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A B S T R A C T   

A semi-analytical model (CDOM-KD2) based on the light vertical attenuation coefficient (Kd(λ)) has been 
developed for estimating the absorption by colored dissolved organic matter, acdom(443), from ocean color 
remote sensing at global scale. The performance of this new inversion model together with that of former models 
by Shanmugam (2011) (S2011), Chen et al. (2017) (C2017) and Aurin et al. (2018) (A2018) was evaluated from 
in situ and matchup validation data sets gathering worldwide distributed samples. An overall consistency in the 
acdom(443) estimated from S2011, C2017 and CDOM-KD2 models with a slightly better performance of the latter 
method was observed (MAPD of 27.42% and 30.85% for open ocean with in situ and satellite data, respectively), 
emphasizing the possible specific assessment of acdom(443) dynamics from satellite remote sensing over the 
global ocean including the most oligotrophic waters. At 443 nm the global average relative contribution of 
acdom(443) to the absorption by colored detrital matter, acdm(443) is of 61% ± 14%, while the contribution of 
acdom(443) to the non-water absorption, anw(443), is of 35% ± 26%. Strong spatial disparities are however 
observed for both acdom(443) temporal dynamics and relative contribution in the absorption budget. A decou
pling is observed between acdom(443) and particulate detrital (i.e. non-living) matter and phytoplankton in the 
gyre areas where a low temporal variability is globally observed. This is contrasting with water masses influ
enced by terrestrial inputs as well as in equatorial and subtropical areas impacted by main oceanic currents 
where CDOM loads and acdom(443) contribution in the water absorption budget are more variable.   

1. Introduction 

The Colored dissolved organic matter (CDOM), also known as 
gelbstoff, gilvin and yellow substance, is the colored fraction of the total 
dissolved organic material (DOM) (Coble, 2007). Although it represents 
a small part of the total DOM in the open sea (Nelson et al., 1998, 2010; 
Nelson and Siegel, 2002; Siegel et al., 2002), CDOM plays a significant 
role in aquatic photochemistry and photobiology, interfering in various 
biogeochemical cycles as it absorbs light over a broad spectral range 
covering visible and UV domains (Aurin et al., 2018; Blough and Del 

Vecchio, 2002; Coble, 2007; Kieber et al., 1996; Toole et al., 2006). The 
absorption of CDOM (acdom) used to estimate CDOM concentration in 
water (Coble et al., 2004), represents the optical proxy for assessing 
Dissolved Organic Carbon concentration in coastal waters (Del Castillo 
and Miller, 2008; Fichot and Benner, 2011; Mannino et al., 2008; Van
trepotte et al., 2015). The composition of CDOM is very complex and 
diverse, depending on its origin, labile fraction, age, and whether it has 
transitioned from fresh waters to marine environment. Coastal waters 
generally present high concentrations of CDOM, mainly of terrestrial 
origin, introduced to the oceanic system through river discharge and 
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land washing (Coble et al., 1998; Tzortziou et al., 2015). For this reason, 
acdom(λ) can be used as a good tracer of inland waters dispersion in 
coastal areas (Fichot and Benner, 2012). In contrast to coastal waters, 
CDOM in the open ocean is mainly of marine origin; being produced in 
the euphotic zone and/or advected by horizontal and vertical currents 
(Coble, 2007; Nelson and Siegel, 2013; Organelli et al., 2014). In this 
type of water, and out of areas affected by advection of coastal waters, 
CDOM is generally considered a residual product of phytoplankton and 
other organic particles. This production is related to a variety of bio
logical processes including viral lysis, bacterial degradation, excretion 
by phytoplankton and phytoplankton grazing by zooplankton (Bricaud 
et al., 1981; Coble, 2007; Nelson et al., 1998, 2010; Nelson and Siegel, 
2002; Prieur and Sathyendranath, 1981). CDOM sink processes are 
mainly related to microbial consumption and photooxidation which 
explain about 40% (Carlson and Ducklow, 1996) and 50% to 75% 
(Bricaud et al., 1981; Mannino et al., 2008) of the reduction of CDOM, 
respectively, thus strongly driving the net CDOM balance in the open 
ocean (Siegel et al., 2002; Nelson et al., 2007; Coble, 2007). The dy
namic of CDOM in open ocean waters is strongly dependent on the 
coupling between physical and biogeochemical processes which rely on 
forcing parameters such as the light availability and vertical mixing. The 
great diversity of processes controlling acdom variability make its dy
namics over the open ocean still not well characterized. Besides the 
necessity to improve our knowledge on the oceanic spatio-temporal 
distribution of acdom(λ), the strong absorption by CDOM in the blue 
spectral domain interferes with estimates of chlorophyll-a concentra
tion, Chl-a, from ocean color observation (Carder et al., 1991; Loisel 
et al., 2010; Siegel et al., 2005a, 2005b, 2013). 

The similar spectral behaviors between acdom(λ) and the absorption 
coefficient by non-algal particles, anap(λ), makes these two absorption 
coefficients difficult to distinguish from ocean color inverse algorithms. 
For this reason, the ocean color community has historically focused on 
the development of inverse algorithms to assess the colored detrital 
matter absorption coefficient, acdm(λ), which combines the contribu
tions of non-algal particles and CDOM (e.g. Boss and Roesler, 2006; 
Ciotti and Bricaud, 2006; Lee et al., 2002; Maritorena et al., 2002). In 
coastal waters, however, where the concentration of CDOM is greater 
and the source and sink processes controlling the variability of anap and 
acdom are strongly decoupled, various empirical and semi-analytical 
approaches have successfully been developed to specifically assess 
acdom(λ) (e.g. Cao et al., 2018; Loisel et al., 2014; Mannino et al., 2008). 
Over open ocean waters, where CDOM is present in a much lower 
concentration than in coastal waters, the first Ocean Color Radiometry 
(OCR) algorithm dedicated to the estimation of acdom(λ) was based on 
the use of variable acdom(443) vs Chl-a relationships (Morel and Gentili, 
2009). However, as mentioned by the latter authors, this algorithm only 
provides a relative estimate of acdom(λ), since it is calculated “in refer
ence to a standard Chlorophyll-a content”. More recently, purely 
empirical approaches based on blue-to-green reflectance ratios (Shan
mugam, 2011), or multi linear regression (MLR) between acdom(λ) and 
Rrs(λ) at different wavelengths (Aurin et al., 2018) have been proposed 
to assess acdom(λ) from ocean color observation. Based on matchup be
tween satellite GSM-derived acdm(443) values (Maritorena et al., 2002) 
and in situ acdom(λ) measurements a semi-analytical approach has also 
been proposed by Swan et al. (2013) to assess acdom(λ) from acdm(443). 
Very recently, a semi-analytical approach involving other inherent op
tical properties (IOPs) has been developed to assess acdom(443) in coastal 
and open ocean water (Chen et al., 2017). 

