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Continuous reformulation of binary variables,
revisited?

Leo Liberti

LIX CNRS , École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau,
France liberti@lix.polytechnique.fr

Abstract. We discuss a class of tightly feasible MILP for which branch-
and-bound is ineffective. We consider its hardness, evaluate the proba-
bility that randomly generated instances are feasible, and introduce a
heuristic solution method based on the old idea of reformulating binary
variables to continuous while introducing a linear complementarity con-
straint. We show the extent of the computational advantage, under a
time limit, of our heuristic with respect to a state-of-the-art branch-and-
bound implementation.
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1 Introduction

In this paper we consider the following Mixed-Integer Linear Program (MILP):

min
∑
h≤p

yh

Qy = x
Ax ≤ b

xL ≤ x ≤ xU
y ∈ {0, 1}p,


(1)

where Q = (qjh) is an n × p real matrix, A = (aij) is an m × n real matrix,
b ∈ Rm, x is a vector of n continuous decision variables, and y is a vector of p
binary decision variables.

Eq. (1) was brought to my attention by a colleague, as an interesting “core”
of a much more complicated formulation concerning a Hydro Unit Commitment
(HUC) problem arising at Électricité de France (EDF) [6]. Although Eq. (1)
is not directly related to HUC, my colleague and her co-workers at EDF have
identified Eq. (1) as the source of frequent feasibility issues they experienced
while solving their HUC, which they discuss in [21], but along different lines
than the present paper.

? This work was partially supported by: the PGMO grant “Projet 2016-1751H”; a
Siebel Energy Institute Seed Grant; the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement n.
764759 ETN “MINOA”.
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The binary variables y in Eq. (1) model some on/off controls along a dis-
cretized time line. The controls influence (through the equations Qy = x) some
physical quantities x that are constrained to lie in [xL, xU ]. The decision maker
seeks the smallest number of controls that need to be switched on in order for the
physical constraints on x to be feasible. According to [21], however, it is difficult
to satisfy the constraints of Eq. (1), at least in the EDF instances. In particular,
the authors detail the efforts of solving Eq. (1) with common MILP solution tech-
niques, such as the Branch-and-Bound (BB) solver CPLEX [12], which would
normally be considered the best solution method for such problems.

At first sight, the MILP in Eq. (1) may not strike the reader as a particularly
“nasty” problem, insofar as structure goes. The infeasibility issues arise because
the instances solved at EDF enforce very tight bounds [xL, xU ] on x— sometimes
requiring that xL = xU (which occurs in run-of-the-river reservoirs). Note that
the constraints Ax ≤ b in Eq. (1) are supposed to encode “the rest of the
problem” (which is quite extensive, and may involve more decision variables
than just x). In a private communication [6], I was told that the infeasibilities
were mostly related to the problem in Eq. (2) below, obtained as a relaxation of
Eq. (1) by shedding the technical constraints. Accordingly, Eq. (2) will be our
problem of interest in the rest of this paper.

min
∑
h≤p

yh

Qy = x
xL ≤ x ≤ xU

y ∈ {0, 1}p.

 (2)

Although in this paper we focus exclusively on feasibility, the objective function
is discussed in [23]. The choice of limiting our attention to Eq. (2) is also due
to confidentiality issues: the EDF instances for the original problem could not
be made available to me. I therefore worked with instances generated randomly
from Eq. (2).

This paper makes two contributions: a theoretical one about the probability
of generating feasible/infeasible random instances of the problem in Eq. (2); and
a computational one about a heuristic method for solving it.

From the methodological point of view, we leverage an observation made in
[7] about Linear Complementarity Programming (LCP) reformulations of tightly
constrained MILPs in binary variables: they often (heuristically) lead to exact,
or almost exact, solutions. We discuss the computational and empirical hardness
of Eq. (2) and present some solution methodologies. We focus on a specific one
based on an LCP reformulation, which we also test computationally.

The rest of this paper is organized as follows. Sect. 2 provides a very short
literature review. In Sect. 3 we discuss the computational complexity of our
problem. In Sect. 4 we consider the difficulty of the problem in terms of the
probability of a random instance being feasible in function of the bounds [xL, xU ].
In Sect. 5 we discuss some unusual solution methods that are not based on BB.
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2 Short literature review

As mentioned above, the original inspiration for this paper was the HUC prob-
lem, although the paper itself is not about HUC (see [23] for more information
about HUC). This paper is actually about Eq. (2), specifically in the case where
‖xL−xU‖2 is small, or even zero, and the consequent infeasibility issues observed
in popular MILP solvers even when instances are feasibile. As already noted, the
feasibility issues we study in this paper (quite independently of HUC) have been
addressed within the HUC context in [21, Sect. 5], mostly through bound con-
straint relaxation by means of variables whose sum is minimized.

When xL = xU , and without an objective function, Eq. (2) reduces to Eq. (3)
(see below), which is a well-known case of difficult Binary Linear Program (BLP),
i.e. the so-called market split [5] (a.k.a. “market share”). In the literature, pure
feasibility BLPs such as Eq. (3) have been solved by means of a basis reduction
algorithm proposed in [1], which also targets its “natural” optimization version
minimizing a sum of slack variables added to the equations. Solving Eq. (3) with
an arbitrary objective function is outside of the scope of the basis reduction
algorithm of [2] (used in [1]), although of course bisection search of the feasibility
algorithm of [2] is always available.

