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Nearly Tight Convergence Bounds for Semi-discrete Entropic
Optimal Transport

Alex Delalande
Université Paris-Saclay & Inria Saclay

Abstract

We derive nearly tight and non-asymptotic
convergence bounds for solutions of en-
tropic semi-discrete optimal transport. These
bounds quantify the stability of the dual solu-
tions of the regularized problem (sometimes
called Sinkhorn potentials) w.r.t. the regu-
larization parameter, for which we ensure a
better than Lipschitz dependence. Such facts
may be a first step towards a mathematical
justification of annealing or ε-scaling heuris-
tics for the numerical resolution of regularized
semi-discrete optimal transport. Our results
also entail a non-asymptotic and tight expan-
sion of the difference between the entropic
and the unregularized costs.

1 INTRODUCTION

Optimal transport and the distances it defines (Villani,
2008) are now widely acknowledged as important tools
for machine learning (Canas & Rosasco, 2012; Arjovsky
et al., 2017; Genevay et al., 2018; Flamary et al., 2018;
Alaux et al., 2019; Gordaliza et al., 2019) and statis-
tics (Ramdas, Garcia, & Cuturi, 2015; Cazelles, Seguy,
Bigot, Cuturi, & Papadakis, 2017; Bigot, Cazelles, &
Papadakis, 2019; Weed & Berthet, 2019). In these
fields, it is also recognized that the original formula-
tion of the transport problem suffers in general from
poor computationability and statistical behavior with
respect to the dimension, and that some form of reg-
ularization can be helpful. In this state of mind, the
entropic regularization of the optimal transport prob-
lem, which dates back to (Schrödinger, 1931) and was
revisited in the recent years by (Cuturi, 2013), has
proven to be a relevant choice of regularization. For
two compact subsets X ,Y of Rd, two probability mea-
sures ρ ∈ P(X ), µ ∈ P(Y), and for ε ≥ 0, the quadratic
optimal transport problem between ρ and µ with en-

tropic regularization of parameter ε reads

min
π∈Π(ρ,µ)

∫
X×Y

‖x− y‖2 dπ(x, y)+εKL(π|ρ⊗µ), (Pε)

where Π(ρ, µ) denotes the set of couplings between ρ
and µ and KL denotes the Kullback-Leibler divergence
or relative entropy (up to an additive term):

KL(π|ρ⊗µ) =

∫
X×Y

(
log

(
dπ

dρ⊗ µ
(x, y)

)
− 1

)
dπ(x, y)

if π � ρ⊗µ and +∞ otherwise. When ε = 0, problem
(Pε) corresponds to the usual quadratic optimal trans-
port problem between ρ and µ, and the value of (Pε)
defines in this case the square of the 2-Wasserstein dis-
tance W2 between ρ and µ. However, choosing ε > 0 in
(Pε) has several advantages: first, it turns problem (Pε)
in a ε-strongly-convex minimization problem, which
enables the use of fast algorithms for its resolution
(Cuturi, 2013; Altschuler et al., 2017; Dvurechensky et
al., 2018; Peyré & Cuturi, 2019; Schmitzer, 2019). Sec-
ond, problem (Pε) enjoys better statistical properties
when ε > 0 rather than when ε = 0, with improved
sample complexity for its value (Genevay et al., 2019;
Mena & Niles-Weed, 2019) and better guarantees when
using stochastic optimization algorithms for its resolu-
tion (Genevay et al., 2016; Bercu & Bigot, 2020). Thus,
introducing for a solution π(Pε) to (Pε) the quantity

W2,ε(ρ, µ) =

(∫
X×Y

‖x− y‖2 dπ(Pε)(x, y)

)1/2

,

one may hope that W2,ε approximates W2 well when
ε is not too big. This fact has been the object of a
long line of works, going to very recent developments.
The convergence of W2,ε to W2 as ε goes to zero is
established in general settings (Mikami, 2004; Léonard,
2012; Bernton et al., 2021; Nutz & Wiesel, 2021), and
it has been quantified in more specific settings. In the
continuous setting, where both ρ and µ are absolutely
continuous, (Adams et al., 2011; Duong et al., 2013; Er-
bar et al., 2015; Pal, 2019) gave first order asymptotics
for W2,ε in terms of ε and thus showed in this setting
an asymptotic linear rate of convergence of W2,ε to
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W2. These results were recently refined in (Conforti &
Tamanini, 2021) where second order asymptotics have
been given. In the discrete setting, where both ρ and µ
are finitely supported, the rate of convergence of W2,ε

to W2 was shown to be asymptotically exponential in
(Cominetti & Mart́ın, 1994) in the context of the anal-
ysis of exponentially penalized finite dimensional linear
programs. This result was then refined with a tight
non-asymptotic analysis in (Weed, 2018), enabling to
choose ε in terms of the data in order to compute the
unregularized cost W2 to a wanted precision.

Very different regimes are thus observed between the
continuous setting (with a linear convergence rate) and
the discrete setting (with an exponential convergence
rate). However, very few was known – until recently
(Altschuler, Niles-Weed, & Stromme, 2021) – on the
intermediate setting of semi-discrete optimal trans-
port, where ρ is absolutely continuous and µ is finitely
supported, that is of particular importance in some
applications. In statistics, it corresponds to the case
where one wants to compare an empirical sample to a
given probability measures, and it can serve to extend
notions of quantiles and ranks to multivariate measures
(Chernozhukov et al., 2017). In numerical analysis,
the semi-discrete setting gives a natural framework
to approximate the solution of the optimal transport
problem between a probability density ρ and a proba-
bility measure µ that consists in approximating µ by
a sequence of measures (µN )N≥1 with finite support
such that limN→+∞W2(µ, µN ) = 0 (Oliker & Pruss-
ner, 1989; Cullen et al., 1991; Gangbo & McCann,
1996; Caffarelli et al., 1999; Mirebeau, 2015). Finally
in image processing, semi-discrete transport has proved
useful for texture synthesis and style transfer (Galerne,
Leclaire, & Rabin, 2017, 2018; Leclaire & Rabin, 2020).
We thus focus in this work on the semi-discrete setting,
and show that we can improve the recent asymptotic
bounds given in (Altschuler et al., 2021) under slightly
stronger regularity assumptions on the source measure.
In particular, we produce a non-asymptotic analysis of
the dual solutions to problem (Pε) in terms of ε, which
may be important in itself for the resolution of semi-
discrete optimal transport using ε-scaling techniques.

The next section details the semi-discrete (regularized)
optimal transport problem and gives our main results.
Section 3 derives the ODE from which starts the proof
of our main bound and the handling of its terms is done
in Sections 4 and 5. Section 6 finally illustrates our
theoretical results on simple one-dimensional numerical
examples.

2 CONVERGENCE BOUNDS FOR
SEMI-DISCRETE ENTROPIC
OPTIMAL TRANSPORT

2.1 Semi-discrete Entropic Optimal
Transport

Let X be a compact subset of Rd and ρ ∈ P(X ) be
an absolutely continuous probability measure on X .
Let Y = {y1, . . . , yN} ⊂ Rd be a set of N points in
Rd and let σ be the counting measure associated to
this set, i.e. σ =

∑N
i=1 δyi . Let µ =

∑N
i=1 µiδyi ∈

P(Y) where for all i, µi ≥ µ > 0. Note that we will
denote RX , RY > 0 the smallest constants such that
the X ⊂ B(0, RX ),Y ⊂ B(0, RY) respectively, as well
as diam(X ),diam(Y) the respective diameter of X ,Y.

Back to problem (Pε), developing the square ‖x− y‖2
and using that π belongs to Π(ρ, µ), one can notice that
this problem is equivalent to the following regularized
maximum correlation problem:

max
π∈Π(ρ,µ)

∫
X×Y
〈x|y〉dπ(x, y)− εKL(π|ρ⊗ σ), (P′ε)

with the relation (P2ε) = M2(ρ) +M2(µ)− 2εH(µ)−
2× (P′ε), where M2(·) denotes the second moment of
a probability measure and H(·) its Shannon entropy.
By either ε-strong concavity (when ε > 0) or Brenier’s
theorem (Brenier, 1991) (when ε = 0, using that ρ is
absolutely continuous), problem (P′ε) admits a unique
solution denoted πε. Moreover it admits the following
(semi-)dual formulation and strong duality holds (see
for instance Sections 2 of (Genevay et al., 2016; Bercu
& Bigot, 2020)):

min
ψ∈RN

∫
X
ψc,εdρ+ 〈ψ|µ〉+ ε,

where µ is conflated with the vector (µi)i=1,...,N ∈
(R∗+)N and where ψc,ε corresponds to the (c, ε)-
transform of ψ when ε > 0 and to its Legendre trans-
form when ε = 0: ∀x ∈ X ,

ψc,ε(x) =

{
ε log

(∑N
i=1 e

〈x|yi〉−ψi
ε

)
if ε > 0,

maxi=1,...,N 〈x|yi〉 − ψi = ψ∗(x) if ε = 0.

This dual problem is invariant to addition of constant
vectors to ψ. We fix this invariance by adding the
constraint that 〈ψ|1N 〉 = 0 without any loss of gen-
erality, where 1N denotes a vector full of 1’s in RN .
Introducing the (regularized) Kantorovich’s functional
Kε : ψ 7→

∫
X ψ

c,εdρ+ ε, one can then rewrite the dual
formulation as

min
ψ∈RN ,〈ψ|1N 〉=0

Kε(ψ) + 〈ψ|µ〉. (Dε)
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The functional Kε is convex on RN and strictly convex
on (1N )

>
: problem (Dε) admits a unique solution

denoted ψε (that we call later on a potential), and such
a solution verifies formally the following first-order
condition:

∇Kε(ψε) = −µ. (1)

More precisely, this first-order condition means that
for all i ∈ {1, . . . , N}, if ε > 0,

µ({yi}) =

∫
x∈X

e
〈x|yi〉−ψ

ε
i−(ψε)c,ε(x)

ε dρ(x) (2)

and if ε = 0, µ({yi}) =
∫
x∈X 1Lagi(ψ

0)(x)dρ(x), where

for any ψ ∈ RN , Lagi(ψ) denotes the i-th Laguerre cell
w.r.t. ψ:

Lagi(ψ) = {x ∈ X |∀j, 〈x|yi〉 − ψi ≥ 〈x|yj〉 − ψj}.

