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2Aix-Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France

3Warwick Centre for Predictive Modelling, School of Engineering,
University of Warwick, Coventry CV4 7AL, United Kingdom

(Dated: October 23, 2021)

Data-driven, or machine learning (ML), approaches have become viable alternatives to semi-
empirical methods to construct interatomic potentials, due to their capacity to accurately inter-
polate and extrapolate from first principles simulations if the training database and descriptor
representation of atomic structures are carefully chosen. Here, we present highly accurate inter-
atomic potentials suitable for the study of dislocations, point defects and their clusters in bcc iron
and tungsten, constructed using a linear or quadratic input-output mapping from descriptor space.
The proposed quadratic formulation, called Quadratic Noise ML, differs from previous approaches,
being strongly preconditioned by the linear solution. The developed potentials are compared to a
wide range of existing ML and semi-empirical potentials, and are shown to have sufficient accuracy
to distinguish changes in the exchange-correlation functional or pseudopotential in the underlying
reference data, while retaining excellent transferability. The flexibility of the underlying approach
is able to target properties almost unattainable by traditional methods, such as the negative di-
vacancy binding energy in W or the shape and the magnitude of the Peierls barrier of the 1

2
〈111〉

screw dislocation in both metals. We also show how the developed potentials can be used to target
important observables that require large time-and-space scales unattainable with first principles
methods, though we emphasize the importance of thoughtful database design and degrees of non-
linearity of the descriptor space to achieve the appropriate passage of information to large-scale
calculations. As a demonstration, we perform direct atomistic calculations of the relative stability
of 1

2
〈111〉 dislocations loops and three-dimensional C15 clusters in Fe and find the crossover between

the formation energies of the two classes of interstitial defects occurs at around 40 self-interstitial
atoms. We also compute the kink-pair formation energy of the 1

2
〈111〉 screw dislocation in Fe and

W, finding good agreement with density functional theory informed line tension models that indi-
rectly measure those quantities. Finally, we exploit the excellent finite temperature properties to
compute vacancy formation free energies with full anharmonicity in thermal vibrations. The pre-
sented potentials thus open up many avenues for systematic investigation of free energy landscape
of defects with ab initio accuracy.

I. INTRODUCTION

Enabled by the constant increase in computational
power, ab initio simulations regularly reveal new, previ-
ously hidden, aspects of defects in crystalline materials.
Empirical potentials should constantly improve and inte-
grate these new findings. In metals where the functional
form of the density of states is relatively simple, embed-
ded atom method (EAM) potentials [1–6] are widely ap-
plied. However, attempts to improve the performance
of these potentials on some specific properties, very of-
ten, imply a degradation of others. Over the last three
decades, efforts of the community to improve the empir-
ical force fields yielded various potentials, such as modi-
fied EAM (MEAM) [7], bond-order potentials (BOP) [8],
reactive force field (ReaxFF) [9], charge-optimized many-
body potentials (COMB) [10], etc. Although these po-
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tentials outperform the EAM formalism in terms of ac-
curacy with respect to ab initio calculations, they also
face transferability problems due to the rigid form of
underlying physical formalism. In this context, propos-
ing new fitting solutions and support functions with in-
creased flexibility of the functional form inspired by the
artificial intelligence (AI) and machine learning (ML)
opens up new avenues to overcome the limitations of
classical interatomic potentials. Moreover, AI/ML meth-
ods provide a possibility to bridge the gap between the
less accurate, empirical potentials that scale as N2 or
lower (N being the number of atoms) and the more ac-
curate electronic structure calculations that scale as N3

or higher. Although electronic structure methods, such
as tight binding or hybrid electronic structure-empirical
methods (e.g., QM/MM), attempt to bridge this gap,
they are not always successful and retain the unfavorable
scaling. In this context, ML potentials are good candi-
dates to enable large length-scale and time-scale calcula-
tions where the computational cost of ab initio methods
does not allow for direct atomistic simulations and accu-
racy of empirical potentials is not sufficient.
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The first attempt to couple AI and high-dimensional
problems in atomic-scale materials science was proposed
by Behler and Parrinello in 2007 [11]. In contrast to
classical force fields where the performance and limita-
tions of the potential are mainly defined by the physical
formalism, performance and accuracy of ML potentials
is determined by three equally important components:
database, its representation in descriptor space, and the
regression algorithm.

ML potentials require an extensive training database
because its content has a strong impact on the accuracy
and transferability of the potential. The design of the
database, which includes the choice of relevant informa-
tion, as well as the selection of pertinent instances [12–
14], called sparsification, is a crucial step for obtaining a
relevant ML potential.

The atomic descriptors enable a specific numerical rep-
resentation of the atomic structures from the database
and its invariant description with respect to symmetries
of the Hamiltonian of the system (e.g., permutation of
like atoms, rotation, translation). Thus, instead of us-
ing R3N -dimensional description of the local atomic en-
vironments, one employs a space RD. The dimension of
descriptor space commonly ranges from few tens to few
thousands [15–17]. Most commonly, atomic descriptors
encode the local geometry on neighboring atoms using
the distances and/or angles between atoms [11, 15, 18],
spectral analysis of local atomic environments [15, 18]
or a tensorial description of atomic coordinates [19, 20].
A systematic basis that preserves the symmetry of the
potential energy function with respect to rotations and
permutations can also be developed by writing the to-
tal energy as a sum of atomic body-ordered terms giving
atomic body-ordered permutation-invariant polynomials
[21, 22]. Some innovative descriptors, e.g., proposed by
Mallat et al. [23, 24], are based on the scaling wavelets
transformation. Quantum mechanics informed descrip-
tors can be built on physical observables, such as Mul-
liken charges [25] or partial histograms of electronic den-
sity of states [26]. The similarity distance descriptors are
based on the distances between pairs of atomic environ-
ments, e.g., smooth overlap of atomic positions (SOAP)
[15] or graph version [27, 28] defined through a functional
representation of atomic positions. The atomic cluster
expansion (ACE) can be used in order to build a com-
plete basis of invariant polynomials [29, 30] by combina-
tion of radial and spherical harmonic functions. In some
cases, the framework of deep learning neural networks
(NN) with a special design can be used to construct a
pertinent descriptor of the system [31–34].

The fitting of ML potentials is performed in descriptor
space and the (statistical) ML procedure of the fit de-
fines the performance and limitations of the potential.
The relationship between atomic energies and compo-
nents of the descriptors can be linear [35–41] or non-
linear [11, 41–53]. The linear model does not imply a lin-
ear relation between the phase space and the observable.
Any non-linear regression becomes linear if the domain of

the function is projected into a space with a sufficiently
large number of dimensions [54, 55]. Non-linear models
are most commonly based on NN [11, 41–44] or kernel
methods [46–53]. Using a linear kernel is equivalent to
performing a linear regression while a polynomial kernel
is equivalent to linear regression with a basis set formed
from outer products of the elements of the feature vec-
tors [56]. Some of the kernel models are formalized in
the ever-growing field of the statistical on-the-fly learn-
ing methods [51, 53, 57], while the others are built in
the form of potentials such as Gaussian approximation
potentials (GAP) [18, 58]. The GAP is the widely used
version of kernel potentials. Generally speaking, highly
non-linear methods are suitable to interpolate multivari-
ate functions while in the extrapolation regime they tend
to give poor performance [54, 55]. One can partially over-
come this inconvenience with the help of well-chosen reg-
ularization, constant augmentation of the database or by
using on-the-fly active learning techniques [53, 57, 59] in
order to constantly increase the boundaries of interpo-
lation regime. Alternatively to ML force fields, many
other ML approaches and surrogate models are designed
to characterize defects in crystalline materials [14, 60–64].

In this work we aim to design ML force fields that
are suitable for modeling radiation-induced defects in
Fe and W and allow performing large-scale calculations.
The energy landscape of defects in bcc Fe and W is
extremely complex [65–73] and its accurate description
at the atomic scale requires using appropriate force-field
models that provide a correct description of atomic sys-
tems beyond the equilibrium conditions. The new poten-
tials should have higher accuracy than traditional poten-
tials for the essential properties of defects and, in addition
to that, correctly reproduce the peculiar behavior of some
small defects known from ab initio calculations, such as
negative binding energy of the di-vacancies in W [74–80],
the distinct energy landscape of C15 interstitial clusters
in Fe [68, 72, 81–83], dislocation core structures as well
as the shape and the magnitude of the Peierls barrier
[84–87]. In addition to the improved accuracy, the de-
veloped ML potentials should be reasonably fast in order
to enable large-scale calculations of defects. Therefore,
we focus on linear ML (LML) models and its non-linear
variants that are strongly preconditioned by the linear fit.
Although these methods are not as accurate as non-linear
kernel or NN methods for interpolation of the database,
linear models have interesting advantages related to their
robust behavior outside the fitting domain and compu-
tational cost that allows large-scale modeling.

The paper is organized as follows. The next Section
II describes the methods used in this work, including
the description of the density functional theory (DFT)
database calculations (Sec. II A) and the statistical ML
approaches used to fit the force fields and the details
on the representation of the databases in the descriptor
space (Sec. II B). Then, the Sec. III summarizes the
main results of modeling formation energies and stabil-
ity (Sec. III A) as well as the migration barriers (Sec.
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III B) of small SIA and vacancy clusters in bcc Fe and
W. In Section IV we further test the developed ML po-
tentials for three challenging cases where the accuracy
of the existing empirical potentials is not sufficient to
provide reliable results and the computational cost of
ab initio calculations does not allow for direct atomistic
calculations. In Section IV A we investigate the 1

2 〈111〉
screw dislocation in Fe and W and compute its Peierls
barrier and kink-pair formation energy employing direct
atomistic simulations. The computed formation energies
of the kink-pair are compared with those from line ten-
sion (LT) models parametrized using ab initio calcula-
tions [86–88]. Further, Sec. IV B presents the results of
direct atomistic calculations of the relative stability of
large dislocation loops and C15 clusters in Fe. Finally,
in Section IV C we present the first calculations of an-
harmonic free energy of the mono-vacancy formation in
Fe and W using accurate ML potentials. This quantity
is essential for the parametrization of large-scale calcula-
tions such as kinetic Monte-Carlo, cluster dynamics, etc.
The calculations presented in Section IV are nowadays
impossible to perform directly with ab initio as they ei-
ther require simulation boxes larger than 100 000 atoms
(Secs. IV B and IV A) or millions of force evaluations in
order to accurately converge the sampling of the thermo-
dynamic integration (Sec. IV C).

