 23.41 22.95] [21.3 17.82 9.66] [21.61 16.08 6.58]
LAE [24.67 23.68 22.98] [20.88 17.76 10.21] [20.52 15.75 6.38]
LVAE [24.9 23.31 22.93] [21.76 18.20 9.82] [19.54 15.03 6.11]
VAE [29.72 29.63 29.63] [27.72 26.10 23.72] [27.77 25.01 19.33]

GB

POD [23.8 22.95 22.82] [16.84 12.10 9.09] [13.61 7.23 2.88]
LAE [24.01 22.95 22.92] [17.02 11.36 9.48] [14.06 5.89 3.42]
LVAE [23.65 23.02 22.93] [15.57 12.12 9.32] [13.41 7.08 3.46]
VAE [29.65 29.62 29.66] [25.46 23.94 22.97] [23.57 20.46 19.12]

(a) Training errors.

Method Reduction r0.4 r0.8 r0.95

DR

POD [28.31 26.18 23.89] [29.29 25.06 11.27] [125.56 23.60 8.60]
LAE [28.91 26.29 23.94] [33.36 27.56 11.58] [110.76 29.68 11.07]
LVAE [29.67 26.47 23.97] [32.17 33.40 11.40] [126.37 24.90 9.20]
VAE Not implemented

LM

POD [25.90 24.22 23.51] [23.13 20.05 10.26] [22.15 18.10 6.30]
LAE [26.00 24.28 23.58] [23.41 20.26 10.64] [22.43 18.49 6.76]
LVAE [26.04 24.33 23.62] [23.26 20.16 10.44] [22.35 18.39 6.58]
VAE [30.47 30.19 30.17] [28.80 27.41 22.96] [28.68 26.93 20.55]

LS

POD [25.86 24.22 23.51] [23.10 19.76 10.25] [22.23 18.06 6.31]
LAE [25.95 24.28 23.58] [23.63 20.07 10.64] [22.73 18.61 6.97]
LVAE [25.96 24.33 23.62] [23.24 20.06 10.48] [22.54 18.58 6.77]
VAE [30.46 30.20 30.18] [28.73 27.44 22.98] [28.62 26.90 20.51]

SVR

POD [25.68 24.13 23.63] [22.92 19.76 10.39] [21.72 17.80 5.91]
LAE [25.88 24.18 23.71] [23.21 19.75 10.73] [22.28 18.15 6.48]
LVAE [25.87 24.25 23.73] [23.12 19.84 10.51] [22.07 17.81 6.35]
VAE [30.48 30.32 30.47] [28.85 27.38 23.50] [28.42 26.78 20.34]

NN

POD [25.87 24.45 23.95] [22.91 19.79 10.53] [22.99 18.11 7.87]
LAE [25.94 24.57 23.78] [23.22 19.99 11.32] [22.11 18.12 9.46]
LVAE [25.86 24.35 23.80] [23.29 20.16 10.59] [21.70 17.50 6.91]
VAE [30.52 30.51 30.55] [28.72 27.37 24.64] [28.91 26.58 20.71]

GB

POD [26.24 24.70 23.97] [22.98 19.63 12.09] [21.89 17.93 8.68]
LAE [26.52 24.75 24.18] [23.51 20.07 13.13] [22.17 18.09 10.61]
LVAE [26.52 25.11 24.41] [23.82 20.27 13.09] [22.31 18.55 10.11]
VAE [30.82 30.71 30.64] [28.9 27.27 23.82] [28.10 25.82 20.99]

(b) Testing errors.

Table A.9: NMSE values for the mixing layer. Values are in percentage and given as [p0.2, p0.4, p0.8] errors.

36

Method Reduction r0.4 r0.8 r0.95

DR

POD [47.36 46.59 45.45] [48.84 42.86 33.76] [62.91 74.23 27.44]
LAE [47.81 47.07 46.] [52.07 45.57 34.67] [78.36 86.67 29.95]
LVAE [47.71 47.07 46.02] [48.95 44.12 34.48] [70.5 97.72 43.51]
VAE Not implemented

LM

POD [46.8 45.85 45.17] [40.47 36.91 31.16] [38.39 31.78 16.41]
LAE [47.35 46.42 45.74] [41.6 38.1 32.15] [38.92 32.82 18.53]
LVAE [47.33 46.41 45.79] [42.19 38.95 33.63] [41.5 37.5 28.99]
VAE [49.55 48.98 48.45] [44.8 42.9 40.44] [42.28 38.97 33.66]

LS

POD [46.82 45.84 45.19] [40.57 36.98 31.26] [38.66 32.48 17.3]
LAE [47.33 46.42 45.75] [41.58 38.19 32.28] [38.98 32.99 19.16]
LVAE [47.31 46.42 45.81] [42.21 38.98 33.77] [41.46 37.3 29.05]
VAE [49.55 49. 48.41] [44.71 42.79 40.43] [42.3 39.04 33.9]