Note that the Laguerre cells are convex polytopes in-
tersected with X and they define a tesselation of X :⋃
i Lagi(ψ

ε) = X .

Finally, the primal-dual relationship that links the solu-
tion ψε of problem (Dε) to the solution πε of problem
(P′ε) is the following: for all Borel set A ⊂ X , all
i ∈ {1, . . . , N}, if ε > 0,

πε(A, {yi}) =

∫
x∈A

e
〈x|yi〉−ψ

ε
i−(ψε)c,ε(x)

ε dρ(x) (3)

and if ε = 0, π0(A, {yi}) =
∫
x∈A 1Lagi(ψ

0)(x)dρ(x).

2.2 Non-asymptotic Behavior of Potentials

The authors of (Altschuler et al., 2021) recently tackled
the question of the rate of convergence of W2,ε to W2 in
the specific semi-discrete setting. They showed under
regularity assumptions on the source ρ the following
asymptotic quadratic convergence in ε of the regular-
ized cost (Theorem 1.1 in (Altschuler et al., 2021)):

W2
2,ε(ρ, µ) = W2

2(ρ, µ) + ε2π
2

12

∑
i<j

wij
‖yi − yj‖

+ o(ε2),

where wij =
∫

Lagi(ψ
0)∩Lagj(ψ

0)
ρ(x)dHd−1(x). In order

to show this, they demonstrated that the convergence
of ψε to ψ0 as ε goes to 0 happens at a rate faster that
ε (Theorem 1.3 in (Altschuler et al., 2021)):

lim
ε→0

1

ε
(ψε − ψ0) = ψ̇ε

∣∣∣
ε=0

= 0,

where ψ̇ε = ∂
∂εψ

ε. As discussed in (Altschuler et al.,
2021), this result is unexpected because false in general
optimal transport and stems from the particular set-
ting of semi-discrete optimal transport with a positive

source. In this work, we show that the result of Theo-
rem 1.3 in (Altschuler et al., 2021) can be extended and
quantified to get a non-asymptotic control of ψ̇ε, i.e.
not only when ε→ 0 but for ε ∈ R∗+. As in (Altschuler
et al., 2021), we notice that regularity assumptions on
the source measure ρ are necessary to proceed with
such controls. In particular, we make the following
assumption (stronger than the one in (Altschuler et al.,
2021)):

Assumption 1. The compact set X is convex. The
source measure ρ ∈ P(X ) is absolutely continuous and
its density (also denoted ρ), is bounded away from zero
and infinity, i.e. there exist mρ,Mρ such that on X ,

0 < mρ ≤ ρ ≤Mρ < +∞.

Under this assumption and an Hölder continuity as-
sumption on the density of ρ, we show the following
behavior:

Theorem 2.1. Let ρ ∈ P(X ) satisfying Assumption 1
with an α-Hölder continuous density for some α ∈ (0, 1]
and let µ ∈ P(Y). Then for any ε ≤ 1, α′ ∈ (0, α), the
solutions ψε to problem (Dε) verify:∥∥∥ψ̇ε∥∥∥

2
. εα

′
,

where ψ̇ε = ∂
∂εψ

ε and . hides multiplicative constants
that depend on X , ρ,Y, µ. Besides, for any ε ≥ 1,∥∥∥ψ̇ε∥∥∥

2
. 1

Remark 2.1 (Constants). A (very) rough upper
bound on the hidden constants is given by the quantity

N

µ

Mρ

mρ
eRYdiam(X )

(
NRXdiam(Y) + log

1

µ

+N2Mρdiam(X )d−1(1 +
Cρ
δα

+RXdiam(Y) + log
1

µ
)

+N3Mρ
diam(X )d−2diam(Y)4

cos(θ/2)δ4
(1 +RXdiam(Y) + log

1

µ
)

)
,

up to a multiplicative constant that depends only on
the dimension. In this formula, Cρ is such that for
any x, x′ ∈ X , |ρ(x)− ρ(x′)| ≤ Cρ ‖x− x′‖α, δ is the
minimum distance between two points in Y and θ is
the maximum angle formed by three not-aligned points
in Y. The dependence on N is rather bad and it may
be improved by replacing the N2 term with N times
the maximum number of (d− 1)-facets a Laguerre cell
has in the tessellation

⋃
i Lagi(ψ

0) and the N3 term
with N times the maximum number of (d− 2)-facets a
Laguerre cell has in this tessellation.

This behavior is a consequence of the analysis of an
ODE satisfied by the map ε 7→ ψε, and it is proven
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in Section 3. An immediate consequence of this result
concerns the quantitative stability of the mapping ε 7→
ψε. It also gives quantitative convergence results for ψε,
(ψε)c,ε and πε toward their different limits – results that
are reminiscent of the asymptotic ones of (Cominetti &
Mart́ın, 1994) in the study of solutions of exponentially
penalized finite dimensional linear programs.

Corollary 2.2. Let 0 < ε′ ≤ ε. Under assumptions of
Theorem 2.1, denote ψε

′
, ψε the solutions to problem

(Dε) with regularization ε′, ε respectively. Then for any
α′ ∈ (0, α), ∥∥∥ψε − ψε′∥∥∥

∞
. εα

′
(ε− ε′).

In particular, letting ε′ go to 0 yields∥∥ψε − ψ0
∥∥
∞ . ε1+α′ ,∥∥(ψε)c,ε − (ψ0)∗
∥∥
∞ . ε.

Additionally, for ρ-a.e. x ∈ X ,∣∣(ψε)c,ε(x)− (ψ0)∗(x)
∣∣ . ε1+α′ ,∣∣πε(x, ·)− π0(x, ·)
∣∣ . e−cx/ε,

where cx = mini∈{1,...,N}{(ψ0)∗(x) − 〈x|yi〉 +
ψ0
i | 〈x|yi〉 − ψ0

i 6= (ψ0)∗(x)} > 0.

This corollary is proven in Section A.6 of the Appendix.

Remark 2.2 (ε-scaling). Corollary 2.2 may be a first
step, in the semi-discrete context, towards a mathe-
matical justification of ε-scaling or simulated annealing
techniques used in the numerical resolution of opti-
mal transport. Such techniques, reported for instance
in (Kosowsky & Yuille, 1994; Schmitzer, 2019; Feydy,
2020) in the context of Sinkhorn’s algorithm for solving
the assignment or discrete optimal transport problems
using entropic regularization, are used to reduce the
number of iterations necessary to compute a regular-
ized solution. They consist in solving (Pε) with a
starting large regularization parameter ε0, and then
gradually decrease the regularization parameter over
the course of the optimization, with a geometric de-

crease – typically, εk+1 = εk/2. The idea is that ψε
k

(or an approximation of it) is supposed to be a good
starting point for an optimization algorithm that aims

at estimating the solution ψε
k+1

. This technique was
introduced for Bertsekas’ auction algorithm (Bertsekas,
1981; Bertsekas & Eckstein, 1988) for the resolution of
the assignment problem, and it proved to reduce the

worst case complexity from O
(
N2

ε

)
to O

(
N3 log

(
1
ε

))
in order to get an ε-approximate solution, where N
denotes the number of agents/tasks. Although suc-
cessful in practice, similar reduction of the worst-case
complexity of Sinkhorn’s algorithm using the ε-scaling
strategy could not be proved, see the discussions in
(Schmitzer, 2019; Feydy, 2020) for more details.

Remark 2.3 (Exponential convergence of πε). The
convergence of πε(x, yi) to π0(x, yi) at the rate e−cx/ε

for ρ-a.e. x and i ∈ {1, . . . , N} matches in our semi-
discrete setting the result of (Bernton et al., 2021) that
showed this rate of convergence, only asymptotically
and for (x, yi) not in the support of π0, but in a much
more general setting.

2.3 Non-asymptotic Expansion of the
Difference of Costs

A consequence to these new bounds for ε ≤ 1 is an im-
provement of the asymptotic result on the convergence
of the difference of costs proven in (Altschuler et al.,
2021), to the following tight non-asymptotic result:

Theorem 2.3. Under assumptions of Theorem 2.1,
for any α′ ∈ (0, α) and ε ≤ 1,∣∣∣∣∣∣W2

2,ε(ρ, µ)−W2
2(ρ, µ)− ε2π

2

12

∑
i<j

wij
‖yi − yj‖

∣∣∣∣∣∣ . ε2+α′ .

This result and its tightness are respectively proved in
Sections A.7, A.8 of the Appendix.

Notation. The notation 〈v|ν〉 or Eν(v) is used to

denote the quantity
∑N
i=1 viν(yi) when v ∈ RN and

ν ∈ P(Y) or the quantity
∫
X vdν when v ∈ L1(X ) and

ν ∈ P(X ). Similarly, Varµ(v) denotes the quantity∑N
i=1 v

2
i µ(yi) −

(∑N
i=1 viµ(yi)

)2

in the first case and

the quantity
∫
X v

2dν −
(∫
X vdν

)2
in the second. For

v ∈ RN , diag(v) denotes the diagonal matrix of RN×N

with diagonal v.