This study emerged in this context and aims at i) proposing the best 
approach to adequately assess acdom(443) over oceanic areas, ii) 
assessing the acdom(443) variability with regards to the chlorophyll-a 
concentration and acdm(443), and iii) quantifying the contribution of 
acdom(443) to acdm(443) and the non-water absorption coefficients, 
anw(443), over the global ocean. For that purpose, the performance of 
different algorithms, including a new one and three previously pub
lished algorithms, is evaluated using a large set of in situ and matchup 

data points. The description of these in situ and satellite data are first 
provided. The different selected algorithms are then presented, and the 
adaptation of a previously published algorithm dedicated to the esti
mation of acdom(412) in coastal waters is described. The description of 
the acdom(443) spatio-temporal patterns, as well as of its relative 
contribution to acdm(443) and anw(443) are then provided. 

2. Materials and methods 

2.1. Datasets description 

2.1.1. Optical typology 
In order to evaluate the performance of the different acdom(443) 

inversion models considered according to the optical water type char
acteristics, each sample available was associated with the 16 optical 
classes defined by Mélin and Vantrepotte (2015) defined from a global 
coastal waters classification of the Rrs spectral shape (normalized 
reflectance spectra). The 16 classes defined by the latter authors cover a 
large part of the optical diversity of marine waters including oceanic 
waters, to the exception of the most oligotrophic gyre environment. A 
specific additional class numbered as 17, has been therefore added 
following the methodology described in Jorge et al. (2021). Data 
belonging to classes 1 and 2 can be considered as representing turbid 
water masses strongly impacted by terrestrial inputs. In contrast, sam
ples associated with classes 9 to 17 correspond to waters where the 
reflectance spectra are well represented by the Case 1 reflectance model 
by Morel and Maritorena (2001), while samples for classes 3 to 8 are 
more likely related to diverse types of Case 2 waters where the spectral 
shape is increasingly different from the Case 1 modeled spectra. 

2.1.2. In situ and matchup data sets used for validation 
Three different datasets were defined for the development, valida

tion and inter-comparison exercises presented in this study. The first 
dataset (DS1) corresponds to the synthetic ocean color dataset devel
oped by the International Ocean Color Coordinating Group (IOCCG) 
working group dedicated to inverse algorithm development (IOCCG, 
2006). This dataset gathers 500 data points of inherent optical proper
ties (IOPs) and remote sensing reflectance, Rrs(λ), computed from radi
ative transfer simulations every 3 nm from 400 to 700 nm for each IOPs 
combination. The acdom(443) values for the whole DS1 dataset range 
between 0.0025 m− 1 and 2.37 m− 1, with a median value of 0.12 m− 1 

(Fig. 1 a). This data set is used for the development of the new algorithm, 
hereafter referred as CDOM-KD2. The evaluation of the relative per
formances of the different considered algorithms has been carried out 
using an in situ validation dataset (DS2) and a matchup dataset (DS3). 

The DS2 (Fig. 1 d, e, f) data set includes 1001 in situ Rrs(λ) and 
acdom(443) measurements distributed worldwide (Fig. 1 j). It gathers 
data collected from diverse cruises previously presented in Loisel et al. 
(2018), and other additional data collected within the NOMAD (Werdell 
and Bailey, 2005) and Plumes and Blooms (https://seabass.gsfc.nasa. 
gov/experiment/Plumes_and_Blooms) projects not included in Loisel 
et al. (2018). The acdom(443) range of variability in DS2 is [0.002; 7.84] 
m− 1, with a median value of 0.094 m− 1. 

The DS3 matchup dataset was built from two distinct data sets. First, 
the GlobColour daily merged L3 Ocean Color products at 4 km2 of spatial 
resolution (http://www.globcolour.info/CDR_Docs/GlobCOLOUR_PU 
G.pdf) were matched with the in situ GOCAD (Aurin et al., 2018) data 
set and covers the September 1997–August 2012 time period. The 
matchups were computed following the MERMAID tools protocol 
(http://mermaid.acri.fr/dataproto/dataproto.php) which is based on 
the NASA Ocean Color protocol (Bailey and Wang, 2001). In practice, 
daily matchups (with a 3-h time window) were produced using a 3 × 3 
pixel window, in which the coefficient of variation of Rrs(λ) needs to be 
below 0.15 while the number of valid pixels needs to be above 50% 
(implying a minimum of 5 valid pixels). The second matchup data set is 
the NOMAD matchup dataset (Werdell and Bailey, 2005) based only on 
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SeaWiFS observations and gathering data collected between October 
1997 and March 1999. Thus, DS3 corresponds to the merging of GOCAD 
and NOMAD matchup data sets, gathering a total of 399 stations. To 
limit the impact of the propagation of Rrs(λ) errors, due to imperfect 
atmospheric corrections on the acdom(443) retrieval accuracy, an addi
tional condition was applied on the selection of the matchup data points 

for the two matchup data sets. In practice, a matchup data was consid
ered invalid if, for any visible wavelengths used in the algorithms, the 
absolute difference between satellite Rrs(λ) and in situ Rrs(λ) was greater 
than 0.75 * in situ Rrs(λ) (Fig. 2). Among the initial 399 matchups data, 
166 points were kept after applying the latter quality criterion. The 
acdom(443) range of variability in DS3 is [0.0052; 0.33] m− 1, with a 

Fig. 1. From top to bottom, acdom(443) absolute frequency distribution histograms for DS1 (a, b, c), DS2 (d, e, f) and DS3 (g, h, i) datasets and spatial distribution of 
DS2 and DS3 (j). The complete datasets are represented in gray, classes 1 and 2 subsets are in red, and classes 3 to 17 in blue. N, X, m, std., q1, q3 correspond to the 
number of data points, mean, median, standard deviation and first and third quantiles values, respectively. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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median value of 0.08 m− 1. Even if DS3 time period (23rd April 2002 to 
13th April 2012) covers the last ocean color sensor missions which have 
been recently launched, OLCI A and B, matchup for these sensors are 
unfortunately not available in our present data base of acdom(443) in situ 
measurements. 

2.1.3. Satellite Data used for global CDOM spatio-temporal variability 
The global spatio-temporal dynamics of satellite derived acdom(443) 

was assessed from GlobColour L3 merged Rrs(λ) data. 
The GlobColour L3 merged data include satellite observations from 

SeaWiFS, MERIS, MODIS Aqua and VIIRS NPP sensors. These merged 
products (Rrs(λ), Chl-a, and acdm(λ)) are generated by simple averaging 
or weighted averaging, depending on the conditions (water types, re
gion, glint/aerosol conditions, etc.). Both Chl-a, and acdm(λ) are esti
mated by the GSM model (Maritorena and Siegel, 2005). Global maps 
and the time series extraction were produced with GlobColour L3 
merged 25 km resolution and 8 days composite data from 23rd April 
2002 to 13th April 2012. 

