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ON DETERMINISTIC NUMERICAL METHODS FOR THE QUANTUM
BOLTZMANN-NORDHEIM EQUATION.
I. SPECTRALLY ACCURATE APPROXIMATIONS, BOSE-EINSTEIN
CONDENSATION, FERMI-DIRAC SATURATION

ALEXANDRE MOUTON AND THOMAS REY

ABSTRACT. Spectral methods, thanks to their high accuracy and the possibility to use fast algo-
rithms, represent an effective way to approximate the collisional kinetic equations of Boltzmann type,
such as the Boltzmann-Nordheim equation. This equation, modeled on the seminal Boltzmann equa-
tion, describes using a statistical physics formalism the time evolution of a gas composed of bosons or
fermions. Using the spectral-Galerkin algorithm introduced in [F. Filbet, J. Hu, and S. Jin, ESAIM:
Math. Model. Numer. Anal., 2011], together with some novel parallelization techniques, we investi-
gate some of the conjectured properties of the large time behavior of the solutions to this equation.
In particular, we are able to observe numerically both Bose-Einstein condensation and Fermi-Dirac
relaxation.

KEYWORDS: Boltzmann-Nordheim equation, quantum, Bose-Einstein condensation, Fermi-Dirac sat-
uration, spectral method, large time behavior

2010 MATHEMATICS SUBJECT CLASSIFICATION: 76P05, 65N35, 82C40.

1. INTRODUCTION

The Boltzmann-Nordheim equation (BNE), also known as the quantum Boltzmann equation,
models the time evolution of a phase-space density f = f(¢,x,k), describing the probability to find
at time t > 0 a quantum particle localized at the infinitesimal position dx dk, where x € Q C R?
and k € R3. The quantity k designates the energy level of the particle and corresponds to the
usual “velocity” variable in a kinetic Boltzmann-like equation. Its total momentum is then given by
v = hk, where h is the reduced Planck constant, and we shall keep the v notation throughout the
paper. We are interested in this work in efficient, deterministic numerical simulation of this equation.

This equation was first formulated by Uehling and Uhlenbeck in the seminal paper [34], starting
from a classical Boltzmann equation with heuristic arguments. It can be used to model both bosons
and fermions gases, possibly trapped by a confining potential. Due to its high dimensionality, the
study of the full quantum Boltzmann equation is still widely open. The equation is indeed posed in
the usual six-dimensional kinetic phase space. Moreover, the collision operator is defined by a seven-
fold integral itself. This causes a lot of difficulty, both theoretically and numerically. For example,
in the space homogeneous bosonic case, it is well known that the particle distribution function f
can develop finite time blow-up (weak convergence towards Dirac deltas even if the kinetic energy is
conserved), the so-called Bose-Einstein condensation.

The study of the main mathematical properties of the collision operator has been done in [7, 8] 25]
4], allowing to understand almost completely the Cauchy problem (existence, stability, creation and
propagation of moments, convergence towards the equilibrium) in the space homogeneous setting,
without confining potential. The recent breakthrough [10] proved rigorously the Bose-Einstein con-
densation in the bosonic case, under very mild hypotheses on the moments of the initial condition.
Nevertheless, the precise blowup behavior (localization of the explosion, rates, etc.) is still open.
Finally, the theoretical study of the full space dependent problem is also mostly open, apart from

T.R. was partially funded by Labex CEMPI (ANR-11-LABX-0007-01) and ANR Project MoHyCon (ANR-17-CE40-
0027-01).
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2 ALEXANDRE MOUTON AND THOMAS REY

some recent results concerning the anisotropic setting and Bose-Einstein condensates that can be
found in [24].

The numerical study of this equation is also difficult for all these reasons. The first attempt to
compute numerically the collision operator, in a simplified setting (taking advantage of some very
specific symmetry properties) was done in the work [28]. Extensions of this idea were introduced in
[20] by exploiting the convolution-like structure of the collision operator. This work is following along
the lines of the so-called classical and fast spectral methods for the Boltzmann equation, that was
investigated by many authors in the series of works [29, 26}, 13, 12} 14}, BT} [I8), 30]. The full extent of
this convolution idea was used in [I1], allowing to write a fast (spectral) method able to compute the
full collision operator with the “reasonably low” numerical cost of O(N® log(N)) operations, where N
is the number of unknowns in each velocity dimension, and with spectral accuracy. Extension of this
method to the full inhomogeneous case, and to the asymptotic preserving setting was then done in
the series of works |21}, [I7, [19] for the fermionic (electrons) case only. Nevertheless, these works only
deal with the simplified 1-dimensional (1d) in x, 2-dimensional in v setting and use an approximation
of the collision operator. Even the slightly more realistic 1d in x, 3d in v case was never tackled up
to the authors knowledge, not to mention the full 3d in x, 3d in v case. One should also note the
earlier attempts from [22] 23], where a diffusive relaxation system was used, as an approximation of
the full equation, and the Fokker-Planck like approach recently seen in [5].

The paper is organized as follows: After a small introduction on the BNE equation and its main
mathematical features, we detail in Section [I.2] its large time behavior, which depends on the type
of considered particles: classical ones, Bosons, or Fermions, and on some critical parameters which
insure condensation in the latter cases. We then present the fast algorithm from [11] along with how
we decided to implement it in Section 2 Some more information on this topic is also available in the
Appendix. Section [3]is then devoted to the presentation of the so-called rescaling-velocity method,
which allows to improve the accuracy of the fast spectral algorithm. Section[4] present some numerical
results on the method, emphasizing first on the spectral accuracy of the algorithm in Section
and then on its long time behavior in Section for the both 2D and 3D fermions and bosons cases.

1.1. The Boltzmann-Nordheim equation. We are then interested in the following kinetic equa-
tion in the dyx x dy + 1-dimensional phase space, for dyx < d, < 3:

{atf+TV'VXf:CQa(f)a

(1.1) £(0,x,v) = fo(x,V),

where

x € Qy C R% is the dimensionless position variable,

v € R% is the dimensionless velocity variable,

t € R, is the dimensionless time variable,

R x Qy x R™ — R is the distribution function of the particles,

7 € {0,1} is a dimensionless parameter for indicating if the transport part is taken into
account or not,

¢ > 0 is a dimensionless scaling parameter for the collisions (usually taken as the inverse of
the characteristic Knudsen number),

Qu(f) : Ry xQy xR% — R is the collision operator, and o characterizes the type of particles,
to be specified later.

In the present case, the collision operator Q,(f) is defined as follows:
(1.2)
Qa(f)(t,X,V) = /Rd Sdv—1 B (|V - V*‘a 9) {f(taxa V/) f(taxa ka) (1 - Oéf(t,X,V) - Oéf(t,X,V*))
v x§av—

— flt,x,v) f(t,x,ve) (1 —af(t,x,v') — af(t,x,v;))} dv, do ,
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with (v/,v.,0) € R% x R™ x [0, 7] linked to (v, Vv.,a) € R™ x R%¥ x S&~1 by the relations

, Vv \v—v*|a
N 2 2 ’
, V+ve |[v—vy
Vi = - g,
2 2
where
vV — V,
cost)l = — - o,
—

and the collision kernel B : R% x [0, 7] — R of variable hard sphere (VHS) type:
B(r,0) = ®(r) b(cosb), O(r)=Copr”,
Cp > 0, v € [0,1] being given constants. Finally, « is defined as follows:

_ +hv . for Fermi-Dirac particles,
~ | —h%, for Bose-Einstein particles.

Remark 1. Note that the case v = 0 and dy = 2 represents the toy model of maxwellian pseudo-
molecules, whereas v = 1 with d, = 3 models the physically relevant case of a hard sphere collision
dynamics.

We also assume that the microscopic dynamics is subject to the so-called Grad’s cut-off assumption,
namely that the function b: [-1,1] — Ry is such that [[b|| oo (1) < +o00.

Remark 2. The Boltzmann-Nordheim collision operator, although being quadrilinear in its full form
(1.2)), is actually only trilinear in the two cases of interests « € {0, 1} using cancellations in (|1.3)) .

/

V-V
Weak form and macroscopic properties. Note that, if we define w = ﬁ, we have
vV—vV
vV = v—((v—vy) w) w, v = vV ((vV-V) ww,
vi = vi+(v—vi) w) w, ve = vi+ (v -V)) w) w,

meaning that the transformation (v,v,) — (v/,v)) is involutive. Thanks to this remark, one has the
following weak form for the collision operator: for any test function ¥ such that the left hand side is
defined,

13) [ Quftxvemdy = | B (v - v.],0)

Rv Rév xRdv xSdv—1

L —af —af) = [ £ (L= af —af)] [T(VL) + ¥(V) = U(v) = U(v.)] dv.dvdo,

where we used the shorthand notations f = f(t,x,v), f. = f(t,x,v.), f = f(t,x,v), f. =
F(t.x,v,).

In particular, one has using (|1.1)) that the collisior operator preserves the global mass, momentum
and kinetic energy:

(1.4) Qa(f)(t,%,v) p(v)dv =0,

Rdv

for (v) =1, ¢(v) = v, and ¢ (v) = |v|*.

Finally, let us assume that the distribution function f satifies the following properties:

o f(t,x,v) >0 for any t,x,v;

1
e For the Fermi-Dirac case (a > 0), f(t,x,v) < — for any ¢,x, V.
a
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Under these assumptions, we can define the local entropy associated to f as

M%) = [ 1-af(txv)

Rdv «

[f(t,X,V) In(f(t,x,v)) + In(1—af(t,x,v))| dv.

f(t7 X7 V)

Taking ¢(t,x,v) = In (1—af<txv>

dissipation functional:

DIfI(t,x) == [ Qalf)(t,%,v) P(t,x,v) dv

Rdv

= 1 B 0
——Z/R/R/S (Iv = vl 0)

[fﬁﬂl—af—aﬁ)—fﬂ(I—@f—aﬂﬂbg(

> in (1.3), we get the following expansion of the entropy

ffo(Q—af —af))
[ i —af —af)

) dodv,dv.