3 A GOVERNING ODE

Similarly to (Cominetti & Mart́ın, 1994), we show The-
orem 2.1 by leveraging the fact that ε 7→ ψε satisfies a
specific ODE that is deduced from the formal stationary
equation (1). Let’s fix ε > 0 and recall in this case the
expression of Kantorovich’s functional Kε : RN → R:
for all ψ ∈ RN ,

Kε(ψ) =

∫
X
ε log

(
N∑
i=1

exp

(
〈x|yi〉 − ψi

ε

))
dρ(x) + ε.

(4)

Looking at equation (4), one can establish that ψ 7→
Kε(ψ) is a C2 function from RN to R, with the following
derivatives when evaluated in ψ ∈ RN (see e.g. Section
3 of (Bercu & Bigot, 2020)):

∇Kε(ψ) = −Ex∼ρπ
ε
x(ψ), (5)

∇2Kε(ψ) =
1

ε
Ex∼ρ

(
diag(πεx(ψ))− πεx(ψ)πεx(ψ)>

)
,

(6)
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where for any x ∈ X and ψ ∈ RN , πεx(ψ) is a vector of
RN whose components read for all i ∈ {1, . . . , N}

πεx(ψ)i =
exp

(
〈x|yi〉−ψi

ε

)
∑N
j=1 exp

(
〈x|yj〉−ψj

ε

) . (7)

Intuitively, one can interpret x 7→ πεx(ψ)i as a smoothed
version of the indicator function associated to the i-th
Laguerre cell of ψ: it represents the ratio of mass sent
from x to yi proposed by the candidate solution ψ to
problem (Dε). One can also easily prove that for any
ψ ∈ RN , ε 7→ ∇Kε(ψ) is a C1 function from R∗+ to RN ,
with the formula

∂

∂ε
(∇Kε)(ψ) =

1

ε
Ex∼ρ

(
diag(πεx(ψ)) log πεx(ψ) (8)

− πεx(ψ)πεx(ψ)> log πεx(ψ)
)
.

We can then show:

Proposition 3.1. For any ε ≥ 0, denote ψε the so-
lution to problem (Dε). The mapping ε 7→ ψε is a C1

function from R∗+ to (1N )
⊥

that satisfies for any ε > 0
the ODE

∇2Kε(ψε)ψ̇ε +
∂

∂ε
(∇Kε)(ψε) = 0, (9)

where ψ̇ε = ∂
∂εψ

ε.

Proof. Since for any ε > 0, ψ 7→ Kε(ψ) is a C2 convex
function from RN to R, one can characterize ψε with
the first order condition (1). Using that ψ 7→ Kε(ψ) is
C2 on RN , ε 7→ ∇Kε(ψ) is C1 on R+

∗ , and that Kε is

strictly convex on (1N )
⊥

, i.e. that for any ψ ∈ RN such
that 〈ψ|1N 〉 = 0, ∇2Kε(ψ) > 0, the implicit function
theorem asserts that ε 7→ ψε is a C1 function from R∗+
to (1N )

⊥
. We can therefore differentiate the stationary

equation (1) w.r.t. ε and obtain that ψε satisfies ODE
(9).

Controlling ||ψ̇ε|| thus amounts to finding a lower
bound on the p.s.d. matrix ∇2Kε(ψε) and an upper
bound on the second term ∂

∂ε (∇Kε)(ψε). The two fol-
lowing Theorems provide such controls. The first one
can be regarded as a local strong-convexity estimate of
the regularized Kantorovich’s functional and is proven
in Section 4:

Theorem 3.2 (Strong convexity of Kε). Let ρ ∈ P(X )
satisfying Assumption 1 and let µ ∈ P(Y). Then for
any ε > 0, the solution ψε to problem (Dε) verifies for
any v ∈ RN

Varµ(v) ≤
(
eRYdiam(X )Mρ

mρ
+ ε

)
〈v|∇2Kε(ψε)v〉.

Remark 3.1 (Dependence on ε). Notice that in the
limit ε→ 0, one recovers a similar non-trivial estimate
for the unregularized Kantorovich’s functional given
recently in Theorem 2.1 of (Delalande & Merigot, 2021)
in the context of the study of the stability of optimal
transport maps w.r.t. the target measure in quadratic
optimal transport. Our estimate may also be compared
to two other similar strong-convexity estimates found
in Theorem 4 of (Luise et al., 2019) (in the discrete
context) and in Lemma A.1 of (Bercu & Bigot, 2020)
(that is not explicit) that both diverge as ε goes to zero.
Note also that as ε goes to∞, our estimate deteriorates:
in this limit, Kε gets flat around its minimum.

The second control gives a uniform bound on the second
term of ODE (9) and is proven in Section 5:

Theorem 3.3. Let ρ ∈ P(X ) satisfying Assumption 1
with an α-Hölder continuous density for some α ∈ (0, 1)
and let µ ∈ P(Y). Then for any ε ≤ 1, α′ ∈ (0, α), the
solutions ψε to problem (Dε) verify:∥∥∥∥ ∂∂ε (∇Kε)(ψε)

∥∥∥∥
∞

. εα
′
,

where . hides multiplicative constants that depend on
X , ρ,Y, µ. Besides, for any ε ≥ 1,∥∥∥∥ ∂∂ε (∇Kε)(ψε)

∥∥∥∥
∞

.
1

ε
.

With these results, the proof of Theorem 2.1 falls di-
rectly and is given in the Appendix (Section A.1).

4 STRONG CONVEXITY OF Kε

In this section, we prove the strong convexity esti-
mate of Theorem 3.2 for the regularized (ε > 0)
Kantorovich’s functional. As mentionned in Remark
3.1, this estimate is reminiscent of Theorem 2.1 in
(Delalande & Merigot, 2021) which relies on the
Brascamp-Lieb inequality. In contrast, we use here the
Prékopa-Leindler inequality (Prékopa, 1971; Leindler,
1972; Prékopa, 1973), that is known to entail the
Brascamp-Lieb inequality (Bobkov & Ledoux, 2000).
This inequality allows us to get directly a similar es-
timate to the one given in Theorem 3.2, but with a
modified source measure:

Proposition 4.1. The functional I : RN → R, ψ 7→
log(

∫
X e
−ψc,ε) is C2 and concave. In particular, its

Hessian is negative semi-definite:

∇2I(ψε) =− 1

ε
Ex∼ρ̃ε(diag(πεx(ψε))− πεx(ψε)πεx(ψε)>)

+ Ex∼ρ̃επ
ε
x(ψε)πεx(ψε)>

− Ex∼ρ̃επ
ε
x(ψε)Ex∼ρ̃επ

ε
x(ψε)> ≤ 0,

where ρ̃ε := e−(ψε)c,ε∫
X e
−(ψε)c,ε .
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This proposition implies Theorem 3.2. Indeed, in the
above expression of ∇2I(ψε), one can notice that the
first term almost corresponds to −∇2K(ψε), while the
sum of the second and third terms almost corresponds
to a p.s.d. matrix whose associated bilinear form corre-
sponds to the covariance w.r.t. µ = Ex∼ρπεx(ψε). The
difference with those terms resides in the presence of
ρ̃ε instead of ρ. A detailed proof of Theorem 3.2 is
given in Section A.2 of the Appendix.

Proof of Proposition 4.1. Let’s first show that I is C2

on RN . For any x ∈ X and ψ ∈ RN , first recall the
expression of ψc,ε(x):

ψc,ε(x) = ε log

(
N∑
i=1

e
〈x|yi〉−ψi

ε

)
For any fixed x ∈ X , the function ψ 7→ ψc,ε(x) is C2

on RN and its derivatives read

∇ψ[ψc,ε(x)] = −πεx(ψ),

∇2
ψ[ψc,ε(x)] =

1

ε

(
diag(πεx(ψ))− πεx(ψ)πεx(ψ)>

)
.

Therefore with I : ψ 7→ log
(∫
X e
−ψc,ε), I is a C2 func-

tion on RN and its derivatives read:

∇I(ψ) =
−
∫
X ∇ψ[ψc,ε(x)]e−ψ

c,ε(x)∫
e−ψc,ε

and

∇2I(ψ) =
−
∫
X ∇

2
ψ[ψc,ε(x)]e−ψ

c,ε(x)∫
e−ψc,ε

+

∫
X ∇ψ[ψc,ε(x)]∇ψ[ψc,ε(x)]>e−ψ

c,ε(x)∫
e−ψc,ε

−

(∫
X ∇ψ[ψc,ε(x)]e−ψ

c,ε(x)∫
e−ψc,ε

)

×

(∫
X ∇ψ[ψc,ε(x)]e−ψ

c,ε(x)∫
e−ψc,ε

)>
,

which entails the claimed expression for ∇2I(ψε). We
now show that I is a concave function on RN . Let
ψ,ϕ ∈ RN . Let 0 < λ < 1. Notice that for any
u, v ∈ X we have:(
λψ + (1− λ)ϕ

)c,ε
(λu+ (1− λ)v)

= ε log

(
N∑
i=1

e
〈λu+(1−λ)v|yi〉−(λψ+(1−λ)ϕ)(yi)

ε

)

= ε log

(
N∑
i=1

(
e
〈u|yi〉−ψ(yi)

ε

)λ (
e
〈v|yi〉−ϕ(yi)

ε

)1−λ
)

≤ ε log

( N∑
i=1

e
〈u|yi〉−ψ(yi)

ε

)λ( N∑
i=1

e
〈v|yi〉−ϕ(yi)

ε

)1−λ

= λψc,ε(u) + (1− λ)ϕc,ε(v),

where the inequality corresponds to Hölder’s inequality.
Denoting

h(u) = e−(λψ+(1−λ)ϕ)c,ε(u),

f(u) = e−ψ
c,ε(u), g(u) = e−ϕ

c,ε(u),

we thus have shown that

h(λu+ (1− λ)v) ≥ f(u)λg(v)1−λ.