2.2. Statistical indicators 

The performance of the acdom(443) inversion models was evaluated 
from a graphical comparison sustained with quantitative statistical 
metrics including: the root mean the square deviation (RMSD, Eq. (1)), 
the median ratio (MR, Eq. (2)), the median absolute percent difference 
(MAPD, Eq. (3)) and the Pearson correlation coefficient (r). 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(yi − xi)2

N

√

(1)  

MR =
median(yi)
median(xi)

(2)  

MAPD = median
∑N

i=1

|yi − xi|
xi

*100 (3)  

where yi and xi are the estimated and the in-situ values, respectively. 
The MAPD has been calculated considering the median of the indi

vidual absolute percent differences between the modeled and measured 
data instead of the mean to minimize the impact of potential outliers 
(Loisel et al., 2018). 

These statistical parameters were summarized in radar plots where 
smaller polygon areas indicate improved model performance. 

2.3. Models description 

In the present paper, four different models are evaluated for esti
mating acdom(443) from OCR. These general models, which are based on 
different assumptions, include two empirical methods recently defined 
by Aurin et al. (2018) and Shanmugam (2011), and two semi-analytical 
approaches proposed by Chen et al. (2017) and Loisel et al. (2014). This 
latter model, dedicated to the estimation of acdom(412), is here modified 
and improved to assess acdom(443). 

2.3.1. Aurin et al. (2018) 
Aurin et al. (2018) (further referred to as A2018) recently developed 

an empirical model for estimating acdom(λ) at global scale. This model is 
based on a multiple linear regression (MLR) between the natural loga
rithm of Rrs(λ) at four different visible wavelengths and the natural 
logarithm of acdom(λ). It can be described as follows: 

ln(acdom(λ) )

=

(
β0 + β1*ln(Rrs(λ1) ) + β2*ln(Rrs(λ2) )

+β3*ln(Rrs(λ3) ) + β4*ln(Rrs(λ4) )

) (4)  

where λ1 to λ4 are the sensor-specific wavelengths (i.e., 443, 488, 531, 
and 547 nm for MODIS, 443, 490, 510, and 555 nm for SeaWiFS). β0 to 

Fig. 2. Satellite Rrs (Rrs SAT) vs in situ Rrs (Rrs IS) from DS3 at (a) 412, (b) 443, (c) 490, (d) 510, (e) 560 and (f) 670 nm. Black solid line represents the 1:1 line, 
colored solid lines are the threshold limit, where |Rrs SAT- Rrs IS| > Rrs IS * 0.75. Gray circles represent the data points for which any of the bands overcomes the 
settled threshold. These data points where labeled as outliers and not further considered in the analysis. 
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β4 are the regression coefficients for estimating acdom(443) (here β0 =
− 6.41; β1 = − 0.743; β2 = − 0.145; β3 = − 0.367; and β4 = 0.547). 

Although the authors specify that the version of the model developed 
for MODIS data has a significantly better performance (r2 = 0.85), in this 
work, only the SeaWiFS version of the model has been considered (r2 =

0.33) in order to perform a fair inter-comparison exercise between 
models which use exactly the same Rrs(λ) as input parameters. 

Considering that empirical models such as MLR approaches are 
highly dependent to the datasets used for their development, the 
applicability of this model is expected to be limited. 

2.3.2. Chen et al. (2017) 
Chen et al. (2017) (further referred to as C2017) recently developed 

a semi-analytical model aiming at estimating acdom(443) at global scale 
from the particulate backscattering coefficients, bbp(443), and the ab
sorption coefficients of phytoplankton, aphy(443), and colored detrital 
matter, acdm(443), as follows: 

acdom(443)
= χ*acdm(443) + γ*bbp(555) + κ*aphy(443)

(5)  

where χ, γ and κ are three independent empirical parameters covarying 
with the water optical properties estimated from the NQAA algorithm 
(Chen et al., 2016). χ is a function of the a(λ)-based triangle area index of 
the total absorption coefficient (TAI). The a(λ)-based TAI is defined as 
follows: 

TAI

= a(λ) −
(

555 − 490
555 − 443

)

*a(λ0) −

(
490 − 443
555 − 443

)

*a(λ2)
(6)  

where a is the total absorption coefficient calculated by NQAA (Chen 
et al., 2016). 

Chen et al. (2016) documented, based on SeaWiFS satellite data 
validation exercise, an overall good performance of their model for 
estimating acdom(443) over values ranging from 0.001 to 1.116 m− 1. The 
latter authors further emphasized that this model is able to solve errors 
in the acdom(443) estimates induced by the backscattering signal of 
particles but also underlined the slight underestimation of acdom(443) 
towards the lowest end-member values (acdom(443) < 0.005 m− 1). 

2.3.3. Shanmugam (2011) 
This model, developed for coastal and ocean waters, uses two slope 

parameters to describe acdom(λ) in the UV and visible spectral domain as 
follows: 

acdom(λ) = acdom(350)*e(− S(λ− 350)− γ0 ) (7)  

where acdom(350) is estimated from the blue to green reflectance ratio 
(Eq. (8)): 

acdom(350) = 0.5567*
(

Rrs(443)
Rrs(555)

)(− 2.0421)

(8) 

The spectral slope S is estimated from acdom(350) and acdom(412) 
(Eq. (10)), this latter being also calculated from the blue to green 
reflectance ratio (Eq. (9)): 

acdom(412) = X*
(

Rrs(443)
Rrs(555)

)(Y)

(9)  

S = 0.0058*
(
acdom(412)
acdom(350)

)(− 0.9677)

(10) 

The parameter γ0 in Eq. (7) takes into account the large variability of 
CDOM in coastal and ocean waters and is calculated as follows: 

γ0 =

acdom(350) −
(

1
/γ

)

acdom(350) +
(

1
/γ

) (11)  

where γ is the slope of the hyperbolic model to estimate CDOM (Twar
dowski et al., 2004): 

γ = 2.9332*
(
acdom(412)
acdom(350)

)(− 0.7506)

(12) 

Shanmugam (2011) illustrated the good performance of their model 
through a validation exercise including 55 matchup data points based on 
NOMAD in situ and SeaWiFS estimated acdom(443) covering a relatively 
narrow range of acdom(443) values (from 0.01 to ~1 m− 1). 

