
HAL Id: hal-03395326
https://hal.science/hal-03395326

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Side-constrained minimum sum-of-squares clustering:
mathematical programming and random projections

Leo Liberti, Benedetto Manca

To cite this version:
Leo Liberti, Benedetto Manca. Side-constrained minimum sum-of-squares clustering: mathematical
programming and random projections. Journal of Global Optimization, 2021, �10.1007/s10898-021-
01047-6�. �hal-03395326�

https://hal.science/hal-03395326
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Side-constrained minimum sum-of-squares clustering:
Mathematical Programming and random projections

Leo Liberti · Benedetto Manca

Received: date / Accepted: date

Abstract This paper investigates a mathematical programming based methodol-
ogy for solving the minimum sum-of-squares clustering problem, also known as the
“k-means problem”, in the presence of side constraints. We propose several exact
and approximate mixed-integer linear and nonlinear formulations. The approxima-
tions are based on norm inequalities and random projections, the approximation
guarantees of which are based on an additive version of the Johnson-Lindenstrauss
lemma. We perform computational testing (with fixed CPU time) on a range of
randomly generated and real data instances of medium size, but with high di-
mensionality. We show that when side constraints make k-means inapplicable, our
proposed methodology — which is easy and fast to implement and deploy — can
obtain good solutions in limited amounts of time.

Keywords MINLP, k-means, random projections, side constraints.

1 Introduction

Given a set P of n entities and some pairwise similarity function P×P → R, cluster
analysis aims at finding a set of k subsets C1, . . . , Ck ⊆ P such that each cluster
contains as many similar entities, and as few dissimilar entities, as possible. Cluster
analysis — as a field — grew out of statistics in the course of the second half of the
20th century, encouraged by the advances in computing power. But some forms of

The first author has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement n. 764759 “MI-
NOA”. The second author was supported by KASBA, funded by Regione Autonoma della
Sardegna.

Leo Liberti
CNRS LIX Ecole Polytechnique 91128 Palaiseau, France
E-mail: liberti@lix.polytechnique.fr

Benedetto Manca
Dip. Matematica e Informatica, Università degli Studi di Cagliari, Via Ospedale 72, 09124
Cagliari, Italy
E-mail: bmanca@unica.it

2 Leo Liberti, Benedetto Manca

cluster analysis may also be attributed to earlier scientists (e.g. Aristotle, Buffon,
Cuvier, Linné [36]).

We look at one of the most studied cluster analysis problems in Euclidean
spaces:

Minimum Sum-of-Squares Clustering (MSSC). Given an integer k > 0
and a set P ⊂ Rm of n vectors, find a set C = {C1, . . . , Ck} of subsets of P
such that the function

f(C) =
∑
j≤k

∑
p∈Cj

‖p− centroid(Cj)‖22 (1)

is minimum, where

centroid(Cj) =
1

|Cj |
∑
p∈Cj

p. (2)

The MSSC is the problem which the celebrated k-means algorithm [46] aims
at solving. The k-means algorithm improves a given initial clustering C by means
of the two following operations:

1. compute centroids cj = centroid(Cj) for each j ≤ k;
2. for any pair of clusters Ch, Cj ∈ C and any point p ∈ Ch, if p is closest to cj

than to ch, move p from Ch to Cj .

These two operations are repeated until C no longer changes. Since the only deci-
sion operation (i.e. operation 2) carries out a change only if it decreases f(C), it
follows that k-means is a local descent algorithm. We note that it offers no guar-
antee on the approximation of the objective function with respect to the global
optimum. It turns out that the MSSC problem can also be seen as a discrete ana-
logue of the problem of partitioning a body into smaller bodies having minimum
sum of moments of inertia [55].

In this paper we look at the MSSC from the point of view of Mathematical Pro-
gramming (MP), and focus on a general class of MSSC variants obtained by adding
more or less arbitrary side constraints. Achieving an almost complete flexibility
in the nature of these constraints is possible because our solution methodology is
MP-based. On the other hand, generality comes at an efficiency cost. We attempt
to moderate this cost by reducing the dimensionality of the input data without
losing too much accuracy.

Methodologically, we construct approximate MP formulations of the MSSC
problems with reduced dimensionality. These formulations have desirable proper-
ties (their continuous relaxations are convex) and they are small enough that good
feasible solutions can be obtained by off-the-shelf MP solvers with a time limit.
Any side constraint can be applied to these formulations as long as the solver can
handle them.

The main original theoretical contributions of this paper are:

– a new formulation for the MSSC which has a convex continuous relaxation
(Sect. 3), and the corresponding norm approximations (Sect. 4.1);

– the application of random projections to the MSSC formulation and their ap-
proximations, as well as its theoretical analysis (Sect. 4.2).

Side-constrained min sum-of-squares clustering 3

The rest of this paper is organized as follows. In Sect. 2 we review the literature
about the main topics we touch on. In Sect. 3 we derive a MP formulation of the
MSSC the continuous relaxation of which is a convex program. In Sect. 4 we
discuss some approximations of the formulation of the previous section. In Sect. 5
we present some computational experiments.

2 Preliminary notions

In this section we introduce some basic notions about the three main topics treated
in this paper. We first discuss the MP formulation class of interest, namely Mixed-
Integer Nonlinear Programming (MINLP). Then we discuss the dimensionality
reduction technique we use on the formulations, namely Random Projection (RP),
and their previous applications to MINLP. Then, we briefly survey the MSSC,
with and without side constraints, and discuss existing applications of RPs to the
MSSC.

2.1 MINLP

MP is a formal language for describing optimization problems in terms of pa-
rameters (the input), decision variables (the solution), an objective function to
optimize, and some constraints to be satisfied: formal expressions for objective
and constraints can be built up recursively from parameters, decision variables,
numerical constants, and a finite number of mathematical functions and operators
[34,44,65]. A valid MP sentence is called a formulation.

As with any formal language, formulations are interpreted by a program (called
solver) which implements an algorithm for reading the input (i.e. assigning values
to parameter symbols) and computing the output (i.e. searching for values to assign
to decision variables that optimize the objective and satisfy the constraints). MP
solvers usually aim at solving fairly large subclasses of MP, and try to strike a good
compromise between generality and solution speed (two desirable characteristics
which are most often in a trade-off balance). For an MP formulation F , we denote
val(F) the optimal objective function value of F .

The basic taxonomy for MP formulations depends on the absence/presence of
nonlinear terms in the objective function and constraints, on the absence/presence
of integer variables, and on the provable convexity of the objective function and
the feasible set. Linear forms in continuous variables yield Linear Programs (LP).
Nonlinear terms in continuous variables yield Nonlinear Programs (NLP); if a
proof of convexity of the objective and feasible set is available, we speak of convex
NLP (cNLP). Variants of LP, NLP, cNLP with some integer variables are called
MILP, MINLP, cMINLP. A note on cMINLP: obviously, any MP formulation with
integer variables cannot have a convex feasible set. By “cMINLP” we mean a
MINLP having a cNLP as a continuous relaxation (i.e. after relaxing all of the
integrality constraints). The MINLP class obviously contains all of the other MP
classes we mentioned. In general, MINLPs are undecidable [42]. If the feasible
set can be proved bounded (e.g. if there are range constraints on the decision
variables), then MINLPs become decidable, but most of the practically interesting

4 Leo Liberti, Benedetto Manca

classes are NP-hard (SAT can easily be formulated as a MILP, which is a subset
of MINLP).

When working with floating point numbers and nonlinear functions, using the
Turing machine computation model is unnatural. We therefore often resort to the
real RAM computation model [10], which assumes that elementary operations on
reals can be carried out exactly in unit time, and to a variety of numerical analysis
techniques to keep the algorithms as numerically stable as possible.

The main solution algorithm for general MINLP is spatial Branch-and-Bound
(sBB) [54,57,8,32], which identifies ε-approximate globally optimal objective func-
tion values and its corresponding optima. The sBB algorithm is nonetheless termed
“exact” since we often think of it in the real RAM model of computation. It
can be used heuristically by terminating its execution prematurely based on CPU
time. More efficient solution methods can be used for cMINLP [25,29,30,11]. Most
cNLPs can be solved to global optimality by using any local descent method [28,
63].

sBB works by partitioning the search space recursively into regions and sub-
regions. Guaranteed lower and and upper bounds for the objective function value
are computed at each sub-region. A region is fathomed and then discarded if:
(i) upper and lower bounds for the current node are within ε (in which case the
solution yielding the upper bound on the region is taken as the ε-approximate
global optimum for the region); (ii) if the lower bound for the current region is
worse than the incumbent (in which case the current region has no chance of
containing the global optimum of the problem). Thus, finding lower bounds for
MINLP is important. The main techniques in this area are derived from relaxations
of the original MINLP formulations. A relaxation is a reformulation the solution of
which yields a lower bound to the optimal objective function value of the original
formulation. Typically, relaxations are obtained by enlarging the feasible region
of the original formulation: the globally optimal objective function value of the
relaxation is then guaranteed to be a lower bound. In general, relaxing integer to
continuous variables in MINLPs yields a nonconvex NLP relaxation, which is just
as hard to solve as the original MINLP.

While MP solvers work best based on the mathematical properties of their
input formulations, for any given optimization problem there exist infinitely many
MP formulations that describe it. There arises an interest in modifying the math-
ematical properties of formulations while making sure that they still describe the
problem either correctly or at least approximately. This modification process is
called reformulation [43]. Reformulations that describe the problem correctly are
called exact. Reformulations whose optimal objective function value is a guaran-
teed bound (in the optimization direction) of the optimal objective function value
of the original formulation are called relaxations. Families of reformulations de-
pending on a parameter, which “tend to” a correct description of the problem
as the parameter tends to some value, are called approximations [41]; members of
these families are called approximate reformulations.

In this paper we propose a new set of cMINLP reformulations of the MSSC,
both exact and approximate.

Side-constrained min sum-of-squares clustering 5

2.2 Random projections

RPs are d ×m matrices T which pre-multiply m × n data matrices P in view of
obtaining a lower dimensional version TP of P with some approximation guar-
antee. The type of approximation we consider in this context concerns the Eu-
clidean distances between pairs of columns of P . More precisely, the Johnson-
Lindenstrauss Lemma (JLL) [39] states that, for any P ∈ Rm×n and ε > 0, there
exists a T ∈ Rd×m with d = O(1

ε2 lnn) such that

∀i, ` ≤ n (1− ε)‖Pi − P`‖2 ≤ ‖TPi − TP`‖2 ≤ (1 + ε)‖Pi − P`‖2, (3)

where Pi, P` denote the i-th and `-th columns of P .

It turns out that, by choosing T so that each component is sampled from a
normal distribution N(0, 1√

d
) (where 1√

d
is the standard deviation), after some

repeated samplings of T Eq. (3) is satisfied with probability exceeding 1− θeu(d),
where θ is a universal constant and u(·) a linear function [21]. Many variants of
this RP construction have been proposed in the literature, with respect to sparsity
[1,58,3,2,60] and other properties [59].

We remark that the application of RP to MP problems is not new [66,50,51,
61,62,49,60,19] but recent. In particular, RPs applied to linear integer feasibility
problems were partly discussed in [62], and RPs applied to quadratic programs
were presented in [60,19]. But, as far as we know, this is the first application
of RPs to a MINLP, albeit with a specific structure imposed by the underlying
application.

2.3 The MSSC problem

The MSSC is a fundamental problem that has attracted a lot of attention from
the data science, optimization, and algorithmic communities over the years. Thus,
a considerable amount of literature is available, most of it under the keyword
“k-means”. Although most papers about this problem are actually about the k-
means algorithm, almost every paper also comments on the problem formulation.
An almost universal consideration is that the MSSC is based on two arrays of
decision variables: xij ∈ {0, 1} = 1 if point pi ∈ P (for i ≤ n) is assigned to cluster
j ≤ k and zero otherwise, and yj ∈ Rm denoting centroid(Cj), the centroid of
cluster j. This immediately gives a formulation of Eq. (1) in terms of x, y:

f(x, y) =
∑
j≤k

∑
i≤n
xij=1

‖pi − yj‖22. (4)

The function f(x, y) cannot be employed “as is” as an objective function to be
minimized, since the decision variable x appears in a sum quantifier, which makes
min f(x, y) an invalid sentence in the MP language. We shall see in Sect. 3 that
there is an easy reformulation of f(x, y) so that it becomes valid.

The data science oriented survey [56] presents interesting matrix formulations
of the MSSC. In particular, [56, Eq. (10)] shows that the MSSC is equivalent to

6 Leo Liberti, Benedetto Manca

finding the projection matrix x(x>x)−1x> (where x ∈ {0, 1}n×k is the point-cluster
assignment matrix, as in Eq. (4)) minimizing

f(x) = tr(P>(I − x(x>x)−1x>)P). (5)

We note that [56, Eq. (33)] shows how Eq. (5) changes when a pre-conditioning
matrix A is applied to the data matrix P . While these considerations do not bear
a direct impact on the present work, they clarify the role that projections play in
the MSSC, and, more specifically, the distinction between a dimensional reduction
operator used as a preconditioner on the data (the matrix A), and a projection
matrix derived by the binary decision variable matrix x. We note, as a curiosity,
that: (i) [56, Eq. (10)] is ascribed to a referee of [33]; (ii) at the publication time
of [56], Eq. (5) had not yielded any major progress on MSSC research; (iii) to the
best of our knowledge, the latter is still the case.

The survey [9] is almost completely algorithmic, but reports an NP-hardness
proof and mentions some inapproximability results. Notably, there exists an ε > 0
such that it is NP-hard to approximate Eq. (1) within a factor of (1 + ε) for
arbitrary n, k.

The introductions of [47,4] provide brief surveys to the MSSC from the point
of view of MP. In particular, it was shown in [4] (and we shall see in Sect. 3) that
the MSSC can be naturally formulated as a Mixed-Integer Nonlinear Program
(MINLP), which is one of the largest subclasses of MP. We are going to reformulate
this nonconvex MINLP formulation of the MSSC to a cMINLP. We are then
going to apply a RP technique to the data points, and show that we obtain an
approximating reformulation [41] of the MSSC having much smaller size.

2.3.1 Side constraints

The title of this paper refers to “side constraints”. In Sect. 1 we stated that the
object of our attention was a “general class of MSSC variants obtained by adding
more or less arbitrary side constraints”. We now give a more precise description
of the classes of constraints that can be added to the formulations, as well as a
literature review of the MSSC with side constraints.