Using that X is convex, the Prékopa–Leindler inequal-
ity (Prékopa, 1971; Leindler, 1972; Prékopa, 1973) then
ensures that∫

X
h ≥

(∫
X
f

)λ(∫
X
g

)1−λ

.

This leads to the concavity of I:

I(λψ+(1− λ)ϕ) = log

(∫
X
h

)
≥ λ log

(∫
X
f

)
+ (1− λ) log

(∫
X
g

)
= λI(ψ) + (1− λ)I(ϕ).

5 BOUNDING ∂
∂ε
(∇Kε)(ψε)

In this section, we prove Theorem 3.3 that gives a
uniform bound on the second term ∂

∂ε (∇Kε)(ψε) ∈ RN

in ODE (9). For conciseness, we will use πεx instead of
πεx(ψε) since ψε will be the only potential of interest.
For any j ∈ {1, . . . , N}, we introduce the function

fεj : x ∈ X 7→ 〈x|yj〉 − ψεj ∈ R.

Notice that for any j ∈ {1, . . . , N}, πεx,j satisfies the
following equality and inequality:

πεx,j =
exp(

fεj (x)

ε )∑
k exp(

fεk(x)

ε )
≤ exp

(
fεj (x)−max` f

ε
` (x)

ε

)
.

Finding a uniform bound on the second term of (9)
then consists in finding a bound for any i ∈ {1, . . . , N}
on the quantity

[
∂

∂ε
(∇Kε)(ψε)]i =

∫
X

1

ε
[(diag(πεx)− πεx(πεx)>) log πεx]i

=

∫
X

∑
j 6=i

(
fεi (x)− fεj (x)

ε2

)
πεx,jπ

ε
x,idρ(x). (10)

Recall that the first order condition (2) entails

that e
ψεi
ε µi =

∫
X e

〈x|yi〉−(ψε)c,ε(x)

ε dρ(x), which ensures



Alex Delalande

∣∣ψεi − ψεj ∣∣ ≤ RX |yi − yj | + ε
∣∣∣log( µiµj )

∣∣∣. Thus for any

x ∈ X and j ∈ {1, . . . , N},∣∣fεi (x)− fεj (x)
∣∣ ≤ 2RXdiam(Y) + ε

∣∣log(µ)
∣∣ .

Hence ∣∣∣∣[ ∂∂ε (∇Kε)(ψ)]i

∣∣∣∣ . 1

ε
.

We now look for a more informative bound in the limit
ε→ 0. The quantity (10) being an integral over X , it
will be in our interest to partition X into different sub-
domains where we can control the integrand. To this
end, the Laguerre tessellation

⋃
i Lagi(ψ

ε) already pro-
vides a first interesting partition. Recall the definition
of the Laguerre cells with our new notation:

Lagi(ψ
ε) = {x ∈ X |∀j, fεi (x) ≥ fεj (x)}.

Figure 1 gives an illustration of Laguerre cells, where
the boundary of those cells are indicated by the plain
black lines. In the control of (10), we will see that for
x in the interior of Lagi(ψ

ε), πεx,j is very small for any
j 6= i, and conversely for x far from Lagi(ψ

ε), πεx,i is
very small. We will thus introduce two sets of points
X εi,η,+,X εi,η,− corresponding respectively to the points
of Lagi(ψ

ε) and X \ Lagi(ψ
ε) that are at a distance at

least η from the boundary of Lagi(ψ
ε). These sets are

illustrated in Figure 1 in green and blue respectively.
Now for x close from the boundary of Lagi(ψ

ε) (i.e.
x ∈ X \(X εi,η,+∪X εi,η,−), we will see that πεx,i cannot be
too small and there always exists a j 6= i such that πεx,j
is not small neither. A finer treatment of those points
close from the boundary of Lagi(ψ

ε) has to be carried
out. For some γ > 0, we will first define a set Aεi,η,γ of
points that lie near the intersection between Lagi(ψ

ε)
and another cell Lagj(ψ

ε), but that are at a distance at
least ∼ γ from the other cells (i.e. Aεi,η,γ excludes the
corners of Lagi(ψ

ε)) . This set is represented in yellow
in Figure 1. On this set, only πεx,i and πεx,j are not
small and we show that their contributions to integral
(10) get compensated by symmetry w.r.t. the interface
Lagi(ψ

ε) ∩ Lagj(ψ
ε). Finally, we will denote the rest

of X by Bεi,η,γ = X \ (X εi,η,+ ∪ X εi,η,− ∪ Aεi,η,γ): this
set corresponds to the areas in red in Figure 1. We
will control (10) on this set by leveraging two facts: its
points are close from Lagi(ψ

ε) and its volume scales
as ∼ γ2.

We make precise the definitions of the above mentioned
sets in the proof of the following Proposition (Section
A.3 of the Appendix), that allows to get the following
bound:

Proposition 5.1. Under assumptions of Theorem 3.3,
for 0 < ε ≤ 1, i ∈ {1, . . . , N} and for any η, γ > 0,

[
∂

∂ε
(∇Kε)(ψ)]i .

1

ε2
e−η/ε +

η2+α

ε2
+
γ2

ε2

(
η + e−η/ε

)

γ

γ

η

η

yi

yj

γ

γ

Figure 1: Partition of X : X εi,η,+ is in green, X εi,η,− is
in blue, Aεi,η,γ is in yellow and Bεi,η,γ is in red.

+
1

ε2
e−γ̃/ε

(
η + εηeη/ε − ε2(eη/ε − 1)

)
,

where γ̃ = γδ − diam(Y)2

δ η and δ = min
i6=j
‖yi − yj‖ > 0.

The proof of the ”ε ≤ 1” side of Theorem 3.3 then
follows from Proposition 5.1 with an arbitrage on the
quantities η, γ, see Section A.4 of the Appendix.

6 NUMERICAL ILLUSTRATIONS

The code that generated the illustrations of this
section is available at https://github.com/alex-
delalande/potentials-entropic-sd-ot.

6.1 Difference of Costs

Figure 3 gives an illustration of Theorem 2.3 for a
target µ = 1

2 (δ−1 + δ1) and for four different source
measures: 1. Lebesgue: ρ(x) ∝ 1[−1,1](x); 2. Rescaled

Gaussian: ρ(x) ∝ e−x
2/2σ2

1[−1,1](x); 3. Rescaled

Laplace: ρ(x) ∝ e−|x|1[−1,1](x); 4. 1
2 -Hölder density:

ρ(x) ∝ (1− |x|1/2)1[−1,1](x). For all these sources, we
plot the absolute value of the difference of costs mi-
nus its asymptote as functions of ε. The difference of
costs is computed using the following formula given in
Section 3 of (Altschuler et al., 2021):

W2
2,ε(ρ, µ)−W2

2(ρ, µ) = 8

∫ 1

0

x

1 + e4x/ε
ρ(x)dx.

Note that in these examples, ε 7→ ψε is constant be-
cause of the symmetry of the problems. One can notice
that for the cases of a Lebesgue or rescaled Gaussian
source, the convergence of the difference of costs to
its asymptote seems faster than the guaranteed ε3 of
Theorem 2.3. However, one can observe that Theorem
2.3 seems to give tight rates of convergence in the cases
of a rescaled Laplace source or a 1

2 -Hölder source.

https://github.com/alex-delalande/potentials-entropic-sd-ot
https://github.com/alex-delalande/potentials-entropic-sd-ot
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Figure 2: (Top row) Behavior of ε 7→
∥∥∥ψ̇ε∥∥∥

∞
for the 4 different sources and µ = 1

5

∑5
i=1 δyi with (yi)i=1,...,5

randomly chosen. (Bottom row) Convergence of ψε to ψ0 for the four same examples.
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Figure 3: Convergence of the difference of costs to its
asymptote for the four different sources. The target is
µ = 1

2 (δ−1 + δ1).

6.2 Behavior of ε 7→ ψε

Figure 2 gives an illustration of Theorem 2.1 and its
Corollary 2.2. We consider the same one dimensional
sources as in the preceding section (up to restriction of
their support to limit numerical errors). We consider
a target µ with 5 support points randomly chosen in
the support of the source. We compute ψε using the L-
BFGS-B quasi-Newton method from SciPy (Virtanen
et al., 2020), where all integrals (appearing for instance
in gradient computations) are also approximated using
this package. Figure 2 represents in its first row the

behavior of
∥∥∥ψ̇ε∥∥∥

∞
with respect to ε and compares the

empirical results to the theoretical rates of Theorem
2.1. The derivative ψ̇ε is computed as the only solution
in (1N )⊥ to the linear system induced by the ODE (9).

Note that in Figure 2, the long-time bound
∥∥∥ψ̇ε∥∥∥

∞
.

1 for ε ≥ 1 seems to be loose, but this is specific
to the setting where the target is uniform and this
bound seems tight in general1. The short-time case
ε < 1 however yields in the case of the Laplace and
1
2 -Hölder sources practical rates that seem to match

the theoretical rate
∥∥∥ψ̇ε∥∥∥

∞
. εα. The bottom row of

Figure 2 gives an illustration of the convergence of ψε to
ψ0. One can observe that the Lebesgue and Gaussian
sources seem to enjoy faster rates of convergence than
our theoretical rates. However, the Laplace and 1

2 -
Hölder sources seem to yield potentials ψε that converge
to ψ0 as fast as predicted in Corollary 2.2.