2.3.4. Loisel et al. (2014) 
Loisel et al. (2014) developed a semi-analytical model for estimating 

acdom(412) in coastal waters from ocean color remote sensing observa
tions (CDOM-KD1). This model is based on the theoretical link between 
the vertical attenuation coefficient, Kd(λ) and IOPs which has been 
reformulated as follows: 

Kd(λ) = Kw(λ)+ f (acdom(λ) )+Δp(λ) (13)  

where Kw is the diffuse attenuation coefficient for pure sea water, f 
(acdom(λ)) is a function that depends exclusively on the absorption co
efficient of CDOM and Δp(λ) is the contribution of particles in the 
attenuation process. To minimize the impact of scattering on the 
retrieval of acdom at 412 nm, the model involves the difference of Kd(λ) – 
Kw(λ) at two specific wavelengths. Based on these different consider
ations the model formalism is expressed as follows: 

acdom(412) = 10(0.15482*(X)2+1.1939*(X)+0.0689) (14)  

where 

X = ΔKd(412 − 560) − Δp(412 − 560) (15)  

with 

ΔKd(412–560)
= (Kd(412)–Kw(412) )–(Kd(560)–Kw(560) )

(16)  

and 

Δp(412 − 560)

= 10(− 0.009*(log10(ΔKd ) )2+1.147*log10(ΔKd)− 0.26)
(17) 

In the context of remote sensing applications, ΔKd is directly esti
mated from the Rrs using a parametrization developed from the IOCCG 
(2006) data set: 

ΔKd(412 − 560) = 10

(

A*log10

(
Rrs (412)
Rrs (560)

)3

+B*log10

(
Rrs (412)
Rrs (560)

)2

+C*log10

(
Rrs (412)
Rrs (560)

)

+D

)

(18)  

where A, B, C and D coefficients are − 0.12484, 0.160857, − 1.2292 and 
− 0.886471, respectively, for a sun angle (θs) of 30◦. 

Loisel et al. (2014) documented the overall good performance of 
their model over very contrasted coastal ecosystems. This has been 
illustrated from a validation exercise based on the NOMAD matchup 
data set which covers a large range of acdom(412) values (N = 109, [0.02, 
5.0 m− 1]) and includes uncertainties related to atmospheric corrections. 

While this model has been developed for coastal water applications, 
the relationship between acdom and Kd on which it is based is still valid 
for open ocean waters. 
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3. Results and discussion 

3.1. Adaptation of the Loisel et al. (2014) algorithm for estimating 
acdom(443) over the global ocean 

A new model, referred to as CDOM-KD2, which consists in an 
adaptation of the general semi- analytical coastal model published by 
Loisel et al. (2014), has been developed for estimating acdom(443) over 
the global ocean. This adaptation was developed considering the syn
thetic DS1 data set. 

3.1.1. CDOM-KD2 parameterization 
Assuming a restricted CDOM absorption at 560 nm (see section 

2.3.3) acdom(443) can be expressed as follows: 

acdom(443)

= f
[
(Kd(443) − Kw(443) ) − (Kd(560) − Kw(560) )

− Δp(443 − 560)

]
(19) 

The attenuation coefficient of light due to pure seawater, Kw(λ), has 
been well documented (Morel and Maritorena, 2001; Morel et al., 2007). 
From literature Kw at 443 nm and 560 nm were set to 0.00948 and 
0.0645 m− 1 respectively (Morel et al., 2007; Loisel et al., 2014). 
Following the same approach of Loisel et al. (2014), acdom(443) was 
empirically modeled as follows: 

acdom(443) = 10[0.9902*X− 0.0522] (20)  

where 

X = ΔKd(443–560)–Δp(443–560) (21)  

with 

ΔKd(443–560)
= (Kd(443)–Kw(443) )–(Kd(560)–Kw(560) )

(22) 

Δp (443–560), which considers the contribution of particulate matter 
to the attenuation of light, was parameterized from ΔKd as follows: 

Δp(443 − 560) = 10[0.906*log10(ΔKd )− 0.526 ] (23) 

The model shows good accuracy over the whole range of acdom(443) 
in DS1 (Fig. 3a; RMSD = 0.137m− 1, MAPD = 19.214% and MR = 1.059). 
The highest uncertainty is in the parameterization of X (RMSD =
0.11m− 1, MAPD = 15.06% and MR = − 1.17). 

3.1.2. Model development in the context of satellite application 
In order to avoid the cumulative impact of the relative errors asso

ciated with the Kd estimation performed at each individual wavelength 

considered in CDOM-KD1, ΔKd was assessed directly from Rrs(λ) using 
empirical formulations based on Hydrolight simulations (Loisel et al., 
2014). In the present study, the calculation of ΔKd is now performed 
through a Neural Network (NN) approach, following the same training 
data set and protocol of the NN originally developed in Jamet et al. 
(2012) for estimating Kd(λ) in the visible domain. 

This NN consists in a Multi-Layer Perceptron model (MLP, Rumelhart 
et al., 1986) based on 7 possible input parameters including the Rrs at 
412, 443, 490, 510, 560 and 670 nm and the sun angle, θs. In practice, 
Rrs(412) was not used in the model definition due to the general high 
uncertainty level associated with the satellite Rrs signal at this spectral 
band in coastal waters (Goyens et al., 2013; Jamet et al., 2012; Mélin 
et al., 2007; Pahlevan et al., 2021; Zibordi et al., 2006). The reflectance 
in the red part of the spectrum (Rrs(670)) was considered as an input of 
the model depending on the relative level of turbidity of the water. This 
selective definition was performed considering the impact of the low 
signal to noise ratio on the satellite Rrs data validity in the red spectral 
domain, this issue being particularly relevant when dealing with non- 
turbid water environments (e.g., Hu et al., 2012). Following the recent 
works by Loisel et al. (2018), a switch criterion was therefore used to 
differentiate non-turbid and turbid waters. In practice, data showing a 
Rrs(490)/ Rrs(560) ratio lower or equal to 0.85, were considered as 
turbid. In this case the Rrs input for the NN were restricted to the range 
443–670 nm, while the model considered has two hidden layers with 
five neurons for each layer. On the other hand, if the previous ratio was 
higher than 0.85, emphasizing the presence of non-turbid water, the 
input Rrs values were ranging from 443 to 560 nm and the NN has two 
hidden layers with four neurons for each layer. 

The impact of this Neural Network algorithm for estimating ΔKd on 
the overall performance of the acdom(443) inversion model (CDOM-KD2) 
has been evaluated on the synthetic dataset considering a sun zenith 
angle of 30◦ (Fig. 3). The results indicate a similar acdom(443) retrieval 
accuracy when ΔKd is directly obtained from the Kd(λ) of the synthetic 
data set (DS1, e.g. MAPD = 19%, Fig. 3 a) or from the ΔKd computed 
from the Rrs(λ) using the NN model (e.g. MAPD = 23%, Fig. 3 b). 