We noted that our purpose in this paper is to solve Eq. (2) by means of an
LCP reformulation. This is more unusual than the converse (i.e. solving LCPs
by means of a MILP reformulations), since state-of-the-art solver technology
is better for MILP than for nonconvex Nonlinear Programming (NLP), which
includes LCP. A MILP reformulation of the LCP was presented in [19, Thm. 3.1].
This reformulation has been used many times in the literature, and is now part
of the Mathematical Programming (MP) “folklore”.

Reformulating MILPs to LCPs is more unusual but of course not unheard
of: as already stated, we took our methodological inspiration from [7], which
reformulates a binary variable vector y ∈ {0, 1}p exactly by means of the addition
of a nonlinear constraint

∑
h≤p yh(1− yh) = 0 to the formulation. This is one of

the oldest tricks in MP: to name a few citations, [20,18] add
∑
h≤p yh(1− yh) as

a penalty to the objective, while [17] proposes an alternating heuristic based on∑
h≤p yh(1− yh) ≤ δ, where δ is reduced at each iteration.

3 Hardness

Just how hard is the problem in Eq. (2)? We consider the following set of linear
equations in binary variables y ∈ {0, 1}p:

∀j ≤ n
∑
h≤p

qjhyh = x̄j , (3)

where x̄ = xL = xU . We assume Q, x̄ are rational. We stress that fixing the
variables x to a fixed constant x̄ appears to be an important practical case [6]
in the motivating application.
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First, we consider the case n = 1, i.e. (3) consists of just one equation.
Then Eq. (3) is a rational equivalent of the Subset Sum problem [9, §SP13],
with instance given by (Q, x̄). The fact that Q, x̄ are rational obviously does
not change the problem: it suffices to rescale all data by the minimum common
multiple of all the denominators. This problem is weakly NP-complete: it can be
solved in pseudopolynomial time by a dynamic programming algorithm [9]. The
Wikipedia entry for Subset Sum also states that the difficulty of solving this
problem depends on the number of variables p and the number of bits necessary
to encode Q: if either is fixed, the problem becomes tractable. It is well known
that Integer Linear Programs (ILP) with a fixed number of variables p can be
solved in polynomial time [15].

In this paper, we are interested in the case where p is not fixed, whereas
n might be fixed or not. The case with n fixed is relevant for the motivating
application, as the operational points xj on which the constraints xj ∈ [xLj , x

U
j ]

are verified could be given by the (fixed) physical properties of the considered
hydro valley. We are not aware of results in ILP complexity with a fixed number
of constraints but non-fixed number of variables, however.

If neither n nor p is fixed, we note that there is a natural reduction from
sat to a version of Eq. (3) where Q has entries in {−1, 0, 1}, which shows that
solving Eq. (3) is strongly NP-complete (by inclusion with respect to Q). Again
by inclusion (with respect to xL, xU ), Eq. (2) is also NP-complete.

Eq. (2) is one of those cases when complexity proofs by inclusion are not
quite satisfactory. The empirical hardness of solving Eq. (2) obviously decreases
as the bounds [xL, xU ] grow farther apart (if xL = −∞ and xU =∞ any solution
of Eq. (2) is trivially feasible). A more convincing complexity proof should take
the width parameter W = maxj≤n(xUj − xLj ) into account, too. In Sect. 4 below
we attempt to provide a more appropriate hardness measure in terms of the
probability of achieving feasibility in a randomly generated instance.

4 Likelihood of approximate feasibility

In this section we consider the probability that uniformly sampled instances of
Eq. (3) and Eq. (2) are (almost) feasible.

4.1 The Irwin-Hall distribution

Consider Eq. (3). For each j ≤ n and h ≤ p we assume that qjh is sampled from

a random variable Q̃jh uniformly distributed in [0, 1]. For a given y ∈ {0, 1}p,
let

Q̂j =
∑
h≤p
yh=1

Q̃jh.

We intend to derive an expression, which depends on xL and xU , of the prob-
ability that a uniformly sampled instance of Eq. (2) is feasible. To do that, we
first look at the case x̄ = xL = xU and tackle instances where the cardinality of
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the support of y is fixed to a given integer K, i.e.
∑
h≤p yh = K. For all j ≤ n,

the corresponding random variable is

Q̂Kj =
∑
h≤p∑
h yh=K

Q̃jh,

i.e. the sum of K i.i.d. uniform random variables on [0, 1].
For any given j ≤ n, the distribution of Q̂Kj is known as the Irwin-Hall

distribution [11]. Its mean is K/2 and its variance is K/12. It can also be shown
that for K > 1 the probability distribution function (PDF) of Q̂Kj attains a
strict (local) maximum at the mean K/2. The cumulative distribution function
(CDF) is

FK(x) =
1

K!

bxc∑
k=0

(−1)k
(
K

k

)
(x− k)K . (4)

By Eq. (4), for any j ≤ n the probability of Q̂Kj taking values between xLj and

xUj is FK(xUj )−FK(xLj ), a quantity we shall denote by γKj (xL, xU ), or γKj when
no ambiguity can ensue.