II. METHODS

A. DFT calculations of the database

The designed DFT databases for Fe and W contain
atomic environments relevant for the physics of defects in
materials under irradiation. For both materials, we take
into account configurations of the perfect and distorted
bcc structures; point, linear and extended defects, such
as self-interstitial atoms (SIAs), vacancies, free surfaces,
γ-surfaces, dislocations; and the liquid state. For most
of atomic systems, we compute energies, forces and the
virial stress. The full content of the databases and total
number of observables to fit are detailed in Appendix A
and Table V.

The databases are calculated with vasp [89] using pro-
jector augmented wave (PAW) pseudopotentials that ac-
count for 8 valence electrons [Ar]3d74s1 for Fe and 14
valence electrons [Xe4f14]5s25p66s15d5 for W. The mag-
netic state of bcc and liquid Fe is ferromagnetic at 0 K as
well as at finite temperature. The exchange-correlation
energy is evaluated using the Perdew-Burke-Ernzerhof
(PBE) parametrization of the generalized gradient ap-
proximation (GGA). The plane wave energy cutoff is set
to 500 eV and the Hermite-Gaussian broadening-width
for Brillouin zone integration is 0.1 eV. The k-point grid
of the Brillouin zone was chosen such that each configu-
ration in the database has a similar density of k-points
and corresponds to that of the cubic unit cells of Fe
with a0= 2.8327 Å and W with a0 = 3.1854 Å with

Monkhorst-Pack (MP) 20 × 20× 20 grid. The databases
contain information from three types of DFT calcula-
tions: (i) structural optimization at 0 K; (ii) minimum
energy pathways at 0 K; and (iii) finite temperature MD
calculations. The 0 K minimization is performed using
conjugate gradients until the maximum magnitude of the
atomic forces becomes lower than 0.01 eV/Å. The mini-
mum energy pathway (MEP) calculations are performed
using the climbing image version of Nudge Elastic Band
(NEB) method [90–92] with 7-9 images and the same
criterion on the maximum force as above. The MD-DFT
simulations sample finite temperature trajectories of bcc
(perfect bulk or perfect bulk with few defects) and the
liquid state. High temperature MD-DFT simulations are
used to sample the Maxwell-Boltzmann distribution of
positions at a given temperature. Including these calcu-
lations to the database are compulsory in order to have
reliable vibrational properties for α-Fe [40, 93, 94]. The
MD-DFT calculations are performed in the NV T ensem-
ble. The time step of MD integration is set to 1.0 fs. The
shape of the simulation boxes used for MD is cubic and
is fixed to 4a0 × 4a0 × 4a0. The value of a0 is set to 0 K
lattice parameter from DFT calculations or (when it is
specified in Table V) to the experimental lattice param-
eter, at the corresponding temperature, re-scaled with
the ratio between the very low temperature experimen-
tal and DFT values. The chosen temperatures are 300 K
and 800 K for Fe and 300 K, 1 000 K and 3 000 K for W.

B. ML force fields using linear and quadratic noise
regression in the descriptor space

The foundation of any empirical potential concept
states a correlation between the local atomic environment
(LAE) and local atomic energy. Here, we use the local
energy term as the energy accounted for from the atoms
located in the neighborhood / LAE of a central atom
within a cutoff distance Rc. The link between the total
energy and the local atomic energy was established in the
early days of atomistic materials science. For metals, the
tight binding approximation [95–97] has formalised the
basis of this relation. According to this formalism, the
total energy Es of the system s containing Ns atoms can
be written as a sum of local energies εa of the ath atom:

Es =

Ns∑
a=1

εa. (1)

It should be noted that the above form of the total en-
ergy is a crude approximation for systems where the elec-
tronic correlations are important or in the case where
the charge screening is not very effective (, insulators)
and the charge interaction between ions is not negligi-
ble. Such systems require more sophisticated formalism
[98], e.g., taking separately into account long-range in-
teractions beyond Rc, which is beyond the scope of this
study.
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1. Linear ML formalism

The present-day ML potentials propose a direct mul-
tivariate regression, in the descriptor space, between the
LAE and the atomic energy. This linear proportional-
ity was originally proposed by Thompson et al. [35] and
used in many other studies [19, 20, 23, 24, 37–40, 99].
In the linear ML model, the target ab initio total energy
EsDFT can be approached by the linear-ML energy EsLML

through the linear local contributions ε
(1)
a [23, 35, 40]:

ε(1)a = β0 +

K∑
k=1

βkD
s,a
k

EsLML =

(
Ns,

Ns∑
a=1

Ds,a

)
·


β0
β1
...
βK

 ,

where Ds,a = (Ds,a
1 , . . . , Ds,a

K ) is the descriptor
vector with K components of the ath atom and
(β0, β1, . . . , βK)T are the parameters of the fit (β0 is the
constant energy contribution). The total energy descrip-
tor for the system s becomes Ds

E = (Ns,
∑
a Ds,a) vector

in the R1×(K+1) space. The energy of the corresponding
system is obtained by a linear regression using the K+ 1
parameters mentioned above. The atomic forces and the
virial stress are obtained from the derivatives, with re-
spect to the coordinates, of the energy, Eq. 2 (more
details about derivatives are given in Ref. [40]).

2. Quadratic noise ML formalism

In order to keep the advantages of the linear interpo-
lation that can behave wrong outside their fitting range,
we put a precondition on the quadratic regime imposed
by the linear interpolations. Here we propose to fit in
quadratic regime only the deviation of the LML values
from DFT. The reference DFT energy of the system s
can be written:

EsDFT = EsLML + ∆E ' EsLML + EsQNML , (2)

with the last term EsQNML having a quadratic form in
the descriptors elements, which will be called hereafter
as quadratic noise ML (QNML):

EsQNML =

Ns∑
a=1

ε(2)a =

Ns∑
a=1

K∑
k=1

K∑
k′=1

αkk′D
s,a
k Ds,a

k′ , (3)

and the local atomic energy can be written:

εa = ε(1)a + ε(2)a (4)

ε(2)a =

K∑
k=1

K∑
k′=1

αkk′D
s,a
k Ds,a

k′ . (5)

FIG. 1: Histogram distribution of the DFT data for
energy (in eV), force (in eV/Å), and error noise
deviation of LML and QNML force fields on W

database. The absolute DFT energy is presented using
re-scaled form

(
E − E

)
/σ where E is the average

energy of the database and σ is the standard deviation.
The error distribution for energy and force has

Gaussian shape. The distribution is narrower for
QNML force field.

The above QNML development has a well-defined pre-
conditioning, imposed by the linear fitting, i.e., the pa-
rameters α are determined after the parameters β of lin-
ear fit are fixed. The solution is given by the least-square
estimate of the α parameters α = (ΦTΦ)−1ΦTyQNML.

Φ ∈ RM×K2

, Φs,kk′ =
∑Ns

a=1D
s,a
k Ds,a

k′ where s is an
order number for the system s between the 1st and
Mth system of the training dataset. yQNML is a column
vector ∈ RM×1, which contains the differences between
the DFT and LML values of the total energies. As stated
above, the quadratic fit in the (K + 1) dimensional de-
scriptor space becomes a linear fit in higher dimensional

descriptor space R1×(1+K+K2) for which the energy
descriptor is Ds

E = (Ns,
∑
a Ds,a,

∑
a Ds,a ⊗Ds,a).

Similar to the linear case [36, 40, 45], the forces
and virial stress can be included in the quadratic
formalism. The force acting on atom b is computed
from the total ML energy, Eq. 2. For example, in
QNML case, the descriptor associated with the force

acting on atom b in the direction α becomes: Ds,bα
F =

− (0,
∑
a∇bαDs,a,

∑
a(∇bαDs,a ⊗Ds,a + Ds,a ⊗∇bαDs,a)).

The above force descriptors lie in the same R1×(1+K+K2)

space and require non-trivial evaluation of derivatives
of each atomic descriptor with respect to all atomic
Cartesian coordinates. In practical implementation,
the descriptor functions have a finite cutoff radius and
thus, the sum over N atoms is replaced by the sum of
the neighbors of the bth atom within the cutoff. The
techniques for regularization or weighted fit useful for
the linear case [40] can be also employed in the case of
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QNML.
We emphasize that the proposed QNML formalism is

different from quadratic SNAP (qSNAP) [45]. While qS-
NAP potentials are fitted as a polynomial of second de-
gree with explicit linear and quadratic form, in QNML
only the error of linear fit (LML) is treated as a quadratic
form of atomic descriptors. Moreover, QNML procedure
is inspired by the nearly Gaussian shape of error distribu-
tion of the linear fit. As showed in Figure 1, the distribu-
tion of noise EsDFT−EsLML is close to uni-modal Gaussian,
while absolute DFT energies in our database exhibit a
bi-modal shape. Such distribution of DFT data, without
any treatment, can lead to overfitting or highly heteroge-
neous parametrization. This error of the LML fit is the
target of the QNML formalism. In order to avoid the
inherent overfit that is associated to non-linear approach
appropriate regularization (e.g., L2 ridge, Bayesian etc.)
techniques can be applied [54, 55, 100].

Using the QNML procedure implies a significant in-
crease in the number of parameters (which becomes in
the order of K2) compared to the linear case. For the de-
scriptors with large dimensions, such as MTP or SOAP
(with K higher than 103), this approach is not practi-
cal: an important numerical effort should be made in
the fitting procedure in order to perform regularization
of parameters and to handle the design matrix, which
will require a huge amount of memory. For such large-
dimensional descriptors, the linear or kernel formalism
are much better adapted as the range of the design ma-
trix and the number of parameters are order of K or
M , respectively. The suggested QNML approach is well
adapted for compact descriptors with D < 100 compo-
nents, such as angular Fourier series (AFS), bispectrum
SO(4) [15], hybrid descriptors [40], or quantum mechan-
ics informed descriptors [25].