3.2. Intercomparison and validation of acdom(443) inversion models 

3.2.1. Performance and inter-comparison of the different acdom(443) 
inversion models with the in situ and matchup data sets 

The performance of the A2018, C2017, S2011 and CDOM-KD2 
models have been first evaluated for global scale application 
(including coastal and open ocean waters) from the DS2 in situ valida
tion data set (Fig. 4 a, e, i, m). The models C2017, S2011 and CDOM- 
KD2, which are based on distinct formalisms and assumptions, show 
an overall general satisfying accuracy in the retrieved acdom(443) over 
the 3 orders of magnitude covered in DS2 (e.g. MAPD of 49.22, 39.57 

Fig. 3. Performance of the CDOM-KD2 inversion model over the DS1 data set considering ΔKd calculated with the measured Kd (a) or with the NN based inversion 
model (Eq. (20)) (b). 
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and 36.95%, respectively). This general feature is also underlined by the 
overall similarities in the range and statistics reported in Table 1 for the 
latter three models. On the other hand, the global performance of A2018 
for estimating acdom(443) significantly departs from the others. The 
range of acdom(443) values retrieved by Aurin et al. (2018) model is 

considerably narrower than that for the other three models (Table 1) as a 
consequence of the large overestimation of A2018 derived acdom(443) 
values for low and moderate acdom loads (acdom(443) < 0.1 m− 1, Fig. 4 
e). As well as to the sharp underestimation of the highest A2018-derived 
acdom(443) values (acdom(443) > 0.1 m− 1, Fig. 4 e). This confirms the 

Fig. 4. Validation scatterplots of the four tested models (CDOM-KD2, A2018, C2017 and S2011) using the complete data sets (classes 1 to 17) of DS2 (a, e, i, m) and 
DS3 (b, f, j, n) and their respective radar plots summarizing the statistics used for evaluating the four models (q, r). The same information is provided for the non- 
turbid subsets (classes 3 to 17) of DS2 (c, g, k, o) and DS3 (d, h, l, p) and their respective radar plots (s, t). 
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results by Aurin et al. (2018) who emphasized the lower performance of 
this empirical model for estimating acdom at wavelengths >412 nm 
especially when using SeaWIFS bands as input values. 

The use of the optical typology provided by Mélin and Vantrepotte 
(2015) provides a finer characterization of the model performances. The 
class-based distribution further confirms the global relevance of C2017, 
S2011 and CDOM-KD2 derived acdom(443) values with a general satis
fying accuracy over the 17 waters types considered. A lower precision in 
the retrieved acdom(443) is however observed for the three latter models 
in the most turbid waters (Class 1) as underlined by the higher scatter in 
the Fig. 4 a, e and m for the corresponding samples. Further, a slight 
overestimation of the highest acdom(443) values is found for the 
acdom(443) values derived from CDOM-KD2 and C2018 for the samples 
associated with the Class 1. The difficulty to estimate CDOM in such 
highly turbid environments from general formulations requires the 
development of specific inversion models. While few formulations have 
been proposed for estimating acdom(λ) in optically complex waters (e.g. 
Loisel et al., 2014; Cao et al., 2018) CDOM estimates in coastal envi
ronments are often derived from regional models (Cao et al., 2018; 
Mannino et al., 2014; Matsuoka et al., 2013). 

The radar plot for the whole data set DS2 (Fig. 4 q), which provides a 
synthetic view of the accuracy of the different models considered for 
estimating acdom(443), confirms the previous results further underlining 
the vicinity in the performance of the C2017, S2011 and CDOM-KD2 
with a slightly better general performance for the CDOM-KD2 method. 

Results obtained considering the whole DS3 matchup data set are 
globally in line with those derived from the DS2 validation data with a 
general satisfying and comparable accuracy for C2017, S2011 and 
CDOM-KD2 (MAPD of 33.62, 31.87 and 36.79%, Fig. 4 b, j, n) and lower 
general performance of the A2018 model (MAPD 66.67%, Fig. 4 f). The 
differences in the coverage provided by DS2 and DS3 induced slight 
modulations in the finer patterns. An underestimation of the highest 
acdom(443) values in DS3 is for instance observed for the CDOM-KD2 
model while the reverse situation was found for DS2 which accounts 
for a higher amount of CDOM rich waters (> 0.5 m− 1). 

3.2.2. Comparison of the acdom(443) models on moderate to non-turbid 
waters 

The performance of the different acdom(443) inverse methods was 
further evaluated for open waters applications focusing only on the 
moderate to non-turbid data. For that purpose, the validation exercise is 
now performed excluding from DS2 and DS3 the ultra-turbid samples 
corresponding to the Mélin and Vantrepotte (2015) Class 1 and Class 2 
waters. The new DS2 and DS3 data sets are now composed by 373 
(instead of 1001) and 108 (instead of 166) data points, respectively. The 
main features described previously on the whole data sets are globally 
observed from these restricted datasets with an overall satisfying 
performance of the inversion of acdom(443) values in oceanic waters. For 
instance, the MAPD (and slope) values for C2017, S2011 and CDOM- 
KD2 are 34.77% (0.74), 28.11% (0.69) and 27.42% (0.83) for DS2 
and 33.92% (0.68), 27.98% (0.63) and 30.85% (0.79) for DS3, respec
tively). As with previous results obtained on the whole data sets the 
performances of these three models overcome that of the A2018 
(Fig. 4 g, h) inversion algorithm (MAPD of 97% and 103.18% and slope 
of 0.38 and 0.37 for DS2 and DS3, respectively). 

The comparison of the overall statistics for the C2017, S2011 and 
CDOM-KD2 models further confirms the general consistency in the 
acdom(443) retrieval from these three different approaches, which pre
cision is generally increased when excluding the most turbid environ
ments. Among the three latter formulations, the CDOM-KD2 model 
shows slightly better overall performance considering both in situ (Fig. 4 
s) and matchup (Fig. 4 t) data sets. The CDOM-KD2 model slightly un
derestimates acdom(443) in ultra-oligotrophic waters (classes 16 and 17). 
This feature needs however to be confirmed from a larger validation 
dataset considering the relatively low number of data points depicting 
these water types (classes 16 and 17) in DS2 (N = 20) and DS3 (N = 6). 

It is worth noting that the S2011 model strongly depends on the blue 
to green reflectance ratio which is also used for estimating Chl-a con
centration in offshore waters. Knowing that in the open ocean these two 
components may temporally be lagged by 2 to 5 weeks (Hu et al., 2006; 
Organelli et al., 2014), the use of common inputs for assessing both 

Table. 1 
Summary table of the performance of acdom(443) inversion models (CDOM-KD2, A2018, C2017, S2011) on the different evaluation data sets (DS2 and DS3) considered 
as a whole (classes 1–17) or focusing on non-turbid waters (classes 3–17). For each in situ validation subset descriptive statistics are provided (N: number of data 
points, X: mean values, m: median value, std.: standard deviation value). The former statistics are also provided for the acdom(443) data estimated from each inversion 
model together with additional model performance statistical descriptors (RMSD (m− 1), MAPD (%), MR).   