Adjoining new constraints to an existing MP formulation may make the result-
ing problem harder or easier (both empirically and in terms of worst-case analysis),
depending on the underlying problem and the constraints. In view of keeping so-
lution difficulty from changing too much w.r.t. the underlying MSSC problem, we
pose two limitations to the side constraints we allow.

(i) The new constraint set must consist of a polynomial number of constraints in
function of a polynomial number of variables in the input size of the MSSC
instance.

(ii) The most appropriate MP solver used for solving the underlying MSSC for-
mulation must also be able to solve the formulation once the new constraint
set is added.

Item (i) is designed to keep worst-case complexity of reading the formulation poly-
nomially bounded. Item (ii) is somewhat informal, as the “most appropriate MP
solver” for a given formulation is not well defined. Insofar as MP prescribes certain
solution algorithm classes for certain formulation classes (e.g. sBB for nonconvex

Side-constrained min sum-of-squares clustering 7

MINLPs or NLPs, outer approximation or simpler types of Branch-and-Bound
(BB) algorithms for cMINLPs, various types of local descent algorithms for con-
vex NLPs, etc.), Eq. (ii) is a practical limitation. Obviously the new constraint set
must be a valid sentence in the MP language.

Side constraints for clustering problems are usually categorized into “cluster-
level” (e.g. imposing minimum or maximum cardinality on the clusters) and “inst-
ance-level” (e.g. requiring that certain given subsets of the points should be in the
same or different clusters).

The literature about solving MSSC variants with side constraints goes under
the name of “constrained clustering”, and, perhaps unsurprisingly, mostly comes
from the Constraint Programming (CP) community. There are two main method-
ological approaches: (a) trying to adapt k-means to the new constraints, and (b)
using typical CP algorithms such as domain filtering and backtracking. Approach
(a) trades efficiency off for generality, while (b) does the reverse (since it devises
specific algorithms based on the constraint structure).

Here are some typical examples of papers in the group (a) above. Instance-level
constraints concerning given pairs of points, called “must-link” (the two points
must be in the same cluster) and “cannot-link” (the reverse), were first proposed
in [64]. In [40], instance-level constraints are interpreted in a Euclidean space
context, which allows the definition of implied constraints on the point positions:
for example, nearby points to points involved in “must-link” constraints should
also be “must-link” too; methodologically, a CP filtering step is added to the
main clustering algorithm. In [22], more side constraints concerning sets of points
are introduced; the problem determining the feasibility of general subsets of side
constraints is shown to be NP-complete; and a k-means algorithm variant capable
of integrating these side constraints is presented.

An MP approach to solving the MSSC with general side constraints is pre-
sented in [5], which builds on the column generation algorithms of [47,4], but
integrates various types of side constraints by adapting the pricing subproblem
and its solver. An approach based on CP-based modelling and solving is given
in [35]. Another approach based on CP is given in [20], which proposes a global
optimization constraint to represent Eq. (1), and uses CP filtering to handle the
side constraints; the solution algorithm is based on dynamic programming. In [24],
a general approach to solving bi-criteria constrained MSSCs is presented, based on
an existing general-purpose CP solver. The tested instances, however, have very
few features w.r.t. the those we consider in order to apply the dimensional reduc-
tion approach. Moreover, only one instance is solved using the classic MSSC ob-
jective function. This prevents any meaningful computational comparison between
[24] and the methodology presented herein. Both approaches, however, provide for
allowing general classes of side-constraints, each according to the specificities of
the underlying languages (CP in [24], MP in this paper).

Compared to the approaches in the literature, we do not focus on the side con-
straint structure, which we leave as general as possible (similarly to [24]); neither
do we focus on the solution algorithm, for which we exploit an off-the-shelf MP
solver. Instead, we focus on the formulation, which we reduce to a cMINLP and
then approximate using RPs.

8 Leo Liberti, Benedetto Manca

2.3.2 Application of RPs to the MSSC

Based on Eq. (3), RPs are ideal candidates to decrease the dimensionality of the
MSSC. In fact, RPs have been already applied to the k-means algorithm [13],
yielding an approximation ratio of 2 + ε. We offer a critique of the analysis of [13]
in Sect. 4.2.1.

One of the most common approaches when applying RPs to the MSSC consists
in considering a relaxation of the MSSC to a low rank approximation problem. To
see this, consider the following formulation of the MSSC [13]:

min
x̄∈X ,Y

‖P> − Y ‖2F
x̄x̄>P> = Y,

}
(6)

where X is the set of all n×k cluster indicator matrices, meaning that for any x̄ ∈ X ,
i ≤ n and j ≤ k the i-th point belongs to the j-th cluster iff x̄ij = 1√

sj
, where sj is

the cardinality of cluster j. We note that these x̄ matrices have the same sparsity
structure, but not the same entries, as the x matrices appearing in Eq. (4)-(5).

Since rank(x̄) ≤ k for any x̄ ∈ X (by definition), we also have rank(Y) ≤ k

in Eq. (6). We can therefore relax the constraints x̄x̄>P> = Y to rank(Y) ≤ k.
By [26], the solution to this relaxation is given by the truncated singular value
decomposition of the matrix P . We note that this relaxation is also equivalent to
finding the rank-k projection operator X̄ minimizing ‖P> − X̄X̄>P>‖2F . Based
on this observation, a (1 ± ε) approximation for the optimal rank-k projection
operator was achieved in [53] using RPs mapping m-dimensional vectors to either
O(k log k + k/ε) or O(k log kε−2) dimensions, depending on the type of RP used.
These results were improved to O(kε−2) dimensions in [17].

These results on the aforementioned relaxation were adapted to the MSSC in
[13], which achieves a 2 + ε approximation error using RPs mapping to O(kε−2)
dimensions with high probability (whp). This result was improved in [18] to a
(1 ± ε) approximation error; the same paper also presents a 9 + ε approximation
error with O(ε−2 log k) dimensions. It was shown in [6] that there is a RP mapping
to O(log k+log logn

ε6 log(1
ε)) dimensions that preserves the cost of any k-clustering

up to a (1±ε) approximation error. It was also shown that it is possible to further

reduce the projected dimension to O(log k+log(1−δ)
ε4 log(1

ε)) and obtain a (1 ± ε)
approximation error whp.

In another line of research following [53,17], a merge-and-reduce approach
based on [14] which finds a (k, ε)-coreset for the MSSC objective function is pro-
posed in [16].

Side-constrained min sum-of-squares clustering 9

3 A cMINLP formulation for the MSSC

The MSSC with side constraints can be naturally formulated as follows.

min
x,y,s,γ

∑
i≤n

∑
j≤k
‖pi − yj‖22 xij

∀j ≤ k 1
sj

∑
i≤n

pixij = yj

∀j ≤ k
∑
i≤n

xij = sj

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k yj ∈ Rm
G(x, y, γ) ≤ 0

x ∈ {0, 1}nk

s ∈ Nk.

(MSSC) (7)

The parameters of formulation Eq. (7) are the given set P = {p1, . . . , pn} of vectors
in Rm, and the number of clusters k. The decision variables are:

– for each i ≤ n and j ≤ k, the binary assignment variables xij , set to 1 iff vector
i is assigned to cluster j and to 0 otherwise;

– for each j ≤ k, the integer variables sj , equal to the cardinality of cluster j;
– for each j ≤ k, the vector yj ∈ Rm, containing the centroid of cluster j.

The formula G(x, y, γ) ≤ 0 encodes the side constraints (possibly with additional
decision variables γ), which may be arbitrary as long as they satisfy the limitations
(i)-(ii) given in Sect. 2.3.1 above. Insofar as we focus on a cMINLP reformulation,
we require that the continuous relaxation of the set {(x, y, γ) | G(x, y, γ) ≤ 0}
should be convex, in line with limitation (ii). Since our reformulations are not
going to exploit the structure of the side constraints, we do not list them explicitly
in the reformulations below.

We note that Eq. (7) imposes a restriction on the MSSC solution, namely that
each cluster must be non-empty, since the cardinality sj appears in a denominator.
This restriction can be relaxed by multiplying both sides of the equation constraint
by sj .

Solving Eq. (7) directly is unadvisable for several reasons. It has a mixture of
continuous, binary and general integer variables; some decision variables appear
in the denominator of a fraction; while the objective function consists of sums of
products of convex terms, the products makes it (generally) nonconvex. We shall
address all of these issues by using elementary reformulation steps, and construct
a cMINLP reformulation of the MSSC.

10 Leo Liberti, Benedetto Manca

3.1 Removing centroid constraints

The first reformulation of MSSC consists in eliminating the centroid constraints.
We shall see that this is an exact reformulation (i.e. preserving global optima).

min
x,y

∑
i≤n

∑
j≤k
‖pi − yj‖22 xij

∀j ≤ k
∑
i≤n

xij ≥ 1

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k yj ∈ Rm

x ∈ {0, 1}nk.

(8)

Lemma 3.1

For any j ≤ k, v = centroid(Cj) iff
∑
p∈Cj

‖p− v‖22 is minimum over all v ∈ Rm.

Proof By [4, p. 199]. ut

Proposition 3.2

C∗ is a global optimum of Eq. (8) iff it is also a global optimum of MSSC.

Proof Note that any clustering C is completely defined by the binary assignment
variables x, since once the values of x are known, one can easily compute centroids y
and their cardinalities s. Moreover, because of the constraint

∑
i xij ≥ 1 in Eq. (8),

no cluster in C∗ may be empty; and, since the term 1/sj in MSSC forces sj ≥ 1 for
all j ≤ k, the same must also hold for an optimum of MSSC. Let x∗ be the solution
for the binary variables x determined by C∗: since the objective functions of the
two formulations (MSSC and Eq. (8)) are identical, when x is fixed at x∗, their
optimal values w.r.t. y must match, whence x∗ yields the same optimal objective
function values in both. If we denote f1(x) the objective function of MSSC and
f2(x) that of Eq. (8), we have

f1(x∗) = f2(x∗). (†)

We also observe that Eq. (8) was obtained by MSSC by removing the constraints
1
sj

∑
i pixij = yj and

∑
i xij = sj , and adjoining the constraint

∑
i xij ≥ 1. But the

latter is always satisfied in MSSC as observed above, which implies that Eq. (8) is
a relaxation of MSSC, i.e.

min
x
f1(x) ≥ min

x
f2(x). (‡)

(⇒) Eq. (†) implies minx f
1(x) ≤ minx f

2(x) since x∗ is a global optimum of
Eq. (8). By Eq. (‡), we have minx f

1(x) = minx f
2(x), showing that x∗ is a global

optimum of MSSC.

(⇐) Let C∗ be a global optimum for MSSC corresponding to x∗ and suppose x∗

is not a global optimum for Eq. (8). By Eq. (†)-(‡), x∗ is feasible in Eq. (8) and
has the same objective function value, so the only way it can fail to be a global
optimum is that C∗ is not an optimal clustering for Eq. (8). So let C′ be an optimal
clustering for Eq. (8) with corresponding variables (x′, y′, s′): the only way it can be
better than C∗ is that it should be infeasible for MSSC. By Lemma 3.1, y′ defines
the centroids of the clusters of C′. Moreover, s′j =

∑
i x
′
ij ≥ 1 makes 1/s′j well

defined. Hence (x′, y′, s′) must be feasible in MSSC, against the assumption. ut

Side-constrained min sum-of-squares clustering 11

The advantage of Eq. (8) w.r.t. MSSC is that the former has fewer nonlinear
terms as well as fewer constraints.

3.2 Linearization of products

In this section we reformulate products of terms involving decision variables in an
exact way. While this is not generally possible, when at least one of the terms in
the product takes a finite set of values and the other can be constrained to lie in a
set of variable ranges, it becomes possible [43, §3.3]. In the case of the formulation
in Eq. (8), we aim at linearizing all products αij(x, y) = ‖pi−yj‖22xij over all i ≤ n
and j ≤ k.

We first remark that, even though the centroid variables y are unconstrained
in Eq. (8), no centroid may ever lie outside the hyper-rectangle

[yL, yU] = [min
i≤n

pi,max
i≤n

pi], (9)

where the min and max operators are applied componentwise to the vectors. This
means that ‖pi − yj‖22 lies in [0, PU] for any i ≤ n, j ≤ k, where

PU = max
i<h≤n

‖pi − ph‖22. (10)

Next, we replace the products denoted with αij(x, y) by additional variables χij ∈
[0, PU] in the objective function, and adjoin the defining constraints χij = α(x, y)
for each i, j. Since xij ∈ {0, 1}, we have χij ∈ [0, PU] for all i, j. Again because the
x variables are binary,

χij =

{
‖pi − yj‖22 if xij = 1
0 if xij = 0.

For each i ≤ n, j ≤ k, let D = {0, 1} × [yL, yU], and

Aij = {(χij , xij , yj) | χij = ‖pi − yj‖22xij ∧ (xij , yj) ∈ D}

Bij = {(χij , xij , yj) | 0 ≤ χij ≤ PUxij ∧ ‖pi − yj‖22 ≤ χij + PU (1− xij) ∧ (xij , yj) ∈ D}.

It is easy to verify by inspection that Aij ⊆ Bij by checking the two cases xij = 0
and xij = 1. Now let

B̄ij = arg min
χij

Bij .

We claim that Aij = B̄ij . Let β′ = (χ′ij , x
′
ij , y

′
j) ∈ B̄ij , then χ′ij must be minimal in

Bij . If x′ij = 0 then χ′ij = 0 which yields β′ ∈ Aij . If x′ij = 1 then χ′ij = ‖pi − y′j‖
2
2,

which again implies that β′ ∈ Aij . Therefore Aij ⊇ B̄ij . Conversely, if β′ ∈ Aij then
β′ ∈ Bij as shown above. In order to obtain χ′ij = 0 if x′ij = 0 and χ′ij = ‖pi− yj‖22
if x′ij = 1 then χ′ij must be minimal in Bij , i.e. β′ ∈ B̄ij as claimed.

12 Leo Liberti, Benedetto Manca

Thus, we can reformulate Eq. (8) as follows:

min
χ,x,y

∑
i≤n

∑
j≤k

χij

∀i ≤ n, j ≤ k χij ≤ PUxij
∀i ≤ n, j ≤ k ‖pi − yj‖22 ≤ χij + PU (1− xij)

∀j ≤ k
∑
i≤n

xij ≥ 1

∀i ≤ n
∑
j≤k

xij = 1

∀i ≤ n, j ≤ k χij ≥ 0

∀j ≤ k yj ∈ [yL, yU]

x ∈ {0, 1}nk.