7 CONCLUSION

We have given a non-asymptotic analysis of the so-
lutions of entropic semi-discrete optimal transport in
terms of the regularization parameter. We have shown
that the dual solutions, sometimes called the Sinkhorn
potentials, have a better than Lipschitz dependence
on this regularization parameter. This may enable to
derive faster algorithms for the numerical resolution of
semi-discrete optimal transport based on ε-scaling tech-
niques and we leave this derivation for future work. Our
analysis also entails tight and non-asymptotic bounds
on the difference of costs, improving on the recent
asymptotic expansion of (Altschuler et al., 2021) and
showing that this expansion does not admit in general
a third order term.

1Further experiments with a non-uniform target led to
match empirically the long-time bounds of Theorem 2.1,
see the GitHub repository.
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A SUPPLEMENTARY MATERIAL

A.1 Proof of Theorem 2.1

Proof. For any ε > 0, we can apply Proposition 3.1 to ψε and observe the relation

∇2Kε(ψε)ψ̇ε = − ∂

∂ε
(∇Kε)(ψε).

Taking the scalar product of the last expression with ψ̇ε this gives:

〈ψ̇ε|∇2Kε(ψε)ψ̇ε〉 = −〈ψ̇ε| ∂
∂ε

(∇Kε)(ψε)〉.

Applying Theorem 3.2 with v = ψ̇ε ensures that

Varµ(ψ̇ε) ≤ −
(
eRYdiam(X )Mρ

mρ
+ ε

)
〈ψ̇ε| ∂

∂ε
(∇Kε)(ψε)〉. (11)

Denote µ > 0 a positive real such that for all i ∈ {1, . . . , N}, µ(yi) ≥ µ. Notice then that the facts that µ ≥ µ1N
and that 〈ψ̇ε|1N 〉 = 0 (because 〈ψε|1N 〉 = 0) entail

Varµ(ψ̇ε) = min
m∈R

∥∥∥ψ̇ε −m1N
∥∥∥2

L2(µ)

≥ µmin
m∈R

∥∥∥ψ̇ε −m1N
∥∥∥2

2
= µ

∥∥∥ψ̇ε∥∥∥2

2
.

Using this inequality together with the Cauchy-Schwartz inequality in equation (11) we thus have∥∥∥ψ̇ε∥∥∥
2
µ ≤

(
eRYdiam(X )Mρ

mρ
+ ε

)∥∥∥∥ ∂∂ε (∇Kε)(ψε)
∥∥∥∥

2

≤ N
(
eRYdiam(X )Mρ

mρ
+ ε

)∥∥∥∥ ∂∂ε (∇Kε)(ψε)
∥∥∥∥
∞
.

Applying Theorem 3.3 to the last inequality yields the wanted result.

A.2 Proof of Theorem 3.2

Proof. Let v ∈ RN . Notice that

〈v|1
ε

Ex∼ρ̃ε
(
diag(πεx(ψε))− πεx(ψε)πεx(ψε)>

)
v〉 =

∫
X

1

ε
Varπεx(ψε)(v)dρ̃ε(x),

〈v|Ex∼ρ̃επεx(ψε)πεx(ψε)>v〉 − 〈v|Ex∼ρ̃επεx(ψε)Ex∼ρ̃επ
ε
x(ψε)>v〉 = Varx∼ρ̃ε(Eπεx(ψε)(v)).

Thus Proposition 4.1 ensures that

Varx∼ρ̃ε(Eπεx(ψε)(v)) ≤
∫
X

1

ε
Varπεx(ψε)(v)dρ̃ε(x), (12)

where we recall

ρ̃ε =
e−(ψε)c,ε∫
X e
−(ψε)c,ε

=
e−(ψε)c,ε

Z
.

From the definition of the (c, ε)-transform, one can see that (ψε)c,ε is RY -Lipschitz (see Proposition 17, Chapter
3 in (Genevay, 2019)). This ensures that (ψε)c,ε is bounded on the compact set X : on this set, there exists
constants m,M ∈ R such that

m ≤ (ψε)c,ε ≤M and M −m ≤ RYdiam(X ).
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This gives the control
e−M

Z
≤ ρ̃ε ≤ e−m

Z
.

Recalling that mρ ≤ ρ ≤Mρ we thus have:

e−M

ZMρ
ρ ≤ ρ̃ε ≤ e−m

Zmρ
ρ.

This control, (6) and (12) thus give

Varx∼ρ(Eπεx(ψε)(v)) ≤ eRYdiam(X )Mρ

mρ

∫
X

1

ε
Varπεx(ψε)(v)dρ(x)

= eRYdiam(X )Mρ

mρ
〈v|∇2Kε(ψε)v〉. (13)

Recall that from the first order condition (2) and expression (5), we get

µ = Ex∼ρπ
ε
x(ψε).

Hence using the associativity of variances we have:

Varµ(v) = Varx∼ρ(Eπεx(ψε)(v)) +

∫
X

Varπεx(ψε)(v)dρ(x),

so that using again (6),
Varx∼ρ(Eπεx(ψε)(v)) = Varµ(v)− ε〈v|∇2Kε(ψε)v〉.

Injecting this last equality into (13) yields the desired result.

A.3 Proof of Proposition 5.1

Proof. We introduce for any i ∈ {1, . . . , N} and parameter η > 0 the sets:

X εi,η,+ = {x ∈ Lagi(ψ
ε)|∀j 6= i,

fεi (x)− fεj (x)

‖yi − yj‖
≥ η},

X εi,η,− = {x ∈ X |∀j ∈ arg max
`
fε` (x),

fεj (x)− fεi (x)

‖yj − yi‖
≥ η},

that correspond respectively to the points of Lagi(ψ
ε),X \ Lagi(ψ

ε) that are at a distance at least η from the
boundary of Lagi(ψ

ε) and that are illustrated in green and in blue in Figure 1. We then define for any j 6= i the
common boundary between Lagi(ψ

ε) and Lagj(ψ
ε):

Hij = Lagi(ψ
ε) ∩ Lagj(ψ

ε).

Next, for a parameter γ > 0, define the set of points of Hij that are at a distance at least γ from the other
Laguerre cells:

H−γij = {x0 ∈ Hij |∀k 6= i, j, fεi (x0) = fεj (x0) ≥ fεk(x0) + γmax(‖yi − yk‖ , ‖yj − yk‖)}.

Then define

Aεi,η,γ =
⋃
j 6=i

{x0 + tdij , x
0 ∈ H−γij , t ∈ [−η ‖yi − yj‖ ,+η ‖yi − yj‖]}

where dij =
yi−yj
‖yi−yj‖2

. This set corresponds to the areas in yellow in Figure 1. Define finally Bεi,η,γ = X \ (X εi,η,+ ∪
X εi,η,− ∪Aεi,η,γ): this set corresponds to the areas in red in Figure 1.

Control on X εi,η,+. For x ∈ X εi,η,+, we have for any j 6= i,

πεx,j ≤ exp

(
fεj (x)− fεi (x)

ε

)
≤ e−η‖yi−yj‖/ε ≤ e−ηδ/ε.
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This gives in equation (10) the control

∀x ∈ X εi,η,+,
N∑

j=1,j 6=i

(
fεi (x)− fεj (x)

ε2

)
πεx,jπ

ε
x,i .

1

ε2
e−ηδ/ε .

1

ε2
e−η/ε. (14)

Control on X εi,η,−. For x ∈ X εi,η,−, we have

πεx,i ≤ exp

(
fεi (x)−maxj f

ε
j (x)

ε

)
≤ e−ηδ/ε.

This gives in equation (10) the control

∀x ∈ X εi,η,+,
N∑

j=1,j 6=i

(
fεi (x)− fεj (x)

ε2

)
πεx,jπ

ε
x,i .

1

ε2
e−η/ε. (15)

Control on Aεi,η,γ. For any x ∈ Aεi,η,γ , there exists j ∈ {1, . . . , N}, x0 ∈ H−γij and t ∈ [−η ‖yi − yj‖ ,+η ‖yi − yj‖]
such that

x = x0 + tdij .

For such a point, we have

fεi (x)− fεj (x) = 〈x0 + tdij |yi − yj〉 − ψεi + ψεj

= fεi (x0)− fεj (x0) + t〈dij |yi − yj〉
= t. (16)

Moreover, for any k 6= i, j we have by definition of H−γij

fεi (x)− fεk(x) = fεi (x0)− fεk(x0) + t〈dij |yi − yk〉

≥ γ ‖yi − yk‖ − |t|
diam(Y)

δ

≥ γδ − diam(Y)2

δ
η := γ̃. (17)

In the same way,

fεj (x)− fεk(x) ≥ γδ − diam(Y)2

δ
η = γ̃. (18)

The integral we want to control on Aεi,η,γ reads:

∑
j

∫
x0∈H−γij

∫ η‖yi−yj‖

t=0

(gεi (x
0 − tdij) + gεi (x

0 + tdij))dtdHd−1(x0) (19)

where gεi (x) =
∑N
j=1,j 6=i

(
fεi (x)−fεj (x)

ε2

)
πεx,jπ

ε
x,iρ(x).

Let’s find an upper bound on
∣∣gεi (x0 − tdij) + gεi (x

0 + tdij)
∣∣. To simplify the notation, denote x− = x0 − tdij

and x+ = x0 + tdij . Using equation (16), we have the expression

gεi (x
−) =

(
fεi (x−)− fj(x−)

ε2

)
πεx−,jπ

ε
x−,iρ(x−) +

∑
k 6=i,j

(
fεi (x−)− fk(x−)

ε2

)
πεx−,kπ

ε
x−,iρ(x−)

=
−t
ε2
πεx−,jπ

ε
x−,iρ(x−) + S(x−), (20)

where S(x) =
∑
k 6=i,j

(
fεi (x)−fk(x)

ε2

)
πεx,kπ

ε
x,iρ(x). Notice that from (17) and (18), for k 6= i, j, πεx−,k ≤ e−γ̃/ε.