3. Fitting of the potentials

In this study, Fe ML potentials are trained on 761 and
tested on 300 DFT structures, providing, respectively,
111 683 and 41 496 observables with energy, forces, and
stress (nE+nF+nS). In case of W, ML potentials are
trained on 2 132 and tested on 607 DFT structures, pro-
viding 131 057 and 22 543 observables, respectively. More
details on the database content and the observables in
each structural class of the database are provided in Ap-
pendix A and Table V. The setup of DFT calculations is
described in Sec. II A.

The database is represented using bispectrum SO(4)
descriptor with the angular moment j = 4, leading to
K = 55 components. The cutoff function is the same as
in the implementation from Ref. [40]. The cutoff distance
Rc is set to 4.7 Å and 5.3 Å for Fe and W, respectively.

The fit is performed using Moore-Penrose pseudoin-
version of the design matrix [101]. In order to estab-
lish a hierarchy in the importance of the target observ-
ables, a weighted fit is performed. Accounting for the

TABLE I: Elastic properties of bcc Fe and W provided by
the developed LML and QNML potentials and their

comparison with the reference DFT values, obtained from
DB class 2 in Table V. The bcc lattice parameter a0 and the

elastic constants are reported in Å and GPa, respectively.
MAEs of LML and QNML denote the corresponding fitting

mean squared error for the energy per atom (MAEE , in
meV), forces (MAEF , in meV/Å) and stress (MAES , in

meV/Å3). MAE listed for DFT correspond to the estimated
accuracy of the given exchange-correlation functional, due to
the mismatch in k-point meshing, Fourier grid, etc. between

the simulation cells of different size.

Fe W
LML QNML DFT LML QNML DFT

a0 2.8325 2.8327 2.8327 3.1855 3.1854 3.1854
B 194.9 193.8 193.6 303.2 304.1 304.5
C11 287.7 293.6 292.3 509.8 516.7 516.6
C12 148.5 144.0 144.3 200.0 197.8 198.5
C44 120.5 102.3 102.1 144.5 137.2 140.2
MAEE 33 10 3 5 3 3
MAEF 70 33 5 95 50 5
MAES 25 19 4 10 10 4

weights (that are the diagonal elements of the diago-
nal matrix W), the objective function can be written as

J(α) =
∥∥W1/2(y −Φα)

∥∥2 and the solution of the poten-
tial parameters is taken accordingly [40]. The magnitude
of weight associated with a subset of the database (indi-
cated as DB class in Table V) controls the accuracy of
the fit for that particular property [40]. For some compo-
nents of the database, the weights are fixed a large value
(e.g., lattice parameter and elastic constants), while oth-
ers are optimized, using a genetic algorithm, through an
objective loss function that includes the MAEs for en-
ergy, forces and stress. This optimization should avoid
the risk of over-fitting as it is described in [40]. The so-
lution is regularized using L2 Tikhonov procedure, i.e.,
J(α)reg = J(α)+λ ‖α‖2 employing a unique regulariza-
tion constant of λ = 10−6 for energy, force, and stress.
This value was found using a grid search in the range
from 10−8 to 102.

We note that in the framework of present ML po-
tentials short-range interactions are learned by includ-
ing various configurations of self-interstitial defects and
strongly deformed and compressed bulk structures (see
Appendix A and Table V) and no additional potentials
for very short-range interactions are included into the
model. In order to ensure robust performance of the po-
tentials for modeling displacement cascades or Frenkel
pair accumulation, it is recommended to couple the ML
potentials with a short-range interaction model.

The comparison of computed lattice parameters and
elastic constants with the reference DFT values is pro-
vided in Table I. Compared to LML potentials, QNML
systematically provides the values closer to DFT. Overall,
the LML and QNML fit provides reasonably low values
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for the mean average error (MAE) of energy per atom,
force and virial stress (see Table I). The QNML poten-
tials have MAEs that are 30-50% lower than those from
LML fit. To the best of our knowledge, there are no tra-
ditional potentials able to reach such low values of MAE.
However, the parameter-free ML kernel formalism, e.g.,
GAP potentials, can outperform this accuracy of fit being
up to five times lower in MAE than LML.

The present LML and QNML potentials are developed
using Machine Learning Dynamic (milady) package [40].
The potentials together with the lammps-milady mod-
ule necessary to perform the simulations in lammps [102]
are available at GitHub repository [103].

III. RESULTS

In bcc metals, and in particular in Fe and W, the de-
fect energy landscape is very complex [70, 73]. Both
metals accommodate a rich morphology of defects with
size-dependent stability and mobility. This section firstly
profiles the performance of the developed ML potentials
for computing small defect clusters with interstitial and
vacancy character. The 0 K formation and migration en-
ergies of small defects are reported in Secs. III A and
III B, respectively. Further, the performance of the ML
force fields is examined for some very challenging cases.
We test the ML potentials ability to perform large-scale
calculations, far beyond the limits in length scale and
time scale of DFT calculations, in order to study the
kink-pair formation energy (Sec. IV A), size-dependent
stability of C15 clusters in Fe (Sec. IV B), and the anhar-
monic free energy landscape of bulk and mono-vacancies
(Sec. IV C) in bcc Fe and W.

A. Formation energies and relative stability of
small defect clusters

This section summarizes the performance of the fitted
ML potentials to compute the formation energies and rel-
ative stability of small vacancy and self-interstitial defect
clusters in bcc Fe and W.

1. Vacancy clusters

The energy landscape of small defect clusters in Fe and
W significantly differs from each other. The binding en-
ergy of Vn vacancy clusters is always positive in Fe, while
di-, tri- and quadri-vacancy clusters in W can have a neg-
ative binding energy. In this work, the formation energies
of vacancy clusters Vn calculated with LML/QNML po-
tentials are close, within ±0.15 eV in both cases, to the
DFT values. Such good performance of the fitted ML po-
tentials results from the carefully constructed database in
combination with the low values of MAEs (Table I) that

ensure the accuracy of potentials with respect to the data
included in the fit.

The di-vacancy in tungsten, a bcc metal of the VI B
group, has an unusual energy landscape [77]. According
to the ab initio calculations, the first nearest neighbor
(1NN) di-vacancies in W can be slightly repulsive or at-
tractive, depending on the approximation used for the
DFT exchange-correlation functional, while the second
nearest neighbor (2NN) configuration is strongly repul-
sive [77, 78]. The same tendency is observed for all el-
ements in the VI B group. The classical mechanism of
void formation implies firstly the formation of small va-
cancy clusters like V2. The unstable character of 2NN
vacancies in W might imply the revision of the void for-
mation mechanism in this material. Vacancy clusters are
evidenced in the low temperature limit by direct observa-
tions using transmission electronic microscopy [104, 105].
Those clusters form by precipitation of vacancies during
quenching and subsequent annealing during the experi-
ments. Thus, an interatomic potential that accurately
predicts the stability of V2 clusters in various configura-
tions is necessary to clarify the mechanism of void forma-
tion in W. The computed binding energies of 1NN and
2NN di-vacancies in W are negative for all ML potentials
developed until now, including LML, QNML or GAP,
in accordance with the predictions of the DFT calcula-
tions [77, 78]. It is worth mentioning that there are no
EAM potentials, except [79], which are able to reproduce
such behavior. In this work, information about the re-
pulsive character of V2 is directly included in the fitting
database. For this particular problem of vacancy clus-
ters in W, we have tested the ability of ML potentials
to accurately compute the clusters of up to 10 vacancies.
The tested Vn, n ≤ 10 clusters are similar to the con-
figurations presented in Mason et al. [79]. The results
in Fig. 2a demonstrate that the formation energies pre-
dicted by all tested ML potentials correlate very well with
the present DFT GGA-PBE calculations. The poten-
tials GAP14 [94] and GAP19[106] slightly deviate from
the perfect correlation. The predictions from LML and
QNML potentials fall between the results of the two GAP
potentials. The ML potentials studied here are designed
employing databases (Tab. V) that contain information
about the structural geometry of vacancies, namely, min-
imum energy configurations of V1,2,3 and short molecular
dynamics trajectories around those minima, as well as
larger V8−16 clusters and free surfaces with various ori-
entations.

The analysis of the binding energy of vacancy clusters
in W shows that all the ML potentials follow the trend
given by DFT (Fig. 2a). The main differences are im-
posed by the value of the formation energy of the V1,
which is 3.16 eV for LML, 3.19 eV for QNML and 3.24
eV for DFT. It worth noting also the differences between
the ML potentials and the DFT reference (Fig. 2b) are
close to those between the DFT calculations that use
the same exchange-correlation functional and k-points
sampling but employ different pseudopotentials (DFT-
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FIG. 2: Formation energies of vacancy clusters Vn (from
n =1 to 10 vacancies) in bcc W computed with LML,

QNML, GAP14 [94], GAP19 [106] potentials compared
with the DFT GGA-PBE values from this work. (a)

Correlation between the formation energies computed
with ML potentials and with DFT. The dashed black

line indicates a perfect correlation. (b) Binding energies
of the vacancy clusters Enb = Enf − n× E1

f , where Enfor
and E1

f are the formation energies of a cluster with n
defects and of a single defect, respectively. A negative

value of the binding energy implies energetic instability
and dissociation of the defect cluster. DFT-SC and

DFT-noSC correspond to the DFT calculations using
the pseudopotentials with and without semi-core states,

respectively.

SC and DFT-noSC in Fig. 2b with and without semi-
cores states, respectively).

2. Interstitial clusters

As in the case of vacancies, the characteristics of
SIA clusters in Fe and W differ considerably from each
other. For single SIAs, resistivity recovery experiments
[69, 107], DFT calculations [66, 71, 108–110], EAM
[72, 77, 81, 110–113], ML-GAP [93, 94] and the present
ML potentials consistently indicate that the I1 dumb-
bells with 〈110〉 orientation in Fe and 〈111〉 orientation
in W are the most stable. In W, the energy landscape of
SIAs predicted by DFT calculations or accurate physics-
informed models, such as the discrete-continuum model
(DC) [71], suggests that variants of 1

2 〈111〉 dislocation
loops [67, 114] are the lowest energy configurations at
all sizes. Similar results are provided by the present
LML/QNML potentials, as well as by the other ML po-
tentials investigated here and, with few exceptions, by
the EAM potentials (for more details see Ref. [71]).