(11)

By the above discussion, Eq. (11) is an exact reformulation of Eq. (8) and hence,
by transitivity, also of MSSC. The advantage of Eq. (11) w.r.t. Eq. (8) is that the
former is a cMINLP instead of a (nonconvex) MINLP.

4 Approximating reformulations

In this section we introduce two types of approximating reformulations: one based
on replacing the `2 norm with `1 or `∞ (the so-called “linearizable norms”), and
the other obtained by applying a RP to the point set P .

4.1 Linearizable norms

In this section we exploit the well-known inequalities

‖ζ‖2∞ ≤ ‖ζ‖22 ≤ ‖ζ‖
2
1 (12)

1

m
‖ζ‖21 ≤ ‖ζ‖22 ≤ m‖ζ‖

2
∞ (13)

which hold for every ζ ∈ Rm. We replace the `2 norm in MSSC with the `1 and `∞
norms, for which we provide approximate MILP reformulations of Eq. (11). Since
MILP solvers (such as e.g. [37]) are technologically more advanced than cMINLP
solvers (such as e.g. [12]), we can hope to solve larger instances of MSSC with the
MILP formulations: these will derive bounds on the optimal objective values by
means of Eq. (12)-(13).

4.1.1 The `∞ norm

We are going to replace ‖pi − yj‖22 in MSSC by ‖pi − yj‖∞, and compute PU with
the `∞ norm. The same reformulations follow through, and we get to a variant of
Eq. (11) where the (convex) nonlinear constraints are:

‖pi − yj‖∞ ≤ χij + PU (1− xij) (14)

for all i ≤ n, j ≤ k. This is equivalent to

max
`≤m

|pi` − yj`| ≤ χij + PU (1− xij)

Side-constrained min sum-of-squares clustering 13

which can be reformulated to

∀` ≤ m |pi` − yj`| ≤ χij + PU (1− xij),

whence

∀` ≤ m pi` − yj` ≤ χij + PU (1− xij)

∀` ≤ m yj` − pi` ≤ χij + PU (1− xij).

Note that the replacement of a square `2 norm with a non-square `∞ norm makes
χij take a linear, rather than squared, value at the optimum (as long as xij = 1).
Thus the terms χij on the objective function should be squared.

This yields the following approximating reformulation:

min
χ,x,y

∑
i≤n

∑
j≤k

χ2
ij

∀i ≤ n, j ≤ k χij ≤ PUxij
∀i ≤ n, j ≤ k, ` ≤ m pi` − yj` ≤ χij + PU (1− xij)
∀i ≤ n, j ≤ k, ` ≤ m yj` − pi` ≤ χij + PU (1− xij)

∀j ≤ k
∑
i≤n

xij ≥ 1

∀i ≤ n
∑
j≤k

xij = 1

∀i ≤ n, j ≤ k χij ≥ 0

∀j ≤ k yj ∈ [yL, yU]

x ∈ {0, 1}nk,

(15)

which is again a cMINLP, where the only nonlinearities are in the objective func-
tion (the constraints are wholly linear).

Lastly, we propose to optimize the following linear objective function:

min
∑
i≤n

∑
j≤k

χij (16)

instead of the quadratic form in Eq. (15), so as to be able to use a MILP solver.
We remark that this last step is wholly heuristic. In the worst case, it may find
clusterings which are arbitrarily different from the optima of the MSSC problem.

4.1.2 The `1 norm

Similarly to Sect. 4.1.1, we are going to replace ‖pi−yj‖22 in MSSC by ‖pi−yj‖1 for
each i ≤ n, j ≤ k, and compute PU with the `1 norm. Again, we get to a variant
of Eq. (11) where the (convex) nonlinear constraints are:

‖pi − yj‖1 ≤ χij + PU (1− xij) (17)

for all i ≤ n, j ≤ k. This is equivalent to∑
`≤m
|pi` − yj`| ≤ χij + PU (1− xij)

14 Leo Liberti, Benedetto Manca

which, by means of some additional variables η ∈ Rnkm can be reformulated to

∀` ≤ m − ηij` ≤ pi` − yj` ≤ ηij`∑
`≤m

ηij` ≤ χij + PU (1− xij).

As in Sect. 4.1.1, the terms χij on the objective function should be squared.
This yields the following approximating reformulation:

min
χ,x,y

∑
i≤n

∑
j≤k

χ2
ij

∀i ≤ n, j ≤ k χij ≤ PUxij
∀i ≤ n, j ≤ k, ` ≤ m pi` − yj` ≤ ηij`
∀i ≤ n, j ≤ k, ` ≤ m pi` − yj` ≥ −ηij`

∀i ≤ n, j ≤ k
∑
`≤m

ηij` ≤ χij + PU (1− xij)

∀j ≤ k
∑
i≤n

xij ≥ 1

∀i ≤ n
∑
j≤k

xij = 1

∀i ≤ n, j ≤ k χij ≥ 0

∀j ≤ k yj ∈ [yL, yU]

x ∈ {0, 1}nk.

(18)

We again obtain a cMINLP where the only nonlinearities are in the objective
function. The same comment about heuristically optimizing Eq. (16) with a MILP
solver holds.

4.1.3 Approximation guarantees

Proposition 4.1

If χ∗, x∗, y∗ is a global optimum of Eq. (15) (resp. Eq. (18)), then the globally optimal

objective function value
∑
i,j(χ

∗
ij)

2 is equal to the globally minimal value of f(C) (see

Eq. (1)) with the `2 norm replaced by the `∞ norm (resp. the `1 norm).

Proof If pi is not assigned to the cluster Cj in Eq. (1), then xij = 0 and χ∗ij = 0 by
the optimization direction and Eq. (14) (resp. Eq. (17)). For the same reasons, if
pi is assigned to Cj then xij = 1 and χ∗ij = ‖pi− yj‖∞ (resp. χ∗ij = ‖pi− yj‖1). ut

By Eq. (12)-(13) and Prop. 4.1, we have:

val(15) ≤ val(MSSC) ≤ val(18)

1

m
val(18) ≤ val(MSSC) ≤ m val(15), (19)

whence

max
(
val(15),

1

m
val(18)

)
≤ val(MSSC) ≤ min

(
val(18),m val(15)

)
(20)

and
1

m
val(MSSC) ≤ val(15) ≤ val(18) ≤ m val(MSSC). (21)

Eq. (20)-(21) is most useful for cases where m is fixed and small (e.g. clustering
in the plane).

Side-constrained min sum-of-squares clustering 15

4.2 Randomly projected formulations

We now address the computational issues arising from assuming m large by pre-
multiplying the vector set P (seen as an m × n matrix) by a d × m RP matrix
T = (Th`), where d = O(1

ε2 lnn) and ε > 0 appears in the approximation guarantee
in Eq. (3). We obtain the same formulations and reformulations as above, with pi
replaces by Tpi, as well as yj replaced by Tyj . While P is given, so TP can be
computed, Tyj depends on a decision variable. More precisely,

∀j ≤ k Tyj =

∑
`≤m

Th`yj`

∣∣∣∣ h ≤ d
> .

We employ an additional variable matrix z ∈ Rkd, replace Tyj by zj , and relax
the defining constraints zj = Tyj , yielding projected versions of MSSC, Eq. (11),

Eq. (15), Eq. (18) where pi − yj ∈ Rm is replaced by Tpi − zj ∈ Rd. If m� 1 and
d = O(lnn), these projected reformulations have considerably fewer variables than
their original counterparts.

In the rest of this section we only consider the MSSC formulation (i.e. Eq. (7)),
since the others follow by exact or approximate reformulation operations, whether
we use P or TP as data. We denote the randomly projected MSSC formulation by
TMSSC.

4.2.1 Applicability of Boutsidis’ approach [13]

In [13], the authors provide an analysis of a k-means algorithm which solves the
TMSSC instead of the MSSC. The formulation they consider is a slight modification
of Eq. (6), where Y is replaced with its definition:

min
X∈X

‖P> −XX>P>‖2F . (22)

We recall that X is the set of clustered indicator matrices (see Sect. 2.3.2).
The result provided in [13] is as follows. Suppose the m × n data matrix P

(containing the n points in Rm as columns) is replaced by TP , where T is a d×m
RP matrix with d ≥ c̃k/ε2, such that c̃ is an instance-independent constant, k is
the number of clusters, and ε ∈ (0, 1

3). Then, any exact algorithm for the MSSC
turns into an approximation algorithm with error bounded above by 2+ε, whp. As
stated, the given result clearly applies to our setting. This should let us conclude
that our approximate formulations have a 2 + ε error bound at worst whp.

Intuitively, we find this result surprising. It is well known that the JLL essen-
tially says that the reduced dimension d (given as O(lnn/ε2) in [39]) is indepen-
dent of the original dimension [39,21]. On the other hand, the result proposed in
[13] appears to take this independence one (sizable) step further: it claims that
d = O(k/ε2), which makes the reduced dimension independent of the the number
of points too. The proof of [13, Thm. 1] rests heavily on [53], and proposes a re-
sult [13, Lemma 2] which summarizes other results from [53, Lemma 6, Lemma 8,
Cor. 11]. In particular, transposed in the notation of the present paper, the first
part of [13, Lemma 2] states that

∀j ≤ k |1− σj(TUk)| ≤ ε (23)

16 Leo Liberti, Benedetto Manca

whp, where σj(·) is the j-th singular value of the argument matrix TUk, and Uk is
the m×k matrix of left singular vectors of P corresponding to the diagonal matrix
Σk of top k singular values of P in non-increasing order. Among the results in [53],
the only one that proves Eq. (23) is [53, Cor. 11], which, however, states that, in
this case, the reduced dimension d should be d = O(f(δ)k ln(k/ε)/ε2), where f(δ)
controls the probability 1−δ of success, as explained in [53, Defn. 1]. On the other
hand, [53, Cor. 11] is a corollary of [53, Lemma 10], which is introduced as follows:

The JLL states that k vectors from Rm can be embedded into O(ln(k)/ε2)
dimensions [. . .]. As a consequence we prove that given a k-dimensional
subspace [. . .], embedding it into O(k ln(k/ε)/ε2) dimensions preserves the
length of all vectors from V . (†)

Therefore, the “k” symbol appearing in [53, Cor. 11] corresponds to the number n
of points in this paper (we denote by (‡) this symbolic correspondence between k

in [53] and n). So, what [53, Cor. 11] implies is that, for Eq. (23) to hold, we need
d = O(f(δ)n ln(n/ε)/ε2).

We now consider the value of d. For the two estimates

– d = O(k/ε2), given in [13, Step 1, Alg. 1]
– d = O(f(δ)n ln(n/ε)/ε2), given in [53]

to match, we should either have

f(δ) =
k

n ln(n/ε)
(24)

or k = n and f(δ) = 1
ln(k/ε)

. This latter case cannot hold since the number of

clusters k and the number of points n must differ for the MSSC to be nontrivial.
In our opinion, the former case of Eq. (24) also cannot hold: the assumption

made in (†), considering the change of symbol (‡), is that [53, Lemma 10] is a
statement about embedding an n-dimensional subspace of Rm in d dimensions.
The paper [13], however, uses the number of clusters k rather than the number of
points n.

We were not able to find a proof of the first part of [53, Lemma 2] that cir-
cumvents the difficulties just discussed.

4.2.2 Applicability of the JLL [39]

An alternative to invoking [13] would be to simply rely on the approximation of
Euclidean distances given by the JLL [39], which would directly apply to Eq. (4).
We pursue a different critique for this alternative.

The symbols yj appearing in Eq. (4) are decision variables ranging in contin-
uous space. As such, they represent a potentially uncountable infinity of vectors.
The JLL, however, only applies to finite subsets of vectors.

Observe, however, that there are only as many centroids as there are possible
different partitions of n entities in k clusters — so the number of vectors assigned
to the y variables may not be known in advance, but it is not infinite. In the worst
case, there are Bn partitions of n elements, where Bn is the n-th Bell number [7]. It
turns out that Bn grows like a product of two exponentials in n [45, §1.14, Problem
9], and that lnBn behaves asymptotically like O(n lnn) (plus smaller terms) [15,

Side-constrained min sum-of-squares clustering 17

p. 108]. Thus, the JLL would yield d = O(lnBn/ε
2) = O(n lnn/ε2). This would

only be useful in cases where n� m, which are a minority.
We also note that the k-means algorithm is not expected to run into the worst

case from complete enumeration: since k-means is a heuristic, it is expected to
reach termination reasonably quickly, after having examined only a few indicator
matrices. This also holds for heuristic utilizations of exact algorithms, such as
e.g. BB algorithms with a time or iteration limit. The JLL therefore provides a
simple and valid analysis for such cases, which are the cases we actually test in
practice in this paper.

On the other hand, we believe that a formulation-based analysis (i.e. indepen-
dent of the algorithm used) would be better. We address this issue next.

4.2.3 The additive JLL for infinite sets

In this section we prove a result that is similar to [13, Thm. 1], but which avoids
the issues described in Section 4.2.1. In view of Sect. 4.2.2 we do not employ the
JLL, but a similar result that also applies to infinite sets, namely the additive JLL

(see Thm. 4.2 below).
We first introduce two quantities, the sub-Gaussian norm of a sub-Gaussian

random variable, and the Gaussian width of a set. A random variable X is sub-

Gaussian iff there exists a constant K such that:

∀t ≥ 0 Prob(|X| ≥ t) ≤ 2e−(t/K)2 .

We denote the sub-Gaussian norm of X by

‖X‖ψ2
= inf{t > 0 | E(e(X/t)

2

) ≤ 2}.

Given a set S ⊆ Rm, the Gaussian width of S is

w(T) = E{sup
x∈S
〈g, x〉 | g ∼ N(0, Im)},

where the expectation is computed over all multivariate normal samples g.

Theorem 4.2

Let S ⊂ Rm, and consider a d×m matrix T ′ having independent isotropic sub-Gaussian

random vectors T ′i for rows, K = max
h≤d
‖T ′i‖ψ2

, and T = 1√
d
T ′. Then, with high prob-

ability, there exists a universal constant κ such that:

∀x, y ∈ S ‖x− y‖2 − δ ≤ ‖Tx− Ty‖2 ≤ ‖x− y‖2 + δ, (25)

where δ = κK2w(S)√
d

.