This gives the bound ∣∣S(x−)
∣∣ . 1

ε2
e−γ̃/ε. (21)
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Similarly, we have

gεi (x
+) =

t

ε2
πεx+,jπ

ε
x+,iρ(x+) + S(x+), (22)

where S(x+) verifies ∣∣S(x+)
∣∣ . 1

ε2
e−γ̃/ε. (23)

From equations (20) and (22), we thus have the control∣∣gεi (x−) + gεi (x
+)
∣∣ ≤ t

ε2

∣∣∣πεx+,jπ
ε
x+,iρ(x+)− πεx−,jπ

ε
x−,iρ(x−)

∣∣∣+
∣∣S(x−)

∣∣+
∣∣S(x+)

∣∣
≤ t

ε2

∣∣∣πεx+,jπ
ε
x+,i − π

ε
x−,jπ

ε
x−,i

∣∣∣ ρ(x+) +
t

ε2
πεx−,jπ

ε
x−,i

∣∣ρ(x+)− ρ(x−)
∣∣ (24)

+
∣∣S(x−)

∣∣+
∣∣S(x+)

∣∣
Now, notice that

πεx+,i =
exp

(
fεi (x+)

ε

)
exp

(
fεi (x+)

ε

)
+ exp

(
fεj (x+)

ε

)
+
∑
k 6=i,j exp

(
fεk(x+)

ε

)
=

1

1 + e−t/ε + Si(x+)
,

where S`(x) =
∑
k 6=i,j exp

(
fεk(x)−fε` (x)

ε

)
. Similarly, we have

πεx+,j =
1

1 + et/ε + Sj(x+)
,

πεx−,i =
1

1 + et/ε + Si(x−)
,

πεx−,j =
1

1 + e−t/ε + Sj(x−)
.

Moreover, remark that for ` ∈ {i, j} and x ∈ {x−, x+} we have the bound

S`(x) . e−γ̃/ε.

From these expressions we deduce the following bound:∣∣∣πεx+,jπ
ε
x+,i − π

ε
x−,jπ

ε
x−,i

∣∣∣ . e−γ̃/εet/ε. (25)

Now using that ρ is α-Hölder, we know that there exists a constant Cρ > 0 such that

∣∣ρ(x+)− ρ(x−)
∣∣ ≤ Cρ ∥∥x+ − x−

∥∥α = Cρ ‖2tdij‖α ≤ Cρ
(

2

δ

)α
tα. (26)

Plugging the bounds (21), (23), (25) and (26) into (24) then yields:∣∣gεi (x+) + gεi (x
−)
∣∣ . 1

ε2

(
te−γ̃/εet/ε + t1+α + e−γ̃/ε

)
.

Injecting these bounds into integral (19) entails∣∣∣∣∣∣
∫
Aεi,η,γ

1

ε

N∑
j=1,j 6=i

(
fεi (x)− fεj (x)

ε2

)
πεx,jπ

ε
x,iρ(x)dx

∣∣∣∣∣∣ .
∫ ηdiam(Y)

0

1

ε2

(
te−γ̃/εet/ε + t1+α + e−γ̃/ε

)
dt
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.
η2+α

ε2
+

1

ε2
e−γ̃/ε

(
η + εηeη/ε − ε2(eη/ε − 1)

)
. (27)

Control on Bεi,η,γ. We first derive a uniform bound on the integrand

N∑
j=1,j 6=i

(
fεi (x)− fεj (x)

ε2

)
πεx,jπ

ε
x,i

on the domain Bεi,η,γ , that is included in the η-neighborhood of Lagi(ψ
ε). For x ∈ Bεi,η,γ , for any j 6= i, either∣∣fεi (x)− fεj (x)

∣∣ ≤ η(diam(Y) + 1), and in this case

∣∣∣∣fεi (x)− fεj (x)

ε2

∣∣∣∣πεx,jπεx,i . η

ε2
,

or
∣∣fεi (x)− fεj (x)

∣∣ > η(diam(Y) + 1), which entails πεx,j ≤ e−η/ε. To see this, denote k ∈ arg max` f
ε
` (x). Since x

is in a η-neighborhood of Lagi(ψ
ε), we have

0 ≤ fεk(x)− fεi (x) ≤ η ‖yk − yi‖ ≤ ηdiam(Y).

Hence ∣∣fεj (x)− fεk(x)
∣∣ ≥ ∣∣∣∣fεj (x)− fεi (x)

∣∣− |fεk(x)− fεi (x)|
∣∣ ≥ η.

The inequality πεx,j ≤ e−η/ε then comes from the fact that πεx,j ≤ exp
(
fεj (x)−fεk(x)

ε

)
. From these remarks we can

therefore write for x ∈ Bεi,η,γ :

N∑
j=1,j 6=i

(
fεi (x)− fεj (x)

ε2

)
πεx,jπ

ε
x,i .

1

ε2

(
η + e−η/ε

)
.

Finally, notice that Bεi,η,γ is made of a union of corners of η-neighborhoods Lagi(ψ
ε), where corner is

meant for intersection of 2 hyperplanes. There are at most
(
N−1

2

)
≤ N2 such corners. Denote θ =

arg maxi,j,k|∠yiyjyk<π ∠yiyjyk, i.e. the maximum angle that can be formed from a triplet of points in the
support of the target that do not lie on a same line. Then the corners that constitute Bεi,η,γ are actually included

in cylinders of length at most diam(X ) and of radius at most 2γ
cos(θ/2) , that is of volume at most 4πdiam(X )d−2

cos(θ/2)2 γ2.

All these considerations allow us to write the following bound:∣∣∣∣∣∣
∫
Bεi,η,γ

1

ε

N∑
j=1,j 6=i

(
fεi (x)− fεj (x)

ε2

)
πεx,jπ

ε
x,iρ(x)dx

∣∣∣∣∣∣ . γ2

ε2

(
η + e−η/ε

)
. (28)

Conclusion. Finally, using equations (14), (15), (27), (28) we get the wanted control:

∣∣∣∣[ ∂∂ε (∇Kε)(ψ)]i

∣∣∣∣ =

∣∣∣∣∣∣
∫
X

1

ε

N∑
j=1,j 6=i

(
fεi (x)− fεj (x)

ε2

)
πεx,jπ

ε
x,iρ(x)dx

∣∣∣∣∣∣
.

1

ε2
e−η/ε +

η2+α

ε2
+
γ2

ε2

(
η + e−η/ε

)
+

1

ε2
e−γ̃/ε

(
η + εηeη/ε − ε2(eη/ε − 1)

)
.
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A.4 Proof of Theorem 3.3

Proof. Here we assume that ε ≤ 1. Proposition 5.1 entails the following inequality for any η, γ > 0:∣∣∣∣[ ∂∂ε (∇Kε)(ψ)]i

∣∣∣∣ . 1

ε2
e−η/ε +

η2+α

ε2
+
γ2

ε2

(
η + e−η/ε

)
+

1

ε2
e−γ̃/ε

(
η + εηeη/ε − ε2(eη/ε − 1)

)
.

We recall that γ̃ = γδ − diam(Y)2

δ η. We choose γ = η
δ

(
diam(Y)2

δ + 2
)

, which yields

∣∣∣∣[ ∂∂ε (∇Kε)(ψ)]i

∣∣∣∣ . η2+α + η3

ε2
+
e−η/ε

ε2

(
1 + η2 + εη − ε2 + (η + ε2)e−η/ε

)
.

Then, for any β ∈ ( 2
2+α , 1), choosing η = εβ yields∣∣∣∣[ ∂∂ε (∇Kε)(ψ)]i

∣∣∣∣ . ε(2+α)β−2 +
e−1/ε1−β

ε2
.

With α′ = (2 + α)β − 2, we get that for any α′ ∈ (0, α),

∣∣∣∣[ ∂∂ε (∇Kε)(ψ)]i

∣∣∣∣ . εα
′
+
e−1/ε

α−α′
2+α

ε2
. εα

′
.

A.5 Convergence of ψε to ψ0 as ε goes to 0

Proposition A.1. The solutions ψε to problem (Dε) verify:

lim
ε→0

ψε = ψ0.

Proof. Let’s first prove that for any ε ≥ 0, the solution ψε to problem (Dε) verifies:

‖ψε‖∞ ≤ RXdiam(Y) + ε log(1/µ).

For ε > 0, recall that the first order condition (2) entails that

e
ψεi
ε µi =

∫
X
e
〈x|yi〉−(ψε)c,ε

ε dρ(x).

Thus right-hand sign of this equality can be seen as a RX -Lipschitz function of yi. Therefore we have the bound:

∣∣ψεi − ψεj ∣∣ ≤ RX |yi − yj |+ ε

∣∣∣∣log(
µi
µj

)

∣∣∣∣ ≤ RXdiam(Y) + ε log(1/µ). (29)

Now recall that 〈ψε|1N 〉 = 0, which means that the components of ψε ∈ RN take both positive and negative
values. This entails for any i ∈ {1, . . . , N}:

|ψεi | = |ψεi − 0| ≤ max
j

∣∣ψεi − ψεj ∣∣ ≤ RXdiam(Y) + ε log(1/µ).