The energy landscape of SIA clusters in Fe is more
complex [71, 110, 111] than that in W. With increasing

TABLE II: Formation energy of SIA in Fe, In clusters
(from n =1, 2 and 5). LE stands for the lowest energy

interstitial defects. The value in parenthesis is the relative
energy with respect to corresponding formation energy of

the I
〈110〉
n . ∆I

〈111〉
n and ∆I

〈C15〉
n columns give the difference

between the formation energy of I
〈110〉
n and the formation

energy of the 〈111〉 and C15 clusters, respectively. When a
reference work is not specified, the DFT values are provided

by the present calculations.

Fe mono-interstitial, I1 (eV)

LE ∆I
〈111〉
1

AM04[115] 〈110〉 0.49
MA07[81, 83] 〈110〉 0.72
GAP18[93] 〈110〉 0.82
LML 〈110〉 0.69
QNML 〈110〉 0.72
DFT 〈110〉 0.74

Fe di-interstitial, I2 (eV)

LE I
〈111〉
2 IC15

2

AM04[115] 〈110〉 0.68 1.34
MA07[81, 83] 〈110〉 1.15 0.35
GAP18[93] 〈110〉 1.57 1.98
LML Gao (-0.03) 1.05 0.64
QNML Gao (-0.18) 1.12 0.62
DFT Gao (-0.13) 1.21 0.64

Fe quadri-interstitial, I4 (eV)

LE I
〈111〉
4 IC15

4

AM04[115] C15 0.51 -1.51
MA07[81, 83] C15 0.63 -3.70
GAP18[93] C15 1.23 -0.90
LML C15 0.92 -3.42
QNML C15 1.07 -2.45
DFT C15 0.83 -2.49

size, SIA clusters in Fe change their relative stability.
For the traditional 2D loops with more than 4 SIAs, the
DFT studies reveal that 〈111〉 clusters become more sta-
ble than 〈110〉 family [69, 71, 110]. The present LML /
QNML potentials predict the same crossover as DFT be-
tween the two families of loops. The ML GAP18 poten-
tial [93] gives slightly overestimated formation energies
with respect to the same DFT calculations. Overall, for
the small 2D loops, GAP18 [93] provides results very sim-
ilar to those from the MA07 EAM potential [81, 83] and
predicts the transition between the 〈111〉 and 〈110〉 loops
after accumulation of 5 SIAs, which is slightly larger than
the cluster sizes obtained by DFT and AM04 EAM po-
tential [115].

DFT calculations (Tab.II) predict that the lowest I2
configuration in Fe is the so-called triangle or Gao config-
uration IGao2 [116]. These clusters are known to be immo-
bile [82]. Moreover, IGao2 represents an elementary build-
ing brick for complex 3D SIA clusters with C15 structure
[72, 83]. Until now, there are no empirical potentials that
are able to predict the Gao configuration as SIAs with
the lowest energy. The LML and QNML potentials de-
veloped here predict the correct relative stability of IGao2
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clusters (Tab. II).
Formation of 3D interstitial clusters with the C15

structure is specific to bcc Fe [70, 71, 83, 117]. The fitted
ML potentials accurately reproduce the relative stability
of the 3D C15 clusters and 2D dislocation loops predicted
by DFT [71, 83, 117] (Tab. II). The C15 are the most
stable configurations of the In clusters with n > 3 SIAs.
The fitted ML potentials predict that the C15 energy
relative to the parallel cluster, for 2 and 4 SIAs, is close
to the DFT counterpart, which ensures that the charac-
teristics of the formation and the concentration of C15
clusters are similar to those found with DFT. For IC15

2

clusters, the GAP18 potential [93] predicts formation en-
ergies that are much higher than those of dumbbell con-
figurations. The predicted formation energy of IC15

2 is
about 2.0 eV higher than that of 〈110〉 dumbbells, yield-
ing an impossible formation of C15 in Fe. Moreover,
for larger clusters, GAP18 [93] predicts less stable C15
clusters. These results are not consistent with the DFT
calculations [72, 83]. The EAM AM04 potential poorly
reproduces the energy landscape of C15, while MA07, is
much closer to the DFT results [72, 112, 118]. In contrast
to the 2D loops, the tested GAP18 potential [93] exhibits
a limited transferability for the C15 clusters and provides
results close to those from AM04. It is interesting to note
that, at variance with the present LML and QNML po-
tentials, both traditional and ML GAP interactions are
not designed for C15 clusters (i.e., the C15 clusters are
not explicitly included in the potential databases). How-
ever, the fitting databases of both potentials contained
the Gao di-interstitial configuration IGao2 [72]. A detailed
analysis based on outlier detection and distortion score
shows that the components related to C15 clusters are
missing in the ML GAP database [14]. As a possible so-
lution to improve the performance of the GAP potential
for C15 clusters, one may consider including 3D cluster
structures into the training databases in order to enrich
the variety of atomic environments known by the model.
In Section IV B, we will further test the performance of
the LML and QNML potentials to predict size-dependent
relative stability of large C15 clusters and 2D dislocation
loops in Fe.

B. Migration energies of small defect clusters

In this section we outline the performance of the fitted
ML potentials to compute the migration barriers of small
vacancy V1−3 and self-interstitial I1−3 clusters .

1. Vacancy clusters

The migration energy barriers of mono-vacancies V1
in Fe computed using the new LML/QNML potentials
and previously developed GAP18 potential [93] are re-
markably accurate compared to those provided by exist-
ing EAM potentials (Table III). Moreover, the shape of

TABLE III: The migration barriers, ∆Em (in eV), of the
mechanisms with lowest DFT barriers for the small SIAs
(I1−3) and vacancy clusters (V1−3). The barriers marked

with ? have a double hump shape.

Fe self-interstitials ∆Em (eV)
I1 I2 I3

AM04[115] 0.30 0.33 0.32
MA07[81, 83] 0.27 0.32 0.34
GAP18[93] 0.32 0.37 0.31
LML 0.35 0.35 0.49
QNML 0.33 0.42 0.37
DFT [81] 0.34 0.43 0.43

Fe Vacancy ∆Em (eV)
V1 V2 V3

AM04[115] 0.64? 0.71 0.55
MA07[81, 83] 0.68 0.71 0.43
GAP18[93] 0.67 0.54 0.14
LML 0.67 0.65 0.33
QNML 0.68 0.69 0.33
DFT [81] 0.67 0.62 0.35

W Vacancy ∆Em (eV)
V1 V2 V3

MN17[79] 1.52 1.63 1.79
GAP14[94] 1.77? 1.75 0.70?

GAP19[106] 1.73 1.42 0.69?

LML 1.82 1.74 1.31
QNML 1.83 1.77 1.13
DFT[79] 1.76 1.83 1.15
DFT[80] 1.68

the mono-vacancy barrier computed with the ML poten-
tials exhibits a clear single saddle point, which is not the
case for the EAM potentials that have ‘double humped’
migration profiles. Such a shape occurs because the
jumping atom migrates along the 〈111〉 direction through
the center of two equilateral triangles (at 1

3a0〈111〉 and
2
3a0〈111〉) lying in (111) plane. The traditional force
fields, such as EAM, do not favor this symmetric tri-
angle geometry, whilst the ML potentials are able to fit
correctly these subtle structures. Similar effects are ob-
served for the migration of the mono-vacancy in W.

For migration of di-vacancy clusters V2, the ML poten-
tials also predict single saddle-point curves. The energy
barriers computed for V2 both with ML potential and tra-
ditional potentials compare well with the DFT calcula-
tions. The remarkable agreement between LML/QNML
and DFT calculations are reported in Tab. III.

In order to examine the transferability of fitted ML po-
tentials we test their ability to compute migration barri-
ers that are not included in the training database, such
as migration of tri-vacancies V3 in Fe and W. A big error
in these migration barriers will have a strong impact on
the predictions of defect kinetics under irradiation and
interpretation of processes during resistivity recovery ex-
periments. The experimental stage IV of the vacancy in
Fe and W will be strongly impacted by the fast diffusion
of the vacancy clusters Vn with n > 2 [69, 107], which
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FIG. 3: Migration barriers of tri-vacancy clusters V3 in (a) bcc Fe and (b) bcc W. The comparison is made between
the LML and QNML potentials, GAP [93, 94, 106] and some commonly used EAM potentials for Fe [81, 83, 115]

and W [79, 83]. The gray dotted lines labeled with V1−3 refer to the energy barriers for migration of mono-, di- and
tri-vacancies from DFT calculations in Fe[81] and W [79]. The saddle point structure in the inset plot of (a) is
detected using the distortion score of local atomic environments [14]. The atoms are colored according to the

magnitude of the distortion score (yellow - high, green - medium, blue - low).

will affect the predictions of the size and the density of
vacancy clusters above 300 K.

The saddle point of 1.15 eV for V3 migration in W,
as it was previously mentioned in Mason et al. [79],
is very low compared to the migration barrier of V1,2,
around 1.7 eV. For tri-vacancies V3, LML and QNML
have rather good transferability and provide correct mi-
gration barriers (Fig. 3), both in terms of energy and
single saddle-point shape, whilst for the GAP class po-
tentials, the error reaches up to 60% with the barrier
having a nonphysical shape (Fig. 3). In this case, the
highly non-linear character of GAP formalism yields a
poor transferability. The results reported in Fig. 3 and
Table III demonstrate that the performance of some of
the EAM potentials for W and Fe is comparable with that
of GAP potentials in the extrapolation regime. In order
to improve the performance of GAP potentials in such
cases, it is essential to enrich the training database and
to include the saddle point configurations of V3 migra-
tion in the training data set. The missing configurations
can be revealed at the stage of the database design us-
ing the distortion scores based on outlier analysis of the
database. This method was recently demonstrated to be
very efficient for a similar problem with GAP potential
for Fe [14].

2. Interstitial clusters

The migration of SIAs in W occurs along the 〈111〉
direction and the order of magnitude of this migration
barrier is tens of meV [67, 114, 119–122]. Such low migra-

tion barriers do not play a critical role in the simulation
of SIAs, except at cryogenic temperatures [123, 124]. In
the high temperature limit, the movement of 〈111〉 loops
is dominated by stochastic motion along the axis of the
surrounding cylinder glide [66, 120]. These characteris-
tics are well reproduced both by the present and existing
interatomic potentials for W.