Proof See [59, Prop. 9.3.2]. ut

Our treatment follows the same logical order as the results in [53,13]. Each
of the results below corresponds to a result in [53,13]. We adapted the proofs to
employ the additive RP T satisfying Theorem 4.2 instead of the standard JLL.
We first show that T preserves inner products approximately.

18 Leo Liberti, Benedetto Manca

Corollary 4.3 For every pair of elements x, y ∈ Rm, the following holds with high

probability

|〈Tx, Ty〉 − 〈x, y〉| ≤ δ

2
‖x‖2‖y‖2.

Proof We observe that the parallelogram rule and Eq. (25) imply that, whp, for
any x, y ∈ Rm

4〈Tx, Ty〉 = ‖Tx+ Ty‖22 − ‖Tx− Ty‖22
≥ ‖x+ y‖22 − δ − δ − ‖x− y‖22
= 4〈x, y〉 − 2δ.

Therefore, 〈Tx, Ty〉 − 〈x, y〉 ≥ − δ2 . Analogously, we obtain 〈Tx, Ty〉 − 〈x, y〉 ≤ δ
2 .

Thus,

|〈Tx, Ty〉 − 〈x, y〉| ≤ δ

2
. (26)

Since T is linear, we have

〈Tx, Ty〉 = ‖x‖2‖y‖2 〈Tx/‖x‖2, T y/‖y‖2〉. (27)

The result follows by replacement of Eq. (27) in Eq. (26). ut

Lemma 4.4 For every x, y ∈ Rm, the following hold:

(i) E(〈Tx, Ty〉) = 〈x, y〉
(ii) Var(〈Tx, Ty〉) ≤ δ2+4δ

4 ‖x‖22‖y‖22.

Proof We recall that T = 1√
d
T ′, thus

〈Tx, Ty〉 =
1

d
〈T ′x, T ′y〉. (28)

Moreover,
T ′x =

(
〈T ′1, x〉, . . . , 〈T ′d, x〉

)
T ′y =

(
〈T ′1, y〉, . . . , 〈T ′d, y〉

)
.

}
Thus, we can write

〈T ′x, T ′y〉 = 〈T ′1, x〉〈T ′1, y〉+ · · ·+ 〈T ′d, x〉〈T
′
d, y〉. (29)

We first prove (i) for x = y. In this case Eq. (29) becomes

〈T ′x, T ′x〉 = 〈T ′1, x〉2 + · · ·+ 〈T ′d, x〉
2.

Therefore,
E(〈T ′x, T ′x〉) = E(〈T ′1, x〉2) + · · ·+ E(〈T ′d, x〉

2)
= ‖x‖22 + · · ·+ ‖x‖22
= d‖x‖22,

where we have used the isotropy of the random vectors T ′i . From Eq. (28) we
obtain

E(〈Tx, Tx〉) = 〈x, x〉. (30)

In order to prove (i) for generic x, y ∈ Rm, it is enough to apply Eq. (30) to the
vector x−y and use the linearity of the expected value. For the proof of (ii) we first

Side-constrained min sum-of-squares clustering 19

set X = 〈Tx, Ty〉 − E(〈Tx, Ty〉) = 〈Tx, Ty〉 − 〈x, y〉. The properties of the variance
and (i) give

E(X2) = Var(X) + E(X)2 = Var(〈Tx, Ty〉).

Moreover,
E(X2) = E(〈Tx, Ty〉2 + 〈x, y〉2 − 2〈Tx, Ty〉〈x, y〉)

= E(〈Tx, Ty〉2) + 〈x, y〉2 − 2〈x, y〉2

= E(〈Tx, Ty〉2)− 〈x, y〉2.

From Corollary 4.3 we have

〈Tx, Ty〉2 ≤ 〈x, y〉2 +
δ

4
‖x‖22‖y‖22 + δ〈x, y〉‖x‖2‖y‖2. (31)

Exploiting Eq. (31) and 〈x, y〉 ≤ ‖x‖2‖y‖2 we obtain

Var(〈Tx, Ty〉) = E(X2) = E(〈Tx, Ty〉2)− 〈x, y〉2

≤ E(〈x, y〉2 + δ
4‖x‖

2
2‖y‖22 + δ〈x, y〉‖x‖2‖y‖2)− 〈x, y〉

= 〈x, y〉2 + δ
4‖x‖

2
2‖y‖22 + δ〈x, y〉‖x‖2‖y‖2 − 〈x, y〉

≤ δ2

4 ‖x‖
2
2‖y‖22 + δ‖x‖22‖y‖22

= δ2+4δ
4 ‖x‖22‖y‖22,

which concludes the proof. ut

Following the work of Sarlos [53], it is possible to use Corollary 4.3 and Lemma
4.4 to prove that the RP T can also be used to approximate the product of two
matrices.

Lemma 4.5 Let A ∈ Rr×m and B ∈ Rm×s be two matrices. Then the following hold:

(a) ‖AB −AT>TB‖F ≤ δ
2‖A‖F ‖B‖F whp;

(b) E(AT>TB) = AB;

(c) E(‖AB −AT>TB‖2F) ≤ δ2+4δ
4 ‖A‖2F ‖B‖

2
F .

Proof Set ai = Ai and bj = Bj . Then,

(AT>)i = Tai, (TB)j = TBj .

Let Yij = (AB)ij − (AT>TB)ij = 〈ai, bj〉 − 〈Tai, T bj〉, then from Corollary 4.3 we
have that, whp,

|Yij | ≤
δ

2
‖ai‖2‖bj‖2.

Hence,

‖AB −AT>TB‖2F =
∑
i,j

Y 2
ij ≤

∑
ij

δ2

4
‖ai‖22‖bj‖22 =

δ2

4
‖A‖2F ‖B‖

2
F ,

which proves (a). Applying Lemma 4.4 to the random variable Yij we obtain
E(Yij) = 0 for all i, j and thus (b). Moreover, E(Y 2

ij) = Var(〈Tai, T bj〉) and, from
Lemma 4.4 we obtain

E(‖AB −AT>TB‖2F) =
∑
i,j

E(Y 2
ij) ≤

δ2 + 4δ

4
‖A‖2F ‖B‖

2
F ,

which concludes the proof. ut

20 Leo Liberti, Benedetto Manca

Moreover, the RP T almost preserves the Frobenius norm of any matrix, in
the sense of the next result.

Lemma 4.6 Let C ∈ Rm×n be a matrix and X = ‖TC‖2F . Then we have: (i) E(X) =
‖C‖2F , and (ii) Var(X) ≤ 2

d‖C‖
4
F .

Proof We prove (i) first. We recall that T = 1√
d
T ′, where the rows of T ′ are

isotropic sub-Gaussian random vectors. Let Yi = ‖T ′iC‖
2
2, then

X =
d∑
i=1

1

d
Yi.

Using the isotropy of T ′i , we obtain

E(Yi) = E(‖T ′iC‖
2
2) = E(

∑
j〈T
′
i , C

j〉2)

=
∑
j E(〈T ′i , C

j〉2)

=
∑
j ‖C

j‖22
= ‖C‖2F .

Thus,

E(X) = E(
d∑
i=1

1

d
Yi) =

d∑
i=1

1

d
E(Yi) = ‖C‖2F .

As for (ii), from Lemma 4.4 and Var(X) = E(X2)− E(X)2 we have

E((〈T ′i , x〉〈T
′
i , y〉)

2) ≤ 3‖x‖22‖y‖22 ∀x, y ∈ Rm.

Thus,

E(Y 2
i) = E((

∑
j〈T
′
i , C

j〉2)2) =
∑
j,k E((〈T ′i , C

j〉〈T ′i , C
k〉)2)

≤ 3
∑
j,k ‖C

j‖22‖Ck‖22 = 3‖C‖4F

Thus Var(Yi) = E(Y 2
i)− E(Yi)

2 ≤ 2‖C‖4F and we obtain

Var(X) = Var(
d∑
i=1

1

d
Yi) =

d∑
i=1

1

d2
Var(Yi) ≤

2

d
‖C‖4F ,

which concludes the proof. ut

The next result corresponds to [53, Cor. 11] discussed in Sect. 4.2.1, where
T , however, is the RP in Thm. 4.2, which can be applied to possibly infinite sets
S ⊂ Rm.

Corollary 4.7 Let U ∈ Rm×k be a unitary matrix. Then, the following holds whp:

∀i ≤ k |1− σi(TU)| ≤ δ. (32)

Side-constrained min sum-of-squares clustering 21

Proof The singular values σi(TU) are the square roots of the eigenvalues λi of
the matrix U>T>TU . Let x be the unitary eigenvector corresponding to λi for a
generic i ∈ {1, . . . , k}. Then,

‖TUx‖2 =
√
〈TUx, TUx〉 =

√
(TUx)>(TUx)

=
√
x>U>T>TUx =

√
x>λix

=
√
λi‖x‖2 =

√
λi.

Therefore, Eq. (32) is equivalent to

|1− ‖TUx‖2| ≤ δ. (33)

In order to prove Eq. (33), since ‖x‖2 = 1 and U is a unitary matrix, we have
‖Ux‖2 = 1. Thus, if the set S in Theorem 4.2 contains the points

{Ux | x unitary eigenvector of U>T>TU},

we have, whp,

|1− ‖TUx‖2| = |‖Ux‖2 − ‖TUx‖2| ≤ δ,

which concludes the proof. ut

With all the preliminary results we proved so far, we can now prove the equiv-
alent of Lemmata 3-5 in [13] for the RP T satisfying Eq. (25).

Lemma 4.8 Let P ∈ Rm×n be the matrix representing the points we want to cluster

and Pk = UkΣkVk
> its SVD of rank k. Then, whp,

‖(TUk)+ − (TUk)>‖2 ≤
2− δ2

1− δ ,

where M+ is the Moore-Penrose left pseudoinverse of M .

Proof Let Φ = TUk and Φ = UΦΣΦVΦ
> be its SVD. If we consider the SVD of Φ+

and Φ> and the fact that the spectral norm of a matrix is invariant with respect
to unitary matrices, we obtain

‖(TUk)+ − (TUk)>‖2 = ‖VΦΣ−1
Φ UΦ

> − VΦΣΦUΦ>‖2
= ‖VΦ(Σ−1

Φ −ΣΦ)UΦ
>‖2

= ‖Σ−1
Φ −ΣΦ‖2.

Now, let Ψ = Σ−1
Φ −ΣΦ, σi be the i-th singular value of Φ and τi the i-th entry of

Ψ . Then, a simple computation shows that

τi =
1− σiσk+1−i

σk+1−i
.

From Corollary 4.7 we know that 1− δ ≤ σi ≤ 1 + δ, for i = 1, . . . , k. Therefore,

τ1 =
1

σk+1−i
− σi ≤

1

1− δ + 1 + δ =
2− δ2

1− δ .

Since Ψ is diagonal we have ‖ψ‖2 = maxi τi, which concludes the proof. ut

22 Leo Liberti, Benedetto Manca

Lemma 4.9 Let C ∈ Rm×n, then, whp,

‖TC‖F ≤
√

1 + δ‖C‖F .

Proof Let Z = ‖TC‖2F , from Lemma 4.6 we have E(Z) = ‖C‖2F and Var(Z) ≤
2
d‖C‖

4
F . Applying the Chebyshev inequality to the random variable Z we obtain

Prob(|Z − E(Z)| ≥ δ‖C‖2F) ≤ Var(Z)

δ2‖C‖4F
≤ 2

dδ
.

Hence,

Prob(Z ≥ (1 + δ)‖C‖2F) ≤ 2

dδ
⇔ Prob(

√
Z ≥

√
1 + δ‖C‖F) ≤ 2

dδ
,

which concludes the proof. ut

Lemma 4.10 The following holds whp:

Pk = Uk(TUk)+TP + E,

where E ∈ Rm×n satisfies ‖E‖F ≤ f1(δ)‖P − Pk‖, f1(δ) = δ
2 +
√

1 + δ 2−δ2
1−δ .

Proof Define E = Pk − Uk(TUk)+TP . We want to prove that

‖E‖F ≤ f1(δ)‖P − Pk‖.

Let ρ = rank(P), then we can write P = Pk + Pρ−k, where Pρ−k = P − Pk.
Replacing P with Pk + Pρ−k in the definition of E we have

E = Pk − Uk(TUk)+T (Pk + Pρ−k)
= (Pk − Uk(TUk)+TPk) + (Uk(TUk)+TPρ−k).

If we consider the Frobenius norm and we use the triangular inequality we get

‖E‖F ≤ ‖Pk − Uk(TUk)+TPk‖F + ‖Uk(TUk)+TPρ−k‖F . (34)

In the first term appearing in the second member of Eq. (34) we can replace
Pk = UkΣkVk

> and exploit the fact that (TUk)+(TUk) = I, to obtain

‖Pk − Uk(TUk)+TPk‖F = ‖UkΣkVk> − Uk(TUk)+TUkΣkVk
>‖

= ‖UkΣkVk> − UkΣkVk>‖ = 0.

It remains to bound the second term in the second member of Eq. (34). We add

and subtract Uk(TUk)>TPρ−k, we use the fact that the Frobenius norm is invariant
with respect to unitary matrices, as well as the strong sub-multiplicativity of every
pair of matricesX,Y of appropriate dimensions, namely that ‖XY ‖F ≤ ‖X‖F ‖Y ‖2.
We then obtain

‖Uk(TUk)+TPρ−k − Uk(TUk)>TPρ−k + Uk(TUk)>TPρ−k‖F
≤ ‖Uk(TUk)>TPρ−k‖F + ‖Uk((TUk)+ − (TUk)>)TPρ−k‖F
≤ ‖(TUk)>TPρ−k‖F + ‖TPρ−k‖F ‖(TUk)+ − (TUk)>‖2
= ‖Uk>T>TPρ−k‖F + ‖TPρ−k‖F ‖(TUk)+ − (TUk)>‖2.

 (35)

We bound the last three terms in Eq. (35) separately.