4.2 Feasibility for n = 1

If we fix n = 1, understanding the distribution of Q̂K1 would allow us to glance
at some uniformly generated input data, (Q, x̄), and get an idea of the likelihood
of a given binary vector y with K nonzeroes yielding the given value x̄1.

We first want to make a qualitative statement to the effect that instances
where [xL1 , x

U
1 ] contains the mean K/2 are likely to be easier than those that do

not.

Lemma 4.1. There exists a value 0 < r < K such that, from r units away from
the mean, the tails of the probability density function (PDF) of Q̂K1 converge to
zero exponentially fast.

Proof. First, we argue about the right tail. Trivially, since Q̃1h is uniformly
sampled in [0, 1] for each h ≤ p, we have P(Q̂K1 ≥ K) = 0. We now have to argue
the negative exponential convergence in some sub-range of [K/2,K] including
the right end-point K. By [14, Thm. 7.5], we have

P
(
Q̂K≥

K

2
+ r

)
≤ e−K2 g( 2r

K ) (5)

for any r > 0, where g(u) = (1 + u) ln(1 + u)− u for u ≥ 0. The exponent in the
RHS of Eq. (5) is negative as long as:(

1 +
2r

K

)
ln

(
1 +

2r

K

)
>

2r

K
.
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Trivially, we have that, for all v > e, v ln v > v. So, if 1 + 2r
K > e, it follows that

(1 + 2r/K) ln(1 + 2r/K) > 1 + 2r/K, which is obviously strictly greater than
2r/K. We therefore need r > K(e− 1)/2 for the statement to hold, as claimed.

The argument for the left tail follows by symmetry of the PDF, which can
be established by considering the distribution of the sum of K uniform random
variables over [−1, 0]. ut

By Lemma 4.1, the measure of the PDF of Q̂K1 is concentrated around K
2 . This

makes it reasonable to expect that instances will be easier as x̄ moves towards
K
2 .

Quantitative statements about the probability of generating feasibile in-
stances can be obtained for given values ofK and xL1 , x

U
1 by evaluating γK1 (xL, xU ).

4.3 Feasibility in the general case

We now move back to the general case with n > 1 and bounds xL, xU ∈ Rn on
x as in Eq. (2). Recall that for all j ≤ n we defined

P(∃y ∈ {0, 1}p Q̂Kj ∈ [xLj , x
U
j ] | 1y = K) = γKj . (6)

Proposition 4.2. The probability that a uniformly sampled instance of Eq. (2)
is feasible is:

P
(
∃y ∈ {0, 1}p s.t. Q̃y ∈ [xL, xU ]

)
≤ 1

2p

∑
K≤p

(
p

K

)(
1−

∏
j≤n

(1− γKj )

)
. (7)

Proof. The probability that there exists y with support cardinality K that sat-
isfies all of the constraints is

P(∃y ∈ {0, 1}p Q̂K ∈ [xL, xU ] | 1y = K) =

= 1 − P(∀y ∈ {0, 1}p Q̂K 6∈ [xL, xU ] | 1y = K) =

= 1 − P(∀y ∈ {0, 1}p ∃j ≤ n Q̂Kj 6∈ [xLj , x
U
j ] | 1y = K) ≤

≤ 1 − P(∃j ≤ n ∀y ∈ {0, 1}p Q̂Kj 6∈ [xLj , x
U
j ] | 1y = K) ≤

≤ 1 − P(∀j ≤ n ∀y ∈ {0, 1}p Q̂Kj 6∈ [xLj , x
U
j ] | 1y = K) =

= 1 − P
( ∧
j≤n

∀y ∈ {0, 1}p Q̂Kj 6∈ [xLj , x
U
j ] | 1y = K

)
=

= 1 −
∏
j≤n

P(∀y ∈ {0, 1}p Q̂Kj 6∈ [xLj , x
U
j ] | 1y = K) =

= 1 −
∏
j≤n

(1− P(¬∀y ∈ {0, 1}p Q̂Kj 6∈ [xLj , x
U
j ] | 1y = K)) =

= 1 −
∏
j≤n

(1− P(∃y ∈ {0, 1}p Q̂Kj ∈ [xLj , x
U
j ] | 1y = K)) =

= 1 −
∏
j≤n

(1− γKj ),
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where the last equality follows by Eq. (6). We can take the union over all pos-
sible values of K ∈ {0, . . . p} by weighing each probability by the probability
that a uniformly sampled binary vector y should have support cardinality K,
i.e.

(
p
K

)
/2p, which yields Eq. (7), as claimed. ut

For example, if xL = 0 and xU = p, then obviously γK(j) = 1 for each K ≤ p
and j ≤ n, which yields 1

2p

∑
K≤p

(
p
k

)
= 1, as expected. Setting different values of

xL, xU , Prop. 4.2 allows the computation of the probability of feasibility of the
corresponding instance.

5 Solution methods

Since Eq. (2) is a MILP, the solution method of choice is the Branch-and-Bound,
implemented for example using a state-of-the-art solver such as CPLEX [12]. As
mentioned in Sect. 1, however, given the difficulty in finding feasible solutions,
CPLEX can rarely prune by bound, which means that it shows the brunt of its
exponential behaviour. In this section we discuss three heuristic methods, and
argue that the method in Sect. 5.1 is the most promising.