N RANGE 
[m− 1] 

X 
[m− 1]  

m 
[m− 1] 

std 
[m− 1] 

Slope r RMSD 
[m− 1] 

MAPD 
[%] 

MR 

Classes 1–17 
DS2 1001 [0.002–7.84] 0.18 0.09 0.31      
CDOM-KD2  [0.001–6.15] 0.32 0.12 0.62 1.05 0.86 0.58 36.95 1.26 
A2018  [0.014–0.73] 0.11 0.1 0.1 0.31 0.55 0.31 67.78 0.87 
C2017  [0.002–14.2] 0.34 0.15 0.7 0.97 0.86 0.68 49.22 1.65 
S2011  [0.002–5.6] 0.2 0.14 0.3 0.85 0.86 0.36 39.57 1.51 
DS3 166 [0.005–0.33] 0.08 0.04 0.08      
CDOM-KD2  [0.004–0.31] 0.05 0.04 0.05 0.82 0.88 0.06 36.79 0.82 
A2018  [0.025–0.28] 0.07 0.05 0.04 0.37 0.76 0.06 66.67 1.2 
C2017  [0.009–0.41] 0.08 0.06 0.07 0.76 0.89 0.05 33.62 1.27 
S2011  [0.007–0.4] 0.08 0.05 0.08 0.8 0.91 0.04 31.87 1.03  

Classes 3–17 
DS2 372 [0.002–0.23] 0.04 0.03 0.04      
CDOM-KD2  [0.001–0.12] 0.03 0.03 0.02 0.83 0.79 0.03 27.42 1.04 
A2018  [0.014–0.16] 0.06 0.06 0.03 0.38 0.69 0.04 97 1.87 
C2017  [0.002–0.14] 0.04 0.04 0.03 0.74 0.8 0.03 34.77 1.32 
S2011  [0.002–0.09] 0.04 0.04 0.02 0.69 0.8 0.03 28.11 1.19 
DS3 108 [0.005–0.15] 0.06 0.02 0.03      
CDOM-KD2  [0.004–0.1] 0.03 0.02 0.02 0.79 0.84 0.02 30.85 0.85 
A2018  [0.025–0.13] 0.05 0.05 0.03 0.37 0.77 0.03 103.18 2.18 
C2017  [0.01–0.17] 0.04 0.03 0.03 0.68 0.82 0.02 33.92 1.21 
S2011  [0.007–0.11] 0.03 0.03 0.02 0.63 0.85 0.02 27.98 1.21  
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CDOM and Chl-a might tend to artificially strengthen the co-variation 
between these two variables (Supplementary Fig. 1). Moreover, the 
acdom(443)/acdm(443) ratio values estimated at global scale using S2011 
(for acdom(443)) and GSM (for acdm(443)) present numerous unrealistic 
values, the mean and standard variation values being of 1.0 ± 0.63 over 
the 10-years GlobColour climatology (Supplementary Fig. 1 b). The 
CDOM-KD2 model was therefore selected for describing the global scale 
spatio-temporal variability of acdom(443) and of the relative contribu
tion of CDOM to the absorption of the whole detrital matter pool as 
depicted by the ratio acdom(443)/acdm(443). 

3.2.3. Global acdom(443) and acdom(443)/ acdm (443) spatio-temporal 
patterns 

The global scale spatial distribution variation coefficient of CDOM- 
KD2 derived acdom(443) is depicted in Fig. 5 a and c from the Glob
Colour L3 10-year archive average map (April 2002–April 2012). The 
CDOM-KD2 outputs together with the acdm(443) derived from the GSM 
model were used to compute acdom(443)/acdm(443) (Fig. 5 b and d) and 
further depict the spatio-temporal variability of the relative importance 
of the dissolved matter into the total detrital matter absorption. 

acdom(443) shows a high spatial dynamic with values ranging over 3 
orders of magnitude (acdom(443) < 0.001 m− 1 to >2 m− 1). The global 
spatial distribution patterns of acdom(443)-CDOM-KD2 generally agrees 
with the distribution patterns expected and previously described by 
other authors. High CDOM values are found in coastal waters and in the 
sub-polar and equatorial areas, while low values are located throughout 
the subtropics (Siegel et al., 2005a; Nelson and Siegel, 2013). Lowest 
values are found in the oligotrophic gyre areas such as the South Pacific 

Gyre, where estimated values are in agreement with in situ observations 
performed in the area (Bricaud et al., 2010, minimum acdom(440) ≈
0.001 m− 1). In line with Bricaud et al. (2012), acdom(443) values at 
latitudes higher than 30◦ are generally higher in the northern hemi
sphere and relatively lower in the southern hemisphere. 

The CDOM-KD2 algorithm was also applied to OLCI L3 4-year data at 
global scale. OLCI acdom(443) (Supplementary Fig. 2) globally shows 
similar spatial patterns with GlobColour data although OLCI acdom(443) 
reaches more extreme end-member values than the GlobColour 10-year 
average merged data (lower values in the ultra-oligotrophic and higher 
ones in eutrophic waters, respectively). 

Several works have considered the acdom(443)/acdm(443) ratio as 
spatially and temporally quasi invariant or constant assuming CDOM to 
be the major contributor (> 80%) to CDM in the blue spectral domain 
(Nelson et al., 1998; Swan et al., 2009). However, the GlobColour 10- 
year average map shows that the ratio acdom(443)/acdm(443) is highly 
variable in space, ranging from about 0.2 to almost 1 (Fig. 5 b), with 
spatial distribution patterns similar to those depicted for acdom(443) 
(Fig. 5). The overall global average value of acdom(443)/acdm(443) for 
the GlobColour 10-year archive reaches 0.61 ± 0.14 being significantly 
lower than the values reported previously (Nelson et al., 1998, Swan 
et al., 2009). The lowest ratio values (0.2 to 0.5) are located in the 
oligotrophic gyre waters. Besides the expected presence of high 
acdom(443)/acdm(443) values over some coastal environments (e.g. 
Baltic and Black seas), the relative contribution of CDOM to CDM 
generally tends to increase in oceanic waters from mid to high latitudes 
(> 30◦) reaching maximum values (around 0.9) in polar regions. High 
acdom(443)/acdm(443) values are also found in the equatorial Pacific 

Fig. 5. (a) Global average acdom(443) [m− 1] map produced with GlobColour L3 merged 25 km 8 days composite data from 23rd April 2002 to 13th April 2012 and 
CDOM-KD2 model and (c) its coefficient of variation. (b) Annual average acdom-KD2(443)/acdm(443), with acdm(443) derived from the GSM model over the same time 
period and (d) its coefficient of variation [%]. 
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(>0.7) and Atlantic (>0.6) waters. 
The coefficient of variation (CV = standard deviation / mean * 100, 

in %) maps computed from the GlobColour L3 merged 8-day composite 
archives of acdom(443) (Fig. 5 c) and of acdom(443)/acdm(443) (Fig. 5 d) 
also show similar spatial distribution patterns. An overall larger tem
poral variability is however found for acdom(443) than for acdom(443)/ 
acdm(443) (global average CV of 32 ± 18% and 14 ± 11%, respectively). 
This discrepancy in terms of temporal variability level is particularly 
marked in open ocean waters where acdom(443) CV values range be
tween 10 and 70% while it varies between 2 and 35% for acdom(443)/ 
acdm(443). 