Side-constrained min sum-of-squares clustering 23

1. For ‖Uk>T>TPρ−k‖F , we observe that

Uk
>Pρ−k = Uk

>Uρ−kΣρ−kVρ−k
> = 0Σρ−kVρ−k

> = 0,

since Uk and Uρ−k have orthogonal columns by definition. Therefore, we can
apply Lemma 4.5 (a) and obtain, whp,

‖Uk>T>TPρ−k‖F = ‖Uk>Pρ−k − U>T>TPρ−k‖F

≤ δ

2
‖Uk>‖F ‖Pρ−k‖F =

δ

2
‖Pρ−k‖F .

2. In order to bound ‖TPρ−k‖F , it is enough to apply Lemma 4.9 with C = Pρ−k.
This yields

‖TPρ−k‖F ≤
√

1 + δ‖Pρ−k‖F .

3. As concerns ‖(TUk)+ − (TUk)>‖2, we can apply Lemma 4.8 and obtain, whp,

‖(TUk)+ − (TUk)>‖2 ≤
2− δ2

1− δ .

Putting these bounds together we obtain:

‖E‖F ≤ ‖Uk>T>TPρ−k‖F + ‖TPρ−k‖F ‖(TUk)+ − (TUk)>‖2
≤ δ

2‖Pρ−k‖F +
√

1 + δ 2−δ2
1−δ ‖Pρ−k‖F

=
(
δ
2 +
√

1 + δ 2−δ2
1−δ

)
‖Pρ−k‖F

=
(
δ
2 +
√

1 + δ 2−δ2
1−δ

)
‖P − Pk‖F ,

which concludes the proof. ut

Remark 4.11 Let Xopt = arg min
X∈X

‖P> −XX>P>‖22, where X is the set of all clus-

ter indicator matrices. Since XoptXopt
>P> is a matrix with rank at most k, the

Theorem of Eckart-Young implies

‖Pρ−k>‖2F = ‖P> − P>k ‖
2
F ≤ ‖P

> −XoptXopt
>P>‖2F .

We are finally ready to state and prove the equivalent of [13, Theorem 1] for
the RP T satisfying Eq. (25).

Theorem 4.12 Let P ∈ Rm×n be the matrix representing the points we want to clus-

ter, k the number of clusters, and T ∈ Rd×m the RP satisfying Theorem 4.2. Assume

that we have access to an algorithm which takes as input P, k, T and returns a cluster

indicator matrix Xγ which satisfies, with high probability

‖(TP)> −XγXγ>(TP)>‖2F ≤ γ min
X∈X

‖(TP)> −XX>(TP)>‖2F ,

where X is the set of all cluster indicator matrices and γ ≥ 1. Then, with high proba-

bility we have

‖P> −XγXγ>P>‖2F ≤ φ(δ, γ)‖P> −XoptXopt
>P>‖2F , (36)

where Xopt = arg min
X∈X

‖P> −XX>P>‖2F and

φ(δ, γ) =

(
1 +

(2− δ2)(
√
γ + 1)

√
1 + δ

1− δ +
δ

2

)2

.

24 Leo Liberti, Benedetto Manca

Proof In Eq. (36) we replace P = Pk + Pρ−k and we use the fact that Pk
> −

XγXγ
>Pk

> and Pρ−k
> −XγXγ>Pρ−k> generate orthogonal subspaces to obtain

‖P> −XγXγ>P>‖2F
= ‖Pk> −XγXγ>Pk>‖2F + ‖Pρ−k> −XγXγ>Pρ−k>‖2F
= ‖(I −XγXγ>)Pk

>‖2F + ‖(I −XγXγ>)Pρ−k
>‖2F .

 (37)

We can bound the second term in the second member of Eq. (37) using the fact
that I −XγXγ> is a projection matrix and the Frobenius norm does not increase
if we drop a projection matrix

‖(I −XγXγ>)Pρ−k
>‖2F ≤ ‖Pρ−k

>‖2F ≤ ‖P
> −XoptXopt

>P>‖2F , (38)

where we used Remark 4.11 in the last inequality. We now bound the term
‖(I −XγXγ>)Pk

>‖2F . Using Lemma 4.10, the triangular inequality and the fact
that I −XγXγ> is a projection matrix we get

‖(I −XγXγ>)Pk
>‖F ≤ ‖(I −XγXγ>)(Uk(TUk)+TP)

>‖F + ‖E>‖F
= ‖(I −XγXγ>)(TP)>((TUk)+)

>‖F + ‖E‖F ,

}
where the last member is obtained from the fact that the Frobenius norm is in-
variant with respect to unitary matrices and that ‖A>‖F = ‖A‖F holds for every
matrix A. Now we can apply strong sub-multiplicativity:

‖(I −XγXγ>)(TP)>((TUk)+)
>‖F + ‖E‖F

≤ ‖(I −XγXγ>)(TP)>‖F ‖(TUk)+‖2 + ‖E‖F .

}
From the construction of Xγ we have that

‖(I −XγXγ>)(TP)>‖F ≤
√
γ‖(I −XoptXopt

>)(TP)>‖F .

Thus, applying Lemma 4.8, Lemma 4.10 and Remark 4.11 we obtain

‖(I −XγXγ>)(TP)>‖F ‖(TUk)+‖2 + ‖E‖F
≤ √γ‖(I −XoptXopt

>)(TP)>‖F 2−δ2
1−δ

+
(
δ
2 +
√

1 + δ 2−δ2
1−δ

)
‖(I −XoptXopt

>)P>‖F .

 (39)

Now we observe that

‖(I −XoptXopt
>)(TP)>‖F

= ‖
(
(I −XoptXopt

>)P>T>
)>
‖F

= ‖T
(
(I −XoptXopt

>)P>
)>
‖F .

Therefore, we can apply Lemma 4.9 with C =
(
(I −XoptXopt

>)P>
)>

and obtain

‖(I −XoptXopt
>)(TP)>‖F ≤

√
1 + δ‖(I −XoptXopt

>)P>‖F . (40)

Replacing Eq. (40) in Eq. (39) we get

‖(I −XγXγ>)Pk
>‖F

≤ √γ
√

1 + δ 2−δ2
1−δ ‖(I −XoptXopt

>)P>‖F
+
(
δ
2 +
√

1 + δ 2−δ2
1−δ

)
‖(I −XoptXopt

>)P>‖F
=
(√

1 + δ 2−δ2
1−δ

)(√
γ + 1

)
+ δ

2‖(I −XoptXopt
>)P>‖F .

 (41)

Side-constrained min sum-of-squares clustering 25

Finally, putting Eq. (38) and Eq. (41) together we obtain:

‖P> −XγXγ>P>‖2F

≤
(

1 +
(√

1 + δ 2−δ2
1−δ

)(√
γ + 1

)
+ δ

2

)2

‖P> −XoptXopt
>P>‖2F ,

which concludes the proof. ut

5 Computational experiments

In this section we present results from experiments with the exact and approximate
reformulations presented in Sect. 3-4. All results were obtained on a Linux machine
with 8 quad-core Intel Xeon E5-2620 CPUs at 2.1GHz and 64GB RAM.

The formulations we test are:

– Eq. (11) (labeled f2 with original data, Tf2 with RP);
– Eq. (18) (labeled f1 with original data, Tf1 with RP);
– Eq. (18) with Eq. (16) as objective function (labeled f1m with original data,

Tf1m with RP);
– Eq. (15) (labeled finf with original data, Tfinf with RP);
– Eq. (15) with Eq. (16) as objective function (labeled finfm with original data,

Tfinfm with RP).

Given that our approximation guarantees apply to the optimum, whereas we solve
our formulations with a given time limit, we structure our tests in two phases.
In the first phase, which we run on instances without side constraints, we simply
want to make sure that the relative difference in MSSC cost between the solutions
of original and projected formulations is reasonably low. This will justify the ap-
plication of projected formulations with a time limit. In the second phase, we add
side constraints that the k-means algorithm cannot deal with, and show that our
methods can.

For any MSSC instance, our code tests each of the 10 formulations above, and
runs k-means on both P and TP whenever no side constraints are present. So
every instance is solved by 10 or 12 different methods, depending on the presence
of the side constraints. We label k-means on the original data by fkm, and on
the projected data by Tfkm. For each of these methods, we compute the optimal
objective function value found and the CPU time. The code, written in a mixture
of Python 3 [52] and bash shell scripts, uses the amplpy interface to call AMPL
[31] and solves the corresponding instance with the specified method using CPLEX
12.10 [38]. The k-means implementation is that of the sklearn [48] python library
with default configuration (see the user manual for more details).

Our code was deployed on two instance sets: random and UCI. The random

set contains randomly generated instances of the MSSC without side constraints.
Again, the only aim of the experiments on the random set is to verify that RPs
yield good approximations on the tested formulations. The UCI set contains some
instances from the UCI data archive [23] having relatively few points in many
dimensions, to which we adjoined some side constraints, as detailed in Sect. 5.3
below.

26 Leo Liberti, Benedetto Manca

5.1 Improvement of the PU bound

The formulations presented above all use PU as a “big M” parameter used in order
to model a variable product linearly. It can be shown that formulation tightness
(i.e. the extent of the gap in optimality/feasibility between an integer formulation
and its continuous relaxation) can be improved by making such parameters as
small as possible, without losing exactness or relaxation guarantees. In the case
of PU , which is defined as the maximum possible distance (in various norms)
between two points in P , an obvious tightening consists in defining a different
bound depending on i ≤ n:

∀i ≤ n PUi = max
h6=i
‖pi − ph‖, (42)

where the norm can be `1, `2, `∞. This applies to formulations in Eq. (11), (15),
(18).

5.2 Tests on random instances

Our algorithm for creating random MSSC instances with given n,m, k is as follows:

1. initialize scalars B > 0 (domain, set to 10 in our experiments), λ ∈ [0, 1] (cluster
overlap factor), N ∈ [0, 1

2] (cluster cardinality difference factor);
2. randomly generate k candidate centroid vectors ȳ1, . . . , ȳk ∈ [−B,B]m;
3. randomly generate k cluster cardinality integers n1, . . . , nk such that:

(i)
∑
j≤k

nj = n, (ii) ∀j ≤ k nj ∈ b(1±N)n/ke;

4. for each cluster j ≤ k let ρj = 1+λ
k

∑
` 6=j

‖ȳj−ȳ`‖2
1+n`/nj

be the radius of a sphere

around ȳj such that these spheres overlap by a factor of their volume controlled
by λ;

5. for each cluster j ≤ k uniformly generate nj points in the ball B(ȳj , ρj), and
label them with j.

This algorithm creates some centroids and cluster cardinalities randomly, then
defines appropriately sized balls around the centroids and samples points uniformly
in those balls. The parameters N and λ control how much the cluster cardinalities
differ from n/k, and, respectively, the overlap of the balls. The algorithm also saves
the obtained clusterings: while these may not be optimal w.r.t. Eq. (4), in general
they provide a good approximation by construction.

We generated three subsets of random instances: small, medium and large. The
purpose of this partition based on size is that we would like to test formulations on
both original and projected data; and given the relative size differences, fair testing
requires instances with different sizes. The first subset, small, is intended to allow
formulations on the original data to be solved at optimality. The second, medium,
allows feasible solutions to be found by both original and projected formulations.
The third, large is such that feasible solutions are mostly found with randomly
projected formulations. All these instances were tested using a CPU time limit of
900s. Those instances reporting a CPU time exceeding 900s may not have been
solved to global optimality. We remark that the value of Eq. (4) considered in
the results table is evaluated on the best clustering found by the corresponding

Side-constrained min sum-of-squares clustering 27

formulation. Thus, certain clusterings found by approximating reformulations yield
values of Eq. (4) that are worse than the optima found by k-means.

The details and results of the small set are reported in Table 1. The results vali-
date the formulation approach: when k-means does not achieve a global optimum,
MP formulations can. In this table we only report formulations on the original
data, since none of the instances has sufficiently high dimensionality to undergo
effective dimensional reduction using RP. We note that certain formulations solved
to global optimality on certain instances improve the quality of the solution found
by k-means. Obviously, the exact cMINLP reformulation Eq. (11) is always among
them; but there is no clear rule about the approximations. The CPU time of k-
means is always a fraction of that of CPLEX solving the MP formulations: this is
a fixture of the proposed methodology.

The details and results of the medium set are reported in Table 2. For every for-
mulation considered in the paper, we computed the relative difference between the
value of Equation (4) for the original formulation and its projected version. These
results show that RPs yield lower dimensional instances that are very accurate in
practice (very few pairs of original vs. projected formulations exhibit a noticeable
difference). Projected formulations were obtained with a RP with ε = 0.3 and
density 0.9. We note that no feasible solutions were found by the f2, Tf2, and finf

formulations in the 900s of allotted computation time: we therefore do not report
the columns corresponding to f2 - Tf2 and finf - Tfinf. Moreover, every solu-
tion process was terminated after 900s of computation time, so we do not report
CPU time. We recall that d only depends on n, not on m.

The details and results of the large set are reported in Table 3. For every
formulation considered in the paper, we computed the relative difference between
the value of Equation (4) for the original formulation and its projected version.
For most of the instances, formulations f1, f1m and finfm were not able to find a
solution, but in all the other cases we observe that the projected formulations were
able to obtain a smaller or equal value of Equation (4). Projected formulations were
obtained with a RP with ε = 0.3 and density 0.9. Again, no feasible solutions were
found by the f2, Tf2, and finf formulations in the 900s of allotted computation
time: we therefore do not report the columns corresponding to f2 - Tf2 and finf -

Tfinf. And, again, every solution process was terminated after 900s of computation
time, so we do not report CPU time. We recall that d only depends on n, not on
m.

The fact that formulations do not achieve the same quality as k-means is due
to the limit on CPU time. To show this, we took the most promising formulation
(Tfinf) and solved it with larger time limit (4h), yielding 3 instances (one from
medium and two from large) where Tfinf found a clustering yielding the same
value of Eq. (4) as k-means.

Instance Value of Eq. (4)
n m d k λ N Tfinf fkm

500 500 155 2 0.1 0.1 5136288.6 5136288.6
1000 1000 173 2 0.1 0.1 199329869.3 199329869.3
1000 10000 173 2 0.1 0.1 20175599.2 20175599.2

The projected formulation Tfinf used in the above table was obtained with a RP
with ε = 0.2 and density 0.5. Raising the CPU time limit to 8h yielded a few more
instances having the same value of Eq. (4) as k-means.

28 Leo Liberti, Benedetto Manca

In
sta

n
ce

V
a
lu
e
o
f
E
q.