5.1 Relaxation of integrality constraints

Every BLP

min{c>y | By ≤ β ∧ y ∈ {0, 1}p} (8)

can be exactly reformulated to an LCP by replacing the integrality constraints
y ∈ {0, 1}p by the following:

0 ≤ y ≤ 1 (9)

z = 1− y (10)∑
h≤p

yhzh = 0. (11)

By Eq. (9)-(10) we have 0 ≤ z ≤ 1, which implies that every product in Eq. (11)
is non-negative, which in turn means that the sum is non-negative. Thus, the
sum is zero if and only if every term is zero, so either yh = 0 or zh = 1− yh = 0,
i.e. yh ∈ {0, 1} for each h ≤ p. An equivalent NLP removes the z variables
altogether:

min
{
c>y | By ≤ β ∧

∑
h≤p

yh(1− yh) = 0
}
. (12)

This provides the following empirically efficient heuristic algorithm for our
problem P in Eq. (2):

1. consider the continuous relaxation P̄ of P ;
2. solve P̄ in polynomial time, e.g. by the interior point method;
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3. use the solution x′, y′ as a starting point for a local NLP solver on the
problem

min

{∑
h≤p

yh | Qy = x ∧ x ∈ [xL, xU ] ∧
∑
h≤p

yh(1− yh) = 0

}
. (13)

We remark that only Step 3 is crucial: randomly sampling the starting point is
also a valid choice, as evidenced by the reasonable success of Multi-Start (MS)
methods for global optimization [16].

In practice, we employ a slack variable s ≥ 0 on the linear complementarity
constraint Eq. (11) in Eq. (13):

min
∑
h≤p

yh + ηs

∀j ≤ n
∑
h≤p

qjhyh = x∑
h≤p

yh(1− yh) = s

x ∈ [xL, xU ]
s ≥ 0,


(14)

where η > 0 is a scaling coefficient chosen empirically. The interest of Eq. (14)
is that it always provides a solution: even when s > 0 (and hence Eq. (11) is
not satisfied), we can always hope that the (fractional) y variables will be close
enough to integrality that a rounding will yield a feasible solution. As shown in
Sect. 6, we consider the solution (x∗, y∗) where y∗ is obtained by rounding the
y variables, and x∗ are re-computed as Qy∗ according to Eq. (3).

5.2 The case of fixed n

When n is fixed, we can exploit Barvinok’s polynomial-time algorithm for sys-
tems with a fixed number of homogeneous quadratic equations [3]. We con-
sider the case where x̄ = xL = xU (Eq. (3)), together with the constraint∑
h yh(yh−1) = 0, which we homogenize by adding a new variable z and noting

that y2h = yh for each h ≤ p (since y ∈ {0, 1}p):

∀j ≤ n
∑
h≤p

qjhy
2
h = x̄jz

2 (15)

∑
h≤p

y2h =
∑
h≤p

yhz. (16)

We remark that all variables y, z are now continuous and unconstrained, but if
we achieve a feasible solution with y ≥ 0 then Eq. (16) will necessarily imply
y ∈ {0, 1} and z = 1. We deal with the objective function min

∑
h yh by replacing

each yh with y2h, to obtain

min
{∑
h≤p

y2h | Eq. (15)-(16)
}
,
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which we can solve by a bisection method on the objective function value using
Barvinok’s algorithm as a feasibility oracle. This requires the homogenization of
the equation

∑
h y

2
h = c, where c is a constant varied by the bisection method.

The system passed to Barvinok’s algorithm is therefore∑
h≤p

y2h = cz2 ∧ Eq. (15)-(16).

After each call to Barvinok’s algorithm, the condition y ≥ 0 must be verified. If
it does not hold, then the heuristic stops inconclusively. Otherwise it identifies
the optimum of Eq. (2) up to a given ε > 0 in time O(log(p/ε)pn), polynomial
when n is fixed.

We chose not to implement this heuristic, for three reasons: (i) as given in
[3], Barvinok’s algorithm determines whether system of homogeneous quadratic
equations have a common root or not, but will not find the root; (ii) it might
not be very efficient in case n is fixed but not extremely small; (iii) the derived
heuristic does not appear to provide any useful information in case of failure.

5.3 Relaxing the [0, 1] bounds

We again assume x̄ = xL = xU as in Eq. (3). We also assume that Q and x̄ have
integer components, and relax the y variables to take any integer value rather
than just binary.

This setting opens up algorithmic opportunities from the field of linear Dio-
phantine equations. There exist appropriately sized unimodular matrices L,R
such that LQR is a diagonal matrix D where each nonzero diagonal entry di-
vides the next nonzero diagonal entry [13, Thm. 1]. The system Qy = x̄ (with
y ∈ Zp) can therefore be decomposed into Dz = Lx̄ and y = Rz. Now, assuming
one can find L,R, solving Dz = Lx̄ is easy since D is diagonal, and then y can
be computed from Rz. There are algorithms for computing L,R that work in a
cubic number of steps in function of n, p [4].

If we step back to the specificities of the real application, Q consists of floating
point numbers given to a precision of at least 10−6: rescaling would likely yield
large integer coefficients, which would probably make the application of solution
algorithms for linear Diophantine equations unwieldy. On the other hand, a
systematic treatment of classical results about linear Diophantine equations with
rational coefficients and unbounded variables is given in [22, Ch. 4]. Imposing
bounds on the variables, however, makes the problem hard again [2]. We therefore
decided not to implement this method.