Globally, the highest temporal dynamics for both acdom(443) and 
acdom(443)/acdm(443) (CV > 80% and > 50%, respectively) are mostly 
found in areas influenced by terrestrial inputs of CDOM. Such high 
temporal variations are found for instance within the oceanic water 
influenced by the Amazon - Orinoco systems where the observed strong 
modulation in the surface CDOM loads are related to the combined effect 
of the highly variable regional currents system and the seasonal dy
namics of the terrestrial inputs associated with these two large river 
systems (Salisbury et al., 2011; López et al., 2012). The high acdom(443) 
temporal variability found in the western Africa and Arabian sea waters 
can be more likely related to the influence of desert dusts on the tem
poral coverage and radiometric quality of the OCR observations. 

In open ocean waters, not affected by terrestrial influence, the 
highest temporal dynamics of acdom(443) (CV > 60%) and acdom(443)/ 
acdm(443) (CV > 15%) are found in areas strongly influenced by main 
oceanic currents and upwelling areas. The impact of the oceanic circu
lation is particularly visible within water masses surrounding oceanic 
gyres as well as within three latitudinal bands located around 10◦N, 30◦

N and 30◦ S where acdom(443) CV ranges from 40% to 70% and 
acdom(443)/ acdm(443) CV ranges from 10% to 35% over the 10-year 
GlobColour time period. Strong temporal dynamics are also clearly 
visible along the Antarctic Polar Frontal Zone (APFZ; acdom(443) CV =
[50% - 70%] and acdm(443) CV = [10% - 40%]) characterized by the 
presence of a marked seasonality in the water mass characteristics due to 
the occurrence of a strong phytoplankton spring bloom (Abbott et al., 
2000; Tremblay et al., 2002). Similar relatively high CV values are found 
in the Mediterranean Sea for acdm(443) and eastern Mediterranean Sea 
for acdom(443)/acdm(443), reflecting the original character of these areas 
in terms of optical properties (Claustre et al., 2002; Loisel et al., 2011; 
Morel and Gentili, 2009). 

On the other hand, very stable areas for acdom(443) and acdom(443)/ 
acdm(443) (CV < 10%) are detected mainly in the oceanic gyres, in the 
waters located between [40◦-60◦] North and South latitudinal layers and 
in the northern Indian ocean. The latter areas coincide with the most 
oligotrophic regions of the ocean (gyres) as well as with oceanic regions 
located between the main oceanic currents. An exception to the latter 
general pattern is however noticed for acdom(443)/acdm(443) in the SPG 
which shows particularly high temporal dynamics with CV > 25% in the 
most oligotrophic waters. 

While explaining the apparent decoupling between acdom and anap at 
global scale is beyond the scope of the present work, our results do not 
support the widespread assumption of an overall global dominant and 
temporally slightly variable contribution of CDOM to CDM. This pattern 
further emphasizes the need to deeply investigate the dynamics and 
environmental factors controlling the dissolved and particulate com
ponents of the ocean detrital matter pool. 

For completeness, the global scale contribution of acdom(443) to 
anw(443) was also calculated considering the 10 year GlobColour data 
set (Supplementary Fig. 3). The ratio of acdom(443)/anw(443) (mean =
0.42 ± 0.29, range = [0.1–0.9]) shows similar distribution patterns to 
those reported previously for acdom(443)/acdm(443). The temporal dy
namics for that ratio depicted from the corresponding CV values also 
shows spatial patterns very close to that already depicted for 
acdom(443)/acdm(443) although presenting relatively more extreme 
values probably linked to the additional consideration phytoplankton 

activity, and less variability in the APFZ. 

3.2.4. Global scale covariation between acdom, acdm and Chl-a dynamics 
Over oceanic waters the temporal dynamics of CDM is assumed to be 

primarily driven by phytoplankton and associated by products vari
ability (Siegel et al., 2005b; Bricaud et al., 2012). In the open ocean, 
CDOM is the dominant component of CDM (Siegel et al., 2002; Kope
levich and Burenkov, 1977). Therefore, CDOM is expected to be highly 
related to CDM and Chl-a dynamics, although a robust statistical rela
tionship between the latter variables has not been found at an oceanic 
basin-scale (Siegel et al., 2002). The covariation between CDOM 
(CDOM-KD2 derived), CDM and Chl-a (GSM estimates) was specifically 
examined through correlation maps based on the 10-year Globcolour 8 
days composite archive (Fig. 6). 

A general very high positive correlation between CDOM and CDM 
prevails over a large part of the global ocean (r > 0.9). However, lower 
values (r < 0.6) are observed over all oceanic gyre regions where the 
correlation between acdom(443) and acdm(443) decrease towards the 
gyre center (Fig. 6 a), where acdom(443)/acdm(443) ratio shows its 
minimal values (Fig. 5 b), reaching values close to zero in the North and 
South Pacific gyres. Relatively low CDOM to CDM correlation levels (r =
[0.5–0.6]) are also observed in the Pacific sub-Arctic and sub-Antarctic 
gyre waters, Pacific equatorial divergence area and patchy regions of the 
Antarctic waters. 

Globally, oceanic areas where CDOM and CDM exhibit lower cor
relation, show contrasted patterns regarding their correlation with Chl-a 
(Fig. 6 b and c). This is particularly marked over the gyres, where 
CDOM-Chl-a correlation levels are generally lower than those observed 
for CDM-Chl-a. This feature can be related to the low contribution of 
CDOM to CDM (Fig. 5 b) in these very oligotrophic areas as well as to the 
processes regulating the CDOM and CDM dynamics. In the open ocean, 

