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1 Introduction
Turbulent flows involving the transport of pas-

sive scalar are encountered in many fields of ap-

plications (Hanjalic and Launder, 2011) and are

often simulated using different methods rang-

ing from DNS, LES, RANS and RANS/LES

(Chaouat, 2017). In this work, we consider the

partially integrated transport modeling (PITM)

method (Chaouat and Schiestel, 2005) using a

second moment closure (SMC) that allows to

perform simulations with seamless coupling be-

tween the RANS and LES regions and we extend

this method to the case of passive scalar trans-

port. We derive the basic transport equations for

both the scalar variance of fluctuations kθ and its

dissipation-rate εθ in the spectral space (Chaouat

and Schiestel, 2021). We perform then numerical

simulations of turbulent channel flows including

passive scalar fields on relatively coarse grids at

the Reynolds number Rτ = 395 for the Prandtl

numbers Pr = 0.1, 1 and 10 associated with

heat transfer of liquid metals, gas and water (see

Fig 1). Comparison are made with DNS data

(Chaouat and Peyret, 2019).

2 The basics of the PITM method for
turbulent fields

From a physical standpoint, the PITM method

finds its basic foundation in the spectral space of

wave numbers considering the production, trans-

fer and dissipation processes of energy acting in

spectral wave number ranges of the spectrum.

The starting point is the transport equation of the

spherical mean of the Fourier transform of the

two-point correlation tensor of the fluctuating ve-

locities denoted ϕij(X, κ, t) as follows (Chaouat

and Schiestel, 2005; 2007; 2013)

∂ϕij(X, κ, t)

∂t
+ 〈uj〉 (X)

∂ϕij(X, κ, t)

∂Xj

= Pij(X, κ, t) + Tij(X, κ, t) + Ψij(X, κ, t)

+Jij(X, κ, t)− Eij(X, κ, t) (1)

where Pij , Tij , Ψij , Jij , and Eij are respectively,

the production, transfer, redistribution, diffusion

and dissipation terms, the brackets 〈.〉 denotes the

averaging in homogeneous directions of the flow.

The PITM equations are then formally obtained

from integration of Equation (1) in the wave num-

ber ranges [0, κc], [κc, κd] and [κd,∞[, where

κc is the cutoff wave number linked to the filter

size Δ by κc = π/Δ, and κd is the dissipative

wave number located at the far end of the iner-

tial range of the spectrum. As a result (Schiestel

and Dejoan, 2005; Chaouat and Schiestel, 2005,

2009, 2012), the transport equation for the subfil-

ter scale stress (SFS) tensor (τij)s can be written

in the simple compact form as

∂(τij)s
∂t

+
∂

∂xk
(ūk(τij)s) = (Pij)s

+(Πij)s − εij + (Jij)s (2)

where the terms appearing in the right-hand side

of this equation are identified as subfilter produc-

tion, redistribution and dissipation, respectively

while the transport equation for the dissipation

rate ε can be expressed into the form

∂ε

∂t
+

∂

∂xk
(ūkε) = cε1s

ε

ks
Ps− cε2s

ε2

ks
+Jεs (3)

the bar .̄ denotes the filtering. The coefficient ap-

pearing in the destruction term of Equation (3) is



then given by

cε2s = cε1 +
ks
k
Δcε (4)

where Δcε = cε2 − cε1 , cε1 and cε2 are the co-

efficients used in RANS and cε1s = cε1 . Us-

ing an equilibrium density spectrum defined as

E(κ) = kLE∗(ϑ), where L denotes the turbu-

lence length-scale L = k3/2/ε, ϑ = κL,

E∗(ϑ) =
2
3βϑ

α−1

[1 + βϑα]γ+1 (5)

one can obtain after integration

cε2s = cε1 +
Δcε

[1 + βϑα
c ]

γ (6)

where αγ = 2/3 and β = [2/(3CK)]γ , CK is the

Kolmogorov constant close to 1.5, ϑc = κcL,

Turbulent passive scalar field. We extend

here the PITM method developed for dynamic

turbulent fields to scalar fields. As for the pre-

ceding section, the key is to work in the spec-

tral space. The spectral transport equation of

half the scalar variance denoted as Eθ(X, κ) =
〈θ′θ′(X)〉Δ (κ)/2 reads (Chaouat and Schiestel,

2021)

∂Eθ(X, κ)

∂t
+ 〈uk〉 (X)

∂Eθ(X, κ)

∂Xk

= Pθ(X, κ) + Tθ(X, κ) + Jθ(X, κ)