In addition, we have

Rd atf(ta X, V) ¢(t» X, V) dv = _0tH[f] (t’ X, V) )

and

/ v Vxf(t,x,v)Y(t,x,v)dv = Vx - (1/ v (In(1—af(t,x,v))) dv) .
Rev Rév

a

We finally deduce that the global entropy ) H[f](t,x) dx increases as t — 400 since
Raex

8t7-[[f](t,x)dx:—/ DIfI(t,x)dx >0,  Vi>0.
Qx x

1.2. Convergence towards a steady state. In this section, we focus on the homogeneous equation
associated to (|1.1)) that is characterized by 7 = 0:

Of =cQalf),
{f(O,V) = f2(v).
In such case, using the momenta of order 0, 1, and 2 of f are constant:
(1.6)
p(t) = p° = /Rdv fPdv, u(t)=u’:= plo /Rdvvfodv, e(t) = e’ = 220 /Rdv lv—u’)? fOdv.
It is well known that the distribution function f converges to a limit state f> : R%™ — R_ that

depends only on these dy + 2 quantities as t — +oo, see e.g. [4, 10, 24]. To characterize this limit
state, we proceed as follows:

(1.5)

The classical case o = 0. The limit state is the following maxwellian function [6]

0 0|2
NN P v =l
where the temperature 7' is obtained from the internal energy e thanks to the relation
2
T=-"4¢
dy

The quantum case «a # 0. We introduce the so-called indicator function x

0 0
B p _[2e7(dy +2)
(1.7) x(v) = mﬂD(uo,A)(V)v A= T4,
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and the following quantum maxwellian function [4]
1 1

a1 exp (%) + sgn(a) 7

(1.8) My(v)

where z and T are linked to p® and €° as follows: since the mass and the internal energy are preserved
we integrate M,(v) and |v —u®2 M (v) to get

dv
27T) 2
(1.92) RIS CLEVER Ry
|| 2
dvT Kﬂ+1 Z)
1.9b 0= 2
(1.9b) o
2

where K, (z) is defined as

1 /+°° vt dr — F,(z), if o> 0 (Fermi-Dirac),
I'(v) Jo =z le®+sgn(a) v(2), if @ <0 (Bose-Einstein),

and IT' is the Gamma function

K,(z)=

+oo
I'(v) = / e le ™ dx.
0
The quantities F;, and B, are known as complete Fermi-Dirac and Bose-Einstein integrals respectively.

Remark 3. Setting F, (1) = F,(e*) for any u € R and v > —1, one can show (see e.g [2]) that

Fy(p) = e +o(1), as pu — —0oo,
- w mv(v—1) 1
F, = ol—1|, — .
() T+ 1) + 6.2 + " as jt — +00
One also has for v > 1 that
B,(z) =z+0o(1), as z — 07,
B,(z) =C¢(v)+o(l), asz— 17,
+o0
where ((v) = Z — is Riemann’s zeta function. Finally
k=1

Bi(z) — o0, as z — 1.
If we inject (1.9b)) in ((1.9a)) in order to get rid of T', we obtain the following nonlinear equation in

z:
v

v K, (z)v+! dy

1.10 0 = — ith v = —.

(1.10) ol p (Qmo) o withr= G

Now, to distinguish between the fermionic and bosonic cases, let us define F,, and B, as
FV(Z v+1 B,/ Z)l/+1

]:1,27),], B,,(z):(iy.

Fyia(2) By yi1(2)

We observe numerically that F,, and B, are nondecreasing, continuous functions E| on their respec-
tive definition domain (see Figure|l.1)). In addition, thanks to the properties of F}, and B, in Remark
one can show if dy = 2,3 that

Fao (2) =2z+0(1), as z — 0%,
2
dy
(% +1)% 1+ 0O(p2
Fay (eH) = -2 , as | — +oo,
@)= T@E g 1o S

1Unfortunately7 we were not able to prove this assertion.
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Fy(e") fermions 2d (v =1) Fy(e") fermions 3d (V:%)
2.00e+00 { —— Fule") 3.00e+00 { —— F,(e")
1.75e+00
2.50e+00
1.50e+00
2.00e+00
1.25e+00
< 1.00e+00 = 1.50e+00
IN I
7.50e-01
1.00e+00
5.00e-01
5.00e-01
2.50e-01
0.00e+00 0.006+00
—100 -75 =50  —25 0 2 50 75 100 —100 —75 =350  —25 0 2 50 7 100
n u
(a) (b)
B,(z) bosons 2d (v=1) B,(2) bosons 3d (v =32
1.40e+02
© — B(2) — B2
7.00e+00
1.20e+02
6.00e+00
1.00e+02
5.00e+00
8.00e+01
4.00e+00
= O
Q) =
9
6.00e+01 3 000400
4.00e+01 2.006400
2.00e+01 J 1.00e+00
0.00e+00 0.00e+00
0.0 02 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 08 10

(c) (d)

3
FIGURE 1.1. Graphs of functions u — F,(e#) for v =1 (a) and v = 3 (b), and

3
z By(z) forv=1 (c) and v = 5 (d). We notice that, for each case, F, and B, are
valued in the corresponding I.q set defined in (L.11)).

and that
Ba, (2) =z +0(1), as z — 0T,

7V
More precisely, the following expansions can be obtained:

Bi(z) = log(1 — 2)?2 _ 6log(1 — 2)?

— +o00, asz— 17,

Idg(l) WQ
Lis 3 3\2
Bs(z) = 12(z)3_>g(§)37 as z — 1.
TN IR
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Finally, let us define the set I.q as

10, 2], for 2D Fermi-Dirac particles,
5 (10 L )
0, s\ | for 3D Fermi-Dirac particles,
T
(1.11) Ig =
10, +o0], for 2D Bose-Einstein particles,
5
) S : R
i I or 3D Bose-Einstein particles.
((3)2
Then, we have shown that there exists a unique solution of (1.10) if and only if there holds

dv

0 dV B
|Oé| P 47T€0 € qu'

In such case, (1.10) can be solved numerically to get z, then 7" thanks to (1.9) and identify the limit
state f° as M,. On the other hand, if

dv

0 dv 2
‘Oé‘p 47T60 ¢ qu7

we handle a quantum degenerative case and the limit state f° cannot be identified as M,. Recent
works (see e.g. [4, 25 [10]) indicates that, for the 3D degenerate Bose-Einstein case which describes
a quantum condensation, the limit state f°° is identified as

i 1
o] exp (|v;;0\2) 1

where J¢g is the usual Dirac function, the critical mass mq and the temperature 7" are linked to the
density p® and the internal energy e° as

(1.12) M, (v) = mg do(v —u®) +

_ 243/
(113) ST
and
(25T 1[4\ Y ((3/2)°2
(1.14) mo = p° — TC(:S/Q) =9’ - la| < 3 ) ((5/2)3/2"

We can remark here that
dy

d 2
o p (47;0) ¢ I — mo > 0.

Concerning Fermi-Dirac degenerative cases, we have to deal with the so-called “maximum assump-
tion”
max f < |o ™!
in order to define the entropy. It was shown in [9, 1] that, in the critical case where p® and €° satisfy

0 0
p 1 2¢e’ (dy +2)
(1.15) = A= =Y
[D(0, A)| e dy

the distribution function f converges to the limit state x defined in ((1.7)). If the maximum assumption
is broken, the entropy cannot be defined anymore as #H[f] so nothing clear can be said about the
limit state in this context.
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Practical computations. Let us classify the limit states according to the initial parameters:
Mass p° and internal energy ¢ given. We want to compute the fugacity z and the temperature 7.
For this purpose, we test the assertion

dv

o dv \?
‘a| p 47T60 € IGQ'

e If it holds, we solve numerically (1.10) with Brent’s method [3] to get an approximation of

z. When Fermi-Dirac particles are considered, we use the scale z = e# and run the iterative
dy

)7 is close to the

method to find g. This allows to get large values of z when |a| p° ( 4?%0

upper bound of Ioq. The limit distribution is then setﬂ as f*° = M,.
e If it does not hold,
— when 3D Bose-Einstein particles are considered, we use - to set T, mg and
we set z = 1 and the limit state is defined again as f*° = M
— For 2D and 3D Fermi-Dirac cases, we test the equality (1.15) -
x If it holds, the limit state is identified as f>° = x and the relaxation is entropic.
« If it does not hold, we cannot say anything about the behaviour of f(t,-) ast — 400
since it is non-entropic.

Mass p and temperature T given. We want to compute the fugacity z and the internal energy €.

e If the 3D Bose-Einstein case is considered, we test the inequality
3
ol p° < (27T)2 ¢(5).

— If it is true, then we can solve numerically (1.10) with Brent’s method to get an ap-
proximation of z. We use it to get e’ from and set the limit distribution as
fOO —

— Ifitis false then we use - - ) to set T', mg and we set z = 1 when Bose-Einstein
particles are considered and the limit state is defined as f* = ./\/lq.

e If 2D Bose-Einstein or Fermi-Dirac cases are considered, we can solve numerically with
Brent’s method to get an approximation of z, then set the limit distribution as f* = M,
and compute e” thanks to (1.9b]).

2. FAST DETERMINISTIC APPROXIMATIONS OF THE BOLTZMANN-NORDHEIM COLLISION OPERATOR

Let us now introduce the numerical method that we shall study and use in this paper. This section
is strongly inspired from [I1]. For the sake of simplicity, all the functions described in this section
will only depend on the velocity variable, denoted by &.

2Note that, the relaxation of f is always entropic for Bose-Einstein particles but can be non-entropic for Fermi-Dirac
particles
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2.1. The Carleman representation. Let us decompose the BNE operator (1.2]) using the following
bilinear and trilinear operators (see also Remark [2)):

+ _ _ Il
0 (F,G)(g)_/dv L BUE—€1.0) F'GLdo de..

Q. (RO =FE [ [ B(&=¢€1.0)C.dode..
Ql,q<F,G,H><s>=/RdV .. BUE=&1.0) F'G.H. do de..
- 0 (F.GIE =F© [ [ B&-&1.0) G H.dod..
Qug(F.G.H)E) =F©) [ |~ B(g-&1.0) G dode..
Qug(F.G.H)E) =F(&) [ |~ B(&=¢l0) G Hldode..

Hence the complete collision operator Q(F, F') writes as
QCV(F) = Qi(FaF) - QC_(F7F) -« [Ql,fI(F,FvF) + Q2,Q(F3F7F) - Q37€I(FaF7F) - Q4,Q(F7F7F)] :

Remark 4. One can notice in (2.1) that the only term that consists on a full integral on the
three distributions F, G and H is Q1 4. This term will then logically be the most computationally
expensive.

By completing the square, one has the following useful lemma from [26]:

Lemma 2.1. For any function F : R™ — R", we have

1

1 2
3 dele(’W‘O'—W) da—W/Rdvé(Qx~w+lx| ) F(x)dx.

Thanks to this lemma, one has the following Carleman-like representation for the classical collision
operator:

QI (F,G)(€) — Q7 (F.G)(€) =
L B@y)6a-y) [FE+2)G(E+y) ~ FEGE +2+y) dady.

with B defined as

- _ y—dv+2 ly| |z
Blz,y) = 251 Cy (J2]? + y[2) ™3 b( e
VI +12 lyP + 2

Similar computations lead to the following Carleman-like representations for the quantum, trilinear
collision operators (with the same effect on computational complexity as in Remark |4| namely that
Q1 4 will be the more computationally intensive operator)

Q14(F.G. H)(€) = /RMVB< ¥)6(z-y) F(§ +2) GE +y) H(E +2+y)dady,
0y 4(F, G, H)(¢ / B(z,y)3(z-y) G(€ +2) H(E +y) dzdy,

Qs 4(F, G, H)(¢ / B(z Y)G(E+2+y) H(E+2)dzdy,
QuylF.G.C)E) = F(§) [ | Bla.y)d(z-y)Gly) H(E+y)dady.
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2.2. Truncation and periodization of the BNE operator. In order to develop a fast spectral
approximation for the Boltzmann-Nordheim operator, one has first to truncate it, in order to make
it deal with function with finite support. We shall follow along the lines of [I1].