(4
)

C
P
U

tim
e

n
m

k
λ

N
f
2

f
1

f
1
m

f
i
n
f

f
i
n
f
m

f
k
m

f
2

f
1

f
1
m

f
i
n
f

f
i
n
f
m

f
k
m

1
0

2
2

0
.1

0
.1

1
1
1
.0

8
9

1
1
1
.0

8
9

1
1
1
.0

8
9

1
1
1
.0

8
9

1
1
1
.0

8
9

1
1
1
.0

8
9

2
.7

7
0
.9

6
1
.4

5
0
.4

8
1
.3

8
0
.0

2
1
0

2
2

0
.1

0
.3

1
4
2
.9

3
7

1
4
2
.9

3
7

1
4
2
.9

3
7

1
4
2
.9

3
7

1
5
4
.4

6
1

1
4
2
.9

3
7

2
.0

3
1
.2

0
1
.2

0
0
.8

4
1
.6

9
0
.0

1
1
0

2
2

0
.3

0
.1

9
5
.5

1
1

9
5
.5

1
1

9
5
.5

1
1

1
0
7
.3

5
9

9
5
.5

1
1

9
5
.5

1
1

2
.2

8
0
.8

2
2
.8

0
2
.5

6
1
.2

4
0
.0

1
1
0

2
2

0
.3

0
.3

7
7
.5

8
2

7
7
.5

8
2

7
7
.5

8
2

7
7
.5

8
2

9
0
.0

1
6

7
7
.5

8
2

1
.8

3
0
.7

1
2
.1

4
0
.8

6
1
.9

6
0
.0

1
1
0

2
3

0
.1

0
.1

5
8
.4

1
4

5
8
.4

1
4

5
8
.4

1
4

5
8
.4

1
4

5
8
.4

1
4

5
8
.4

1
4

2
.0

9
1
.4

9
1
.6

2
1
.7

6
2
.1

1
0
.0

2
1
0

2
3

0
.1

0
.3

1
3
0
.4

6
5

1
3
3
.5

7
9

1
3
3
.5

7
9

1
3
0
.4

6
5

1
3
0
.4

6
5

1
3
0
.4

6
5

2
.0

9
1
.3

0
1
.4

4
1
.3

9
3
.7

3
0
.0

1
1
0

2
3

0
.3

0
.1

1
9
1
.8

8
5

1
9
1
.8

8
5

1
9
1
.8

8
5

1
9
6
.6

5
9

1
9
1
.8

8
5

1
9
1
.8

8
5

2
.0

9
1
.4

2
1
.4

9
1
.4

4
1
.8

8
0
.0

1
1
0

2
3

0
.3

0
.3

2
0
7
.3
4
9

2
2
0
.5

5
6

2
2
0
.5

5
6

2
0
7
.3
4
9

2
4
1
.8

6
0

2
2
4
.1

3
4

1
.9

5
1
.5

2
1
.3

5
1
.2

5
2
.9

5
0
.0

1
1
0

5
2

0
.1

0
.1

1
4
4
9
.7

1
4

1
4
4
9
.7

1
4

1
4
4
9
.7

1
4

2
1
3
0
.9

1
2

2
1
4
7
.0

2
4

1
4
4
9
.7

1
4

2
.3

0
1
.0

3
0
.8

2
0
.6

1
0
.5

6
0
.0

1
1
0

5
2

0
.1

0
.3

5
2
7
.9

5
0

5
2
7
.9

5
0

5
2
7
.9

5
0

5
2
7
.9

5
0

5
2
7
.9

5
0

5
2
7
.9

5
0

2
.8

0
0
.9

3
0
.7

2
0
.5

9
0
.8

9
0
.0

1
1
0

5
2

0
.3

0
.1

8
8
3
.1

0
3

8
8
3
.1

0
3

8
8
3
.1

0
3

8
8
3
.1

0
3

8
8
3
.1

0
3

8
8
3
.1

0
3

2
.0

4
2
.5

5
0
.7

5
0
.7

0
0
.8

0
.0

1
1
0

5
2

0
.3

0
.3

4
5
5
.9

8
6

4
5
5
.9

8
6

4
5
5
.9

8
6

5
1
9
.7

7
9

5
1
9
.7

7
9

4
5
5
.9

8
6

2
.3

7
0
.7

7
1
.4

5
0
.6

4
0
.7

7
0
.0

1
1
0

5
3

0
.1

0
.1

6
4
8
.2

9
8

6
6
5
.3

8
8

6
6
5
.3

8
8

6
4
8
.2

9
8

6
6
5
.3

8
8

6
4
8
.2

9
8

2
.1

4
1
.6

4
1
.5

7
1
.4

9
1
.8

3
0
.0

3
1
0

5
3

0
.1

0
.3

4
7
9
.7

0
0

5
8
6
.8

1
0

5
8
6
.8

1
0

4
7
9
.7

0
0

6
1
3
.3

0
9

4
7
9
.7

0
0

2
.5

0
1
.4

2
1
.4

9
1
.4

5
1
.5

2
0
.0

1
1
0

5
3

0
.3

0
.1

5
2
0
.4

2
8

5
3
3
.6

5
6

5
3
3
.6

5
6

5
2
0
.4

2
8

5
2
0
.4

2
8

5
2
0
.4

2
8

2
.6

3
1
.7

0
1
.5

9
1
.3

5
1
.3

2
0
.0

1
1
0

5
3

0
.3

0
.3

1
7
0
.7
7
5

1
7
5
.9
4
0

1
7
5
.9
4
0

1
7
7
.6
2
4

1
7
6
.1
4
9

1
8
5
.1

9
2

2
.3

9
1
.6

7
3
.7

3
1
.4

6
1
.4

6
0
.0

1
2
0

2
2

0
.1

0
.1

4
4
.7

7
0

4
4
.7

7
0

4
4
.7

7
0

4
4
.7

7
0

4
4
.7

7
0

4
4
.7

7
0

3
.1

1
0
.8

6
1
.2

8
0
.6

4
1
.1

2
0
.0

1
2
0

2
2

0
.1

0
.3

4
0
2
.8

0
3

4
0
2
.8

0
3

4
0
2
.8

0
3

4
0
2
.8

0
3

4
2
1
.0

9
5

4
0
2
.8

0
3

2
.2

2
0
.6

5
1
.4

2
0
.7

3
0
.7

1
0
.0

1
2
0

2
2

0
.3

0
.1

6
4
5
.1

6
9

6
4
5
.1

6
9

6
4
5
.1

6
9

6
4
5
.1

6
9

6
4
5
.1

6
9

6
4
5
.1

6
9

1
.8

6
0
.7

0
1
.4

0
0
.7

0
0
.6

5
0
.0

1
2
0

2
2

0
.3

0
.3

5
8
1
.5

5
3

5
8
8
.9

5
0

5
8
8
.9

5
0

5
8
3
.9

5
7

5
8
3
.9

5
7

5
8
1
.5

5
3

2
.6

0
0
.8

4
1
.6

9
1
.2

4
1
.8

3
0
.0

1
2
0

2
3

0
.1

0
.1

8
1
.5

7
4

8
1
.5

7
4

8
1
.5

7
4

8
1
.5

7
4

8
1
.5

7
4

8
1
.5

7
4

2
.2

3
1
.4

7
5
.2

1
1
.7

0
1
.6

5
0
.0

2
2
0

2
3

0
.1

0
.3

2
7
7
.8

1
7

2
8
7
.9

9
3

2
8
7
.9

9
3

2
7
7
.8

1
7

2
7
7
.8

1
7

2
7
7
.8

1
7

2
.1

7
1
.5

3
6
.6

3
1
.6

3
2
.0

3
0
.0

2
2
0

2
3

0
.3

0
.1

1
6
2
.8
9
6

1
6
2
.8
9
6

1
6
2
.8
9
6

1
6
3
.1

5
8

1
6
3
.1

5
8

1
6
3
.1

5
8

3
.1

5
4
.2

3
1
3
.9

9
1
.9

1
3
.7

1
0
.0

2
2
0

2
3

0
.3

0
.3

4
4
0
.1

9
8

4
6
1
.2

9
1

4
6
1
.2

9
1

4
4
0
.1

9
8

4
4
0
.1

9
8

4
4
0
.1

9
8

4
.0

7
5
.5

8
2
5
.5

2
1
.6

8
4
.4

7
0
.0

3
2
0

5
2

0
.1

0
.1

2
0
8
4
.0

7
1

2
0
8
4
.0

7
1

2
0
8
4
.0

7
1

2
0
8
4
.0

7
1

2
0
8
4
.0

7
1

2
0
8
4
.0

7
1

2
.3

6
1
.5

9
2
.9

2
1
.3

4
0
.9

7
0
.0

1
2
0

5
2

0
.1

0
.3

5
4
3
.0

6
5

5
4
4
.0

4
4

5
4
4
.0

4
4

5
4
3
.0

6
5

5
4
4
.0

4
4

5
4
3
.0

6
5

2
.0

5
1
.7

0
3
.2

7
1
.3

7
4
.2

0
.0

1
2
0

5
2

0
.3

0
.1

2
1
7
5
.1

5
6

2
1
7
5
.1

5
6

2
1
7
5
.1

5
6

2
2
4
4
.9

8
7

2
2
4
4
.9

8
7

2
1
7
5
.1

5
6

2
.7

4
1
.4

9
5
.1

7
1
.2

4
4
.4

1
0
.0

1
2
0

5
2

0
.3

0
.3

1
4
5
1
.0

4
9

1
4
6
3
.9

5
7

1
4
6
3
.9

5
7

1
4
5
1
.0

4
9

1
4
5
1
.0

4
9

1
4
5
1
.0

4
9

2
.0

3
1
.6

3
4
.1

7
1
.3

7
4
.4

3
0
.0

1
2
0

5
3

0
.1

0
.1

8
6
7
.1

9
5

8
9
3
.8

6
5

8
9
3
.8

6
5

8
6
7
.1

9
5

8
6
7
.1

9
5

8
6
7
.1

9
5

1
1
.3

7
1
5
.8

7
2
5
5
.1

4
1
2
.6

3
6
5
.8

3
0
.0

2
2
0

5
3

0
.1

0
.3

1
4
3
4
.3

8
3

1
4
3
9
.2

5
6

1
4
3
9
.2

5
6

1
4
3
9
.2

5
6

1
5
5
6
.8

3
7

1
4
3
4
.3

8
3

1
0
.3

0
1
1
.9

7
1
1
2
.9

9
1
2
.7

8
3
1
.8

1
0
.0

2
2
0

5
3

0
.3

0
.1

1
8
6
7
.5

7
8

1
8
6
7
.5

7
8

1
8
6
7
.5

7
8

2
2
4
7
.4

1
2

2
2
4
7
.4

1
2

1
8
6
7
.5

7
8

1
9
.2

7
1
5
.4

2
3
3
5
.3

2
3
.5

2
1
0
4
.4

4
0
.0

2
2
0

5
3

0
.3

0
.3

2
4
2
7
.4

6
6

2
5
0
6
.6

2
5

2
5
0
6
.6

2
5

2
9
5
9
.8

9
9

3
1
8
4
.5

9
9

2
4
2
7
.4

6
6

5
4
.2

3
2
6
.1

9
3
8
1
.6

1
1
0
4
.3

1
4
0
5
.8

8
0
.0

2

T
a
b
le

1
D

eta
ils

a
n

d
resu

lts
o
f
s
m
a
l
l

ra
n

d
o
m

set.
O

p
tim

a
b

etter
th

a
n

th
o
se

fo
u

n
d

b
y

k
-m

ea
n

s
a
re

rep
o
rted

in
b

o
ld

.

Side-constrained min sum-of-squares clustering 29

Instance Value of Eq. (4)
n m d k λ N f1 - Tf1 f1m - Tf1m finfm - Tfinfm

500 300 69 2 0.1 0.1 0.0 0.3483 0.1986
500 300 69 2 0.1 0.3 0.0 0.3445 0.1661
500 300 69 2 0.3 0.1 0.0 0.0912 0.3014
500 300 69 2 0.3 0.3 0.0 0.0034 0.1589
500 300 69 5 0.1 0.1 0.0 0.0 0.0007
500 300 69 5 0.1 0.3 0.0 0.0 0.0220
500 300 69 5 0.3 0.1 0.0 0.0 0.0
500 300 69 5 0.3 0.3 0.0 0.0 0.0041
500 300 69 10 0.1 0.1 0.0 0.0 0.0010
500 300 69 10 0.1 0.3 0.0 0.0 -0.0001
500 300 69 10 0.3 0.1 0.0 0.0 0.0005
500 300 69 10 0.3 0.3 0.0 0.0 0.0012
500 500 69 2 0.1 0.1 0.0 0.4254 0.1546
500 500 69 2 0.1 0.3 0.0 0.2603 0.0561
500 500 69 2 0.3 0.1 0.0 0.1448 0.0431
500 500 69 2 0.3 0.3 0.0 0.1022 0.1802
500 500 69 5 0.1 0.1 0.0 0.0 0.0041
500 500 69 5 0.1 0.3 0.0 0.0 0.0
500 500 69 5 0.3 0.1 0.0 0.0 0.0112
500 500 69 5 0.3 0.3 0.0 0.0 0.0
500 500 69 10 0.1 0.1 0.0 0.0 -0.0017
500 500 69 10 0.1 0.3 0.0 0.0 0.0012
500 500 69 10 0.3 0.1 0.0 0.0 0.0018
500 500 69 10 0.3 0.3 0.0 0.0 0.0003

1000 300 77 2 0.1 0.1 N.a. N.a. 0.0553
1000 300 77 2 0.1 0.3 N.a. N.a. 0.0619
1000 300 77 2 0.3 0.1 0.0 0.0 0.0515
1000 300 77 2 0.3 0.3 0.0 0.0 0.0214
1000 300 77 5 0.1 0.1 0.0 0.0 0.0
1000 300 77 5 0.1 0.3 N.a. 0.0 0.0001
1000 300 77 5 0.3 0.1 0.0 0.0 0.0
1000 300 77 5 0.3 0.3 N.a. 0.0 0.0003
1000 300 77 10 0.1 0.1 N.a. N.a. -0.0002
1000 300 77 10 0.1 0.3 N.a. N.a. N.a.
1000 300 77 10 0.3 0.1 N.a. N.a. -0.0002
1000 300 77 10 0.3 0.3 N.a. N.a. -0.0001
1000 500 77 2 0.1 0.1 0.0 N.a. 0.0544
1000 500 77 2 0.1 0.3 0.0 N.a. 0.0352
1000 500 77 2 0.3 0.1 0.0 0.0 0.1143
1000 500 77 2 0.3 0.3 0.0 0.0 0.0233
1000 500 77 5 0.1 0.1 N.a. 0.0 0.0
1000 500 77 5 0.1 0.3 N.a. 0.0 0.0002
1000 500 77 5 0.3 0.1 N.a. 0.0 0.0
1000 500 77 5 0.3 0.3 N.a. 0.0 0.0
1000 500 77 10 0.1 0.1 N.a. N.a. -0.0004
1000 500 77 10 0.1 0.3 N.a. N.a. -0.0019
1000 500 77 10 0.3 0.1 N.a. N.a. -0.0005
1000 500 77 10 0.3 0.3 N.a. N.a. N.a.

