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SEMI-CLASSICAL DEFECT MEASURE AND INTERNAL STABILIZATION FOR

THE SEMILINEAR WAVE EQUATION SUBJECT TO ZAREMBA BOUNDARY

CONDITIONS

MARCELO M. CAVALCANTI, PIERRE CORNILLEAU, VALÉRIA N. DOMINGOS CAVALCANTI,

AND LUC ROBBIANO

ABSTRACT. In this article we exploite the uniform decay for damped linear wave equation with

Zaremba boundary condition, obtained in a previous work, to treat the same problem in nonlinear

context. We need a uniqueness assumption, usual for this type of nonlinear problem. The result is

deduced from an observation estimate for nonlinear problem proved by a contradiction argument.
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1. INTRODUCTION

1.1. Description of the Problem. This article is devoted to the analysis of the exponential and

uniform decay rates of solutions to the wave equation subject to a localized frictional damping and

Zaremba boundary conditions:

(1.1)






∂2
t u−∆u+ f(u) + a(x)∂tu = 0 in Ω× (0,+∞),

u = 0 on ∂ΩD × (0,+∞),

∂νu = 0 on ∂ΩN × (0,+∞),

u(x, 0) = u0(x); ∂tu(x, 0) = u1(x), x ∈ Ω,

where Ω is a bounded domain of Rn, n ≥ 1, with smooth boundary ∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩
∂ΩN = ∅, meas(∂ΩD) 6= 0, meas(∂ΩN ) 6= 0, f : R → R is a C2 function with sub-critical

growth which satisfies the sign condition f(s)s ≥ 0, for all s ∈ R (see further assumptions (2.2)

and (2.4)). Here, M := (Ω, G) is a compact Riemannian manifold where we are inducing on Ω
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ZAREMBA BOUNDARY CONDITION 2

a Riemannian metric G, ∇ ≡ ∇G is the associated Levi-Civita connection and ∆ represents the

Laplace Beltrami operator.

The following assumptions are made on the function a(x), responsible for the localized dissipa-

tive effect of frictional type:

Assumption 1.1. We assume that a(·) ∈ L∞(Ω) is a nonnegative function. In addition, that

ω geometrically controls Ω, i.e there exists T0 > 0, such that every geodesic of the metric G,

travelling with speed 1 and issued at t = 0, enters the set ω in a time t < T0.

Furthermore,

a(x) ≥ a0 > 0 a. e. in ω.(1.2)

Setting

H1
∂ΩD

(Ω) := {u ∈ H1(Ω) : u = 0 on ∂ΩD}

endowed, thanks to Poincaré inequality, with its natural topology

||u||2H1
∂ΩD

(Ω) :=

∫

Ω

|∇u|2 dx,

let also assume the following unique continuation principle holds:

Assumption 1.2. For every T > 0, the only solution v lying in the space C(]0, T [;L2(Ω)) ∩
C(]0, T [, H−1

∂ΩD
(Ω)), to system

(1.3)

{
∂2
t v −∆v + V (x, t)v = 0 in Ω× (0, T ),

v = 0 on ω,

where V (x, t) ∈ L∞(Ω× (0, T ))), is the trivial one v ≡ 0. Here,H−1
∂ΩD

(Ω) =
[
H1

∂ΩD
(Ω)
]′

.

1.2. Previous Results, Main Goal and Methodology. The contribution of the present paper is to

introduce a new and a more general approach to obtain the exponential stability of problem (1.1),

which generalizes the previous results, and, in addition, can be used for other equations as well

regardless of the type of dissipation mechanism considered. In order to obtain the desired stability

result for the wave equation subject to a frictional damping, we consider an approximate problem

and we show that its solution decays exponentially to zero in the weak phase space. The method

of proof combines an observability inequality, microlocal analysis tools and unique continuation

properties. Then, passing to the limit, we recover the original model and prove its global existence

as well as the exponential stability.

In what follows we are going to explain briefly the methodology we are going to use.

Setting

D(−∆) := {v ∈ H1
∂ΩD

(Ω) : ∆u ∈ L2(Ω)},

and denoting v = ut we may rewrite problem (1.1) as the following Cauchy problem in H =
H1

∂ΩD
(Ω)× L2(Ω)

(1.4)





∂

∂t
(u, v) = A(u, v) + F(u, v)

(u, v)(0) = (u0, v0),

where the linear unbounded operator A : D(A) → H is given by

A(u, v) = (v,∆u− a(x)v),(1.5)
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with domain

(1.6) D(A) = D(−∆)×H1
∂ΩD

(Ω),

and F : H → H is the nonlinear operator

(1.7) F(u, v) = (0,−f(u)).