Theorem 2.1. Let the function G be compactly supported in the dy-dimensional ball B(0,S). Then,
the support of & — Qu(G) () is included in B(0,/29).

Proof. Considering z,y € R% such that z-y = 0, we have
€ + 1€ +z+y* =1 +2 + [+ vy
Hence, if £,€ + 2,6+ y,£+2z+y € B(0,5), it is possible to have
G(E+2) G(E+y) [1 —a(G(E) + G +2+Y))]-G(E) G(E+2z+y) [1 —a (G +2) + G(E+y))] # 0.

In this situation, we have

€7 < |&P + 1€ +z+y* <257,
so we can conclude that the support of Q,(G) is included in the ball B (0, \/55) if the support of G
is in B(0,5) in &. O

We now define a truncated collision operator Qf Vyith R > 0 as follows: given a function G :
R% — R with compact support in B(0, S), we define G : [, 7]% — R such that

C”;(E) :{ g’(g)a glsie B(O,S),

At this point, we have several candidates for QF, each one of them being written under the following
generic way

Q@) = [ Blx,y)d(x-y) |[GE+x)GE+y) (1-a (GE)+GE+x+Y)))
R2dv

—GE)GE+x+y) (1-a (GE+x)+GE+y))) |T(xy, &) dxdy,

where 7 is defined as follows:

e the classical spectral method from [29]
I(x,y,8) = 1p00,5)(§ +x+¥) 10,25 (X = ¥) L 35 (&) -
e the fast spectral method from [26]
I(x,y,€) = 1p2r) (x = ¥) 154 55)(&) ; R>S,
e the fast quantum Boltzmann spectral method from [I1]:
(2.2) I(x,y,€) = 1p0,r) (%) 150,r) (Y) 150, v25)(&),  R=S,

In order to simplify the computations of the following section, we consider the definition (2.2]) for Z.
It gives the following expression of QF(G):

QRGO = [ Blxy)olx-y) [GE+x0CE+y) (1-a (GE) +CE+x+Y)))

B(0,R)?
—GE)GE+x+y) (1-a (GE+x) +GE+y)))] dxdy.
We now define the periodized function G as
G(€+2km) = G(E), Vée|-mna™, Vkezd.
Choosing R > 0 and S > 0 such that R > S and S is small enough allows to write
QN (C)(€) = Qu(G)(&)  VE € [~ 7™,
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More precisely, since G is supported in B(0,S), G is supported on the balls B(2km, S) for any
k € Z%. Consequently, if a particle is equipped with a velocity & € B(2k, S), it may interact with

any particle equipped with a velocity &, € B <2k7r, 2R + \/ES) Such candidate particle should not

be in any B(2lxr,S) for all 1 € Z% for avoiding artificial interactions. In order to guarantee this
constraint, we must impose 2 — S > 2R + /25, namely

2

(2.3) S S TaT

This condition is generally referred as the anti-aliasing condition on S and R.

2.3. Fast spectral approximation of the BNE operator. For now on, us assume that Supp,G C
B(0,8) C [, n]% and consider a truncation radius R > 0 satisfying R > 25 and (2.3]). Hence

Qa(G)(v) = QI(G)(v) .

2

Given a function f € L2, .[—m,7|%), we define its Fourier series representation as

per
P N 1 .
(24) F = 3 R fom g [ f@e iy,
keZdv (27T) v [_7r77r]dv
where we used the multi-index notation k = (ky,...,kq,) to denote the dy-dimensional sums over

the indexes kj, j = 1,...,dy.
We introduce the truncated terms Qﬁc, QQRiC, qu, ng, lefq, qu as

©
::U
=
2
~™
I
"
o
<

(2,y)0(z-y) F(§+2)G(§ +y)dady,

RGN =FE) [ B@y)d(zy)GE+z+y)dady,

QF (F.G,H)(§) = ( B(z,y)d(z-y)F(€+2)G(E+y)H(E+2z+y)dzdy,

L)
N
Sﬂ
e
@
=z
~
|
>
m
5
ool
N
)
g
N
=
«Q
™
_I_
XN
=
™
+
=
QU
N
ISH
<

Using orthogonality properties of orthogonal polynomials, one has the following expansion of the
quantum kernel modes.
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Lemma 2.2. For any N € N* and any multi-index n, one has the following representation of the
Fourier modes of the terms of the BNE collision operator:

QF(F,G) = 3 BR(1) Ry,

klely
k+l=n

Qgc(F?G)n: Z BR(lal)ﬁkél7
klely
k+l=n

Q{L:q(FaG7H)n: Z BR(k+m,l+m)ﬁk@1ﬁm,
kJ,mEIN
k+l+m=n

of (F,.G,H) = > k1) Fi G Hn,
k,l,me]N
k+l+m=n

of(F.G,H) = > Bk+11) G Hnm,
klmely
k+l+m=n

QR (PG H) = > BLk+1)FGiHn,
k,lmely
k+l+m=n

with the so-called kernel modes B (k,1) being defined as
P = [ Blay)dlaey)e @D dady,
B(0,R)?
and the set In given by
d
A N N
Iy = — =1y C 2.
I

Such an expansion of the kernel mode yields an asymptotic complexity for computing the BNE
operator of O(N2%) for the classical terms and O(N3%) for the term Qﬁq. We shall now expand as
in [26] the collision kernel in order to introduce a convolution sum, allowing to improve the overall
computational complexity by almost dy orders of magnitude.

2.4. Expansion of the kernel modes. Let us assume from now on that B can be expressed as
follows:

B(z,y) = a(lz]) b(yl) ,
with some given functions a,b: Ry — R. Hence, decomposing polar coordinate z = pe and y = p’ €
with p,p’ € [0, R], e,e’ € S~ one has
R : R VATV
k)= [ [ see) | [aloh gt e dp] | [T b(lol) (o) 2 dp| dede
Sdv—1 JSdv—1 0 0

2.4.1. 2D case. In such case, defining ey = (cos#,sin#), the expression of 3% (k,1) is simplified into

27 27 R . R e
k)= [ [ d(es- en) [ | atloly eiriees dp] [ | o et ve dp'] do' do.
0 0 0 0

Taking advantage of symmetries of the kernel, one then has

6R(k71) :/07r /(:5(99‘99/) l/_};a(‘p‘) 6z’pk-eg dp] [/_qum) eip’l-egl dp/] do’ do
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Since ey - e = 0 with 0,60 € [0, 7] is equivalent to §' = 6 4 7 (modr), we finally get
BR(k,1) = /0 Oa(k - €9) O (K - €942 (modrm)) dO,
with q%,a and d)%}b defined as
2 R ] 2 R i
Ghals) = [ alloh e dp. Gy = [ bllal) e dp.

Since q%’a and ¢%€,b are even, we deduce that 6 +— Qb%%,a(k - ep) q%’b(k . e9+%(modw)) is mw-periodic.
Hence, the rectangular integration formula is of infinite order and is optimal [33], so one can write

M-1
™
(2.5) 570l ~ T ) o).
p=0
with
pm
(2'6) ap(k) = dﬁ%,a(k ’ e9p) ) a;(l) = Qﬁhb(l ’ 89p+%(mod7r)) ) 017 = M?

and a spectrally small error.

Remark 5. In the specific case where a = b, the function 6 — q%’a(k - ep) Cfﬁ%,b(k . eg+%(modw)) is
5-periodic. Consequently, we have

(2.7) 870 1) =2 [ ¥ 6 €0) 63 (- €01 o))

and the rectangular integration formula gives

M—-1
T
2.9 R = 1 3 () (),
p=0
with
pm
(29> ap(k) = ¢%7a(k ' e9p) ) Ck;(l) = (ﬁ%%,a(l ’ e9p+§(m0d7r)) ’ HP - ma

and a spectrally error.

2.4.2. 8D case. In the 3d case, tedious (but similar to the previous section) computations yield

1
B (k1) = T S sin 6 sin ¢’ lé(egw-e9/7@/)¢§’%7a(k-e97¢)¢?§,b(1-e9/’@/)

+ 5(€gprr - €0 p) DR oK €0 prn) Bhy(1- €p )

+ 5(69#, . e9/7¢/+ﬂ) Qﬁia(k . eg#j) @53;2,1)(1 . 99/7¢/+ﬂ.)

dy' ded’ do .

+ 5(e9,ap+7r : eﬁ’,w’—&-w) ‘25:13%,(1(1{ ) e9,tp+7r) ¢?])~2,b(1 : eQ’,ga’—Hr)
with qbgR’a and ¢3R7b defined as

Shals) = [ allo) e dp.  Ghsls)= [ b(lol) lole”* dp.
= -R
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We can remark that both gb?j%’a and d)i)}%,b functions are even. Hence, one has
R 1 : sl 3 3
Bk, 1) = 1 ot sinf sin €' [d(eq,, - € ) Pra(k - €9,) PRyl e o)
+ (5(—971-,9790 . 99/7@/) ¢?I)%,a(_k . eﬂ-,gﬂ,) (b?])%,b(l . 69/#,/)

+ 5(_99,90 “€r_g ) ¢3R,a(k : eH,sO) d)?])%,b(_l : e7r—9’,<p’)
+ 6((3”_97%0 . ew_ngtp/) qb%’a(—k . eﬂ_g#,) gf)%’b(—l . eﬂ_9/7¢/) ng/ ng d@l df y

so we finally get

Bk, 1) = / sin 6 sin 6 d(ep,; - ey ) B ok - €pp) X ¢y (1-eq o) dp dpdd' db.
(0,7] ’ ’
For any e € S?, we define 1 — TI,. (1) as

o) =1-(1-e)e.

(]

Hence, 5% (k,1) is reformulated as follows:

Bk, 1) = /[0 Psin&cb%a(k'ee,@) [ ﬁe’,so’)e[ow sin9’¢?;w(1.ee,#,)dgp’de’] dpdf .
o eG,LP'ee’,gz’:O

Denoting with Si the half-sphere, we can write

[6’750’) € [0,7]? sin 0’ ‘75?1’«2,1;(1 - €9/ 1) dig' b’ = /s2 Mel ¢§%,b(l -e')de’.

€,0°€g/ 1 =0 1%

Hej’w (1)

We define e, ,, = ‘ . Hence the 2D plan ee{w is provided with the direct orthonormal basis

. (1)‘

e«%s@

{e6,,1 » €,5 X €0, }- In addition, the intersection Si N e(,{p is the unit half-circle S}r and

l'e/:‘HJ_ (1)
%]

/
Co,e1 " €

where eg, ., -€’ is no more than the cosinus of the angle between ey, ., and €’ € Siﬂeoﬂo. Consequently,
we obtain

[0/74‘0/)6[0’71_]2 sin ¢’ <l>?j%7b(l-e9/’<p/)dcp’ ao’ :/0 sin ¢’ (Z)?I)%,b (’Hem(l) cos 0') do’

egyﬁp-ee/#}/:U

and

k) = [

o sin 0§ o (K - €g,0) ¥k (T (1)) dipdf.