In bcc Fe, the dumbbells can migrate from their ini-
tial position to the next site via several different jump
mechanisms [69, 109, 125]. The lowest migration barri-
ers for I1,2,3 in Fe correspond to Johnson’s mechanism
of nearest-neighbor translation-rotation [69, 110, 125].
The computed migration barriers for this mechanism are
reported in Table III and compared with other inter-
atomic potentials. Among the potentials compared, the
LML/QNML and GAP potentials perform better than
any EAM potential and predict energy barriers within
10% of the DFT values. The QNML potential performs
slightly better that the LML and GAP18 [93] for I2 and
I3 clusters. The good performance of LML/QNML for
the migration of small clusters in Fe results from the
thoughtful design of the training database, where we have
explicitly introduced the saddle point configuration for I1
migration. In case of the GAP18 [93], the exact trajecto-
ries of the jump mechanisms are not explicitly included
into the training database and the good performance of
the potential was ensured by including a rich variety of
single SIA atomic environments.
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FIG. 4: Peierls barriers of the 1
2 〈111〉 screw dislocation gliding in the {110} plane (a) in Fe and (b) in W. The

comparison is made between the LML potentials, DFT calculations [86, 87], GAP [93, 94, 106] and some commonly
used EAM potentials for Fe [115, 126] and W [83]. The higher Peierls barrier in bcc Fe predicted by GAP18 [93]

results from different DFT calculations in the training database of the potential.

The dislocation core structures in the inset plot are detected using the distortion score of local atomic environments [14]. The
color of the atoms is set according to the magnitude of the distortion score (yellow - high, green - medium, blue - low).

IV. LARGE-SCALE APPLICATIONS

In this section, we address large-scale calculations that
are challenging or impossible to perform using first princi-
ples calculations and compare them with the results from
accurate multiscale models that were previously designed
to overcome the limitations of ab initio methods. These
large length scale calculations employ systems containing
105−6 atoms. Section IV A provides the essential charac-
teristics of the screw dislocations in bcc Fe and W, such
as the formation energy of the kink-pair, obtained di-
rectly from atomistic calculations. Section IV B reports
calculations of relative stability of large C15 clusters and
dislocation loops. The large time scale calculations are
described in Section IV C, which provide the accurate
anharmonic free energy calculations of perfect bulk and
mono-vacancy that require millions of force evaluations.

A. Peierls barrier and kink-pair formation energy
of the screw dislocation

Here we present the performance of the developed
ML potentials to compute the essential properties of the
1
2 〈111〉 screw dislocation in bcc Fe and W: the core struc-
ture, the Peierls barrier, and the kink-pair formation en-
ergy. Direct DFT calculations can provide the dislocation
core structure and the Peierls barrier [84, 85], whilst the
formation energy of the kink-pair requires large simula-
tion cells with more than 100 000 atoms [87, 88]. In order
to compute the kink-pair formation enthalpy in bcc met-
als with DFT, Proville et al. [86, 88] proposed a method

based on the parametrization of one-dimensional line ten-
sion (LT) model from atomistic calculations performed in
small simulation cells. This model was applied to bcc Fe
and W [87, 88] in order to determine the kink-pair for-
mation enthalpy at different applied stresses. Our direct
calculations of the kink-pair with ML potentials will be
compared to the results of the LT models.

The developed ML potentials yield a non-degenerate
dislocation core structure, as predicted by DFT calcula-
tions [77, 84, 87, 127–129]. The structure of the disloca-
tion core is analyzed using the distortion score of local
atomic environments [14]. The dislocation cores in Fe
and W are represented in the inset of Fig. 4. The ge-
ometry of the cores together with the magnitude of the
distortion scores indicate the non-degenerated symmetry
of the core structure.

The Peierls barriers of the 1
2 〈111〉 screw dislocation in

Fe and W gliding in the {110} plane are reported in Fig.
4. In order to remain consistent with the reference DFT
calculations, the barriers are calculated in systems con-
taining 135 atoms with a quadripolar periodic array of
dislocation dipoles, similar to that used in Refs. [86, 87].
The two dislocations were displaced simultaneously in
the {110} plane in the same 〈112〉 direction such as their
separation distance remained constant. The minimal en-
ergy pathway is computed using the NEB implementa-
tion available in lammps [91, 102]. All the Peierls bar-
riers from our ML potentials have a single-humped pro-
file, in agreement with DFT results [86, 87]. This shape
of the barriers is also predicted by the GAP potentials
[93, 94, 106]. In bcc W, the magnitude of the Peierls
barrier predicted by LML and QNML is very close to the
reference DFT values (Fig. 4b). In bcc Fe, LML exhibits
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a slightly underestimated barrier compared to QNML po-
tential. The higher Peierls barrier in bcc Fe predicted by
the GAP18 potential [93] results from different DFT cal-
culations that were used to train the potential and is not
related to the kernel formalism of the potential. The ML
algorithm that underlays the GAP potential, Gaussian
Process regression, is non-parametric and can integrate
all the information provided by the projection of database
into the descriptor space RD.

As it was previously pointed out in Ref. [14] based on
the distortion score analysis, the screw dislocation struc-
ture, including the core and saddle point configurations,
can be accurately predicted by any kernel method that is
fitted on a training database that contains the appropri-
ate stacking faults, as was done for GAP18 [93]. The dis-
agreement of the GAP19 potential for W with the present
ML and DFT calculations is related to the fact that the
database of that potential does not contain any instance
that is close, in the descriptor space, to the structure
of the saddle point of the 1

2 〈111〉 dislocation along the
glide plane. Consequently, the core of the saddle point
is an outlier with respect to the training database, which
yields poor transferability for the given structure. This
transferability issue has the same origin as the case of V3
migration, described in Section III B.

The kink-pairs are computed directly in large simula-
tion cells that contain a dipole of 1

2 〈111〉 straight screw
dislocations with and without a kink-pair on each dislo-
cation line. Half of the difference of the total energies
of the two systems gives the kink-pair formation energy.
The simulation cell is oriented such that the glide plane
is a horizontal [110] plane, the dislocation line is along
the [111] direction and the glide occurs along the [112]
axis. In order to reduce the finite-size effects [88], we

use simulation cells with the length 200b (b = a0
√

3/2)
along the dislocation line, which contain 243 000 atoms.
The relaxation is performed using conjugate gradients
until the maximum force of the system is lower than 10−3

eV/Å. The obtained values for the kink-pair energies are

EkpFe= 0.77 eV (LML) / 0.84 eV (QNML) and EkpW =
1.42 eV (LML) / 1.65 eV (QNML), for Fe and W, respec-
tively. The comparison with the experimental values is
not straightforward. The available experimental results
[130–132] are extracted from three different regimes with
various magnitudes of stress and temperature. Those ex-
perimental regimes are interpreted using elastic models
to extract the different values for the kink-pair enthalpy.
The extended ranges over the three regimes are 0.6− 0.91
eV [130, 131] and 1.3 − 2.05 eV [132] for Fe and W, re-
spectively. As in Ref.[86], here we retain as the reference
values the kink-pair formation enthalpies measured at the
lowest stresses and higher temperatures without any ad-
ditional theoretical assumption from elasticity, providing
0.91 eV and 2.05 eV for Fe and W, respectively. How-
ever, it is worth noting that the high temperature regime
can change the magnitude of the kink-pair formation en-
thalpy [133] biasing the comparison.

Further we compare the present values of the kink-

TABLE IV: Kink pair formation energies (in eV) computed
with LML and QNML potentials in comparison with line
tension (LT) models parametrized with DFT calculations

LML QNML LT-Models
Fe 0.77 0.84 0.73-0.91 [86, 88, 134]
W 1.42 1.65 1.54 [86]

pair formation energy with the 0 K values obtained from
the line tension (LT) models [88, 134] parametrized with
the ab inito calculations. In Fe, Proville et al. [88]
parametrized the LT model using localized orbital basis

as implemented in the siesta code, resulting in EkpFe =
0.86 eV. To construct the training database, in this study
we used vasp and PBE-GGA for exchange-correlation
functional and equivalent of 203 MP k-point mesh for the
cubic bcc unit cell. Itakura et al.[134], using a plane wave

basis (vasp) and different LT method, obtained EkpFe =
0.73 eV, employing the same PBE-GGA and a MP k-
point grid close to 203. Based on the same LT model
as in Ref. [88], but with different ab initio parametriza-

tion, Dezerald et al. [86] computed EkpFe = 0.91 eV and

EkpW = 1.54 eV for Fe and W, respectively. For both met-
als, the k-point grid in Ref.[86] is equivalent to 163 MP
k-points mesh. Moreover, for W there are no semi-core
electrons. Thus, in Fe, the differences between various
DFT calculations used to parametrize the LT models pro-
vide a range of 0.73 eV - 0.91 eV for the kink-pair energies
predicted theoretically (Table IV). Using GAP18 poten-
tial [93] for Fe, Maresca et al.[135] predicted a kink-pair
energy of 1.0 eV. This overestimation is likely related to
the magnitude of Peierls barrier, which is higher than all
the other DFT predictions (but in accord with the DFT
calculations on which the GAP18 potential was fitted).
According to the LT model considering a sinusoidal shape
of Peierls barrier [86, 126, 136], Ekp is proportional to the
square root of the Peierls barrier. Then, assuming that
a LT of dislocation line predicted by DFT and GAP18 is
similar, having a 40% lower Peierls barrier in agreement
with other DFT calculations (Fig. 4) would result in the
value of the kink-pair formation energy around 0.80 eV.
This value falls in the range of 0.73 − 0.91 eV predicted
by the DFT parametrized LT models [86, 88, 134].