When ε = 0, the bound (29) comes from the fact that ψ0 is a RX -Lipschitz function from Y to R. Indeed,
Proposition 1.11 in (Santambrogio, 2015) ensures that for any i ∈ {1, . . . , N},

ψ0
i = ψ0(yi) = (ψ0)∗∗(yi) = sup

x∈X
〈x|yi〉 − (ψ0)∗(x),

which reads as a RX -Lipschitz function of yi. We conclude similarly to the case ε > 0 to ensure
∥∥ψ0

∥∥
∞ ≤

RXdiam(Y).
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Now consider a sequence (εk)k > 0 such that limk→∞ εk = 0. By what precedes, the sequence (ψεk)k is bounded
and one can extract a converging subsequence (that we do not relabel). Notice now that for any x ∈ X and
ψ ∈ RN , the (c, ε)-transform ψc,ε(x) corresponds to a rescaled LogSumExp (or smooth maximum) of the vector
(〈x|yi〉 − ψi)i=1,...,N :

ψc,ε(x) = εLSE

(
(〈x|yi〉 − ψi)i=1,...,N

ε

)
,

where LSE(z1, . . . , zN ) = log(exp(z1) + . . . exp(zN )). Bounds on LSE allow us to write that for any, x ∈ X and
ε > 0 we have

ψ∗(x) ≤ ψc,ε(x) ≤ ψ∗(x) + ε logN,

where we recall that ψ∗(x) = maxi=1,...,N 〈x|yi〉 − ψi denotes the Legendre transform of ψ evaluated in x. Thus if
we consider k ∈ N, we have by optimiality of ψ0, ψεk for their respective problems the inequalities:

〈(ψ0)∗|ρ〉+ 〈ψ0|µ〉 ≤ 〈(ψεk)∗|ρ〉+ 〈ψεk |µ〉
≤ 〈(ψεk)c,εk |ρ〉+ 〈ψεk |µ〉+ εk

≤ 〈(ψ0)c,εk |ρ〉+ 〈ψ0|µ〉+ εk

≤ 〈(ψ0)∗|ρ〉+ 〈ψ0|µ〉+ εk(1 + logN).

Hence we have the limit:
lim
k→∞

〈(ψεk)∗|ρ〉+ 〈ψεk |µ〉 = 〈(ψ0)∗|ρ〉+ 〈ψ0|µ〉.

By unicity of the solution of the unregularized problem on (1N )⊥, this proves that

lim
k→∞

ψεk = ψ0.

There is thus only one accumulation point for the bounded sequence (ψεk)k, which shows that the whole sequence
converges to this point.

A.6 Proof of Corollary 2.2

Proof. Following Theorem 2.1, let C > 0 (depending on X , ρ,Y, µ) be such that
∥∥∥ψ̇η∥∥∥

2
≤ Cτα

′
for τ ∈ [ε′, ε].

Then notice ∥∥∥ψε − ψε′∥∥∥
∞
≤
∥∥∥ψε − ψε′∥∥∥

2
=

∥∥∥∥∫ ε

ε′
ψ̇τdτ

∥∥∥∥
2

≤
∫ ε

ε′

∥∥∥ψ̇τ∥∥∥
2

dτ ≤ Cεα
′
(ε− ε′).

Letting ε′ go to 0 and using Proposition A.1 yields∥∥ψε − ψ0
∥∥
∞ ≤ Cε

1+α′ .

For the second result, we use∥∥(ψε)c,ε − (ψ0)∗
∥∥
∞ ≤

∥∥(ψε)c,ε − (ψ0)c,ε
∥∥
∞ +

∥∥(ψ0)c,ε − (ψ0)∗
∥∥
∞

One can easily show with the definition of the (c, ε)-transform that
∥∥ψε − ψ0

∥∥
∞ ≤

C
1+α′ ε

1+α′ entails

∥∥(ψε)c,ε − (ψ0)c,ε
∥∥
∞ ≤

C

1 + α′
ε1+α′ .

On the other hand,
∥∥(ψ0)c,ε − (ψ0)∗

∥∥
∞ ≤ ε logN is a LogSumExp property. This property can be refined to get

to the third result: we have for all x ∈ X

(ψ0)∗(x) ≤ (ψ0)c,ε(x) = ε log

 N∑
j=1

e
〈x|yj〉−ψ

0
j

ε


= (ψ0)∗(x) + ε log

 N∑
j=1

e
〈x|yj〉−ψ

0
j−(ψ0)∗(x)

ε

 .
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But for ρ-almost every x ∈ X , there is only one i ∈ {1, . . . , N} that satisfies (ψ0)∗(x) = 〈x|yi〉 − ψ0
i . Thus for

such x, denoting cx = minj 6=i(〈x|yi〉 − ψ0
i )− (〈x|yj〉 − ψ0

j ) > 0, we have

N∑
j=1

e
〈x|yj〉−ψ

0
j−(ψ0)∗(x)

ε ≤ 1 + (N − 1)e−cx/ε.

We thus get:

(ψ0)∗(x) ≤ (ψ0)c,ε(x) ≤ (ψ0)∗(x) + (N − 1)εe−cx/ε.

From this we deduce that for ρ-a.e. x ∈ X ,∣∣(ψ0)c,ε(x)− (ψ0)∗(x)
∣∣ . εe−cx/ε . ε1+α′ .

Finally, we use the notation of Section 5 that denotes

dπε

dρ⊗ σ
(x, yi) = πεx,i.

Notice that for any i ∈ {1, . . . , N},

π0
x,i =

{
1 if 〈x|yi〉 − ψ0

i ≥ 〈x|yj〉 − ψ0
j ∀j,

0 else.

If π0
x,i = 0, then with the same cx as before (assuming that only one i ∈ {1, . . . , N} satisfies (ψ0)∗(x) = 〈x|yi〉−ψ0

i ),∣∣πεx,i − π0
x,i

∣∣ = πεx,i

=
e
〈x|yi〉−ψ

ε
i

ε∑
j e
〈x|yj〉−ψεj

ε

≤ e2Cεα
′
/(1+α′) e

〈x|yi〉−ψ
0
i

ε∑
j e
〈x|yj〉−ψ0

j
ε

≤ e2Cεα
′
/(1+α′)e−cx/ε

. e−cx/ε.

If π0
x,i = 1, then ∣∣πεx,i − π0

x,i

∣∣ =
∣∣πεx,i − 1

∣∣
=

∑
j 6=i e

〈x|yj〉−ψ
ε
j

ε∑
j e
〈x|yj〉−ψεj

ε

≤ e2Cεα
′
/(1+α′)

∑
j 6=i e

〈x|yj〉−ψ
0
j

ε∑
j e
〈x|yj〉−ψ0

j
ε

≤ e2Cεα
′
/(1+α′)

∑
j 6=i

e
〈x|yj〉−ψ

0
j−(ψ0)∗(x)

ε

≤ e2Cεα
′
/(1+α′)(N − 1)e−cx/ε

. e−cx/ε.

This proves that for ρ-a.e. x ∈ X and all i ∈ {1, . . . , N},
∣∣πεx,i − π0

x,i

∣∣ . e−cx/ε.
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A.7 Expansion of the Difference of Costs (Theorem 2.3)

The proof of Theorem 2.3 follows very closely the proof of Theorem 1.1 in (Altschuler et al., 2021) and we thus
make numerous mentions of results from this paper.

Proof. Let ε ∈ (0, 1] and recall that W2
2,ε(ρ, µ) is computed using the solution of the regularized maximum

correlation problem (P′ε) with regularization parameter ε
2 :

W2
2,ε(ρ, µ) = E(x,y)∼πε/2 ‖x− y‖

2
.

Now notice that as in Lemma 5.2 in (Altschuler et al., 2021) we can write by strong duality

Eπ0〈x|y〉 = Ex∼ρ(ψ
0)∗(x) + Ey∼µψ

0(y)

= E(x,y)∼πε/2

(
(ψ0)∗(x) + ψ0(y)

)
.

Therefore the difference of costs reads

W2
2,ε(ρ, µ)−W2

2(ρ, µ) = Eπε/2 ‖x− y‖2 − Eπ0 ‖x− y‖2

= 2 (Eπ0〈x|y〉 − Eπε/2〈x|y〉)
= 2E(x,y)∼πε/2

(
(ψ0)∗(x) + ψ0(y)− 〈x|y〉

)
= 2

∑
i,j

∫
Lagi(ψ

0)

(
(ψ0)∗(x) + ψ0

j − 〈x|yj〉
)
π
ε/2
x,j dρ(x)

=
∑
i,j

∫
Lagi(ψ

0)

∆ij(x)π
ε/2
x,j dρ(x),

where we denoted for x ∈ Lagi(ψ
0),

∆ij(x) = 2
(
(ψ0)∗(x) + ψ0

j − 〈x|yj〉
)

= 2
(
〈x|yi − yj〉 − ψ0

i + ψ0
j

)
≥ 0.

Using Theorem 2.1 and its Corollary 2.2 we know that there exists C > 0 depending on X , ρ,Y, µ such that for
α′ ∈ (0, α), ∥∥∥ψε/2 − ψ0

∥∥∥
∞
≤ C

(ε
2

)1+α′

.

From this bound, using that π
ε/2
x,j =

exp

(
〈x|yj〉−ψ

ε/2
j

ε/2

)
∑
` exp

(
〈x|y`〉−ψ

ε/2
`

ε/2

) we deduce the bounds

e−2C(ε/2)α
′ e−∆ij(x)/ε∑

` e
−∆i`(x)/ε

≤ πε/2x,j ≤ e
2C(ε/2)α

′ e−∆ij(x)/ε∑
` e
−∆i`(x)/ε

.

Hence we deduce the following control:∣∣∣∣∣W2
2,ε(ρ, µ)−W2

2(ρ, µ)−
∑
i,j

∫
Lagi(ψ

0)

∆ij(x)
e−∆ij(x)/ε∑
` e
−∆i`(x)/ε

dρ(x)

∣∣∣∣∣
. εα

′∑
i,j

∫
Lagi(ψ

0)

∆ij(x)
e−∆ij(x)/ε∑
` e
−∆i`(x)/ε

dρ(x).