6 Computational results

We implemented and tested a MS heuristic defined as follows:

1. sample a starting point x′ ∈ Rn, y′ ∈ {0, 1}p;
2. deploy a local NLP solver from the initial point (x′, y′) on Eq. (14), get y∗;
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3. round the solution y∗ and compute x∗ = Qy∗;

4. if the result (x∗, y∗) has a better objective function value than the incumbent
(i.e. the best result found so far), update it;

5. repeat until a termination condition holds.

Our tests aim at verifying whether the above algorithm is competitive compared
with a BB-based solver. To this goal, we randomly generated two sets of instances
I1, I2 of Eq. (2), depending on a vector x̄ ∈ Rn, over the following parameters:

– n ∈ {1, 2, 5, 10, 50, 99};
– p ∈ {10, 50, 100, 500, 999};
– all components of Q uniformly sampled from either [0, 1] (if distr = 0) or

[−1, 1] (if distr = 1);

– xL = x̄ − θ and xU = x̄ + θ for θ ∈ {0, 0.05, 0.1}, and x̄ chosen as detailed
below depending on I1 or I2.

The first set I1 contains instances that are feasible by construction. This is
achieved by defining x̄ as follows:

1. sample y ∈ {0, 1}p from p Bernoulli distributions with probability 1
2 (which

implies that the average value of K is p
2 );

2. for all j ≤ n compute x̄j =
∑
h≤pQjhyh.

The second set I2 contains instances that are infeasible with some probability:
this is achieved by sampling each component of x̄ from a uniform distribution
on [0,Q] (if distr = 0) or [−Q,Q] (if distr = 1), where Q =

∑
h≤p |Qjh|.

We attempted to compute the probability of infeasibility of the instances in
I2 by means of Prop. 4.2, but our naive implementation (based on the AMPL
modelling language [8]) was only able to compute the probability of the smallest
instances in the set, i.e. those with p = 10 (for any n, distr, θ). Those instances
with θ = 0 obviously yield zero probability by definition of γKj . The rest are
reported in Table 1.

We then solved the instances in I1, I2 by running the BB solver CPLEX
12.6.3 [12] and the MS heuristic above on a 4-CPU Intel Xeon X3220 at 2.4GHz
with 8GB RAM running Linux. We chose SNOPT 7.2 as local NLP solver [10]
in the MS heuristic. We gave CPLEX the default parameters but set the time
limit to 180s of “wall-clock” time (we recall that CPLEX is a parallel solver by
default, so the CPU time measured in the experiments is not limited by 180s
but by the actual user CPU time spent, as reported by the operating system).

The performance of BB solvers on possibly infeasible instances is severely
impaired by a lack of feasible solution because no node is ever pruned by bound;
the overall effect is more similar to a complete enumeration than to the typically
“smart” enumeration carried out by such solvers. To avoid penalizing CPLEX
for this reason, we employed a reformulation of Eq. (2) which shifts all the
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n distr θ probability
1 0 0.05 0.0000000
1 0 0.10 0.0000000
1 1 0.05 0.0000000
1 1 0.10 0.0002403
2 0 0.05 0.0002937
2 0 0.10 0.0033951
2 1 0.05 0.0001573
2 1 0.10 0.0001573
5 0 0.05 0.0024276
5 0 0.10 0.0044601
5 1 0.05 0.0020171
5 1 0.10 0.0007822

10 0 0.05 0.0030972
10 0 0.10 0.0060456
10 1 0.05 0.0015705
10 1 0.10 0.0038300
50 0 0.05 0.0034620
50 0 0.10 0.0070301
50 1 0.05 0.0023307
50 1 0.10 0.0034504
99 0 0.05 0.0038649
99 0 0.10 0.0069426
99 1 0.05 0.0014419
99 1 0.10 0.0029586

average 0.0024981

Table 1. The smallest (probably) “infeasible instances” of set I2 have low probability
of being feasible (computed using Prop. 4.2).

infeasibility into slack variables:

min
x,y,s

∑
h≤p

yh +
∑
j≤n

(s+j + s−j )

∀j ≤ n
∑
h≤p

qjhyh = xj + s+j − s
−
j

xL ≤ x ≤ xU
s+, s− ≥ 0
y ∈ {0, 1}p,


(17)

and carried out the same modification on Eq. (14).
The only possible configuration for the MS heuristic is the maximum allowed

number T of iterations, which we set to p (the same as the number of binary
variables) in order to have the effort depend on the size of the instance.

The results for the feasible instance set I1 are presented in Table 2. We
report the instance details (n, p, the distribution type distr, the [xL, xU ] range
half-width θ), whether each method found a feasible solution (feas ∈ {0, 1}), the
sum of the infeasibilities w.r.t. Eq. (3) conerr, computed as

conerr =
∑
j≤n

(
max(0, x∗j − xUj ) + max(0, xLj − x∗j )

)
,

and the CPU times (CPU). An instance is classifed as feasible (feas = 1) if
conerr < 10−8 (with also, obviously, y∗ ∈ {0, 1}p).