The values of the kink-pair energy in Fe and W found
with the ML potentials developed here are within the
limits of the existing models and our results are close to
the LT model predictions [86]. These results demonstrate
that fitting the potentials with LML and QNML formal-
ism based on database with small periodic cells provides
a robust force field that can be used for larger systems
with similar atomic environments. The accuracy of ML
potentials for kink-pairs opens up many perspectives for
future studies of physics of dislocations. Another con-
vincing example of LML and QNML transferability is
presented in Secs. IV B and IV C.
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B. Relative stability of dislocation loops and C15
clusters in Fe

The traditional mechanism of point defect clustering in
bcc metals suggests that the elementary building bricks,
like SIA dumbbells and vacancies, pack together in bun-
dles, forming small 2D dislocation loops with well defined
Burgers vector. These 2D clusters gradually grow and
reach observable nanometric sizes. In bcc Fe, vacancies
can bundle in 3D voids [119] that, at sufficient large size,
collapse into dislocation loops with vacancy character.
The works of Marinica et al. [70, 71, 83, 117] demon-
strated that interstitials also can cluster into 3D objects
with a specific crystallographic structure, which subse-
quently dissociate into 2D dislocation loops after reaching
the critical size. The structure of such 3D clusters corre-
sponds to the C15 Laves phase. Using DFT and empirical
potentials, it was demonstrated [71, 83, 117] that in α−Fe
these C15 aggregates have four important characteristics:
(i) they are highly stable and (ii) they are immobile; (iii)
they exhibit large antiferromagnetic moments; and (iv)
they form directly under irradiation, in displacement cas-
cades [118] or Frenkel pair accumulations [70] and they
can grow by absorbing self-interstitials. Therefore, the
correct characterization of the crossover between the 2D
dislocation loops and 3D C15 clusters is of primary im-
portance for understanding the microstructural evolution
of iron-based materials under extreme conditions.

Investigations of the crossover between 2D and 3D de-
fects require atomistic simulations with nanometric-sizes
atomic systems. Such calculations can be performed us-
ing traditional empirical potentials, which are numeri-
cally fast but not always accurate and the crossover size
depends on the choice of empirical potential. Recently,
EAM [72] and bond order [112] potentials were developed
to address this problem. These potentials, as well as older
ones [71], provide a crossover between the C15 and 1

2 〈111〉
clusters in the range of 20 - 35 SIAs. The computational
cost of ab initio calculations prevents direct first princi-
ple investigations of C15 clusters and dislocation loops at
nanometer sizes. To overcome this problem, Alexander et
al.[71] developed a discrete-continuum (DC) model with
ab initio accuracy to predict formation energies of defect
clusters with various geometries and sizes. This combines
the discrete nature of interstitial clusters and continuum
elasticity for crystalline solid matrix. The model was ap-
plied to interstitial dislocation loops with 1

2 〈111〉 Burgers
vector, and to the C15 clusters in bcc Fe, W, and V to de-
termine their relative stability as a function of defect size.
In bcc Fe, C15 clusters in Fe smaller than 1.5 nm were
found to be more stable than dislocation loops, i.e., the
critical number of self-interstitial atoms in the 3D clusters
is in the range of 40 - 49 SIAs. The accurate parametriza-
tion of such models is difficult and requires a considerable
amount of computational resources. Alexander et al.[71]
used large-scale DFT calculations of clusters with up to
20 SIAs embedded in a matrix with more than thousand
bcc atoms.

Here, using our ML potentials for Fe, we perform
large-scale atomistic calculations in order to determine
the cross over between the formation energies of 1

2 〈111〉
loops and C15 clusters. Inserting dislocation loops and
C15 clusters from 1 to 300 SIAs in a simulation box of
50a0×50a0×50a0 (250 000 bulk atoms), we compute the
formation energy of defect clusters. Atomic relaxation is
performed until the maximum atomic force is lower than
10−3 eV/Å . Using this procedure, for the cluster sizes
smaller than 140 SIAs, the error for formation energy is
lower than 0.3 %. This error is estimated with respect
to the calculations in much larger cells containing more
than 106 atoms. The largest C15 cluster IC15

101 is com-
puted using 80a0 × 80a0 × 80a0 (1 024 101 atoms) and
50a0 × 50a0 × 50a0 (250 101 atoms) boxes, which results
in formation energies of 169.98 eV and 170.48 eV, respec-
tively. In order to explore the energy landscape of C15
clusters, we generate the defect configurations using the
selection rules described in [72]. This approach facili-
tates the construction of the lowest energy C15 clusters
with minimal effort. The results are reported in Fig. 5.
The present LML and QNML potentials for iron predict
a crossover in the range of 35 - 45 SIAs. This range is in
good agreement with the DC model [71] and provides a
considerable improvement with respect to the traditional
potentials.

Small differences in the crossover size range between
LML/QNML and DC approach [71] can be explained by
the differences in DFT pseudopotentials that were used
for the design of DC and ML databases. The DC model is
fitted using a database computed using a PAW Fe pseu-
dopotential having semi-core states, while the database
for fitting ML potentials in this work accounts for only 8
valence electrons without semi-core state. Moreover, the
plane wave energy cutoff is set to 350 eV in Ref. [71],
while in this study we use 500 eV. The MP scheme for
k-point mesh of the Brillouin zone of the cubic unit cell
is 16× 16× 16 in Ref. [72] compared to 20× 20× 20 for
the present DFT calculations. These differences in the
setup of DFT calculations impact the formation energies
of defects.

It is worth to note that our ML database for Fe con-
tains only two C15 cluster configurations: IC15

2 (one Z16
polyhedron) and IC15

4 (two joint Z16 polyhedra). More
details about the construction of the C15 clusters can
be found in Refs. [71, 72, 83]. With the employed PAW
pseudopotential, we find the lowest energy configuration
with the magnetic state having the spin of atoms cen-
tering the Z16 polyhedra anti-ferromagnetic state with
respect to the bcc matrix with magnetization 2.2 and
2.4 µB for IC15

2 and IC15
4 , respectively. In the calcula-

tions from Ref. [71], the central atom of the Z16 cage
is ferromagnetic with respect to the matrix. This has
an impact on the formation energies of those clusters:
formation energies of IC15

2 and IC15
4 from [71] are 8.03

eV and 11.23 eV, respectively. In the present paper, the
same C15 clusters have formation energies of 7.84 eV
and 11.0 eV, respectively. Those relatively small differ-
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FIG. 5: Formation energies of C15 clusters and interstitial 1
2 〈111〉 loops in bcc Fe from LML and QNML potentials

and DFT calculations. (a) The relative stability of C15 clusters and 1
2 〈111〉 loops. The shaded gray area between 35

and 45 SIAs represents the crossover size predicted by our ML potentials, the purple shaded area between 40 and 49
SIAs is the crossover predicted by the discrete-continuum model (DC) [71]. (b) Formation energies of C15 clusters.

(c) Formations energies of 1
2 〈111〉 loops. In all the subplots,the x axis correspond to the number of SIAs; open

circles and diamonds represent the energies of 1
2 〈111〉 loops and C15 clusters, respectively. The color of points is

explained in the legends in (b) and (c). The DFT-RA calculations are taken from Ref. [71] and are the calculations
used in the parametrization of the DC model.

ences in DFT formation energies of small clusters become
more important for larger clusters and exhibit a system-
atic trend. The comparison of the present LML/QNML
results with the DFT values for the clusters smaller than
20 SIAs are presented in Fig. 5b and c for dislocation
loops and C15 clusters, respectively. A similar tendency
of the present DFT formation energies being lower than
those from [71] is also observed for the dislocation loops.
Here, it is worth noting that our ML training database
includes only three configurations of 2D clusters: 1

2 〈111〉,
I
〈111〉
n with the number of SIAs n = 1, 2, 4. The DFT val-

ues of the formation energy for the corresponding loops
are 4.90, 8.63, and 14.47 eV in [71] and 4.64, 7.90, 14.07
eV in the present study.

Despite some differences in formation energies caused
by differences in the reference DFT calculations, the two
approaches, DC and present ML potentials, exhibit a re-
markable agreement for this complex case of the energy
landscape of C15 clusters. As such, the developed ML
potentials represent a real solution for exploration of the
energy landscape of C15 clusters and interstitial disloca-
tion loops in Fe.

C. Anharmonic free energy calculations of bcc
bulk and mono-vacancy in Fe and W

The thermal properties of defect populations in a ma-
terial are driven by the underlying free energy landscape
of defect formation and migration. Accurate characteri-
zation of the free energy landscape (e.g., with less than 1
meV error for small systems with few hundreds of atoms)
requires considerable numerical effort, with at least 105

force evaluations. This makes direct simulations with ab
initio methods very impractical. As such, ML poten-
tials with numerical cost between the traditional poten-
tials and DFT calculations open up many perspectives
for such calculations. In the classical regime above one-
third of the Debye temperature TD, the evaluation of
free energy using classical Boltzmann partition function
can be performed with various methods for free energy
calculations [137, 138].

Direct thermodynamic integration of the free energy
variation ∆F between an initial state Ui(q) and a final
state Uf (q), where q ∈ R3N represents a given atomic
configuration, is numerically challenging for large N giv-
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FIG. 6: The variation ∆a0(T ) of the lattice parameter
a0(T ) in bcc Fe and W at the temperature relative to
the experimental value aexp0 (0) at T = 0 K [139]. The

variation ∆a0(T ) = aML
0 (T )− aexp0 (300). We report the

interpolation of the experimental values [139] (black
lines) and the corresponding values of the present

LML/QNML potentials (green circles). The numerical
values for ML potentials are computed using the

evaluation of the minimal free energy of the bcc systems
using thermodynamic integration.

ing rise to a prohibitively large variance. Here we use al-
chemical integration [137, 140, 141] where the initial state
is well known and can be easily evaluated, e.g., Einstein
or harmonic crystal Ui(q) = UHA(q), and the final state
is the real state of the system Uf (q) = U(q). The two
states, initial and final, are linearly coupled by introduc-
ing an alchemical reaction coordinate ζ ∈ [0, 1]. The new
system has the energy Us(q, ζ) = ζU(q)+(1−ζ)UHA(q),
where ζ characterizes the free energy coupling between
the system’s harmonic state and real state. This cou-
pling makes direct sampling tractable [142–144]. From
the canonical partition function Z, one can deduce a
probability of finding the system in a given state charac-
terized by ζ, i.e., the system’s free energy in the Landau
sense, A(ζ) = −β−1 lnZ(N,V, T, ζ). The difference be-
tween the full free energy (ζ = 1) and the reference free
energy (ζ = 0) becomes:

A(1)−A(0) =

∫ 1

0

〈U(q)− Uref (q)〉dµζdζ, (6)

where A(0) is the free energy of the reference potential
Uref (q) for ζ = 0, and A(1) gives the free energy of the
system at ζ = 1 with the potential energy given by U(q).
The average of the thermodynamic integration, on the
energies difference, is made using the Boltzmann measure
dµζ associated with the alchemical potential Us(q, ζ).
Then, the difference in free energy is calculated as:

F (T, V ) = Fref (T, V ) +

∫ 1

0

〈U(q)− Uref (q)〉dµζdζ. (7)

Having derived Eq. 6 and Eq. 7, the determination of
free energy of a given system is subject to two require-
ments. Firstly, a reference system, for which free energy
can be calculated analytically, should exist. Secondly, a
reversible artificial pathway between the system of inter-
est and a reference crystal should be provided to carry out
a thermodynamic integration of the potential energy on
the right-hand-side of Eq. 7 or Eq. 6. This method is also
known as alchemical transition because a reaction coor-
dinate or coupling parameter enables a smooth transition
from a realistic potential energy of the system to a known
reference state that is easy to compute. Thermodynamic
integration can be performed using various methods, such
as perturbation methods [145, 146], adaptive biasing po-
tential [147], or adaptive biasing force [148–151] to de-
termine the free energy difference. In this work we use
adaptive biasing force method.