Table 2 Details and results of medium random set. We computed the value of Equation (4) for
the formulations f1, f1m, finfm and their projected versions. In the table it is shown the relative
difference (f-Tf)/max{|f|,|Tf|} between the value of Equation (4) of the initial formulation
and the corresponding projected formulation. A positive (resp. negative) difference means that
the projected formulation reached a smaller (resp. bigger) value. For every instance for which
the original formulation or its projection was not able to obtain a solution we indicated N.a.
(Not applicable). No feasible solution were found by the f2, Tf2, and finf formulations in the
900s of allotted computation time: we therefore do not report the corresponding columns.

The fact that we were not able to improve strictly on the k-means results may
simply be a consequence of the fact that k-means found global optima on medium

and large. An indication to this effect is the fact that the value of Eq. (4) of the
(known) clustering used to generate the instances is always equal to the value of
Eq. (4) of the clustering found by k-means, with one exception. This exception
is the single instance (n = 1000,m = 500, k = 10, λ = 0.3, N = 0.3), where the
values of Eq. (4) are 14435118.41 for the generating clustering, and 15532981.13
for k-means. Unfortunately, the solver ran out of memory on the Tfinf formulation
applied to this instance before finding any feasible solution, even when run on a
more powerful computer with 256GB RAM.

30 Leo Liberti, Benedetto Manca

Instance Value of Eq. (4)
n m d k λ N f1-Tf1 f1m - Tf1m finfm - Tfinfm

500 1000 69 2 0.1 0.1 0.0 0.2887 0.3139
500 1000 69 2 0.1 0.3 0.0 0.0021 0.3523
500 1000 69 2 0.3 0.1 0.0 0.0299 0.2640
500 1000 69 2 0.3 0.3 0.0 0.1072 0.0561
500 1000 69 5 0.1 0.1 0.0 0.0 0.0
500 1000 69 5 0.1 0.3 0.0 0.0 0.0362
500 1000 69 5 0.3 0.1 0.0 0.0 0.0
500 1000 69 5 0.3 0.3 0.0 0.0 0.0
500 1000 69 10 0.1 0.1 N.a. 0.0 0.0004
500 1000 69 10 0.1 0.3 N.a. 0.0 0.0017
500 1000 69 10 0.3 0.1 N.a. 0.0 0.0002
500 1000 69 10 0.3 0.3 N.a. N.a. 0.0
500 10000 69 2 0.1 0.1 N.a. N.a. N.a.
500 10000 69 2 0.1 0.3 N.a. N.a. N.a.
500 10000 69 2 0.3 0.1 N.a. N.a. N.a.
500 10000 69 2 0.3 0.3 N.a. N.a. N.a.
500 10000 69 5 0.1 0.1 N.a. N.a. N.a.
500 10000 69 5 0.1 0.3 N.a. N.a. N.a.
500 10000 69 5 0.3 0.1 N.a. N.a. N.a.
500 10000 69 5 0.3 0.3 N.a. N.a. N.a.
500 10000 69 10 0.1 0.1 N.a. N.a. N.a.
500 10000 69 10 0.1 0.3 N.a. N.a. N.a.
500 10000 69 10 0.3 0.1 N.a. N.a. N.a.
500 10000 69 10 0.3 0.3 N.a. N.a. N.a.

1000 1000 77 2 0.1 0.1 0.0 N.a. 0.2549
1000 1000 77 2 0.1 0.3 0.0 N.a. 0.1275
1000 1000 77 2 0.3 0.1 0.0 N.a. 0.1629
1000 1000 77 2 0.3 0.3 0.0 N.a. 0.0195
1000 1000 77 5 0.1 0.1 N.a. N.a. 0.0
1000 1000 77 5 0.1 0.3 N.a. N.a. 0.0
1000 1000 77 5 0.3 0.1 N.a. N.a. 0.0006
1000 1000 77 5 0.3 0.3 N.a. N.a. 0.0007
1000 1000 77 10 0.1 0.1 N.a. N.a. N.a.
1000 1000 77 10 0.1 0.3 N.a. N.a. N.a.
1000 1000 77 10 0.3 0.1 N.a. N.a. N.a.
1000 1000 77 10 0.3 0.3 N.a. N.a. N.a.
1000 10000 77 2 0.1 0.1 N.a. N.a. N.a.
1000 10000 77 2 0.1 0.3 N.a. N.a. N.a.
1000 10000 77 2 0.3 0.1 N.a. N.a. N.a.
1000 10000 77 2 0.3 0.3 N.a. N.a. N.a.
1000 10000 77 5 0.1 0.1 N.a. N.a. N.a.
1000 10000 77 5 0.1 0.3 N.a. N.a. N.a.
1000 10000 77 5 0.3 0.1 N.a. N.a. N.a.
1000 10000 77 5 0.3 0.3 N.a. N.a. N.a.

Table 3 Details and results of large random set. We computed the value of Equation (4)
for the formulations f1, f1m, finfm and their projected version. In the table it is shown the
difference (f-Tf)/max{|f|,|Tf|} between the value of Equation (4) of the initial formulation
and the corresponding projected formulation. A positive (resp. negative) difference means that
the projected formulation reached a smaller (resp. bigger) value. For every instance for which
the original formulation or its projection was not able to obtain a solution we indicated N.a.
(Not applicable). No feasible solution were found by the f2, Tf2, and finf formulations in the
900s of allotted computation time: we therefore do not report the corresponding columns.

5.3 Side constraints

Having ascertained that the proposed formulation-based methods are sound and
behave according to expectations, we now exploit the flexibility and generality
of MP-based approaches w.r.t. purely algorithmic ones, and adjoin some side
constraints to the formulation. In particular, we consider classic “must-link” and
“cannot-link” constraints. We then also add more exotic constraints, i.e. that cen-
troids must be inside given balls (to the best of our knowledge, no k-means variant
targets such constraints).

– Must-link: for a given set L ⊂ {{i, h} | i < h ≤ n} and for every j ≤ k we require
xij = xhj .

– Cannot-link: for a given set L ⊂ {{i, h} | i < h ≤ n} and for every j ≤ k we
require xij ≤ 1− xhj .

– Centroids in balls: given a set B = {(ŷj , r̂j) | j ≤ k} of `2-balls centered at ŷj
with radii r̂j , we require that ‖yj − ŷj‖22 ≤ r̂2j for all j ≤ k.

Side-constrained min sum-of-squares clustering 31

We remark that the centroid constraints turn every MILP formulation into a more
challenging cMINLP one.

In computational experiments, we generate a certain number of side constraints
randomly from the above families, and adjoin them to instances downloaded from
the UCI archive [23]. Specifically:

– we generate “must-link” constraints by picking a random sample Ŝ of 0.1nk ran-

dom points in P , and considering the pairs pi, pj (for i, j ∈ Ŝ) whose Euclidean
distance is within a threshold 1

2 (avgD + minD), where D is the Euclidean

distance matrix of the points in Ŝ;
– “cannot-link” constraints are generated similarly: we consider random sam-

ple of points generated like Ŝ, and take all the point pairs from the sample,
excluding those that were used in “must-link” constraints (if any);

– the centers ŷ of the balls in B defining the centroid constraints are chosen
randomly in a box containing all the points in P ; the radii are chosen to be all
equal to 1

k min
`≤m

(yU` − y
L
`) (see Eq. (9)).

5.3.1 Easing feasibility by local branching constraints

The first tests on these constrained instances witnessed the extreme difficulty
to find a feasible solution. We therefore add one more class of local branching

constraints, the only purpose of which was to encode a nearly-feasible solution in
the formulation. For each instance, we consider the solution x̂ given by k-means,
and then adjoin the following constraints [27, Eq. (7)]:∑

i≤n,j≤k
x̂ij=0

xij +
∑

i≤n,j≤k
x̂ij=1

(1− xij) ≤ κ. (43)

Such constraints allow the encoding of a local search neighbourhood (centered at
x̂ and having Hamming radius κ) within the formulation itself. They essentially
states that at most κ binary variables can switch their value from x̂. We note that
letting κ = 0 makes x̂ the only possible solution, and that reasonable pre-solving
codes within commercial solvers would immediately fix x = x̂ based on Eq. (43)
with κ = 0. In thise sense, local branching constraints can endow a formulation
with some knowledge of a good solution.

In the present case, x̂ is feasible for the MSSC problem, but not w.r.t. the
side constraints. Moreover, we still want the search to be global rather than local.
We therefore let κ = nk, which means that the constraint is satisfied by every
binary vector x. Even though Eq. (43) with κ = nk are redundant constraints, our
computational experience shows that they allow solvers to find a feasible solution
much more easily.

5.4 Tests on UCI instances

We considered datasets from archive.ics.uci.edu/ml/datasets/ with relatively
few points in a large dimensional spaces. Notably, we consider the following datasets:

– SCADI (labelled scadi);

32 Leo Liberti, Benedetto Manca

– DBWorld e-mails (labelled dbworld);
– Gastrointestinal lesions in regular colonoscopy (labelled gastroent);
– A study of Asian religious and biblical texts (labelled asianrel);
– Gas+sensor array under flow modulation (labelled pulmon);
– DrivFace (labelled drivface).

For those instances containing categorical values, we mapped each categorical
string to ASCII codes and concatenated them. The properties of these instances
are given in Table 4.

Name n m d k
dbworld 64 4702 46 2
scadi 70 206 47 2
asianrel 590 8266 71 2
drivface 606 6400 71 2
gastroent 700 152 73 2
pulmon 928 7509 76 2

Table 4 Properties of the UCI instances.

Our first validation experiment consists in solving these instances with k = 2,
without side constraints, allowing each formulation 900s of CPU time. Detailed
instance data and results concerning the value of Eq. (4) at the best optima found
by each formulation are given in Table 5 (above). CPU times taken by k-means
are negligible (in the range 0.22s-3.36s). In one case (dbworld) the best optimum
was found by a formulation method rather than k-means. The large number of
failures found in pulmon might be due to ill scaling of the instance data, which is
present both in the original numerical data (five orders of magnitude), and also
partly derived by our own category-to-number mapping.

Finally, the results of our experiment with side constraints are reported in
Table 5 (below). For these tests, we allowed a maximum CPU time of 8h per
formulation. We note that most randomly projected formulations can be solved to
feasibility.

6 Conclusion

“Minimum Sum-of-Squares Clustering” is the name of the problem that the fa-
mous k-means heuristic aims at solving: given a set of points in some Euclidean
space, find clusters and their centroids so that the sum of squared Euclidean dis-
tances between points and the corresponding centroid is minimum. It is one of
the foundational problems related to clustering using Euclidean distances. Its nat-
ural Mathematical Programming formulation is of the Mixed-Integer Nonlinear
Programming class. We considered variants that add arbitrary constraints to the
classic formulation. We proposed reformulations yielding convex continuous relax-
ations. We presented approximations based on other norms than Euclidean and
on the application of random projection techniques to decrease dimensionality of
the data points.

We emphasize the extreme ease and speed of implementation and deployment
of our proposed methodology. The algorithmic part rests almost completely on

Side-constrained min sum-of-squares clustering 33

In
st
a
n
ce

V
a
lu
e
o
f
E
q.

(4
)

W
it

h
o
u

t
si

d
e

co
n

st
ra

in
ts

N
a
m

e
f
2

T
f
2

f
1

T
f
1

f
1
m

T
f
1
m

f
i
n
f

T
f
i
n
f

f
i
n
f
m

T
f
i
n
f
m

f
k
m

T
f
k
m

d
b
w
o
r
l
d

-1
1
0
7
3
8
.1

5
1
0
8
1
0
.2

4
1
0
5
1
9
.3

5
1
0
2
9
3
.8
9

1
0
6
0
3
.0

4
1
0
7
6
7
.3

3
1
0
7
4
4
.5

7
1
0
8
5
5
.9

7
1
0
7
4
6
.0

0
1
0
4
8
7
.8

2
1
0
7
0
1
.2

2
s
c
a
d
i

1
9
5
7
.7

6
2
4
0
1
.4

6
2
0
5
0
.5

7
1
8
2
3
.7

3
2
0
5
0
.5

7
1
8
2
3
.7

3
1
8
1
1
.4

8
1
8
7
1
.6

3
1
8
1
1
.4

8
1
8
4
9
.4

9
1
8
1
1
.2
6

1
8
1
1
.2
6

a
s
i
a
n
r
e
l

-1
-1

1
6
5
3
8
7
.4

1
6
5
3
8
7
.4

1
4
9
0
1
7
.6

1
6
5
3
8
7
.4

-1
1
5
5
2
8
0
.1

1
6
3
2
7
9
.7

1
5
8
9
1
3
.6

1
4
1
4
6
5
.4

1
4
1
8
5
8
.8

d
r
i
v
f
a
c
e

-1
-1

1
1
0
4
7
1
.9

4
1
1
0
4
2
8
.3

9
1
0
2
9
3
.8

9
1
0
2
3
0
7
.8

6
-1

9
6
9
5
3
.2

3
1

1
1
0
5
0
6
.4

7
2

1
0
5
4
0
6
.0

1
7
9
5
0
9
.7
2

7
9
5
6
1
.1

4
g
a
s
t
r
o
e
n
t

-1
-1

1
.3
×

1
0

1
1

1
.3
×

1
0

1
1

1
.3
×

1
0

1
1

1
.3
×

1
0

1
1

-1
1
.3
×

1
0

1
1

3
.4
×

1
0

1
0

3
.9
×

1
0

1
0

3
.2
×

1
0
1
0

3
.2
×

1
0
1
0

p
u
l
m
o
n

-1
-1

-1
-1

-1
1
.6
×

1
0

3
6

-1
-1

-1
-1

7
.9
×

1
0
3
1

7
.9
×

1
0
3
1

W
it

h
si

d
e

co
n

st
ra

in
ts

d
b
w
o
r
l
d

-1
1
0
6
0
2
.6

-1
1
0
5
6
1
.1

-1
1
0
6
0
7
.5

-1
1
0
7
2
7
.6

-1
-1

-
-

s
c
a
d
i

-1
2
0
7
4
.9

8
-1

1
8
2
2
.7

1
-1

1
8
3
3
.1

8
2
2
1
1
.3

6
1
8
3
6
.1

9
2
2
6
6
.8

7
-1

-
-

a
s
i
a
n
r
e
l

-1
1
5
9
3
2
8

-1
1
5
8
4
4
9

-1
1
4
8
6
9
5

-1
1
5
5
0
1
2

-1
1
5
7
5
7
6

-
-

d
r
i
v
f
a
c
e

-1
1
0
6
4
1
1

-1
8
6
2
5
8
.1

-1
8
6
2
0
1
.5

-1
8
6
1
2
4
.2

-1
1
0
7
4
2
1

-
-

g
a
s
t
r
o
e
n
t

-1
-1

-1
-1

1
.2

3
×

1
0

1
1

1
.2

6
×

1
0

1
1

-1
1
.3

1
×

1
0

1
1

-1
1
.2

1
×

1
0

1
1

-
-

p
u
l
m
o
n

-1
-1

-1
-1

-1
1
.6

2
×

1
0

3
6

-1
-1

-1
1
.6

1
×

1
0

3
6

-
-

T
a
b
le

5
U

C
I

d
a
ta

se
t

ex
p

er
im

en
ts

(a
b

o
v
e:

w
it

h
o
u

t
si

d
e

co
n

st
ra

in
ts

;
b

el
o
w

:
w

it
h

si
d

e
co

n
st

ra
in

ts
).