Lemma 6.4 found in (Altschuler et al., 2021) then asserts that

∑
i,j

∫
Lagi(ψ

0)

∆ij(x)
e−∆ij(x)/ε∑
` e
−∆i`(x)/ε

dρ(x) = ε2π
2

12

∑
i<j

wij
‖yi − yj‖

+ o(ε2).
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Directly injecting this into the last control would lead to the exact same asymptotic result as the one given in
Theorem 1.1 in (Altschuler et al., 2021). We refine this last asymptotic development to a non-asymptotic one by
leveraging the fact that we assumed the source ρ to be α-Hölder continuous.

For any i, j ∈ {1, . . . , N}, denote Iij =
∫

Lagi(ψ
0)

∆ij(x) e−∆ij(x)/ε∑
` e
−∆i`(x)/ε dρ(x). Then notice that for i 6= j,

Iij ≤
∫

Lagi(ψ
0)

∆ij(x)
e−∆ij(x)/ε

1 + e−∆ij(x)/ε
dρ(x) (30)

Similarly to (Altschuler et al., 2021), introduce for a > 0

Sij(a) = {x ∈ Lagi(ψ
0)|∆ik(x) ≥ a∀k 6= i, j}.

Notice that Sij(0) = Lagi(ψ
0), and that for some a > 0:

Iij ≥
∫
Sij(a)

∆ij(x)
e−∆ij(x)/ε

1 + (N − 2)e−a/ε + e−∆ij(x)/ε
dρ(x)

≥
∫
Sij(a)

∆ij(x)
e−∆ij(x)/ε

c(a) + e−∆ij(x)/ε
dρ(x), (31)

for c(a) = 1 + (N − 2)e−a/ε > 1. The quantity Iij is thus bounded by integrals of the form∫
Sij(a)

∆ij(x)
e−∆ij(x)/ε

c+ e−∆ij(x)/ε
dρ(x)

for some a ≥ 0 and c ≥ 1. Let’s find a non-asymptotic control of such integrals in terms of ε.

Recall that for x ∈ Lagi(ψ
0), ∆ij(x) = 2

(
〈x|yi − yj〉 − ψ0

i + ψ0
j

)
. The coarea formula then ensures:∫

Sij(a)

∆ij(x)
e−∆ij(x)/ε

c+ e−∆ij(x)/ε
dρ(x) =

1

2 ‖yi − yj‖

∫ ∞
0

t
e−t/ε

c+ e−t/ε
hij(t; a)dt (32)

where we denoted hij(t; a) =
∫
Sij(a)∩(∆ij)−1(t)

ρ(x)dHd−1(x) similarly to (Altschuler et al., 2021) (one can already

notice that hij(0; 0) = wij). Notice then from Lemma 6.2 in (Altschuler et al., 2021) that∣∣∣∣∣
∫ ∞

0

t
e−t/ε

c+ e−t/ε
hij(t; a)dt−ε2hij(0; a) (−Li2(−1/c))

∣∣∣∣∣ = ε2

∣∣∣∣∫ ∞
0

u
e−u

c+ e−u
(hij(εu; a)− hij(0; a))du

∣∣∣∣ ,
where Li2 denotes the dilogarithm function. We now focus on the difference hij(εu; a)− hij(0; a):

hij(εu; a)− hij(0; a) =

∫
Sij(a)∩(∆ij)−1(εu)

ρ(x)dHd−1(x)−
∫
Sij(a)∩(∆ij)−1(0)

ρ(x)dHd−1(x)

One can notice that there exists a set Rij(εu), that is a subset of an hyperplane, and whose (d− 1)-area is (at
most) linear in εu, such that either

Sij(a) ∩ (∆ij)
−1(εu) =

(
Sij(a) ∩ (∆ij)

−1(0) + (εu)nij
)
∪Rij(u),

or
Sij(a) ∩ (∆ij)

−1(εu) =
(
Sij(a) ∩ (∆ij)

−1(0) + (εu)nij
)
\Rij(u),

where nij =
yi−yj
‖yi−yj‖ . Hence we have:

|hij(εu; a)− hij(0; a)| ≤
∫
Sij(a)∩(∆ij)−1(0)

|ρ(x+ (εu)nij)− ρ(x)|dHd−1(x) +

∫
Rij(εu)

dHd−1(x)

Recalling that ρ is α-Hölder continuous, we have |ρ(x+ (εu)nij)− ρ(x)| . εαuα. Hence we deduce

|hij(εu; a)− hij(0; a)| . εαuα + εu.
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We thus have shown that∣∣∣∣∣
∫ ∞

0

t
e−t/ε

c+ e−t/ε
hij(t; a)dt− ε2hij(0; a) (−Li2(−1/c))

∣∣∣∣∣ . ε2

∫ ∞
0

u
e−u

c+ e−u
(εαuα + εu)du

. ε2+α,

where we used that c ≥ 1 and ε ≤ 1.

We finally bound the distance between hij(0; a) (−Li2(−1/c)) and hij(0; 0) (−Li2(−1)). We have the following
inequality:

|hij(0; a) (−Li2(−1/c))− hij(0; 0) (−Li2(−1))| ≤ |−Li2(−1)| |hij(0; a)− hij(0; 0)|
+ |hij(0; a)| |−Li2(−1/c)− (−Li2(−1))|

The quantity |hij(0; a)− hij(0; 0)| obviously scales linearly with a. Then one can notice that on [1, c], the function
t 7→ −Li2(−1/t) is (−Li2(−1))-Lipschitz. These facts ensure the following control:

|hij(0; a) (−Li2(−1/c))− hij(0; 0) (−Li2(−1))| . a+ |c− 1| .

This allows to write∣∣∣∣∣
∫ ∞

0

t
e−t/ε

c+ e−t/ε
hij(t; a)dt− ε2hij(0; 0) (−Li2(−1))

∣∣∣∣∣ . ε2+α + ε2(a+ |c− 1|).

Thus, setting a = εα, we get c(a) = 1 + (N − 2)e−1/ε1−α and

∣∣∣∣∣
∫ ∞

0

t
e−t/ε

c(a) + e−t/ε
hij(t; a)dt− ε2hij(0; 0) (−Li2(−1))

∣∣∣∣∣ . ε2+α.

This leads to: ∣∣∣∣Iij − ε2 hij(0; 0)

2 ‖yi − yj‖
(−Li2(−1))

∣∣∣∣ =

∣∣∣∣Iij − ε2 wij
‖yi − yj‖

π2

24

∣∣∣∣ . ε2+α.

Eventually, recalling the bound ∣∣∣∣∣∣W2
2,ε(ρ, µ)−W2

2(ρ, µ)−
∑
i,j

Iij

∣∣∣∣∣∣ . εα
′∑
i,j

Iij ,

we obtain the wanted control for ε ≤ 1:∣∣∣∣∣∣W2
2,ε(ρ, µ)−W2

2(ρ, µ)− ε2π
2

12

∑
i<j

wij
‖yi − yj‖

∣∣∣∣∣∣ . ε2+α.

A.8 Tightness of Theorem 2.3

We now show that Theorem 2.3 is tight on a simple one-dimensional example.

Theorem A.2. In Theorem 2.3, there exists ρ, µ such that for ε ≤ 1,∣∣∣∣∣∣W2
2,ε(ρ, µ)−W2

2(ρ, µ)− ε2π
2

12

∑
i<j

wij
‖yi − yj‖

∣∣∣∣∣∣ & ε2+α.
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Proof. Once again, we rely on results from (Altschuler et al., 2021) (Section 3), where the following formula for
the difference of costs for the transport between a continuous symmetric density ρ supported on [−1, 1] and the
target µ = 1

2 (δ{−1} + δ{+1}) is given:

W2
2,ε(ρ, µ)−W2

2(ρ, µ) = 8

∫ 1

0

x

1 + e4x/ε
ρ(x)dx.

We consider, for α ∈ (0, 1] the following α-Hölder density for the source:

ρ(x) =
1 + α

2α
(1− |x|α)1[−1,1].

We can then derive the difference between the suboptimality and its asymptote for ε ≤ 1:∣∣∣∣W2
2,ε(ρ, µ)−W2

2(ρ, µ)− π2ρ(0)

24
ε2

∣∣∣∣ =

∣∣∣∣8 ∫ 1

0

x

1 + e4x/ε
ρ(x)dx− ρ(0)

ε2

2
(−Li2(−1))

∣∣∣∣
≥
∣∣∣∣8 ∫ 1

0

x

1 + e4x/ε
(ρ(x)− ρ(0))dx

∣∣∣∣
−
∣∣∣∣8ρ(0)

∫ 1

0

x

1 + e4x/ε
dx− ρ(0)

ε2

2
(−Li2(−1))

∣∣∣∣
=

∣∣∣∣81 + α

2α

∫ 1

0

x1+α

1 + e4x/ε
dx

∣∣∣∣−
∣∣∣∣∣ρ(0)

ε2

2

∫ ∞
4/ε

te−t

1 + e−t
dt

∣∣∣∣∣
≥ 4(1 + α)

α

(ε
4

)2+α
∫ 4/ε

0

t1+α

1 + et
dt− 4ρ(0)εe−4/ε

≥ 4(1 + α)

α

(ε
4

)2+α
∫ 4

0

t1+α

1 + et
dt− 4ρ(0)εe−4/ε

≥ 2(1 + α)

α

(
2

(1 + e4)(2 + α)
ε2+α − εe−4/ε)

)
.

Thus for ε small enough we get: ∣∣∣∣W2
2,ε(ρ, µ)−W2

2(ρ, µ)− π2ρ(0)

24
ε2

∣∣∣∣ & ε2+α.
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