12 Leo Liberti

feas conerr CPU
n p distr θ BB MS BB MS BB MS

1 10 0 0 0 0 2.32407 0.061345 0.01 0.04
1 10 0 0.05 0 0 1.578351 0.161354 0.01 0.04
1 10 0 0.1 0 1 2.700129 0 0.01 0.04
1 10 1 0 0 0 1.261148 0.064085 0.01 0.04
1 10 1 0.05 0 0 1.211148 0.018378 0.01 0.04
1 10 1 0.1 0 1 1.161148 0 0.01 0.03
1 50 0 0 0 0 11.349767 0.002907 0.02 0.24
1 50 0 0.05 0 1 13.913338 0 0.07 0.19
1 50 0 0.1 0 1 13.863338 0 0.1 0.16
1 50 1 0 0 0 2.790113 2.383729 0.02 0.24
1 50 1 0.05 0 0 2.740113 2.740113 0.03 0.24
1 50 1 0.1 0 1 1.16734 0 0.01 0.26
1 100 0 0 0 0 28.007851 0.016543 0.02 0.54
1 100 0 0.05 0 0 30.865685 0.048186 0.02 0.41
1 100 0 0.1 0 0 19.610965 0.0284 0.02 0.66
1 100 1 0 0 0 8.57807 0.131922 0.02 0.63
1 100 1 0.05 0 0 3.120869 3.076816 0.02 0.63
1 100 1 0.1 0 1 3.070869 0 0.02 0.62
1 500 0 0 0 0 123.493014 0.00468 0.04 14.86
1 500 0 0.05 0 1 123.443014 0 0.03 16.78
1 500 0 0.1 0 1 119.406109 0 0.05 36.97
1 500 1 0 0 0 12.720343 2.896958 0.02 31.37
1 500 1 0.05 0 1 7.066126 0 0.02 30.91
1 500 1 0.1 0 1 7.016126 0 0.02 31
1 999 0 0 0 0 247.036395 0.046231 0.04 100.45
1 999 0 0.05 0 1 255.617392 0 0.04 21.53
1 999 0 0.1 0 1 234.886437 0 0.04 175.02
1 999 1 0 0 0 0.713901 0.006678 0.03 213.72
1 999 1 0.05 0 0 19.365855 0.033537 0.03 247.51
1 999 1 0.1 0 1 7.904365 0 0.03 229.83
2 10 0 0 0 0 0.351547 0.359571 0.03 0.04
2 10 0 0.05 0 0 0.618234 0.254019 0.04 0.03
2 10 0 0.1 0 0 0.518234 0.254314 0.15 0.03
2 10 1 0 0 0 1.081735 0.204043 0.02 0.03
2 10 1 0.05 0 0 0.303347 0.137929 0.1 0.03
2 10 1 0.1 0 0 0.203347 0.163569 0.14 0.05
2 50 0 0 0 0 1.484605 0.05694 0.04 0.13
2 50 0 0.05 0 0 0.391349 0.040117 0.04 0.14
2 50 0 0.1 0 0 0.072481 0.146071 0.16 0.16
2 50 1 0 0 0 0.693182 0.202292 0.02 0.19
2 50 1 0.05 0 0 0.593182 0.0489 0.03 0.2
2 50 1 0.1 0 0 0.493182 0.065863 0.02 0.2
2 100 0 0 0 0 0.323233 0.345594 0.04 0.33
2 100 0 0.05 0 0 0.682022 0.012533 0.24 0.48
2 100 0 0.1 0 1 0.582022 0 0.09 0.47
2 100 1 0 0 0 5.287322 0.130741 0.26 0.5
2 100 1 0.05 0 1 5.187322 0 0.2 0.51
2 100 1 0.1 0 0 0.289258 0.088442 0.16 0.49
2 500 0 0 0 0 0.752074 0.155689 0.73 4.84
2 500 0 0.05 0 0 0.042095 0.071255 0.07 25.27
2 500 0 0.1 1 0 0 0.022983 0.24 11.27
2 500 1 0 0 0 5.937512 0.099361 0.13 33.01
2 500 1 0.05 0 0 5.858057 0.08288 0.17 33.2
2 500 1 0.1 0 0 4.42073 0.037246 0.11 33.57
2 999 0 0 0 0 5.9E-05 0.088107 410.11 184.17
2 999 0 0.05 0 1 0.935847 0 406.56 27.81
2 999 0 0.1 0 1 0.835847 0 410.47 27.44
2 999 1 0 0 0 0.000609 0.065714 2.09 189.23
2 999 1 0.05 0 0 13.992941 0.01872 0.13 220.97
2 999 1 0.1 0 1 4.289912 0 0.28 251.13
5 10 0 0 0 0 0.869037 0.706022 0.19 0.03
5 10 0 0.05 0 0 0.650297 0.680799 0.18 0.03
5 10 0 0.1 0 0 0.921514 0.148645 0.12 0.03
5 10 1 0 0 0 2.468394 1.775934 0.02 0.03
5 10 1 0.05 0 0 2.218394 1.525934 0.02 0.03
5 10 1 0.1 0 0 1.998247 1.251902 0.02 0.03
5 50 0 0 0 0 0.287349 0.960493 0.5 0.19
5 50 0 0.05 0 0 0.755586 0.432848 3.23 0.22
5 50 0 0.1 0 0 0.538463 0.148599 0.72 0.21
5 50 1 0 0 0 1.183309 0.377512 0.21 0.22
5 50 1 0.05 0 0 1.155268 0.347119 0.29 0.22
5 50 1 0.1 0 0 1.005268 0.415876 0.28 0.22
5 100 0 0 0 0 0.051365 0.445371 19 0.47
5 100 0 0.05 1 0 0 0.246848 71.8 0.5
5 100 0 0.1 0 0 0.951273 0.171545 149.01 0.48
5 100 1 0 0 0 1.198647 0.440855 0.31 0.6
5 100 1 0.05 0 0 1.036505 0.414626 0.54 0.64
5 100 1 0.1 0 0 0.61102 0.118224 0.16 0.64
5 500 0 0 0 0 0.057685 0.284417 436.47 7.96
5 500 0 0.05 0 0 0.881686 0.092001 427.44 16.16
5 500 0 0.1 1 1 0 0 427.28 8.45
5 500 1 0 0 0 0.58195 0.378982 2.79 32.87
5 500 1 0.05 0 0 0.085931 0.160789 2.37 36.13
5 500 1 0.1 0 0 0.928858 0.001169 1.28 33.43
5 999 0 0 0 0 0.033254 0.154364 430.61 36.43
5 999 0 0.05 1 0 0 0.050479 431.69 78.5
5 999 0 0.1 1 1 0 0 447.98 48.52
5 999 1 0 0 0 3.022855 0.103025 23.28 182.44
5 999 1 0.05 1 0 0 0.022399 422.48 172.09
5 999 1 0.1 0 0 0.445252 0.058864 5.24 167.99