SVR

POD [45.63 45.43 45.26] [33.7 31.25 29.56] [28.31 19.05 10.61]
LAE [46.24 45.98 45.75] [34.92 32.76 30.73] [28.61 21.58 13.17]
LVAE [46.16 45.98 45.84] [36.21 34.92 32.47] [33.93 30.21 26.24]
VAE [50.04 49.99 50.96] [42.12 41.31 40.41] [36.54 34.43 32.58]

NN

POD [45.78 45.36 45.91] [38.14 35.41 31.35] [39.22 32.03 18.52]
LAE [46.83 46.51 45.72] [42. 38.45 31.52] [32.38 31.06 21.42]
LVAE [47.16 45.99 45.84] [39.21 38.23 33.5] [40.85 36.33 29.98]
VAE [53.04 50.75 51.54] [43.96 42.47 41.32] [38.96 37.6 33.85]

GB

POD [45.48 45.45 45.23] [33.12 31.62 30.37] [26.47 22.6 17.71]
LAE [46.3 45.88 45.77] [33.58 32.42 31.35] [24.71 20.31 16.89]
LVAE [46.3 46.11 45.93] [35.32 34.28 33.39] [31.44 29.17 27.57]
VAE [50.68 51.29 51.08] [41.91 41.36 41.08] [35.54 34.29 33.31]

(a) Training errors.

Method Reduction r0.4 r0.8 r0.95

DR

POD [45.12 44.43 43.56] [47.98 42.36 35.2] [65.96 96.11 30.79]
LAE [45.97 45.18 44.31] [51.51 45.75 36.56] [80.78 107.44 34.43]
LVAE [45.81 45.21 44.35] [48.85 44.81 36.24] [77.93 124.96 58.26]
VAE Not implemented

LM

POD [44.77 43.91 43.38] [40.81 38.28 33.51] [39.83 36. 25.51]
LAE [45.5 44.65 44.14] [41.98 39.68 34.53] [40.32 36.77 26.47]
LVAE [45.55 44.72 44.21] [42.39 40.19 35.57] [42.22 39.51 32.61]
VAE [48.29 47.89 47.2] [44.27 42.71 40.65] [42.59 40.21 35.59]

LS

POD [44.8 43.93 43.39] [40.9 38.48 33.68] [40.1 36.49 25.69]
LAE [45.49 44.66 44.15] [42.06 39.85 34.71] [40.48 37.12 26.91]
LVAE [45.58 44.74 44.23] [42.41 40.34 35.75] [42.21 39.5 32.68]
VAE [48.31 47.9 47.13] [44.23 42.63 40.62] [42.54 40.23 35.76]

SVR

POD [44.28 43.8 43.94] [38.91 37.22 33.81] [37.6 34.6 24.98]
LAE [45.03 44.56 44.14] [40.09 38.45 34.51] [38.63 35.86 25.93]
LVAE [45.07 44.66 44.28] [40.65 39.09 35.35] [39.89 37.86 32.2]
VAE [49.51 48.6 49.01] [43.19 42.2 40.65] [40.59 38.93 35.68]

NN

POD [44.31 43.92 44.29] [39.7 38.64 34.74] [41.19 37.61 27.94]
LAE [45.17 44.87 44.21] [42.53 40.72 35.42] [38.94 38.63 29.77]
LVAE [45.8 44.69 44.27] [41.17 39.98 36.18] [42.14 39.84 33.45]
VAE [52.29 49.5 49.95] [43.7 42.73 41.64] [41.33 40.57 36.77]

GB

POD [44.47 44.22 43.88] [39.42 38.1 35.31] [38.74 36.84 31.81]
LAE [45.22 44.82 44.48] [40.88 39.3 36.29] [40.13 38.12 33.1]
LVAE [45.38 45.09 44.63] [41.3 40.02 37.47] [40.23 38.58 35.33]
VAE [49.65 49.66 49.49] [43.35 42.44 41.35] [40.96 39.63 37.02]

(b) Testing errors.

Table A.10: NMSE values for the 3D cylinder. Values are in percentage and given as [p0.2, p0.4, p0.8] errors.

37

	Introduction
	Flow reconstruction
	Dimensionality reduction
	Sensors placement
	Objectives

	Methodology
	Notations
	Metrics
	Enhanced clustering
	Dimensionality reduction
	Direct reconstruction
	Regressive reconstruction

	Presentation of cases
	Case 1
	Case 2
	Case 3

	Results
	Discussion and perspectives
	Conclusion
	Acknowledgments
	References
	Reconstruction results