We can notice that the function x(6, @) = sinf ¢% (k- 99,¢)¢%b(ne; (1)) is m-periodic in 6 and in
k) el Nl

¢. Indeed, reminding that ey, 1~ = er_g,, firstly gives

5(0780_‘_7() = “(7_9#3)7

so the m-periodicity in ¢ will be proved along with the m-periodicity in 6. This last property can be
easily proved since sin is m-antiperiodic, €y, = —€g o, ¢‘3’%7 o is even, and

M. (1)=1I (1),
0,

0+,
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which makes the basis {eg, , , €91x,, X €4, } indirect. Consequently, we have
3 3
Vrp(Her (1)) = —¥rp(Her (1)
0+m,p 0,

Since & is m-periodic in § and ¢, the rectangular integration rule on [0, 7]? is of infinite order and
optimal, so we can write

2 Mi—1M>y—1

T
(210) B ~ e 30 Y sind ok en, )0k (1),
p=0 g=0
. . . . pT Tq
with eg, ,, = (sin ), cos gy, sin 6, sin @4, cos b)), 0, = T Pg = A and

R .
Sha(s) = [ allol) Iole"dp. (s / b(lol) [l dp,

(2.11) ﬂ
Uity ) = ["sing o, (|11, 0

cos @’ ) do’ .

2.5. Fast computation of the collision modes. It is possible to gather the formula (2.5) and
(2.10) under the common expression

(2.12) =C Z arp(k) oy, (1),

where C, P, «a, a;, are defined as follows:

2D case. LetC:%,P:Mand, forany p=0,..., M — 1,

aRJ?(k) = ¢%~27a (k ’ e9p) ) Oé;%m(l) = (b%%,b(l ) e@;ﬁ-%(modﬂ')) )

pm .
(2.13) Op = L G = (cosbp,sinb,) ,

2 R « ) R '
PR,a(5) :/ a(lpl) €”*dp,  dr4(s) =/ b(|p|) € dp,
R -R

In the specific case of 2D Maxwellian molecules (v =0, b = 1) so we get

B(z,y) =2Ce a(lz]) =2Cs, b(ly|) =

This gives
. - Pl
/
B (k7 1) = M Z aRm(k) aR,p(l)v
p=0
with agp(k) and o’z (1) computed as follows:

aR,p(k) =2Cs ¢%{(k : e9p) ’ O/R7p(l) = Qﬁ%(l : e@;ﬁ-%(modﬂ)) )
$%(s) = 2R Sinc(Rs) .
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2
M, My’

3D case. Let C = P = MM, and, for any p=0,..., My —1,¢q=0,...,Ms — 1,

aRvQ+M2P(k) = sin HP gb?‘?,a(k ’ e6p7(79q) ) O/R,q—i—Mgp(l) = w%’b(neé_p,vq (1)) )

_pﬂ' _7Tq
_M17 qu_M27

Shals) = [ allo) lole®dp, Ghols) = [ bllol) lole?* dp,
R -R

vt ) = [“ohy (g @

In the specific case of 3D hard spheres (y =1, b = 1), we get

0, €g,.», = (sin 6, cos pq,sin b, sin g, cosby) ,

P:Pq

(2.14)

cos & ) do’ .

B(z,y) =4Cs, a(lz]) =4Ce,  b(y])=1.

This gives
5 a2 Pl
/
/B (k7 1) = M]_M2 pzz:o aRyp(k) aR,p(l) ?

with M = M1 M3, agp(k) and o (1) computed as follows:

AR gt mp(k) = 4Cq sind, ¢h(k -eg, o), R g mp(l) = P (‘H 1 (I)D ;

¢%(s) =R’ (2 Sinc(sR) — Sinc® (?)) ) 7/’?%(5) = 2R? Sinc? (?) .

Both these formula allow for an overall computational cost of O(N?% log, N). The practical details
of the implementation are summarized in the appendix.

3. A RESCALING VELOCITY MODEL OF THE BNE

We have seen in Section that the BNE can exhibits blowup in the quantum degenerative
fermionic case, but with no a priori knowledge on the rate of explosion. In order to simulate nu-
merically such result we propose to adopt the rescaling velocity framework that was developed in
the series of papers [16] 15, [32]. It consists in rescaling dynamically the equation, hence allowing to
follow very accurately the spread and concentration of the solution to the equation.

3.1. A general scaling framework. We now introduce a given function w : Ry x {2x — R% . Such
function has to be positive, and represents accurately the support in velocity of the distribution
f(t,x, ) solution to . Candidates for w will be presented later. At present time, we focus on the
function G : Ry x Q, x R% that is introduced as follows: for any (t,x,v) € Ry x Qy x R,

dv
(3.1) flt,x,v)=pn <7rw(Lt,x)> G <t,x, ww(Lt’X)(v — Au(t,x))) ,

with 4 >0, L > 0 and X € {0,1} to be precised later. We can remark that

ptx)= [ fexvydv=p [ Gxedg, [ €ctxgde=o,

Rdv
for all (t,x) € Ry x Q. We shall exhibit the evolution equation that is satisfied by G by injecting

B3 in (D).

We first define the change of variables

Tw(t,x)

Lg

mw(t,x)

E(t,x,v) = (v—2Au(t,x)) , v(t,x,€) = + Au(t, x),
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so we have

mw(t

dv —dy
flt,x,v) =pu <L)> G(t,x,€E(t,x,v)) & G(t,x,€) = p~* (’X)> ft,x,v(t,x,£)) .

L

The time derivative of f is rewritten as

dy
7w(t’x)> [dv MG (t,x,&(t,x,v))

8tf(t,X,V):M < L w(t,x)

+ (0:G) (t,x,&(t,x,V))
(3.2) dw(t, x)

w(t,%) £(t,x,v) - (VeG) (t,x,&(t,%x,V))

A 7”"<Lt’x)atu(t,x) (VeG) (t,x,{(t,x,v))] .

The free transport term is rewritten as

Tw(t,X) L

ﬂ'w(t,x))dv

v Vxf(t,x,v) = ( ﬁ(t,x,v)+/\u(t,x)> 1 <

dy
| L(u ) XAl Gl v)

(3.3) + (VxG) (t,x,£(t, %, v))
N <8xjw(t,x)

w(t, x) E(t,x,v) - (VeG) (t,X,ﬁ(t,x7v))>

J=1dy

Tw(t,x)

— A (0u(t %) - (VeG) <t,x,£<t7X’V>>)j_1,...,dv] |

Concerning the rewritting of the collision operator Q,(f), we first remark that

Tw(t,x

-
B (|v — vy|,cos0) = < T )> B(|&(t,x,v) — &(t,x,vy)|,cos0) ,

for any (v,v,,0) € R% x R% x R. In the same spirit, we can remark that, with the convention (11.1)),
we have

Fltx, V) = <W<“<>>d uG(t,x, £t x,v) +E(Exv.) | [€(tx,v) —£(t,x,v*)]0> |
L 9 5
dv
flt,x,v,) = <7Tw(Lt’X)> MG<t,X, E(t,x,v) ‘ZE(t,X,V*) B |€(t,x, V) —2£(t,x,v*)]0> N

Consequently, the collision operator writes as

L

Tw(t,x) = 5
(3.4) Qu(f)(t,x,v) = (L) 7 Qa#(mu,x))dv(G) (t,x,&(t,x,v)) .
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Gathering (3.2)), (3.3 and (3.4]), we get the evolution equation for G:

9
9,G + Ve ((Z}“"g - A”L“’atu> G) G

L dy Op.w
+7 | —&+Au) - | —VxwG+ VG + .
W w w

)j =1,..dy

_ %)\ (acz:ju : vSG)j:l,.‘.,dv‘|

Tw\ |
=cp 7] Qapze)an(G)

3.2. Application to the space homogeneous BNE. We now focus on the following homogeneous
quantum Boltzmann equation written under divergence form:

Opw Tw Tw\
0iG + Ve - ((Lg—ALatu> G) =cp <L> Qi (G)

1 L\* L
G(t=0,§) = L <7rw0> f° <7rw°£+u0> ;

At this point, the classical method can be distinguished from the velocity rescaling method as follows:

The classical method. It is characterized by the following parameter choice:

AN
A=0, w=1, w=\- ,
T

so the equation to be discretized on Ry x [—m,7]% is

,G = (L) R QR( )

Gl =0.6) = (ﬁ )

and f is obtained from G on R x Q, with Q, = [~L, L]%
The velocity rescaling method. It is characterized by
A=1, p=1,

and w to be identified later, so the equation in G to be solved on R} x [—, 7T]d" is

-
8tG+V§' ((atwg—ﬁtu> G) =cC (?) Qg(%)dv(G)7

L\% L
G(tzof):(Wu}o) fo< 0€+110>,

L L
—— ——| foranyteR,.

~w(t) wit)

3.3. Numerical scheme for the velocity rescaled BNE. We assume from now that the support
of G(t = 0,-) is included in B(0,S) C [~m,7]% with S > 0 and R > 0 such that

R+ (1++2)S
wz——if——a

and f(t,-) is obtained from G(¢,-) on Qy(t) = u(t) +

R > 28,
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We consider a time grid (t"),eny C Ry with At" = "+ —¢" > 0,t =0 and G" : [-7, 7] — R
being an approximation of G(¢",-). Finally, we define Av™ and A¢ as

d d
" 20 \'Y 2\ Y
A —<WN> ’ Af—<N> ’

and we consider a space discretization of G™ with

n n 2jd7[' . N
G (SJ) ~ GJ ’ gjd,d = 5

T’ Jd = —

1/ L\™ L

mwo

dv
Tw"

N N
2 2

and

Defining f}' = (f{")je 1y With

R \yn 2L jq
and Vi g = Aug + -

uq(t™), to be defined later), we have

G@t", &) =G = f{t",vi)=f

for any jg = — —1,d=1,...,dy (u}] being an approximation of

g ooy

for any j € Iy and n € N. This provides an approximation of f(t,-) on Qy(t).

Remark 6. In most cases, it is possible to identify the limit state f°° such that f — f>* ast — +oc.
For this purpose, we refer to Section [1.2] in order to identify the expression of f>°. This function
is characterized thanks to the moments of fO (mass p¥, averaged velocity u’, internal energy V...).

Assuming that f is analytically known, we build f;" = ( fjoo’")je Iy for any n such that
fjoo’n = foo(vjl) )

which gives an approximation of f*° on Q7. We can also introduce G;>" = (G"")jc 1y as

J
oo _ L[ L b
I

We describe now the procedure associated to a forward Euler time-semi-discretization:

[ viely.