−Eθ(X, κ) (7)

where in the right hand side of this equation, Pθ

is the production of half the scalar variance by

mean gradients of the scalar, Tθ is the spectral

transfer driven by the eddying motions in the in-

ertial cascade, Jθ is the diffusion term and Eθ de-

notes the dissipation term of half the scalar vari-

ance. Equation (7) is integrated in the domains

[0, κc], [κc, κe] and [κe,∞[ where κe denotes here

the high end wave number for the scalar that is

larger than κc and different from κd. Homoge-

neous flows are considered in the following. As a

result, the transport equation for the subfilter scale

variance kθs can be written formally as

∂kθs
∂t

= Pθ[κc,κe] + Fθ(κc, t)− εθ (8)

where the total variance transfer Fθ(κe, t) through

the variable cutoff κe is defined as

Fθ(κc, t) = Fθ(κc, t)− Eθ(κc, t)
∂κc
∂t

(9)

that takes into account the local spectral flux

Fθ(κc, t) and the transfer due to the variation in

the splitting wavenumber and

Fθ(κe, t) = Fθ(κe, t)− Eθ(κe, t)
∂κe
∂t

(10)

The relation κe − κc = O(1/lθ) = O(εθ/θ
2u)

leads to the equation

κe − κc = ζθ
εθ

kθsk
1/2
s

(11)

where ζθ is an adjustable coefficient chosen such

that the spectral contribution of the variance be-

yond κe is negligible. Combining these equations

together yields in homogeneous flows

∂εθ
∂t

=
εθ
kθs

∂kθs
∂t

+
εθ
2ks

∂ks
∂t

+
εθ

κe − κc

[Fθ(κe, t)− Fθ(κe, t)

Eθ(κe, t)

]

− εθ
κe − κc

[Fθ(κc, t)− Fθ(κc, t)

Eθ(κc, t)

]
(12)

Using the transport equations for ks and Equation

(3), one can obtain the resulting equation for the

dissipation-rate εθ written in a more general form

as

∂εθ
∂t

= cεθθ1sPθs
εθ
kθs

+ cεθk1sPs
εθ
ks
− cεθk2s

εθε

ks

−cεθθ2s
ε2θ
kθs

(13)

where

Pθs = Pθ[κc,κe] + Fθ(κc) (14)

cεθθ1s = 1, cεθk1s = 1/2, cεθk2s = 1/2,

cεθθ2s = 1− kθs
κeEθ(κe)

(Fθ(κe)

εθ
− 1

)
(15)

assuming that κc � κe, E(κd) � E(κc), and

Eθ(κe) � Eθ(κc), and also considering that

Fθ(κe) = εθ. When κc goes to zero, that is to

say when the filter width in physical space goes

to infinity in an homogeneous turbulence field

(or locally homogeneous), one recovers the equa-

tion used in statistical RANS closure. Hence, the

equation can be written as

∂εθ
∂t

= cεθθ1Pθ
εθ
kθ

+ cεθk1P
εθ
k
− cεθk2

εθε

k

−cεθθ2
ε2θ
kθ

(16)



where cεθθ1 = 1, cεθk1 = 1/2, cεθk2 = 1/2,

cεθθ2 = 1− kθ
κeEθ(κe)

(Fθ(κe)

εθ
− 1

)
(17)

The final transport equations for the subfilter

scalar variance kθs and its dissipation-rate εθ in-

cluding the convection and diffusion terms read

∂kθs
∂t

+
∂

∂xk
(ūkkθs) = Pθs − εθ + Jθs (18)

∂εθ
∂t

+
∂

∂xk
(ūkεθ) = cεθθ1Pθs

εθ
kθs

+ cεθk1Ps
εθ
ks

−cεθk2
εθε

ks
− cεθθ2s

ε2θ
kθs

+ Jεθs (19)

where cεθθ1 , cεθk1 , cεθk2 are constant coefficients

whereas cεθθ2s , combining Equations (15) and

(17), is now a dynamical coefficient given by

cεθθ2s = cεθθ1 +
kθs
kθ

Δcεθθ (20)

where Δcεθθ = cεθθ2 − cεθθ1 . The variance ratio

in Equation (20) is computed considering differ-

ent spectra Eθ(κ) of the passive scalar associated

with small, medium and high Prandtl number.

Molecular Prandtl numbers near unity
The ratio kθs/kθ appearing in Equation (20) is

computed using the spectrum of the scalar in the

equilibrium range can be approximated by

Eθ(κ) = Cθεθε
−1/3κ−5/3 (21)

where Cθ is a constant coefficient close to 0.5.