W
e

n
o
te

th
a
t

k
-m

ea
n

s
ca

n
n

o
t

so
lv

e
th

e
in

st
a
n

ce
s

w
it

h
si

d
e

co
n

st
ra

in
ts

).

34 Leo Liberti, Benedetto Manca

off-the-shelf solver components. Random projections, though their analyses are
certainly not simple, are based on well-known sampling techniques and a single
matrix multiplication. Computational results were carried out on both random and
real data instances. While k-means is decidedly the better option for solving the
original problem as stated, the variant with side constraints limits the applicability
of this successful heuristic. We think that, in such cases, our methodology based on
randomly projected formulations is a viable alternative, in that it provides good
quality solutions in limited amounts of time.

Data availability statement

The datasets generated and analysed in this paper are available upon request from
the corresponding author.

References

1. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary
coins. Journal of Computer and System Sciences 66, 671–687 (2003)

2. Ailon, N., Chazelle, B.: Approximate nearest neighbors and fast Johnson-Lindenstrauss
lemma. In: Proceedings of the Symposium on the Theory Of Computing, STOC, vol. ’06.
ACM, Seattle (2006)

3. Allen-Zhu, Z., Gelashvili, R., Micali, S., Shavit, N.: Sparse sign-consistent Johnson-
Lindenstrauss matrices: Compression with neuroscience-based constraints. Proceedings
of the National Academy of Sciences 111(47), 16,872–16,876 (2014)

4. Aloise, D., Hansen, P., Liberti, L.: An improved column generation algorithm for minimum
sum-of-squares clustering. Mathematical Programming A 131, 195–220 (2012)

5. Babaki, B., Guns, T., Nijssen, S.: Constrained clustering using column generation. In:
H. Simonis (ed.) Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CPAIOR), LNCS, vol. 8451. Springer, Heidelberg
(2014)

6. Becchetti, L., Bury, M., Cohen-Addad, V., Grandoni, F., Schwiegelshohn, C.: Oblivious di-
mension reduction for k-means: Beyond subspaces and the Johnson-Lindenstrauss lemma.
In: Proceedings of the 51st Annual ACM Symposium on the Theory of Computing, STOC,
pp. 1039–1050. ACM, New York (2019)

7. Bell, E.: The iterated exponential integers. Annals of Mathematics 39, 539–557 (1938)
8. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening

techniques for non-convex MINLP. Optimization Methods and Software 24(4), 597–634
(2009)

9. Blömer, J., Lammersen, C., Schmidt, M., Sohler, C.: Theoretical analysis of the k-means
algorithm: A survey. In: L. Kliemann, P. Sanders (eds.) Algorithm Engineering, LNCS,
vol. 9220, pp. 81–116. Springer, Cham (2016)

10. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real
numbers: NP-completeness, recursive functions, and universal machines. Bulletin of the
AMS 21(1), 1–46 (1989)

11. Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee, J., Lodi,
A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed
integer nonlinear programs. Discrete Optimization 5, 186–204 (2008)

12. Bonami, P., Lee, J.: BONMIN User’s Manual. Tech. rep., IBM Corporation (2007)
13. Boutsidis, C., Zouzias, A., Drineas, P.: Random projections for k-means clustering. In: Ad-

vances in Neural Information Processing Systems, NIPS, pp. 298–306. NIPS Foundation,
La Jolla (2010)

14. Braverman, V., Meyerson, A., Ostrovsky, R., Roytman, A., Shindler, M., Tagiku, B.:
Streaming k-means on well-clusterable data. In: Proceedings of the 22nd annual ACM
Symposium on Discrete Algorithms, SODA, vol. 22, pp. 26–40. ACM, Philadelphia (2011)

15. de Bruijn, N.: Asymptotic methods in analysis. Dover, New York (1981)

Side-constrained min sum-of-squares clustering 35

16. Bury, M., Schwiegelshohn, C.: Random projection for k-means: Maintaining coresets be-
yond merge & reduce. Tech. Rep. 1504.01584v3, arXiv (2015)

17. Clarkson, K., Woodruff, D.: Numerical linear algebra in the streaming model. In: Pro-
ceedings of the 41st Annual ACM Symposium on the Theory of Computing, STOC, pp.
205–241. ACM, New York (2009)

18. Cohen, M., Elder, S., Musco, C., Musco, C., Persu, M.: Dimensionality reduction for k-
means clustering and low-rank approximation. In: Proceedings of the 47th Annual ACM
Symposium on the Theory of Computing, STOC, pp. 163–172. ACM, New York (2015)

19. D’Ambrosio, C., Liberti, L., Poirion, P.L., Vu, K.: Random projections for quadratic pro-
grams. Mathematical Programming B (accepted)

20. Dao, T.B.H., Duong, K.C., Vrain, C.: Constrained minimum sum of squares clustering
by constraint programming. In: G. Pesant (ed.) Principles and Practice of Constraint
Programming, LNCS, vol. 9255, pp. 557–573. Springer, Heidelberg (2015)

21. Dasgupta, S., Gupta, A.: An elementary proof of a theorem by Johnson and Lindenstrauss.
Random Structures and Algorithms 22, 60–65 (2002)

22. Davidson, I., Ravi, S.: Clustering with constraints: Feasibility issues and the k-means
algorithm. In: Proceedings of the SIAM International Conference on Data Mining, ICDM,
pp. 138–149. SIAM, Philadelphia (2005)

23. Dua, D., Graff, C.: UCI machine learning repository (2017). URL http://archive.ics.
uci.edu/ml

24. Duong, K.-C., Vrain, C.: Constrained clustering by constraint programming. Artificial
Intelligence, 244, 70–94 (2017)

25. Duran, M., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer
nonlinear programs. Mathematical Programming 36, 307–339 (1986)

26. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psy-
chometrika 1, 211–218 (1936)

27. Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98, 23–37 (2005)
28. Fletcher, R.: Practical Methods of Optimization, second edn. Wiley, Chichester (1991)
29. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation.

Mathematical Programming 66, 327–349 (1994)
30. Fletcher, R., Leyffer, S.: Numerical experience with lower bounds for MIQP branch-and-

bound. SIAM Journal of Optimization 8(2), 604–616 (1998)
31. Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)
32. Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L., Hen-

del, G., Hojny, C., Koch, T., Lübbecke, M.E., Maher, S.J., Miltenberger, M., Müller,
B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C., Serrano, F.,
Shinano, Y., Viernickel, J.M., Walter, M., Wegscheider, F., Witt, J.T., Witzig, J.: The
SCIP Optimization Suite 6.0. Technical report, Optimization Online (2018). URL
http://www.optimization-online.org/DB_HTML/2018/07/6692.html

33. Gordon, A., Henderson, J.: An algorithm for Euclidean sum of squares classification. Bio-
metrics 33(2), 355–362 (1977)

34. Goubault, E., Roux, S.L., Leconte, J., Liberti, L., Marinelli, F.: Static analysis by ab-
stract interpretation: a mathematical programming approach. In: A. Miné, E. Rodriguez-
Carbonell (eds.) Proceeding of the Second International Workshop on Numerical and Sym-
bolic Abstract Domains, Electronic Notes in Theoretical Computer Science, vol. 267(1),
pp. 73–87. Elsevier (2010)

35. Grossi, V., Monreale, A., Nanni, M., Pedreschi, D., Turini, F.: Clustering formulation
using constraint optimization. In: D.B. et al. (ed.) SEFM Workshops, LNCS, vol. 9509,
pp. 93–107. Srpinger, Heidelberg (2015)

36. Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Mathematical
Programming 79, 191–215 (1997)

37. IBM: ILOG CPLEX 12.8 User’s Manual. IBM (2017)
38. IBM: ILOG CPLEX 12.10 User’s Manual. IBM (2020)
39. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. In:

G. Hedlund (ed.) Conference in Modern Analysis and Probability, Contemporary Mathe-
matics, vol. 26, pp. 189–206. AMS, Providence, RI (1984)

40. Klein, D., Kamvar, S., Manning, C.: From instance-level constraints to space-level con-
straints: Making the most of prior knowledge in data clustering. In: Proceedings of the
19th International Conference on Machine Learning, ICML, p. 307314. Morgan Kaufmann,
San Francisco (2002)

36 Leo Liberti, Benedetto Manca

41. Liberti, L.: Reformulations in mathematical programming: Definitions and systematics.
RAIRO-RO 43(1), 55–86 (2009)

42. Liberti, L.: Undecidability and hardness in mixed-integer nonlinear programming. RAIRO-
Operations Research 53, 81–109 (2019)

43. Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical programming: A
computational approach. In: A. Abraham, A.E. Hassanien, P. Siarry, A. Engelbrecht (eds.)
Foundations of Computational Intelligence Vol. 3, no. 203 in Studies in Computational
Intelligence, pp. 153–234. Springer, Berlin (2009)

44. Liberti, L., Marinelli, F.: Mathematical programming: Turing completeness and applica-
tions to software analysis. Journal of Combinatorial Optimization 28(1), 82–104 (2014)

45. Lovasz, L.: Combinatorial problems and exercises. North-Holland, Amsterdam (1993)
46. MacQueen, J.: Some methods for classification and analysis of multivariate observations.

In: Proc. 5th Berkeley symposium on mathematical statistics and probability, vol. 1, pp.
281–297. University of California Press (1967)

47. du Merle, O., Hansen, P., Jaumard, B., Mladenović, N.: An interior point algorithm for
minimum sum-of-squares clustering. SIAM Journal Scientific Computing 21(4), 1485–1505
(2000)

48. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research 12, 2825–2830 (2011)

49. Pham, N.T.: Quantile regression in large energy datasets. Master’s thesis, LIX, Ecole
Poltyechnique (2018)

50. Pilanci, M., Wainwright, M.: Randomized sketches of convex programs with sharp guar-
antees. In: International Symposium on Information Theory (ISIT), pp. 921–925. IEEE,
Piscataway (2014)

51. Pilanci, M., Wainwright, M.: Newton sketch: A linear time optimization algorithm with
linear-quadratic convergence. SIAM Journal on Optimization 27(1), 205–245 (2017)

52. van Rossum, G., et al.: Python Language Reference, version 3. Python Software Founda-
tion (2019)

53. Sarlós, T.: Improved approximation algorithms for large matrices via random projections.
In: Proceedings of the Annual IEEE Symposium on Foundations of Computer Science,
FOCS, vol. 47, pp. 143–152. IEEE, Washington (2006)

54. Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound algorithm
for the global optimisation of nonconvex MINLPs. Computers & Chemical Engineering
23, 457–478 (1999)

55. Steinhaus, H.: Sur la division des corps matériels en parties. Bulletin de l’Académie
Polonaise des Sciences Cl. III 4(12), 801–804 (1956)

56. Steinley, D.: K-means clustering: A half-century synthesis. British Journal of Mathematical
and Statistical Psychology 59, 1–34 (2006)

57. Tawarmalani, M., Sahinidis, N.: Global optimization of mixed integer nonlinear programs:
A theoretical and computational study. Mathematical Programming 99, 563–591 (2004)

58. Vempala, S.: The Random Projection Method. No. 65 in DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. AMS, Providence, RI (2004)

59. Vershynin, R.: High-dimensional probability. CUP, Cambridge (2018)
60. Vu, K., Poirion, P.L., D’Ambrosio, C., Liberti, L.: Random projections for quadratic pro-

grams over a Euclidean ball. In: A. Lodi, et al. (eds.) Integer Programming and Combina-
torial Optimization (IPCO), LNCS, vol. 11480, pp. 442–452. Springer, New York (2019)

61. Vu, K., Poirion, P.L., Liberti, L.: Random projections for linear programming. Mathe-
matics of Operations Research 43(4), 1051–1071 (2018)

62. Vu, K., Poirion, P.L., Liberti, L.: Gaussian random projections for Euclidean membership
problems. Discrete Applied Mathematics 253, 93–102 (2019)

63. Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming 106(1),
25–57 (2006)

64. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proceedings of
the 17th International Conference on Machine Learning, ICML, p. 11031110. Morgan
Kaufmann, San Francisco (2000)

65. Wang, O., de Sainte Marie, C., Ke, C., Liberti, L.: Business Rules are universal and
unlearnable. Computational Intelligence (accepted)

66. Yang, J., Meng, X., Mahoney, M.: Quantile regression for large-scale applications. SIAM
Journal of Scientific Computing 36(5), S78–S110 (2014)