(1) We assume that G} (or equivalently f;') is known along with the mass p", the averaged
velocity u”, the internal energy e™, and the velocity scale w™ at time step n.
(2) We compute QSM(M)dV (Gp); for any j € In:
L

(a) We compute the Fourier modes of G} and get

~ 1 ki
Gi=5 2 Gie ™ ¥, vkely.
jeln
(b) We compute Qﬁc( r,GP); (i=1,2) and qu( v, GE,GR); (1=1,2,3,4) for any j € In.
(c) We get QF o . (G}); as
ap(T=)dv
QR (#)dv (GZ)J :Qﬁc( Zﬂ Z)J - Qg,c( ZvGZ)J

ap

Tw'" dv R n n n R n n n
— ap(——) [Ql,q< s Gy G + Q3 (Gh, G, Gh);

L
— Off (G}, Gr, G — QF4(GR. G G -

(3) If we do not assume w = 1 (velocity rescaling case), we do the following computations:
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(a) We estimate p"™!, u"*! and e"*! with

pn+1 _pn
Ttn:CAUn Z Qg(ff?)j
jelin
Tw™ n
= ¢A¢ ( 7 ) Wy Qw(wn o (G155
Jjeln

n+1un+1 NN

pua R
A = e 3 v Q)
Jeln

Tw™
:CM(L) ey Ce

j T Au”) qu(%)d" (GZ)J ;

n+1€n+1 o pnen

p u" n
- oS g - QR
jeln
2
W
AE( ) R S s S e e
jelin .

(b) We then compute the temperature T7""!. Since it is trivial for the classical case a = 0
(T = 2/dy e™*1), let us focus on the quantum case a # 0. The temperature 77! is

obtained as follows: test the inequality
dy

n+1 dy ’
ol p 4rentl € Lea;

where Ioq is defined by (L.11]). If it is true, 7" is solved along with the fugacity z"**
by solving the following nonlinear system:

+1y %
= w@(zm),
|af 2
w1 d Tn+1 KTV (n+1)
€ o 2 Ka, (2nH1)
2

If it is false, we distinguish 2 cases:
e For 3D Bose-Einstein case, condensation occurs, so the fugacity 2"
and Tt is explicitly computed as follows:

2/5
i _ 2 ’O[‘ pn—l-l en—i—l /
3¢(5/2) (2m)®/2] 7

*1 s equal to 1

and the critical mass m8+1 is obtained as
(Qﬂ_TnJrl)?)/Q
my ™= p - ﬁé“(i%/?)-
e For Fermi-Dirac case (2D or 3D), we test the equality

dy 2, for 2D Fermi-Dirac case,

d 2
af p" - =4 5 [10
o p (47re”+1) 3\ for 3D Fermi-Dirac case.
Y

If it is true, then 2" = 400 and T+ = 0. If it is false, we cannot say anything
about the values of z"*! and 77!,
(c) We compute an estimate of w1
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e By using the temperature (quantum case o # 0):
WTL+1 — /Tn+1 ,

e By using the kinetic energy (classical case o = 0):

’un+1 ‘2

Wttt — \/Tn—‘rl +

v

wn—i—l —wh T un+1 —u”

AN AL She L Atn

(4) We compute G? for any j € Iy, then its Fourier modes,

d finally get (v (wnﬂ_“ng A “n+1_un> Gn) f el
and finally ge R et — »| foranyje Iy.
At w L At ;

(5) We finally compute G} by solving

Ggﬂrl _ G}m Wt — Tw? utt — un .
- (Ve [———t—- X
Jj

Atn At wn L Atn
Twn

-
= Cl <L> qu(%)dv (G;LL)j )

. . n+1 n+1l | n+1l _ ;;n+l o
and can reconstruct the approximation f;'"" of f(t"*,:) on Q™ =u"" 4 PEES TR

L L ]
thanks to the relation

7.‘_Wn—&—l

dv
n+1l __ n+1 .
fj =pu ( 7 ) Gj , Vjely.

(6) If we assume that w = 1 and A = 0 (velocity rescaling is not considered), we compute p"*1,

u"t! and et as follows:

+1 _ +1 _ +1
Pt =D Y T = Agp Y G
Jeln jeln

L
pn+1un+1 = Av Z VgLJrl fjn+1 —_ Aglﬁ Z %5‘] GEH&’
Jeln jeln

2
AU Af L mn
Pt = — M |VJT”rl —u"t? fjn+1 =M > géj G; .

jEIN jEIN

p

It is also possible to consider a RK2 time semi-discretization by using cleverly some parts of the
explicit Euler time loop above.

4. NUMERICAL RESULTS

We shall now present some numerical simulations of our fast spectral method for the BNE. For a
given discrete solution f;' of the usual variables or G} in rescaled variables, we aim to compute the
following quantities:
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e The mass p", the averaged velocity u”, the kinetic energy E7', and the internal energy e™:

"X s Y G

je€ln jeln
1
un;:—nAv” Z V.;ijn_ SM Z ( — +)\un) G?a
P jeln jeln
2
Bl = A" 0 VPP = Al Y0 |— g+ At G
jeln jeIn
2
e = *A“ Do A= A D |- (A -Du"| G
jeln jeIn
e The stress-energy tensor T" = (17 y )aar € Ma, (R):
1
Ty = — A" Y (v 0= ug) (0, 0 — uip) S
P jeln
n L n n
Al p Z gﬂdd+(>‘ 1) ug mfjd/,d’Jr()\*l)ud/ Gy
jeln

e The entropy for the classical case H2:

n\ v
"X () =nAE Y Gin (u (”Z’ ) G}@) ;

jeln jeln

e The entropy for the quantum case Hy:

1— e
HE = A" Y [fj” In(f") + ij (1 - afj")]
jeln

n\ dv
Tw
=Alp Z lG}lln(u< L) Gf)
Jeln

e /P norms in space, for p € (1,00):

1/p dv 1/p
n n n W ’le
Hfhngz:(m S5 ) (Asu <L> > \Gj\) :
JE€IN jeln

4.1. Validation of spectral accuracy. The first test sequence is dedicated to the validation of the
spectral accuracy of the numerical methods presented in Section in the non-degenerative case.
To do this, we proceed as follows:

(1) Set the initial state fO = f(t = 0,-) as a candidate for the limit state;

(2) Discretize it on a velocity grid to get f,? and compute the discrete moments p?l, u?L, 62;

(3) If the velocity rescaling method is used, we set ug = u” where u’ is the exact mean velocity
associated to f°, and deduce the discrete temperature T,? (and the discrete fugacity 22 for
the quantum case) and the discrete velocity scale w{ (default value is w) = 1);

(4) Set p> = ,02, u® =u’, T~ = T,?, z® = 22, w® = wg and define the associated limit state
I

(5) Discretize > to get f°.
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To highlight the spectral accuracy of our scheme, we compute the value of the numerical residual

|Q(f°)|l¢ as the velocity grid is refined, over the simulation domain
O =Au)+ |-

=Au
4 h wd wh |’

where A = 1 if the velocity rescaling is activated and A = 0 in the contrary case. We also choose the
truncation parameters R and S such that
(3+v2)S

R:S, W:f’

so the artificial truncation of f° depends on the value of L provided by the user.

4.1.1. 2D quantum non-degenerative case. For testing the accuracy of the method in the 2D quantum
case, we select the maxwellian function M, as the initial state. Since such tests were already
performed in [I1], we chose to focus on test cases involving & = 3 for highlighting the quantum
effects in the collision operator. In order to avoid Fermi-Dirac quantum degeneracy, we define f9 as

fov) =

1 1 _ { +hiv for Fermi-Dirac particles,
- dV . . .
|a| 51 exp(‘v u’? ) + sgn(a ) —h%, for Bose-Einstein particles,

where ¢ is set to 1 or 0.5. In addition, since we want to present the advantages of the velocity

rescaling, we enrich the test list by considering 2 values of the initial average velocity u’:

0 0 0 8 T
p=1, u =0, or u =u 3\@4-2(1 1)
and several values of the limit L of the simulation bounding box.

Accordmg to Tables [Il4{ where the numerical residual || Qf(f£°)||¢= is computed for various values
of L, o, u® and grid sizes, it appears that our method i 1s spectrally accurate if we consider a simulation
bounding box with L well suited to the moments u’ and T = ¢. This is highlighted for the 2D
Bose-Einstein case with small values of o: indeed, such choice for o leads to a distribution fO that is
very sharp and concentrated close to u (see the profiles v, — f°(v;,0) in Figures. Consequently,
the spectral accuracy becomes very difficult to observe in such configuration even with the velocity
rescaling method (see Table (3)).

In addition, we remark that the velocity rescaling method provides much smaller residuals than
the classical method for most cases that have been studied. This is not surprising for the case where
u’ = u, because of the support B(0, S) of the initial distribution that leads to the omission of a part
of f,?. For the case where u’ = 0, this can be explained by the fact that the rescaled distribution
Gg is exactly centered on 0 without any discretization error which is not the case for the classical
method.

I

4.1.2. 3D quantum non-degenerative case. We then perform a similar test sequence for the 3D non-
degenerative quantum case. More precisely, for the Fermi-Dirac case, we chose the following param-
eters:

0 _ 0 _ 0 _
p =1, u =0 or u =u,= " \f(l’l’\[) o€ {051},

and for the Bose-Einstein case, we chose

0 0 4 T
u'=0 or u —ub—3+\/§<1,1,\/§) , o€{0.5,1}.
In order to avoid Bose-Einstein condensation (cases with mg > 0), we chose p = 0.5 in Tables
and p° = 0.2 in Tables

Since the computational cost is multiplied by 64 each time we multiply by 2 the number of grid
points in each direction, we skipped the tests for 1283 and 256> grids (see Tables [5H6l{7HSH9l{10]).