The spectrum of the scalar θ given by Eq. (21)

is extended in the whole range domain of the

wavenumbers as

Eθ(κ) =
Cθεθ
CKε

E(κ) (22)

using the spectrum E(κ) = kLE∗(ϑ) where

E∗(ϑ) is given by Equation (5). The analytical in-

tegration yields the practical result given by Equa-

tion (A1) that is analogous to the formula previ-

ously obtained for the dynamical equations for ki-

netic energy.

Small molecular Prandtl numbers

This situation corresponds to the case of liq-

uid metals. The inertial subrange of the variance

spectrum is shorter due to high molecular dif-

fusivity. The spectrum of the scalar variance is

given by the function

Eθ(κ) = Cθεθε
−1/3κ−5/3 exp

[
−3

2
Cθ(κηθ)

4/3

]

(23)

with the scalar microscale defined by ηθ =(
σ3/ε

)1/4
where Cθ = 1.5. Using the Kolmoro-

gov scale ηK = (ν3/ε)1/4 and the Prandtl number

Pr = ν/σ, the scalar microscale can be computed

by ηθ = ηK/P
3/4
r . In practice, Equation (23) is

replaced by

Eθ(κ) = Cθεθε
−1/3κ−5/3H(κH − κ) (24)

where κH = 1/ηθ, and H is the Heaviside func-

tion implying that Eθ(κ) = 0 for κ ≥ κH .

The spectral vanishing value of wavenumber is

then obtained for κηθ = 1. So that the di-

mensionless variable ϑ is dropping for ϑH =
(PrRet)

3/4 where Ret = k2/νε denotes the tur-

bulent Reynolds number. This dropping value can

be expressed equivalently as ϑH = k3/2/(ηθ ε) =
(σk2/ε)3/4. Physically, the dimensionless group

PrRet is interpreted like the turbulent Peclet

number denoted Pet = PrRet. The exact final

expression of the coefficient cεθθ2s is obtain by

integrating the spectrum (24) leading to Equation

(A2).

Large molecular Prandtl numbers
This situation corresponds to the case of

poorly conducting fluids or high viscous fluids

like most of oils. The inertial subrange is fol-

lowed by a viscous-convective subrange with a

negative slope of minus unity and a viscous-

diffusive subrange in which the spectrum un-

dergoes strong decay. For the wave number

κ ≥ 1/ηK , it can be shown that the viscous con-

vective subrange of the spectrum is of the form

Eθ(κ) = cθεθ

(ν
ε

)1/2
κ−1 (25)

where cθ is a constant coefficient. The viscous

convective subrange is followed by the viscous-

diffusive subrange which is characterized by the

role of scalar diffusivity acting on very small

scales. In this region, the spectrum takes on the

form

Eθ(κ) = cθεθ

(ν
ε

)1/2
κ−1 exp

[
−cθ(κη∗θ)2

]
(26)

where η∗θ = ηK(σ/ν)1/2 = ηK/
√
Pr is the

smallest scale of the viscous-diffusive subrange



and cθ is a constant coefficient. The corre-

sponding wave numbers are then computed as

κK = 1/ηK and κS = 1/η∗θ . The junctions be-

tween the different curves occur for κ = κK and

κ = κS , respectively. In particular, for κ = κK ,

the spectrum Eθ(κK) given by Equation (21) of

the scalar in the equilibrium range with a slope

κ−5/3 is equal to the spectrum Eθ(κK) given by

Equation (25) of the viscous-convective subrange

with a slope κ−1, so that cθ = Cθ ≈ 1.5. The

dimensionless wave numbers ϑ = κL associated

with the Kolmogorov scale ηK and the smallest

scale η∗θ are ϑK = Re
3/4
t and ϑS = P

1/2
r Re

3/4
t ,

respectively. In practice, a simple approach is re-

tained. The spectrum given by Equation (26) is

replaced by a simple form as

Eθ(κ) = cθεθ

(ν
ε

)1/2
κ−1H(κS − κ) (27)

implying that Eθ(κ) = 0 for κ ≥ κS . The wave

number range [0, κS ] is then decomposed into two

wave number ranges introducing the cutoff wave

number κc where κc < κS or κc > κS . In the first

wave number range [0, κK ], the spectrum Eθ1(κ)

is defined as

Eθ1(κ) = ξ
kθ
k
E(κ) (28)

where E(κ) is given by Equation (5) whereas in

the second domain [κK ,∞[, the spectrum Eθ2(κ)
is deduced from Equation (27)

Eθ2(κ) = ξcθεθ

(ν
ε

)1/2
κ−1H(κS − κ) (29)

where ξ is a coefficient of normalization. An an-

alytical integration provides the exact expression

of the cεθθ2s coefficient given in Equation (A3).