feas conerr CPU
n p distr θ BB MS BB MS BB MS

10 10 0 0 1 1 0 0 0.03 0.03
10 10 0 0.05 1 1 0 0 0.02 0.03
10 10 0 0.1 1 1 0 0 0.03 0.04
10 10 1 0 1 1 0 0 0.01 0.03
10 10 1 0.05 0 1 2.99655 0 0.12 0.04
10 10 1 0.1 0 1 2.49655 0 0.12 0.04
10 50 0 0 0 0 0.519431 1.520239 3.78 0.25
10 50 0 0.05 0 0 0.172402 1.375297 2.34 0.29
10 50 0 0.1 0 0 0.049552 0.545895 12.69 0.28
10 50 1 0 0 0 4.284423 2.995239 0.5 0.25
10 50 1 0.05 0 0 3.830222 1.804413 0.52 0.27
10 50 1 0.1 0 0 3.418451 1.151005 0.13 0.29
10 100 0 0 0 0 1.165771 1.655809 424.62 0.63
10 100 0 0.05 0 0 0.051527 0.590638 437.08 0.71
10 100 0 0.1 0 0 0.004725 0.7542 263.62 0.75
10 100 1 0 0 0 1.599585 1.867458 0.88 0.73
10 100 1 0.05 0 0 1.914359 1.71108 1.32 0.77
10 100 1 0.1 0 0 2.127105 1.178457 1.28 0.83
10 500 0 0 0 0 0.44991 1.007725 434.48 14.73
10 500 0 0.05 0 0 1.170809 0.356041 435.92 14.47
10 500 0 0.1 1 0 0 0.23927 444.33 20.1
10 500 1 0 0 0 2.521863 1.317721 446.46 34.07
10 500 1 0.05 0 0 0.225351 1.231162 453.87 39.32
10 500 1 0.1 0 0 0.120738 1.100889 450.9 35.55
10 999 0 0 0 0 0.652774 0.812867 458.13 55.9
10 999 0 0.05 0 0 0.113543 0.305648 463.93 64.47
10 999 0 0.1 0 0 0.288677 0.212521 453.56 71.53
10 999 1 0 0 0 0.787394 1.312658 465.24 221.48
10 999 1 0.05 0 0 0.353932 1.065403 466.37 231.37
10 999 1 0.1 0 0 0.248057 0.537679 460.1 247.08
50 10 0 0 1 1 0 0 0.02 0.07
50 10 0 0.05 1 1 0 0 0.04 0.09
50 10 0 0.1 1 1 0 0 0.04 0.09
50 10 1 0 1 1 0 0 0.02 0.06
50 10 1 0.05 1 1 0 0 0.04 0.08
50 10 1 0.1 1 1 0 0 0.04 0.09
50 50 0 0 1 1 0 0 0.03 1.23
50 50 0 0.05 1 1 0 0 0.17 2.3
50 50 0 0.1 1 1 0 0 0.3 2.2
50 50 1 0 1 1 0 0 0.03 1.08
50 50 1 0.05 1 1 0 0 0.1 1.76
50 50 1 0.1 1 1 0 0 0.28 1.85
50 100 0 0 1 0 0 15.823588 0.93 3.69
50 100 0 0.05 1 1 0 0 8.24 5.89
50 100 0 0.1 1 0 0 10.970566 2.88 6.02
50 100 1 0 1 1 0 0 1.23 3.36
50 100 1 0.05 1 1 0 0 0.77 4.2
50 100 1 0.1 1 0 0 26.752762 10.21 4.23
50 500 0 0 0 0 13.027666 12.909458 460.91 96.71
50 500 0 0.05 0 0 11.216089 9.970944 477.07 154.97
50 500 0 0.1 0 0 9.325591 7.851837 461.81 148.07
50 500 1 0 0 0 24.342004 26.182309 476.6 130.92
50 500 1 0.05 0 0 27.068901 22.683359 483.7 189.23
50 500 1 0.1 0 0 20.61643 21.493069 490.75 199.8
50 999 0 0 0 0 13.108549 11.284734 495.09 411.8
50 999 0 0.05 0 0 11.684617 9.066446 483.66 690.39
50 999 0 0.1 0 0 9.552165 7.052495 480.33 641.75
50 999 1 0 0 0 27.06203 22.467814 491.73 838.73
50 999 1 0.05 0 0 24.044542 20.977076 496.45 1122.32
50 999 1 0.1 0 0 21.310585 18.977143 494.81 1221.51
99 10 0 0 1 1 0 0 0.02 0.11
99 10 0 0.05 1 1 0 0 0.05 0.18
99 10 0 0.1 1 1 0 0 0.05 0.17
99 10 1 0 1 1 0 0 0.03 0.11
99 10 1 0.05 1 1 0 0 0.04 0.19
99 10 1 0.1 1 1 0 0 0.07 0.19
99 50 0 0 1 1 0 0 0.04 1.96
99 50 0 0.05 1 1 0 0 0.25 6.15
99 50 0 0.1 1 1 0 0 0.21 6.29
99 50 1 0 1 1 0 0 0.04 1.71
99 50 1 0.05 1 1 0 0 0.21 5.68
99 50 1 0.1 1 1 0 0 0.5 5.86
99 100 0 0 1 1 0 0 0.44 13.19
99 100 0 0.05 1 1 0 0 1.82 34.09
99 100 0 0.1 1 1 0 0 1.8 34.3
99 100 1 0 1 1 0 0 0.36 8.94
99 100 1 0.05 1 1 0 0 0.7 27.18
99 100 1 0.1 1 1 0 0 1.89 26.98
99 500 0 0 0 0 35.075665 36.372957 524.1 347.02
99 500 0 0.05 0 0 35.640828 34.034148 520.66 681.15
99 500 0 0.1 0 0 30.475635 28.59999 522.43 708.54
99 500 1 0 0 0 81.70416 80.200879 525.74 433.17
99 500 1 0.05 0 0 67.853744 76.015859 524.03 658.92
99 500 1 0.1 0 0 72.285066 72.912895 525.64 718.14
99 999 0 0 0 0 38.724098 37.083856 523.66 1712.5
99 999 0 0.05 0 0 34.098302 31.210423 524.42 3002.4
99 999 0 0.1 0 0 30.495419 25.813992 530.95 2990.05
99 999 1 0 0 0 76.365674 78.565427 520.15 2547.18
99 999 1 0.05 0 0 67.236768 69.93739 525.46 4078.99
99 999 1 0.1 0 0 67.9875 65.822184 538.52 4580.88