Even without these highly refined grids, we can formulate some conclusions that complete those
we have made for the 2D non-degenerative case: if we consider a case that is reasonably far from
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L Grid u’ =0 u” = u,
with rescaling | without rescaling | with rescaling | without rescaling

162 | 7.54518e-04 2.40084e-02 7.54292e-04 3.02826e-02

=40 322 | 5.45433e-06 2.94865e-04 6.33224e-06 1.61790e-04
=05 642 | 2.16212e-09 6.57029¢-08 2.16212e-09 1.05112e-08
' 1282 | 8.72616e-15 2.25632e-09 7.69842e-15 3.79580e-10

2562 | 5.81693e-14 2.40773e-09 2.35945e-14 3.58093e-10

162 | 1.23417e-02 7.02218e-02 7.44099e-03 7.96784e-02

I —6.0 322 | 2.52998¢-04 8.61508e-04 3.77004e-04 1.77791e-03
=05 642 | 6.98180e-07 4.98332e-07 6.98180e-07 2.52066e-06
' 1282 | 9.92269e-12 5.42394e-13 1.04077e-11 3.52803e-12

2562 | 2.75075e-14 3.16561e-12 2.02706e-14 3.85932e-12

162 | 1.41403e-02 4.56558e-01 1.41403e-02 3.60279e-01

I —30 322 | 1.28337e-03 1.18105e-02 1.29406e-03 1.31630e-02
=05 642 | 1.39047e-05 3.52678e-05 1.40178e-05 2.21314e-05
' 1282 | 1.76916e-09 2.23699e-10 2.07287e-09 3.34106e-10

2562 | 1.40392¢-14 2.18273e-12 1.41762¢-14 2.84017e-12

162 | 4.84180e-03 1.32821e+00 2.57422¢-02 1.37525e+00

I —100 322 | 2.46369e-03 3.09332e-02 2.63280e-03 2.59714e-02
=05 642 | 5.28147e-05 2.47577e-04 5.28147e-05 2.60236e-04
' 1282 | 6.16592e-08 3.62246e-08 1.22383e-07 3.34353e-08

2562 | 8.33644e-14 1.59568e-12 8.33644e-14 2.60240e-12

TABLE 1. Spectral accuracy. Values of the numerical residual || Q% ()| s for 2D
Fermi-Dirac non-degenerative case with i =3, p° = 1, and ¢ = 0.5 (z = 16.5454).

f(vx,0)

+2.50e+00 4

+2.00e+00 4

+1.50e+00 4

+1.00e+00 4

+5.00e-01

+0.00e+00 4

-5.00e-01

f(vx,0)

+5.00e-014

+4.00e-01

+3.00e-014

+2.00e-01

+1.00e-014

+0.00e+00 4

-1.00e-01+

FIGURE 4.2. Profiles v, — Mg(v;,0) for 2D Bose-Einstein particles with o = 0.5 (a)
and o = 1 (b). For both profiles, we considered h =3, p° =1 and u’ = 0.

quantum degeneracy (Tables [5H6HOH10]), and up to a good choice for L according to the prescribed
values of p°, u® and o, both classical and velocity rescaling methods are spectrally accurate when
the velocity grid is refined. In addition, the velocity rescaling method provides smaller residuals
|OE(f£°)||¢= than the classical method for almost all tests. This last remark will be very useful for
future 3D tests since it allows to reduce the size of velocity grid and, consequently, the computational
cost of the 3D time-space numerical scheme.

We can formulate an additional conclusion that is specific to the test case close to Bose-Einstein
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u’=0

0

L Grid |— : : : . . :
with rescaling | without rescaling | with rescaling | without rescaling

162 | 2.95094e-04 2.50504e-03 2.49797e-04 9.54405e-04

=40 322 | 5.07180e-06 2.44424e-06 4.88457e-06 3.92317e-06

o =1.0 642 | 1.84924e-09 5.91877e-07 1.36283e-09 2.04740e-07

' 1282 | 4.20809e-15 2.71389e-07 3.31905e-15 1.54671e-07

2562 | 1.18195e-14 6.37432e-07 1.17001e-14 2.68513e-07

162 | 1.31173e-04 8.42416e-03 1.23660e-04 1.45717e-02

I —60 322 | 3.76824e-07 2.27804e-05 3.76824e-07 4.70450e-05

o —1.0 642 | 8.21030e-12 9.24181e-09 8.21063e-12 2.59149¢-09

' 1282 | 6.68304e-13 8.00724e-09 5.90658e-13 1.93910e-09

2562 | 7.16902e-13 7.14834e-09 7.17939e-13 2.18974e-09

162 | 3.15058¢-04 2.80447e-02 2.33615e-04 6.62377e-02

I —30 322 | 1.12128e-06 9.59214e-05 1.09318e-06 1.69072¢-04

o —1.0 642 | 5.98787e-11 4.44265e-09 5.64793e-11 1.26302¢-08

' 1282 | 4.73110e-15 2.58596e-13 3.14199e-15 7.56339e-13

2562 | 1.85085¢-14 1.10513e-12 1.18911e-14 1.60808e-12

162 | 3.13769e-03 2.99089¢-01 2.17247e-03 2.12744e-01

I —-100 322 | 2.02320e-05 1.96588e-03 2.02320e-05 1.14376e-03

o —1.0 642 | 3.89202e-09 2.44876e-07 2.57176e-09 2.99708e-07

' 1282 | 6.05016e-15 6.74139%-13 4.29173e-15 4.04056e-13

2562 | 1.26569e-14 1.08890e-12 1.25693e-14 1.41077e-12

TABLE 2. Spectral accuracy. Values of the numerical residual || QF(f2°)(|s for 2D
Fermi-Dirac non-degenerative case with i =3, p° =1 and o0 = 1 (2 = 3.1887).

L | Grid u’ =0 u” = w,
with rescaling | without rescaling | with rescaling | without rescaling

162 | 1.26588¢+02 1.10944e+-03 1.59361e+-02 6.13676e+01

=40 322 | 2.25994e+00 4.33543e+-01 2.24858e+00 1.25675e+4-02
o — 0'5 642 | 6.00369¢-02 1.86373e+00 6.00369e-02 7.76987e+00
' 1282 | 8.25844e-04 7.93633e-03 8.25844e-04 1.82181e-01

2562 | 6.20715¢-08 4.30685e-08 5.94336e-08 1.62130e-05

162 | 2.46280e+05 2.34093e+04 2.54047e+05 3.67843e+02

I =60 322 | 1.38535e+01 2.68651e+02 4.19147e+4-00 9.30524e+00
o — 0'5 642 | 6.82833¢-01 7.49992e+00 6.81247e-01 1.41910e+-01
' 1282 | 1.99389¢-02 1.31040e-01 1.07615¢e-02 1.72672e-01

2562 | 1.50878e-05 3.03279e-05 2.88911e-05 6.28249e-05

TABLE 3. Spectral accuracy. Values of the numerical residual || QF(f£°)| s for 2D
Bose-Einstein case with A =3, p” =1 and o = 0.5 (z = 0.943).

condensation (see Tables : in such case, the discrete distribution f; is almost singular in a
neighborhood of u’, so the computation of || Qf(f2°)| s~ may produce NaN values. This phenomenon
is particularly significant when we set u’ = 0 or when we activate the velocity rescaling method.
Indeed, in such case, & = 0 is a grid point and G1,(0) becomes very large. The only studied way to
bypass this problem is to deactivate the velocity rescaling method and to choose u® outside of the
velocity grid points.

4.2. Relaxation towards equilibrium. We have seen in Section [I.2] that the distribution function
f(t,-) is expected to converges to an equilibrium state f°° as t — +oo . We present here some tests
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ul

0

L | Grid | _u =0 1 w=w .
with rescaling | without rescaling | with rescaling | without rescaling

16 | 8.75850e-02 4.77941e+4-00 8.75850e-02 2.09808e-+00

=40 322 | 4.34564e-03 1.34244e-01 4.34564e-03 6.84172e-02

o =1.0 642 | 6.97576e-06 7.27236e-05 3.31081e-06 1.13026e-04

' 1282 | 8.18675e-10 8.90710e-06 1.14691e-09 2.36536e-05

2562 | 9.06688e-10 8.27488e-06 9.06688e-10 2.52684e-05

16 | 8.00293e-02 3.30798e-+00 9.34962e-02 5.15603e+00

I —6.0 322 | 3.39670e-03 2.43273e-01 1.14900e-03 3.48709e-01

o= 1.0 642 | 8.44540e-06 2.84543e-04 4.22200e-06 5.26459¢-04

' 1282 | 2.13457e-11 5.45586e-09 1.90767e-11 2.75652e-08

2562 | 1.24522e-11 2.90246e-09 1.98063e-11 2.91932e-08

16 | 8.59697e-02 8.09303e+00 8.59697e-02 7.84054e+00

I —30 322 | 3.20116e-03 3.22578e-01 1.01646¢-02 7.22433e-01

o —1.0 642 | 1.89958e-05 3.67449e-03 3.76830e-05 2.61653e-03

' 1282 | 1.25941e-09 8.52464e-08 1.60801e-09 2.33918e-07

2562 | 8.48209e-14 4.54954e-12 4.54874e-14 7.25384e-12

TABLE 4. Spectral accuracy. Values of the numerical residual || Q% (f2°)( s for 2D
Bose-Einstein case with h = 3, p° = 1and ¢ = 0.5 (z = 0.943) and 0 = 1 (2 = 0.7613).

u=0

0

L Grid |— . : - - U =W -
with rescaling | without rescaling | with rescaling | without rescaling

I —40 163 | 6.65068e-04 2.64044e-01 6.65068e-04 4.38601e-02
o—05 323 | 1.38282e-05 3.51620e-03 1.38282¢-05 3.47688e-04
' 643 | 4.02472e-09 3.11989¢-06 4.02472e-09 8.48441e-08

I —60 16{3 1.46161e-02 4.93491e-01 1.46161e-02 6.27339¢-01
=05 323 | 4.64216e-04 1.27742e-02 4.64216e-04 1.44628e-02
' 643 | 5.17232e-07 3.23812e-06 5.17232e-07 1.34607e-05

I —30 163 | 6.86816e-02 3.05672e+00 6.86816e-02 3.86836e+00
=05 32? 3.63615e-03 1.49763e-01 3.63615e-03 1.29305e-01
' 643 | 2.29417e-05 3.12185e-04 1.55549¢-05 2.64884e-04
=100 163 | 6.02018e-02 5.16432e+01 6.02018e-02 3.06977e+01
=05 323 | 1.57951e-02 9.41582e-01 1.57951e-02 6.93264e-01
' 643 | 2.09198¢-04 6.20599¢-03 2.09198e-04 5.89099¢-03

TABLE 5. Spectral accuracy. Values of the numerical residual || QF(f£°)(|s for 3D
Fermi-Dirac non-degenerative case with i = 3, p’ = 1 and 0 = 0.5 (z = 2.43228e-+01).

that highlight this phenomenon for all treated cases and provide a numerical validation of the so-
called Fermi-Dirac saturation and Bose-FEinstein condensation. For this, let us associate to a given
discrete initial distribution fP (and its related macroscopic quantities) a threshold i* defined as

1

dv v

— 471'62 2 i !
dy pg

According to Section we expect the following behavior of the discrete distribution fj as t — +oc:

e 2D Bose-Einstein particles: fj converges to the quantum maxwellian defined as

F(%) = M(v) = 5 :
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u’=0

0

L Grid |— : : : . . :
with rescaling | without rescaling | with rescaling | without rescaling

L —40 163 | 9.28576e-04 4.02042e-02 9.28576e-04 4.32287e-03
o =1.0 323 | 5.11585e-05 8.89902e-05 5.11585e-05 9.91060e-06
' 643 | 2.93880e-08 1.19765e-07 2.27659e-08 1.72883e-07

I —60 163 | 3.60402e-04 8.95561e-02 3.60402¢e-04 1.18694e-01
o =1.0 323 | 9.32472¢-07 1.70466e-04 9.32472e-07 2.05708e-04
' 643 | 4.40082¢-11 2.41131e-08 3.46700e-11 7.59905e-09
=80 163 | 4.72058¢-04 4.90556e-01 4.72058e-04 2.76318e-01
o —=1.0 323 | 1.79828e-06 1.73790e-03 1.79828e-06 2.09096e-03
' 643 | 5.38083e-11 5.71195e-08 5.82632¢-11 1.47296e-07

L =100 16 | 6.82783e-03 6.30273e+00 6.82783e-03 4.16489e+-00
o =1.0 323 | 2.16863e-05 2.08866e-02 2.16863e-05 9.24323e-03
' 643 | 2.20701e-09 4.38071e-06 2.20701e-09 4.40874e-06

TABLE 6. Spectral accuracy. Values of the numerical residual || QZ(f£°)||s for 3D
Fermi-Dirac non-degenerative case with 1 =3, p’ =1 and 0 = 1 (z = 3.09922).