Fig. 6. Correlation maps between (a) CDOM-KD2 and acdm, (b) CDOM-KD2 and 
Chl-a, (c) acdm and Chl-a. White areas represent pixels where either there is no 
data available or where the correlation is not significant (p > 0.05). 
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CDOM is mainly produced by phytoplankton and associated by- 
products. Meanwhile, CDOM degradation is driven by photochemical 
processes (Chen and Bada, 1992; Siegel et al., 2005b) and microbial 
activity (Fichot and Benner, 2012; Nelson et al., 2004). In oligotrophic 
regions, such as the Sargasso Sea or the Mediterranean Sea, where a 
relative low correlation was found between CDOM and Chla, the pro
duction of CDOM is mainly driven by bacterial activity, the CDOM peak 
happens 2 to 5 weeks after the Chl-a maximum and coincides with 
bacteria maximal concentration (Hu et al., 2006; Organelli et al., 2014). 
In ultra-oligotrophic waters like the gyres the high bacterial activity due 
to the presence of an efficient microbial loop (Raimbault et al., 2008), 
also act as a significant source of CDOM. The double role of the bacterial 
community (source and sink of CDOM) in the nutrient depleted areas of 
the ocean generates great fluctuations on CDOM concentration in pe
riods of days (Nelson et al., 2004) and might explain, together with 
photodegradation rates (Stedmon and Nelson, 2014), the observed low 
CDOM-Chl-a correlation for these regions. On the other hand, in ultra- 
oligotrophic waters the particulate fraction of CDM is strongly regu
lated by phytoplankton activity (Bricaud et al., 2010) what is reflected 
in great correlation between CDM-Chl-a. 

These latter features are illustrated from time series extractions of 
acdom(443), acdm(443), and Chl-a over two contrasted oceanic areas, the 
South Pacific Gyre (SPG) and the North Atlantic (NA) (Fig. 7). In the very 
clear waters of the South Pacific Gyre (Fig. 7 b) the CDOM time series 
exhibits higher level of noise without real seasonal pattern while CDM 
and Chl-a follow the same annual cycle. The latter result is in line with in 
situ observations by Bricaud et al. (2010) along the BIOSOPE transect. 
They reported that small-scale changes in the phytoplankton biomass in 
the most oligotrophic waters of the SPG (Chl-a < 0.1 mg m− 3) do not 
induce significant variation in the CDOM content (their Fig. 14), in 
contrast to the non-algal particles (anap) which shows a high correlation 

with Chl-a (their Fig. 10). In contrast, a strong co-variation between Chl- 
a, acdom(443), and acdm(443) characterizes the times series extracted 
from the NA station (Fig. 7c), with the clear presence of a spring 
maximum for all of the parameters. At this area, CDOM is mainly locally 
produced by phytoplankton excretions and lysis (Nelson and Siegel, 
2002). Therefore, the phytoplankton bloom is the main driver of both 
the particulate and dissolved detrital matter dynamics (Dutkiewicz 
et al., 2001; Lévy et al., 2005) showing no apparent lag in the acdom(λ) 
and acdm(λ) dynamics (on 8 days composite data). 

4. Conclusions 

A new model for assessing the acdom(443) global distribution from 
OCR (CDOM-KD2) has been developed adapting an existing semi- 
analytical formalism (Loisel et al., 2014) based on the use of the verti
cal attenuation coefficient of the downwelling irradiance, Kd. Among the 
four models evaluated: Aurin et al. (2018), Shanmugam (2011), Chen 
et al. (2017) and CDOM-KD2, the last three methods, although based on 
different assumptions, show consistent performances at estimating sur
face acdom(443) values at global scale. The CDOM-KD2 inversion model 
performs slightly better when considering both the in situ (DS2) and 
matchup (DS3) data sets used in the frame of this study, especially over 
open ocean waters. These results clearly underline the actual possibility 
to specifically estimate acdom(443) at global scale and to overcome 
limitations related to the use of acdm(443) especially for open ocean 
dedicated studies related to the DOC dynamics analysis. 

The CDOM-KD2 model was applied to global satellite archives of 
merged (GlobColour) or individual recent satellite (OLCI) to charac
terize the acdom(443) spatio-temporal patterns of variability as well as 
that of the contribution of CDOM to CDM and of CDOM to the non-water 
absorption. While the acdom(443) as well as CDOM relative contribution 

Fig. 7. (a) Location of the stations considered for the two time series plotted in panels (b) and (c) (red circles). At these two stations the correlation between acdom 
and both Chl-a and acdm is minimum (South Pacific Gyre: SPG) and maximum (North Atlantic, NA). Time series of acdom(443), acdm(443) and Chl-a at SPG (b) and NA 
(c). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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in both CDM and total absorption spatial variability are particularly 
marked between terrestrial influenced water masses and oceanic gyres 
end-members, a relative restricted temporal variability (10 year CV 
<50%) is in contrast generally observed in most of the oceanic domains. 

Globally, in oceanic gyres, where CDOM loads are the lowest 
(acdom(443) <0.002 m− 1), CDOM is not dominant in the total detrital 
matter absorption budget (<40%) representing also a reduced fraction 
of the total water absorption (<30%), these general features being 
slightly variable in time (CV < 10%). In these oceanic regions, corre
lation analysis reveals that CDOM dynamics is generally slightly coupled 
with that of CDM and Chl-a which both conversely show a strong co- 
variation. This tends to indicate that phytoplankton dynamics is the 
main driver of the particulate detrital matter variability in gyre systems 
whereas dissolved organic matter dynamics cannot be considered as a 
direct function of phytoplankton and phytoplankton by-products. This 
further underlines that other forcing parameters such as microbial and 
light dependent processes act as the main controlling factors explaining 
CDOM dynamics in these gyre systems. An exception to the previous 
general patterns is however observed in the most oligotrophic waters of 
the eastern SPG where a highest temporal variability (CV > 35%) is 
found for the acdom(443)/acdm(443) and acdom(443)/anw(443) ratios 
when compared to the other gyre waters. Further, the contribution of 
CDOM to the total absorption in the latter area is also higher than that 
for the other gyre waters (>40%) suggesting the presence of a higher 
decoupling between particulate and dissolved matter dynamics for that 
region. 

In contrast with gyres areas, polar and oceanic waters influenced by 
large river inputs globally show the highest values and a high temporal 
variability for acdom(443), acdom(443)/acdm(443) and acdom(443)/ 
anw(443) ratios. In the corresponding regions CDOM represents 60% or 
more of CDM while a general high coupling in the dynamics of the 
dissolved and particulate detrital matter prevails. The latter components 
do not necessarily covary with phytoplankton dynamics especially in 
areas significantly impacted by terrestrial inputs. Subtropical (around 
30◦N and S) and Equatorial regions show and intermediate situation 
with an overall moderate level of temporal variability for acdom(443), 
acdom(443)/ acdm(443) and acdom(443)/anw(443) ratios. 

This apparent heterogeneity in the CDOM, CDM and Chl-a dynamics, 
and thus in the factors controlling both dissolved and particulate matter 
variability in the global ocean should be further investigated. Further, 
the high variability observed in the relative contribution of CDOM to the 
total absorption might be considered in future works for more precisely 
quantifying the impact of CDOM on Chl-a estimates over oceanic waters 
from OCR. 
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