Table 2. Comparative detailed result on the feasible instance set I1 with T = p MS
iterations.

We remark that we report 6 decimal digits in Table 2 but the computations
have been carried out at the machine floating point precision. We report sum,
averages and standard deviations for feas, conerr, CPU in Table 3. For lack of
space we only report sum, average and standard deviations (rather than complete
results) for the results on the possibly infeasible instance set I2. It is clear from
Tables 3-4 that continuous optimization techniques are extremely beneficial in
finding feasible solutions to tightly constrained MILPs.

One might question whether the superior performance of the MS heuristic
is due to the higher CPU time effort of MS w.r.t. CPLEX. To ascertain this,
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feas conerr CPU
BB MS BB MS BB MS

sum 47 59 2270.01 934.47 23254 32600
avg 0.261 0.328 12.61 5.19 129.2 181.1
stdev 0.44 0.47 36.95 14.78 209.4 610.3

Table 3. Sums, averages and standard deviations for the instance set I1 (Table 2).

feas conerr CPU
BB MS BB MS BB MS

sum 0 4 275542.20 274858.03 211.44 5985.9
avg 0 0.022 1530.79 1526.99 1.17 33.26
stdev 0 0.148 3827.90 3831.38 8.93 73.71

Table 4. Sums, averages and standard deviations for the instance set I2.

we re-ran the experiments with the CPU time of the MS heuristic capped at 3
minutes. Table 5 reports on the sums, averages and variances of results obtained
on both I1 and I2 this way. We remark that the results on I1 in Table 5 are

Feasible (set I1) Possibly infeas. (set I2)
feas conerr CPU feas conerr CPU

sum 81 916.08 8395.9 6 274834.36 3916.4
avg 0.45 5.09 46.64 0.03 1526.86 21.758
stdev 0.50 15.33 93.22 0.18 3831.52 37.88

Table 5. Sums, averages and std. dev. for MS on I1, I2 capped at 180s CPU time.

actually better than those in Table 3. This is just due to the stochastic nature
of the MS heuristic, and to the fact that good solutions are identified early on
in the search. Overall, we conclude that the CPU time taken by MS is not the
reason for its advantage w.r.t. BB.

7 Conclusion

We explored the old idea of replacing binary variables by continuous ones bounded
by [0, 1] and a linear complementarity constraint. For tightly constrained MILPs
similar to market share instances, we show that a simple multi-start approach
is superior (under a time limit) to a state-of-the-art branch-and-bound solver.
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