L Grid u’=0 u’ = uy
with rescaling | without rescaling | with rescaling | without rescaling

163 - - - 2.01861e+01

g B é'g 323 - - - 3.07997e+402
' 643 - - - 3.30064e+01

I — 6.0 163 - - - 1.33886e+03
05 323 - - - 5.39380e+02
' 643 - - - 1.83015e+02
Py 163 - - - 2.09609e4-04
o — 05 323 - - - 3.26936e4-02
' 643 - - - 1.87903e+02

163 - - - 5.58828e-+03

LO_ ;100'50 323 - - - 2.73300e4-01
' 643 - - - 5.21282e+04

TABLE 7. Spectral accuracy. Values of the numerical residual || QX (f£°)]| s~ for the
3D Bose-Einstein non-degenerative case with h = 3, p° = 0.5 and ¢ = 0.5 (z =

0.99706).

where (2, T})) solves

21Ty
Ph th Bl(zh
o TU BQ(Z}QL)
h " Bi(z))’

e 3D Bose-Einstein particles: fj converges to the limit state f* defined as

(v =

My(v), ifmop = p?l

<0

B

M,(v), else,

C(5/2)32

1 (47r e%) B2 0(3/2)5/?
3
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u’=0

0

L Grid |— : : L L .
with rescaling | without rescaling | with rescaling | without rescaling

=40 16‘3 4.85493e-02 1.23198e+-01 4.85493e-02 6.20351e-01
o —=1.0 323 | 6.60721e-04 6.57365e-02 6.60721e-04 1.40535e-03
' 643 | 4.36371e-07 1.63056e-05 4.36373e-07 2.17488e-06

L =60 163 | 1.52861e-02 1.02566e+-01 1.52861e-02 9.62265e4-00
o =1.0 32?’ 7.38435e-05 3.75522e-02 7.38434e-05 1.13989e-01
' 643 | 1.24358¢-08 4.78434e-06 1.24358e-08 4.57443e-05

I =80 163 | 3.53206e-02 3.20586e+-01 3.53206e-02 3.08672e+01
o 1'0 323 | 2.16009e-04 1.93870e-01 2.16009e-04 1.46767e-01
' 643 | 5.59894e-08 4.92734e-05 5.59894e-08 1.52454e-04

L =100 163 | 1.59747e-01 1.41633e+-02 1.59740e-01 4.01087e+01
o =1.0 323 | 1.34162e-03 1.28551e+4-00 1.34162e-03 2.69977e-01
' 643 | 8.77263e-07 8.40196e-04 8.77263e-07 1.13530e-03

TABLE 8. Spectral accuracy. Values of the numerical residual || QZ(f£°)||s for the
3D Bose-Einstein non-degenerative case with i = 3, p° = 0.5and o = 1 (2 = 0.63071).

=0

0

L Grid |— : : . : T :
with rescaling | without rescaling | with rescaling | without rescaling

I —40 163 | 1.89242¢-02 5.59497e+00 1.89242e-02 6.51227e-01
o—05 323 | 1.54426e-04 3.17405e-02 1.54426e-04 2.91398e-03
' 643 | 6.62168e-08 7.87246¢-06 6.62168e-08 2.68118e-06

I —60 163 | 6.16653e-01 2.43214e+01 6.16653e-01 9.89261e+00
o—05 323 | 3.25459e-03 2.18171e-01 3.25459¢-03 4.97853e-01
' 643 | 7.62635e-06 1.16549¢-04 7.62635e-06 7.32149e-04

I —30 165 | 2.04123e+03 2.46424e+02 2.04123e+03 7.08188e+01
o 0'5 323 | 2.43393e-02 2.03212e+00 2.43393e-02 6.57090e-01
' 643 | 1.51689¢-04 3.61768e-03 1.51689¢-04 2.87658e-03

I —100 16;’ - 7.36733e+03 - 1.07883e+02
=05 32 1.38333e-01 9.78043e+00 1.38333e-01 7.43831e-01
' 643 | 1.03698e-03 4.39372e-02 1.03698¢-03 4.01027e-02

TABLE 9. Spectral accuracy. Values of the numerical residual || QF(f2°)||s for the
3D Bose-Einstein non-degenerative case with h = 3, p° = 0.2 and 0 = 0.5 (z =

0.68499).

where, in the former case,

with (20, 77) solving

and, in the latter case,

Mq(v) =mopdo(v—up) + —

1

5 exp
0
“n

(2r10)/

h3 1 |v—u2\2
2T)

=

e

3T,g B5/2(2’2)

1 1

7 33/2(22) ’

402
h exp(v u |

0
277

o 2€9¢(3/2)
)_1’ hB((5/2)
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I Cri u’=0 u’ = u,
rid with rescaling | without rescaling | with rescaling | without rescaling
L —40 163 | 3.74496e-04 2.77192e-02 3.74496e-04 5.36638e-03
o =1.0 323 | 4.12493e-07 5.76615e-06 4.12493e-07 7.85561e-07
' 643 | 6.86211e-12 3.46635e-07 6.86211e-12 1.63647¢-07
I —60 163 1.49832¢-04 7.65264e-02 1.49832¢-04 1.11485e-01
o =1.0 323 | 4.51218e-08 1.52468e-05 4.51218e-08 6.22715e-05
' 643 | 2.65642¢-13 1.00237e-09 2.65642e-13 4.21875e-09
=80 163 | 5.11241e-04 4.59837e-01 5.11241e-04 5.3558be-01
o 1'0 323 | 3.22287e-07 2.73180e-04 3.22287e-07 4.08919e-04
' 643 | 3.36264e-12 2.79570e-09 3.36264e-12 9.71734e-09
L =100 163 | 2.78127¢-03 2.60318e+00 2.78127e-03 1.18199e+-00
-1 O 323 | 5.03331e-06 4.81342e-03 5.03331e-06 1.81840e-03
' 643 | 2.03119e-10 1.93959e-07 2.03099e-10 2.62032e-07

TABLE 10. Spectral accuracy. Values of the numerical residual ||QZ(f£°)]s for
the 3D Bose-Einstein non-degenerative case with h = 3, p° = 02 and o0 = 1 (2 =
0.30354).

e Fermi-Dirac particles: fj converges to the limit state f*° defined as

dy
K, [4med\ 2
0 v h

fOO(V) — ./\/lq(V) 5 if m(),h = ph
x(v), if mgp =0,
5 (10
with Ky =2, K3 = -4/ —, and where
3V 7w
1 1
MQ(V) d 012 ’
hov 1 |v—uh\
-0 €Xp | 570 +1
with (20, 7)) solving
2rT)) 2
ploz hdh;, F% (22) 9
0 _ dy 79 F%,_H (Z]g)
o 2 Fa(z)
2
and
1 2¢; (dv +2)
X(V) = Ridv ]lB(ug,A%)(V) ’ A?l = dv

4.2.1. 2D Fermi-Dirac relazation. We consider a 128 x 128 uniform grid in the velocity domain
[—8,8]2 and a time step At = 0.025. We do not use velocity rescaling by taking (A, w, u) = (0,1, (%)2)
and use a Runge-Kutta 2 SSP time integrator. We consider 2 different values for fO:

e Fermi-Dirac saturation: we set

0

f()’l(v) = 7ﬂB(u0,AO) (V) >

(4.1) =P

with A% = 2v/€0. Even if the initial distribution is not continuous, we ensure that the entropy
0

is always defined since the maximal value of f° is 2o~ (h*)~2. Hence we expect a relaxation

towards a quantum maxwellian M, for any A < i*, and no time variation when i = h* (or

numerical instabilities leading to a non-physical phenomenon).
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r [ 2= (rh*)72
0.1 7.95775
0.2 1.98944
0.5 3.1832e-01
0.8 1.2434e-01
0.9 | 9.82438e-02
0.95| 8.81745e-02
0.99 | 8.11932e-02

1 7.95775e-02

TABLE 11. Values of =2 when the initial distribution is a classical maxwellian.

e (Classical maxwellian distribution: we set

(4.2) P2 v) = poo exp (—‘V_uO’Z> ,

2o 200

with p® = 1, u® = (0,0) and ¢° = 1. In that case, one has h* ~ 3.5449. The motivation
for choosing such initial datum is that it is a regular distribution whose maximal value is
equal to % ~ 0.15915. Let us remind the reader that an entropic solution must satisfy
max(f) < (R*)~2, and that entropy decay is not ensured in the opposite case. Consequently,
we must pay attention to the chosen value for A for running the simulation with respect to
the value of (h*)~2 ~ 0.07958 prescribed by the moments of fO since taking A too large will
break the entropy definition criterion above (even if we do not reach the saturation criterion
h = h*).

Starting with f%! from , we indeed observe a relaxation of the distribution to a quantum
maxwellian for any 7 = rh* with » € {0.1,0.5,0.8,0.9,0.95,0.99} (see Figures 4.31{4.4). We also
notice that the shape of the distribution at time ¢ = 30 is close to an indicator function of the form y
as we consider values of r that are close to 17. We observe that for the particular case r = 0.99, the
entropy increases after a finite time. This is not surprising since the limit state as ¢ — 400 is almost
discontinous, so the Fourier transforms applied to such data induces Gibbs numerical phenomenon.

We then run simulations with r > 1 for investigating the behavior of the distribution when Fermi-
Dirac saturation occurs. For the specific case r = 1 where we expect a time independent solution,
the errors due to the treatment of a non-continous initial datum by Fourier transform make the
approximate solution blow up numerically within a finite time (see Figure . For higher values of

r, we also observe a numerical blow up of the approximate solution within a finite time which seems
47re?
1

h2

to depend on h. This last observation is not surprising since we considered the case where p?l >
where we cannot identify a limit state as ¢ — +oo.

We then start with the classical maxwellian %2 from . In that case, since i* ~ 3.54491 and
max(f%?) ~ 0.15915, the entropy definition criteria may be broken at initial time. Taking h = rh*
with 7 > 0 indicates that it is impossible to define the entropy for r > 0.8 (see Table .