3 PITM simulation of the channel flow
heated on both walls

As a generic test case, the fully developed

turbulent channel flow heated on both walls is

simulated. The variable θ is normalized by the

surface scalar flux defined as θτ = qw/(ρcpuτ )
where ρ, cp and qw are the fluid density, the spe-

cific heat at constant pressure and the heat flux

at the wall. The heat flux is given by qw =
−λ(∂θ/∂x3)w where λ stands for the thermal

conductivity λ = ρcpν/Pr.

——————————————————-

Case Pr ≈ 1

cεθθ2s = cεθθ1+Δcεθθ .G (A1)

with G = [1 + βϑα
c ]
−γ and αγ = 2/3 in practice α = 3, γ = 2/9 and β = (3CK/2)−γ

Case Pr � 1

cεθθ2s =

⎧⎨
⎩

cεθθ1 +Δcεθθ
G −H
1−H (ϑc < ϑH)

cεθθ1 (ϑc > ϑH)
(A2)

withH =
[
1 + βPe

3α/4
t

]−γ

Case Pr 	 1

cεθθ2s =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cεθθ1 +Δcεθθ
G − S + Z
1− S + Z (ϑC < ϑK)

cεθθ1 +Δcεθθ
cθ

εθ
kθ

(
ν
ε

)1/2
ln ϑS

ϑc

1− S + Z (ϑK < ϑC < ϑS)

cεθθ1 (ϑS < ϑC)

(A3)

with S =
[
1 + βRe

3α/4
t

]−γ
and Z = cθ

εθ
kθ

(
ν
ε

)1/2
lnP

1/2
r
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Figure 1: Setup of the numerical channel flow simu-

lations subjected to heat fluxes.

Numerical procedure
The dimension of the channel in the stream-

wise, spanwise and normal directions along the

axes x1, x2, x3 are L1 = 6.4δ, L2 = 3.2δ and

L3 = 2δ. The grid resolutions are 84 × 42 × 84
for Pr = 0.1, 1 and 84 × 42 × 128 for Pr = 10,

respectively. The mesh is uniform in the stream-

wise and spanwise directions, Δ+
1 = Δ+

2 = 30,

while in the direction x3, the grid is refined near

the walls. The Batchelor length-scale is given by

ηθ = ηK/P
3/4
r ≈ 5.62 ηK at Pr = 0.1, ηθ ≈ ηK

at Pr = 1, and ηθ = ηK/P
1/2
r ≈ 0.316 ηK

at Pr = 10. The simulations are performed us-

ing the numerical code (Chaouat, 2011) which is

based on the finite volume technique with MPI.

4 Numerical results
The transformed variable Θ+ = θ+w − θ+ is

considered to analyze the results. Comparions

are made with DNS (Chaouat and Peyret, 2019).

Figure 2 shows the contours plots of the instanta-

neous scalar field for the Prandtl number Pr = 1
in the mid-plane of the channel illustrating the de-

tachment of vortex in the normal direction. Fig. 3

shows the mean scalar variable Θ+ versus the log-

arithmic wall distance. It is found that the PITM

velocity profile present an excellent agreement with

the DNS data at each Prandtl number although the

grid is coarse. Fig. 4 displays the rms scalar vari-

ance θrms and indicates a good agreement with

the reference data. The distribution of the sub-

grid scale fluctuations relatively to the resolved

scale fluctuations is governed by the wave num-

bers appearing in the spectrum partition Eθ with

influence of Prandtl number.

5 Conclusion
As a result of physical modeling in the spectral

Figure 2: Contours of the instantaneous passive scalar

in the (x1, x3) mid-plane illustrating the un-

steady character of the scalar field. Pr = 1.

space of wave numbers, the subfilter PITM model

has been extended for accounting of heat trans-

fer in hybrid RANS/LES simulations. Numeri-

cal simulations of the turbulent channel flow with

scalar fields have been then performed on coarse

grids at Rτ = 395 for Pr = 0.1, 1 and 10. The

distributions of the mean scalar variable 〈θ〉 and

rms scalar fluctuations θrms = 〈θ′θ′〉 were fairly

well predicted.
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Figure 3: Mean scalar field 〈θ+〉 in logarithmic co-

ordinate versus the wall unit distance for

several Pr numbers. DNS : •; PITM :

�. (a) Pr = 0.1; (b) Pr = 1; (c) Pr = 10;

Rτ = 395.
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Figure 4: Root mean square of the scalar variance

θ+rms =
√
〈θ′+θ′+〉 versus the wall dis-

tance for several Pr numbers. DNS : •;
PITM : � . Subgrid scale : �; Resolved

scale : �. (a) Pr = 0.1; (b) Pr = 1; (c)

Pr = 10; Rτ = 395.