Here we present the evaluation of the free energy
basin of the bcc bulk minima and the minima of mono-
vacancies in bcc Fe and W. Both simulations are per-
formed at zero pressure. Assuming zero-pressure condi-
tion implies that the thermodynamic functions like Gibbs
free energy G = E+PV −TS and enthalpy H = E+PV
are replaced by Helmholtz free energy F = E − TS and
energy E of the system, respectively. The Helmholtz
free energy surface F (T, V,N), a function of number of
atoms N , volume V , and temperature T , is a central
quantity and the intensive parameters, as pressure, be-
come: P (V, T ) = −

(
∂F
∂V

)
T

. The equilibrium volume of
the system at zero pressure is evaluated from the systems
free energy around equilibrium state using the Birch-
Murnaghan (BM) [152, 153] equation of state. BM in-
terpolations with between 7 and 11 points are used. The
maximum applied isostrain is less than 0.9%. The initial
guess of the equilibrium volume is not obvious. Here, for
each temperature, the guess is taken based on the ex-
perimental value of thermal expansion rescaled by 0 K
ratio between DFT and experimental volume. Using the
initial guess from BM interpolation, a new value of the
equilibrium volume is computed. Then, several iterations
are performed until convergence is reached, i.e., when the
lattice parameter variation becomes less than 10−4 Å .

1. Thermal expansion

To compute the thermal expansion of bcc Fe and W,
their lattice parameters are calculated at various tem-
peratures. Figure 6 reports the computed thermal ex-
pansion of ML potentials in comparison with experimen-
tal values [139]. The reference cell parameter is taken
at the experimental value [139] at 300 K. For tempera-
tures lower than 300 K, the direct comparison between
experimental and theoretical values of lattice parameters
is not applicable. The present thermodynamic integra-
tion is based on classical mechanics framework within
which the contribution of quantized phonons cannot be
taken into account. Recently, in the context of physics
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FIG. 7: The anharmonic free energy of mono-vacancy
formation at zero pressure as a function of temperature

computed using LML and QNML potentials. The
dashed lines are the vibrational formation free energy

based on the values of zero pressure vacancy formation
entropy from self diffusion experiments [119] (see the

text for more details).

of defects, it was demonstrated that those discrepancies
are important below Debye temperature TD [123, 124]
even for metals with large atomic mass, like W. However,
for temperatures where the classical regime is dominant,
there is an excellent agreement between theoretical pre-
dictions and experiments. At high temperature (Fig. 6),
the predictions of QNML potential are slightly more ac-
curate than those the LML potential. As reported in
Table I, the MAE of forces within QNML formalism are
almost twice smaller compared to LML. The better ac-
curacy of atomic forces results in better performance for
free energy landscape calculations, as it was previously
attested by the free energy calculations using the mean
force [14, 133, 154]. Consequently, the vibrational free
energy obtained with QNML is closer to DFT and ex-
periments.

2. Free energy of mono-vacancy formation

The formation free energy of mono-vacancies is an im-
portant quantity for parametrization of multi-scale mod-
els like kinetic Monte Carlo, cluster dynamics, disloca-
tion dynamics, etc. Its magnitude controls the density of
vacancies, which acts as a driving force of self-diffusion
[119], vacancy flux coupling [155–158], Ostwald ripen-
ing [159], climb mechanisms [160–162], phase transfor-
mations [160], etc. Until now, in bcc metals there are
no studies that investigate the anharmonic contribution
to the formation free energy of vacancies in Fe and W.
The vast majority of multiscale models, cited above, use
the values of vibrational entropy suggested by experience

or the values computed using ab initio techniques within
the harmonic approximation. Here, using the developed
ML potentials, we compute this quantity directly using
thermodynamic integration. The process of forming a
vacancy includes the creation of an internal free surface.
The exchange-correlation functional plays here an impor-
tant role: LDA tends to describe internal surfaces better
than GGA. The reason is a well-known cancellation ef-
fect: LDA largely overestimates the exchange energy of a
free metal surface, but underestimates by approximately
the same magnitude the correlation energy. This results
in a reasonable net total value of the surface energy.
GGA results can vary depending on the parametrization
of the exchange-correlation functional in use. For ex-
ample, for Perdew-Burke Ernzerhof (PBE) the exchange
surface energy is underestimated but the correlation sur-
face energy is only slightly overestimated, resulting in
too small vacancy formation energies. In the case of the
phonon spectrum, it has been shown that in the case
of the fcc metals the GGA functional gives the lower
limit and the LDA functional the higher limit of spec-
trum [163–165]. Moreover, variants of PBE exchange-
correlation functional, such as AM05 [166, 167], were de-
signed in order to overcome this problem. However, for fi-
nite temperature properties of vacancies in fcc metals it is
commonly stated that is better to use the standard GGA
PBE functional [165]. For those reasons we inspect the
free energy landscape of the mono-vacancies only with
GGA PBE. Direct comparison of simulations with ex-
perimental data is not easy to perform. Self-diffusion ex-
periments can provide only the activation enthalpy, the
sum of migration and formation energy. Moreover, the
change of magnetic structure in α-Fe (from ferromag-
netic to paramagnetic) at almost 1

2Tm (1,043 K), and
the large magnitude of vacancy migration barrier in W
impede the acquisition of accurate activation enthalpies.
The accepted experimental values [119, 168] of the for-
mation entropy are 3.7 kB and 3.2 kB for Fe and W,
respectively. In the case of W, we use the formation en-
tropy of 2.2 kB rather than 3.2 kB . As it was mentioned
in Satta et al. [169], we subtract the electronic contribu-
tion (even though this contribution is averaged only at
high temperatures).

Figure 7 reports the computed zero pressure forma-
tion free energy of mono-vacancy with full anharmonic-
ity in thermal vibrations up to the melting tempera-
ture Tm. The experimental data are presented there as
FML(0)−TSexp. In the case of Fe, constant volume PBE-
GGA DFT calculations within harmonic approximation
(HA) predict larger values of the formation entropy: 4.1
kB [170] or 4.9 kB [171, 172]. Using the present ML po-
tentials for the similar simulations, we find 5.9 kB and
5.5 kB with LML and QNML, respectively. These values
are in good agreement with DFT predictions [171, 172],
taking into account the differences in the DFT set up
between the cited studies and the present DFT database
of ML potentials. For W, constant volume DFT calcu-
lations with HA predict 2.6 kB , while the ML potentials
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predict 4.1 kB (LML) and 2.9 kB (QNML). As in the
case of Fe, QNML values in W are closer to DFT than
LML predictions.

The results in Figure 7 emphasise the importance of
anharmonicity for T > 1

3Tm. Free energy of mono-
vacancy formation in Fe is more impacted by anhar-
monicity in thermal vibrations. Most likely, it can be
explained by the lower mass of Fe. The computed an-
harmonic free energies offer a significant improvement of
theoretical predictions, which can be of great help for
accurate multiscale simulations that imply characteriza-
tion of high-temperatures regimes. Moreover, the preci-
sion of the present predictions encourages further studies
to explore the impact of different exchange-correlation
functional on finite-temperature properties.

V. CONCLUSIONS

In this work we have developed and tested ML inter-
atomic potentials for accurate modeling of radiation de-
fects and dislocations in bcc Fe and W. The generali-
sation power and confidence limit of these potentials en-
able large-scale atomistic simulations that are not feasible
with first principles methods. Beyond the standard lin-
ear ML potentials (LML) [35, 40], which assume a linear
proportionality between the descriptors and local atomic
energy, we have proposed a different version of ML po-
tentials, called quadratic noise ML (QNML). In this ap-
proach the error of linear fit is treated as a quadratic
form of atomic descriptors. This noise has a Gaussian
distribution and, consequently, the fit is strongly prede-
termined by the linear solutions. Regression of the error
noise for QNML potentials improves the accuracy of stan-
dard LML approach without significant loss of transfer-
ability and generalization power. Moreover, the QNML
potentials increase the learning capacity with respect to
LML and make the present ML approach suitable for ac-
tive learning [20, 59, 173]. The QNML potentials are well
adapted for atomic descriptors with reasonably small di-
mension (preferably D < 100). In this work we have
demonstrated the performance of these ML potentials in
conjunction with the bispectrum SO(4) feature set.

The developed LML and QNML potentials reproduce
most of the essential ab initio and experiment-based
knowledge about the defects in Fe and W. The poten-
tials accurately predict many difficult issues related to
the stability and mobility of defects that are determined
by electronic structure and, therefore, very challenging
for semi-empirical potentials. Among such cases, the ML
potentials correctly predict: (i) the triangle Gao configu-
ration as the most stable configuration for di-interstitial
in Fe; (ii) the magnitude and single saddle point shape of
the migration barriers of mono-vacancy and of the Peierls
barrier of the 1

2 〈111〉 screw dislocation; (iii) the magni-
tude of the saddle point for V3 migration; (iv) the binding
energy of di-vacancies in W in accord with the DFT cal-
culations.

In addition to modeling small defects with DFT accu-
racy, the ML potentials developed here are suitable for
large-scale simulations with computational cost beyond
the scope of ab initio methods. The potentials enable di-
rect atomistic calculations of important properties such
as formation and migration energy of large defects, e.g.,
kink-pairs, large 2D loops and 3D clusters that require
large simulation cells containing 105 − 106 atoms in or-
der to eliminate finite size effects (e.g., elastic interaction
of defects).