By taking r € {0.1,0.5,0.8}, the entropy is correctly defined at any time since ¢ — max(f(t,-)) is
maximal at time ¢ = 0. In such case, we observe the relaxation of the distribution to the associated
limit state f*° = M, as t — +oo (see Figure .

For the cases r € {0.9,0.95,0.99}, even if the entropy cannot be correctly defined, we observe that
the numerical distribution fj, still converges to the steady state f7° = M, defined with the moments
(p),u), eY) for any r < 1 since the relaxation error || fu(t,) — f7°[|;1 decreases as t — +o0 (see Figure
i),

Finally, the cases r > 1 are similar to the indicator case presented in Figure the entropy
decay is not observed numerically, because of the oscillations induced by the singular equilibria. The
limiting case r = 1 is presented in Figure as well as the time evolution of ¢ — max(fy(¢,-)).
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FIGURE 4.3. Trends to equilibrium. Time evolution of the entropy (left) and
{vy = 0}-profile of the numerical equilibria (right) for the 2D Fermi-Dirac case with
initial datum f%! and h = rh* with r € {0.1,0.5,0.8} (top to bottom).

4.2.2. 3D Fermi-Dirac relaxation. Let us now extend the analysis of the previous paragraph to the
case of 3D Fermi-Dirac particles. Due to the large time cost required for computing the term ijq(Gh),
we restrict our simulations to a 323 grid in velocity. Again, we consider two definitions of the initial
distribution f9:

e Fermi-Dirac saturation: we set

0,3 3p"
(4.3) [ (v) = mﬂB(uO,AO)(V),
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FIGURE 4.4. Trends to equilibrium. Time evolution of the entropy (left) and
{vy = 0}-profile of the numerical equilibria (right) for the 2D Fermi-Dirac case with
initial datum f%! and h = ri* with r» =€ {0.9,0.95,0.99} (top to bottom).

with A% = %. As for the 2D case, we expect a relaxation towards a quantum maxwellian
. -3 3p°
M, for any h < h* with (h*)™° = m
3
e (lassical maxwellian distribution: we set

and no time variation when h = h*.

p° v—u

—— ex —,
(2m00)2 P 20"

O|2

(4.4) ) =
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FIGURE 4.5. Trends to equilibrium. Time evolution of max f;(¢,-) (left) and
{vy = 0}-profile of the numerical blow up profile (right) for the 2D Fermi-Dirac case
with initial datum f%! and A = rh* with r € {1,1.01,1.05} (top to bottom).

with p° = 1, u® = (0,0,0) and ¢° = 1, leading to the threshold value A* ~ 3.60452 and
max(f%) = % ~ 6.349364 x 1072, Since (F*)™® & 2.13529 x 1072, we may break the
2

2n o
definition of the entropy if we consider too large values of h.

Considering the discontinuous initial distribution (|4.3]), we observe the relaxation of the distribu-
tion to a quantum maxwellian for any h = r &* with r € {0.1,0.5,0.8,0.9,0.95}. Indeed, we observe
a decay in time for the entropy and the relaxation error || fy(t, ) — f7°|[,n for these values of h (see

Figures 4.10)).
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FIGURE 4.6. Trends to equilibrium. Time evolution of the entropy (left) and
{vy = 0}-profile of the numerical equilibria (right) for the 2D Fermi-Dirac case with
initial datum f%% and h = rA* with r € {0.1,0.5,0.8} (top to bottom).

Following the methodology proposed for the 2D Fermi-Dirac case, we also tested the case i =
0.99 2* where we observe again a numerical blow-up of the distribution instead of the relaxation
towards a quantum maxwellian. Again, this blow-up is due to Gibbs phenomenon induced by the
treatment of an almost discontinous signal with Fourier transforms. In the present case, this numerical
blow-up is highlighted by the loss of the decay of the entropy (see Figure .

To complete this study, we also investigated the values A = r A* with » > 1 and the conclusions
we made for the 2D Fermi-Dirac can be extended to the 3D case. For the specific case » = 1 where
Fermi-Dirac saturation occurs, the accumulation of local errors due to Gibbs phenomenon quickly
deteriorates the discrete distribution f; so the numerical blow-up appears after a small number of
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FIGURE 4.7. Trends to equilibrium. Time evolution of || f4(t,-) — f5°||, (left) and
{vy = 0}-profile of the numerical equilibria (right) for the 2D Fermi-Dirac case with
initial datum %2 and h = rh* with r € {0.9,0.95,0.99} (top to bottom).

time iterations (see Figure [4.12)). For higher values of r, we observe a numerical blow-up of f; that

is probably due to the fact that we have p?b >

5

3h3

10

™

47‘(’62
3

identify the time behaviour of the distribution (see Figure

3
2

and that, in such case, we cannot

for r = 1.01).

Let us now consider the case of a classical maxwellian f%4. We observe the expected relaxation

to the corresponding steady state for A = ri* for r € {0.1,0.5,0.8,0.9} (see Figures and [4.15)).
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FIGURE 4.8. Trends to equilibrium. Time evolution of max f,(¢,-) (left) and
{vy = 0}-profile of the numerical equilibrium (right) for the 2D Fermi-Dirac case
with initial datum f%? and A = k*.

Note that, for the latter case, even if the entropy cannot be defined since max(f%) > h~3, we still
have the relaxation of the distribution towards to expected steady state.
Due to the coarse velocity mesh, taking higher values of r leads to a numerical blow-up, even if

h < h* (see Figure |4.16)).

Finally, taking » > 1 leads to a numerical blow-up of the distribution as for the 2D case with
similar conditions on A (see Figure [4.17)).

4.2.3. 3D Bose-Einstein relazation. We now investigate the relaxation in time of the discrete dis-
tribution f; to the quantum M, or the condensate distribution M, according to the value h with
respect to

L (ame)\ ! g3/2)00
W\ ) R
As for the Fermi-Dirac cases, we consider a 323 velocity grid on the domain [-L,L]? = [-6,6]3

and an initial distribution defined as or . This gives us the thresholds A* ~ 3.97285, and
h* =~ 4.81755, respectively. We expect that the computed discrete distribution f;, relaxes to M,
when i < h* and to ./\A/qu when i > h* (i.e. a blow-up of the distribution localized in u).

The computational limitations we noticed in the previous paragraph for handling 3D quantum
cases are more restrictive here than for the 3D Fermi-Dirac case. Indeed, if A — (h*)~, the 323
velocity grid we considered is not sufficient to catch the stiff gradients of the limit state f°°. We can
see in Figure that for A = rh* with r € {0.1,0.5,0.8} we can reach successfully the expected
limit state as the entropy (and the numerical relaxation error) decrease.

However, for higher values of r € (0.8,1), the coarseness of the velocity grid deteriorates the
distribution profile after a small number of time iterations, even if i < h* (see Figure [4.19)).

Surprisingly, considering i > h*, i.e. a Bose-Einstein condensation and the associated singular
limit state Mg, leads to numerical results that are less deteriorated than for r € {0.9,0.95} (see
Figures . We observe the expected blow-up in time of the discrete distribution fj but it occurs
after a simulation time 7™ that seems to decreases as long as i becomes large. This phenomenon
may be due to the fact that, in such case, the stiffness of the distribution is due to the Dirac mass
and the singular quantum maxwellian in the definition of M,, whereas in the case where i — (h*)7,
the stiffness of f°° is only due to the quantum maxwellian M, that is almost singular in ug.

All these observations are confirmed when we use the classical maxwellian M, as initial datum
(Figures omitted for redundancy).
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FIGURE 4.9. Trends to equilibrium. Time evolution of the entropy (left) and
profile of f;(10,(-,0,0)) (right) for the 3D Fermi-Dirac case with initial datum f%3
and h = rh* with r € {0.1,0.5,0.8} (top to bottom).

5. CONCLUSION AND PERSPECTIVES

In this work, we illustrated the efficiency and accuracy of the Fast Spectral algorithm from [11]
along with the rescaling velocity method from [I5] for approximating the solutions to the Boltzmann-
Nordheim equation. In particular, we showed that this numerical method is able to reproduce
very accurately some of the main mathematical features of this equation, including the convergence
towards singular steady states (namely the phenomena of Fermi-Dirac saturation and Bose-Einstein
condensation). As a consequence, we believe that this method is perfectly suited to study some of
the still unknown behavior of this model, in particular the rate of convergence towards the (singular)
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FIGURE 4.10. Trends to equilibrium. Time evolution of the entropy (left) and
profile of f5,(10,(+,0,0)) (right) for the 3D Fermi-Dirac case with initial datum f°3
and A = ri* with » € {0.9,0.95} (top to bottom).
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FIGURE 4.11. Trends to equilibrium. Time evolution of the entropy (left) and
profile of £4(9.69, (-,0,0)) (right) for the 3D Fermi-Dirac case with initial datum f%3
and A = 0.997*.

3D Bose-Einstein condensates, that was conjectured in [I0]. Unfortunately, the accuracy needed for
computing such singular solution in 3D is still unavailable in our approach. This motivates us for
studying ways to make our simulation code faster in order to consider finer meshes and complete the
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FIGURE 4.12. Trends to equilibrium. Time evolution of max f;(¢,-) (left) and
profile of f4(7,(+,0,0)) (right) for the 3D Fermi-Dirac case with initial datum f°3
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FIGURE 4.13. Trends to equilibrium. Time evolution of max f;(¢,-) (left) and
profile of f;(6.74, (+,0,0)) (right) for the 3D Fermi-Dirac case with initial datum f°3
and h = 1.01~*.

classification of relaxation phenomena. This will be the main topic of the upcoming followup [27] of
our work.

APPENDIX A. FAST EVALUATION OF THE COLLISION KERNEL

Let us briefly present how we practically compute the collision operator, by focusing on its most
computationally expensive part ijq(Gh, Gh, Gp).
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FIGURE 4.14. Trends to equilibrium. Time evolution of the entropy (left) and
profile of f5,(10,(-,0,0)) (right) for the 3D Fermi-Dirac case with initial datum fO*
and A = ri* with » € {0.1,0.2,0.5,0.8} (top to bottom).
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FIGURE 4.15. Trends to equilibrium. Time evolution of ||f4(t, ) — f°||n (left)
and profile of f3,(10, (-,0,0)) (right) for the 3D Fermi-Dirac case with initial datum
f%* and h = 0.9h*.
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FIGURE 4.16. Trends to equilibrium. Time evolution of max f;(¢,-) (left) and
{vy = v, = 0}-blowup profile of f; (right) for the 3D Fermi-Dirac case with initial
datum f%4 and A = rA* with r € {0.95,0.99}(top to bottom).
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FIGURE 4.18. Trends to equilibrium. Time evolution of the entropy (left) and
profile of f;,(10, (+,0,0)) (right) for the 3D Bose-Einstein case with initial datum f°3
and h = rh* with r € {0.1,0.5,0.8} (top to bottom).
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where gg ), ; and g Ropj are obtained with inverse Fourier transform of gr,; and g Ropj respectively.
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