It is well known that the operator A : D(A) ⊂ H → H defined by (1.5) and (1.6) generates a

C0-semigroup of contractions eAt on the energy space H and D(A) is dense in H. For more details,

see [26]. Thus, given {u0, u1} ∈ H1
∂ΩD

(Ω) × L2(Ω), consider a sequence {u0,k, u1,k} ∈ D(A),
satisfying

{u0,k, u1,k} → {u0, u1} in H1
∂ΩD

(Ω)× L2(Ω).(1.8)

Thus, instead of studying problem (1.1) directly, we shall study, for each k ∈ N, the auxiliary

problem

(1.9)





∂2
t uk −∆uk + fk(uk) + a(x)∂tuk = 0 in Ω× (0,+∞),

uk = 0 on ∂ΩD × (0,+∞),

∂νuk = 0 on ∂ΩN × (0,+∞),

uk(x, 0) = u0,k(x); ∂tuk(x, 0) = u1,k(x), x ∈ Ω,

where fk : R −→ R is defined by

(1.10) fk(s) :=





f(s), |s| ≤ k,

f(k), s > k,

f(−k), s < −k.

Here, we use some ideas from Lasiecka and Tataru’s work [18] adapted to the present context.

The energy identity associated to problem (1.9) is given by

Euk
(t) +

∫ t

0

∫

Ω

a(x)|∂tuk(x, s)|
2 dxds = Euk

(0), for all t ∈ [0,+∞) and k ∈ N,(1.11)

where

Euk
(t) :=

1

2

∫

Ω

|∂tuk(x, t)|
2 + |∇uk(x, t)|

2 dx+

∫

Ω

Fk(uk(x, t)) dx,(1.12)

with Fk(s) :=
∫ s

0
fk(λ) dλ. Furthermore, we will also prove the corresponding observability

inequality to problem (1.9), that is, we shall prove that there exists a positive constant C which

does not depend on k, verifying

(1.13) Euk
(0) ≤ C

∫ T

0

∫

Ω

a(x)|∂tuk|
2 dx dt, for all T ≥ T0.

Finally, passing to the limit in (1.11) and (1.13) as k → +∞, we achieve the energy identity and

the observability inequality associated to problem (1.1), respectively, which are the necessary and

sufficient ingredients to establish its exponential stability result. However, in order to established

(1.13) we need two facts: (i) To prove the observability inequality associated to the linear problem:

(1.14)





∂2
t y −∆y = 0 in Ω× (0, T ),

y = 0 on ∂ΩD × (0, T ),

∂νy = 0 on ∂ΩN × (0, T ),

y(x, 0) = y0(x) ∈ H1
∂ΩD

(Ω); ∂ty(x, 0) = y1(x) ∈ L2(Ω), x ∈ Ω,
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namely, there exists a constant c > 0 such that

EL
y (0) ≤ c

∫ T

0

∫

ω

|∂ty(x, t)|
2 dxdt,(1.15)

for all (y0, y1) ∈ H1
∂ΩD

(Ω)×L2(Ω), where EL
y (t) :=

1
2

∫
Ω
|∂ty(x, t)|

2+ |∇y(x, t)|2 dx dx. (ii) The

second main ingredient in the proof is to consider the well known property which establishes the

linear map {z0, z1, f} ∈ H1
∂D
(Ω)×L2(Ω)×L1(0, T ;L2(Ω)) 7→ {z, ∂tz} ∈ L∞(0, T ;H1

∂ΩD
(Ω))×

L∞(0, T ;L2(Ω)) associated to problem





∂2
t z −∆z = f in Ω× (0, T ),

z = 0 on ∂ΩD × (0, T ),

∂νz = 0 on ∂ΩN × (0, T ),

z(x, 0) = z0(x) ∈ H1
∂ΩD

(Ω); ∂tz(x, 0) = z1(x) ∈ L2(Ω), x ∈ Ω,

is continuous, that is,

||z||2L∞(0,T ;H1
∂ΩD

(Ω)) + ||∂tz||
2
L∞(0,T ;L2(Ω))(1.16)

. ||z0||
2
H1

∂ΩD
(Ω) + ||z1||

2
L∞(0,T ;L2(Ω)) + ||f ||2L1(0,T ;L2(Ω)).

It is worth mentioning, according proved by Haraux [14], the equivalence between the exponen-

tial decay of solutions to the second order evolution equation:

(1.17)





∂2
t y −∆y + a(x)∂ty = 0 in Ω× (0, T ),

y = 0 on ∂ΩD × (0, T ),

∂νy = 0 on ∂ΩN × (0, T ),

y(x, 0) = y0(x) ∈ H1
∂ΩD

(Ω); ∂ty(x, 0) = y1(x) ∈ L2(Ω), x ∈ Ω,

(uniformly on bounded sets of H), and the ‘controllability property’ given in (1.15) of the system

governed by the undamped equation (1.14). As a consequence, instead of proving (1.15) it is

sufficient to prove the exponential decay of weak solutions to problem (1.17). In order to do that,

refined arguments of microlocal analysis will be considered jointly with the characterization given

by [17] (Theorem 3), namely:

Theorem 1.1 (Gearhart–Prüss–Huang). Let eAt be a C0-semigroup in a Hilbert space H and

assume that there exists a positive constant M > 0 such that |||eAt||| ≤ M for all t ≥ 0. Then eAt

is exponentially stable if and only if iR ⊂ ρ(A) and

sup
µ∈R

||| (A− iµId)
−1 |||L(H) < +∞.(1.18)

2. CONVERGENCE OF THE AUXILIARY PROBLEM

2.1. The limit process. In this section we prove that the sequence {uk}k∈N of solutions to problem

(1.9) converges to the unique solution to the problem (1.1).

The function f satisfies the following hypotheses:

Assumption 2.1. f : R → R is a C2 function with sub-critical growth; satisfying the sign condi-

tion f(s)s ≥ 0, for all s ∈ R, and

f(0) = 0, |f (j)(s)| ≤ k0(1 + |s|)p−j, for all s ∈ R and j = 1, 2.(2.1)
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In particular, we obtain from (2.1),

|f(r)− f(s)| ≤ c
(
1 + |s|p−1 + |r|p−1

)
|r − s|, for all s, r ∈ R,(2.2)

for some c > 0, with

1 ≤ p ≤
n+ 2

n− 2
if n ≥ 3 or p ≥ 1 if n = 1, 2.(2.3)

In addition,

0 ≤ F (s) ≤ f(s)s, for all s ∈ R,(2.4)

where F (λ) :=
∫ λ

0
f(s) ds.

We begin with some preliminary results.

Lemma 2.1. The distributional derivative f ′
k of the function defined in (1.10) is the essentially

bounded function gk : R → R given by

(2.5) gk(s) :=





f ′(s), |s| ≤ k,

0, s > k,

0, s < −k.

Proof. Take ϕ ∈ C∞
0 (R). Once fk ∈ L1

loc(R) we have

〈f ′

k, ϕ〉D′(R),D(R) = −

∫

R

fk(s)ϕ
′(s) ds

= −

[∫
−k

−∞

fk(s)ϕ
′(s) ds+

∫ k

−k

fk(s)ϕ
′(s) ds+

∫ +∞

k

fk(s)ϕ
′(s) ds

]

= −

[
f(−k)ϕ(−k) + f(k)ϕ(k)− f(−k)ϕ(−k)−

∫ k

−k

f ′(s)ϕ(s) ds− f(k)ϕ(k)

]

=

∫ k

−k

f ′(s)ϕ(s) ds =

∫

R

g(s)ϕ(s) ds.

�

Consider the following result which will be useful to the proof of Lemma 2.2.

Theorem 2.1. Let u ∈ W 1,p(I) with 1 ≤ p ≤ ∞, where I is a bounded interval of R. Then, there

exists ũ ∈ C(Ī) such that

u = ũ a.e. in I

and

ũ(x)− ũ(y) =

∫ x

y

u′(t)dt for all x, y ∈ Ī .

Proof. See Brezis [4], Theorem 8.2. �

Lemma 2.2. For each k ∈ N, there exists a positive constant Ck verifying

|fk(r)− fk(s)| ≤ Ck|r − s| for everyr, s ∈ R,

where fk is the function defined in (1.10).
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Proof. Consider s, r ∈ R with s < r. Applying Theorem 2.1 for I =]s, r[, it follows that

fk(r)− fk(s) =

∫ r

s

f ′

k(ξ) dξ.

Thus, Lemma 2.1 yields the following inequality:

|fk(r)− fk(s)| ≤

∫ r

s

|f ′

k(ξ)| dξ ≤ sup
s∈[−k,k]

|gk(s)| |r − s|,(2.6)

which concludes the proof. �

From Lemma 2.2, for each k ∈ N, standard arguments of Semigroup theory yield that problem

(1.9) possesses an unique regular solution uk in the class

C0([0,∞);D(−∆)) ∩ C1([0,∞);H1
∂ΩD

(Ω)) ∩ C2([0,∞);L2(Ω)).

Multiplying the first equation of (1.9) by ∂tuk and performing integration by parts, it yields

1

2

d

dt
||∂tuk(t)||

2
L2(Ω) +

1

2

d

dt
||∇uk(t)||

2
L2(Ω) +

d

dt

∫

Ω

Fk(uk(x, t)) dxdt(2.7)

+

∫

Ω

a(x)|∂tuk(x, t)|
2 dx = 0, for all t ∈ [0,∞),

where

Fk(λ) =

∫ λ

0

fk(s) ds.(2.8)

Hence, taking (2.7) into account, we infer

Euk
(t) +

∫ t

0

∫

Ω

a(x)|∂tuk(x, s)|
2 dxds = Euk

(0), for all t ∈ [0,+∞) and k ∈ N,

where

Euk
(t) :=

1

2

∫

Ω

|∂tuk(x, t)|
2 + |∇uk(x, t)|

2 dx+

∫

Ω

Fk(uk(x, t)) dx,(2.9)

is the energy associated to problem (1.9).