In this work we have provided two important examples
of such large length scale calculations. The first exam-
ple considers direct atomistic calculations of the relative
stability of large interstitial dislocation loops and C15
clusters in Fe. The energy landscape of SIA in Fe is very
complex. The revisited scenario for formation of 2D dis-
location loops in Fe [70, 71, 83, 117] predicts that intersti-
tial atoms first cluster into 3D objects with C15 crystal-
lographic structure, which subsequently dissociate into
dislocation loops after reaching the critical size. How-
ever, the accuracy of traditional empirical potentials is
not sufficient to find this critical size [71, 72] and the
numerical cost of ab initio methods does not allow for
direct atomistic simulations. Here, using the ML force
fields, we find the crossover between the formation ener-
gies of the two families of defects around 40 SIAs. This
result is in very good agreement with a physics-informed
discrete-continuum (DC) model [71]. Detailed analysis of
the calculations emphasizes that the small difference in
the order of 5 SIAs betwen the ML and DC predictions
is determined by differences in the DFT databases used
for the parametrization of the models (the pseudopoten-
tial and k-point grid sampling). It is interesting to note
that the present ML potential was trained on small de-
fect clusters with less than 5 SIAs and small simulation
cells (4a0× 4a0× 4a0), whilst the accurate fit of the DC
model required a significant numerical effort to build the
database with the clusters up to 20 SIAs and large DFT
simulation cells (up to 8a0× 8a0× 8a0). Thus, the gener-
alisation power of designed ML force fields is sufficient to
ensure transferability and reconstruct the geometry and
energy landscape of large defects. A similar conclusion is
reached in the second example with direct atomistic cal-
culations of the kink-pair formation energy of the 1

2 〈111〉
screw dislocation. Kink-pairs were not directly included
to the training database, but the presence of straight
screw dislocations and Peierls barriers were enough to
correctly predict kink-pair formation energies. The val-
ues predicted by the LML and QNML, 0.77 eV − 0.84
eV for Fe and 1.42 eV − 1.65 eV for W, are in excellent
agreement with LT models [86, 88, 134] parametrized us-
ing DFT calculations. Based on these two large length
scale physical problems, it can be concluded that the de-
sign of the database, the type of the exchange-correlation
functional, and the setup of ab initio calculations are all
crucial for the accuracy of ML potentials. Consequently,
development of robust ML potentials requires not only
an extensive training database but also reliable and co-
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herent ab initio content.
Finally, we used the developed ML potentials to char-

acterize the anharmonic free energy landscape of bulk
and mono-vacancy formation in Fe and W. The accurate
characterization of the free energy landscape (less than 1
meV error) requires a considerable numerical effort, e.g.,
105 to 106 force evaluations for small systems containing
few hundreds of atoms. Enabled by accuracy and numer-
ical performance of LML and QNML potentials, we have
computed the thermal expansion of the perfect bulk and
zero-pressure formation free energy in bcc Fe and W. The
results are in excellent agreement with the experimental
data. The anharmonic free energy of mono-vacancy for-
mation in Fe and W was computed and we demonstrate
that the effect of anharmonicity is important above 2

3Tm
in Fe and W and cannot be neglected. The obtained free
energies can be used as a reliable input for multiscale
simulations like kinetic Monte-Carlo, cluster dynamics,
etc. These promising applications combined with various
sampling strategies [14, 133] open up many perspectives
for accurate characterization of defects at finite temper-
ature in the materials science community.

The developed LML and QNML potentials for Fe and
W together with the lammps-milady module necessary
for the reproduction of the results are available at GitHub
repository [103].
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Appendix A: Content of DFT database

Content of ML database has a strong impact on the ac-
curacy and transferability of the potential. Here we detail
the the databases that were used for fitting of LML and
QNLM potentials for bcc Fe and W. The database is or-
ganised in subsets, called DB classes in Table V. Different
classes contain the simulations relevant for different prop-
erties, e.g., elasticity, formation and migration energy of
the certain defects, thermal properties, etc. Aiming to
model structural defects in bcc Fe and W, we include
to the database point defects and their small clusters,
including C15 interstitial clusters in bcc Fe; as well as
extended defects like dislocations, free surfaces and γ-
surfaces, also called generalized stacking faults (GSF).
Defect-free structures of the database contain MD con-
figurations of bcc bulk, elastically deformed systems and
few thousands of highly deformed bcc systems. In ad-
dition to that, the databases contain MD configurations
of liquid state, which ensures good statistical sampling
of atomic environments, drastically different from those
of bcc. We empirically observed that the presence of
liquid in the database ensures a dense sampling of the
descriptor space and improves the stability of ML poten-
tial for predictions of atomic environments that were not
explicitly included into the database. Moreover, it was
recently demonstrated in Ref. [22] that including liquid
structures acts as regularization of the fitting solution,
which improves the transferability and prediction power
of ML potentials.

For most atomic systems, we compute energies (E),
forces (F ) and the virial stress (S). A system with
N atoms provides at most 7+3N observables to fit: 1
energy (nE), 3N force components (nF ) and 6 inde-
pendent stress components (nS). Fe potentials were
trained on 111 683 energies, forces and stress components
(nE + nF + nS) from 761 configurations and tested on
41 496 data instances from 300 configurations. In case of
W, training was performed on 131 057 data points from
2 132 atomic systems, and test was carried out on 22 543
instances from 607 systems. The number of instances for
train and test per each DB class are given in Table V.

Figure 8 emphasizes the variety of atomic environ-
ments different from defect-free bcc in the potential
database. The atomic environments different from bcc
are selected using the distortion score of local atomic en-
vironments [14], which is based on outlier detection with
Minimum Covariance Determinant (MCD) [174, 175]. In
this approach, each atom is characterized by a distortion
score that describes a statistical distance from a refer-
ence distribution in the descriptor space. Here reference
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TABLE V: Details of the different classes used in the Fe and W databases. The “DB class” column gives a short
description of the calculations, the “Atoms per cell” column lists the number of atoms in the cell used for DFT

calculations, the “Properties to fit” column corresponds to the fitted properties for training/testing (energy E, force
F , stress S), the fourth column corresponds to the total number of train/test data that are used to fit/test the

potential nE , nF , nS stands for number of energies , forces and stresses, respectively, included in the fit. Finally, the
last column “Configurations train/test” gives the total number of configurations that were used for the train/test

purposes.

Fe Database
DB class Content Atoms Properties nE + nF + nS Configurations

per cell to fit train/test train/test
1 Bcc bulk 128 E 1/0 1/0
2 Elasticity (bcc) 2 ES 315/0 45/0
3 Deformations 2 ES 2 800/1 351 400/193
4 SIA I1 − I4 129-132 E 9/0 9/0
5 Vacancies V1 − V4 124-127 E 11/0 11/0
6 Free surfaces 30 E 6/0 6/0
7 MD - bcc bulk (300 K, 800 K) 128 EFS 7 820/2 737 20/7
8 MD - bcc bulk (a0 rescaled 800 K) 128 EFS 3 519/1 173 9/3
9 MD - liquid (400 K, 800 K) 100 EF 18 060/6 020 60/20
10 MD - SIA I1 − I4 (800 K) 129-132 EFS 35 745/18 304 90/46
11 MD - vacancies V1 − V4 (800 K) 127-124 EFS 30 659/11 911 80/31
12 Migration of mono-vacancy V1 127 E 7/0 7/0
13 Migration of mono-interstitial I1 129 EFS 2 364/0 6/0
14 Migration of 1

2
〈111〉 screw dislocation 135 EFS 3 708/0 9/0

Total 111 683/41 496 761/300

W Database
DB class Content Atoms Properties nE + nF + nS Configurations

per cell to fit train/test train/test
1 Bcc bulk 128 E 1/0 1/0
2 Elasticity (bcc) 2 ES 525/0 75/0
3 Elasticity (fcc) 4 E 33/0 33/0
4 Deformations 1 ES 10 500/3 500 1 500/500
5 SIA I1 − I4 129-132 E 12/0 12/0
6 Vacancies V1 − V4 124-128 E 4/0 4/0
7 Vacancy clusters V8 − V16 240-248 EF 12 636/0 17/0
8 Free surfaces 12 E 45/15 45/15
9 γ-surfaces 12 E 100/22 100/22
10 MD - bcc bulk (300 K, 1 000 K, 3 000 K) 128 EFS 17 595/5 865 45/15
11 MD - liquid (1 000 K, 3 000 K) 100 EF 9 632/2 408 32/8
12 MD - vacancies V1 − V2 (1 000 K) 126-127 EFS 11 980/3 477 31/9
13 MD - vacancies V2 − V3 (300 K) 125-126 EF 6 330/1 886 16/5
14 MD - vacancies V5 (300 K) 123 EF 4 440/1 110 12/3
15 MD - (110) γ-surface with vacancy V1 (300 K) 47 EF 14 200/ 4 260 100/30
16 MD - 1

2
〈111〉 screw dislocation (300 K, 1 000K) 135 EF 40 600/0 100/0

17 Migration of mono-vacancy V1 53 EF 800/0 5/0
18 Migration of 1

2
〈111〉 screw dislocation 135 EF 1 624/0 4/0

Total 131 057/22 543 2 132/607
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FIG. 8: Principal component analysis (PCA) representation
of the databases for (a) bcc Fe and (b) bcc W. Each point

on the plot corresponds to an atomic environment. The
depicted atomic environments are outliers with respect to

defect-free bcc bulk structures (see text), as provided by the
distortion scores of LAEs [14]. Different colors represent
different classes of structures in the database. The same
color coding is used for Fe and W, with two additional

classes, fcc and γ-surfaces, present in W.

distribution is be constructed from the local atomic en-
vironments of defect-free bcc systems (Table V, DB class
7 for Fe and 10 for W at at 300K). Figure 8 depicts
the atoms that were identified as outliers deviating from
the bcc structure. The selected data is represented us-
ing principal components analysis (PCA) and visualized
along the directions with maximum variance. The Fe and
W databases (Fig. 8) have two major components given
by the atoms belonging to the point defects embedded
into bcc matrix and by the atoms of MD liquid at vari-
ous temperatures. Between those two main clouds, there
are defects that favor the physical transition between bcc
and liquid phase such as vacancies. The database of W
also includes GSF. In the Fe database, some highly de-
formed bcc configurations (few hundreds atoms among
2800 atomic environments) clearly deviate from the ref-
erence defect-free bulk.
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