We observe that from (1.10), the function defined in (2.8) is given by

(2.10) Fk(s) :=





∫ s

0

f(ξ) dξ, |s| ≤ k,
∫ k

0

f(ξ) dξ + f(k)[s− k], s > k,

f(−k)[s+ k] +

∫
−k

0

f(ξ) dξ, s < −k.

Since f satisfies the sign condition, it results that Fk(s) ≥ 0 for all s ∈ R and k ∈ N. In addition,

from (2.2) and (2.4), we obtain, respectively, that |f(s)| ≤ c[|s|+ |s|p] and 0 ≤ F (s) ≤ f(s) s for

all s ∈ R. Then, we infer that

|Fk(s)| ≤ c[|s|2 + |s|p+1], for all s ∈ R and k ∈ N.(2.11)

Consequently,
∫

Ω

|Fk(u0,k)| dx ≤ c

∫

Ω

[
|u0,k|

2 + |u0,k|
p+1
]
dx(2.12)

. ||u0,k||H1
∂ΩD

(Ω).
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Assuming that p ≥ 1 is under conditions (2.3), we have for every dimension n ≥ 1 that

H1
∂ΩD

(Ω) →֒ Lp+1(Ω), which implies that the RHS of (2.12) is bounded. So, estimates (2.9)

(also called energy identity for the auxiliary problem (1.9) and (2.12) and convergence (1.8), yield

a subsequence of {uk}, reindexed again by {uk}, such that

uk ⇀ u weakly * in L∞(0,∞;H1
∂ΩD

(Ω)),(2.13)

∂tuk ⇀ ∂tu weakly * in L∞(0,∞;L2(Ω)),(2.14) √
a(x)∂tuk ⇀

√
a(x)∂tu weakly in L2(0,∞;L2(Ω)).(2.15)

Employing the standard compactness result (see Simon [29]) we also deduce that

uk → u strongly in L∞(0, T ;L2∗−η(Ω)); for all T > 0,(2.16)

where 2∗ := 2n
n−2

and η > 0 is small enough. In addition, from (2.16), we obtain

uk → u a. e. in Ω× (0, T ), for all T > 0.(2.17)

On the other hand, from (2.2), (2.3), (2.13) and once H1
∂ΩD

(Ω) →֒ Lp+1(Ω) →֒ L
p+1
p (Ω) the

following estimate holds:

‖fk(uk)‖
p+1
p

L
p+1
p

=

∫ T

0

∫

Ω

|fk(uk(x, t))|
p+1
p dxdt

.

∫ T

0

∫

Ω

|uk|
p+1
p dxdt +

∫ T

0

∫

Ω

|uk|
p+1 dxdt

=

∫ T

0

‖uk‖
p+1
p

L
p+1
p (Ω)

dt+

∫ T

0

‖uk‖
p+1
Lp+1(Ω) dt

.

∫ T

0

‖uk‖
p+1
p

H1
∂ΩD

(Ω)
dt+

∫ T

0

‖uk‖
p+1
H1

∂ΩD
(Ω)

dt

. ‖uk‖
p+1
p

L∞(0,T ;H1
∂ΩD

(Ω))
+ ‖uk‖

p+1

L∞(0,T ;H1
∂ΩD

(Ω))

≤ c < +∞, for all t ≥ 0.(2.18)

It is easy to see that

(2.19) f(u) ∈ L∞(0,∞;L
p+1
p (Ω)).

Indeed,
∫

Ω

|f(u(x, t))|
p+1
p dx .

∫

Ω

|u(x, t)|
p+1
p dx+

∫

Ω

|u(x, t)|p+1 dx

. ‖u(·, t)‖
p+1
p

H1
∂ΩD

(Ω)
+ ‖u(·, t)‖p+1

H1
∂ΩD

(Ω)

. ‖u‖
p+1
p

L∞(0,T ;H1
∂ΩD

(Ω))
+ ‖u‖p+1

L∞(0,T ;H1
∂ΩD

(Ω))
< +∞, for all t ≥ 0.(2.20)

From (2.20) and the definition of essential supremum we obtain (2.19).

In addition, from (2.17) and the continuity of the function f , we get

fk(uk) → f(u) a. e. in Ω× (0, T ), for all T > 0.(2.21)

Indeed, the convergence (2.17) guarantees the existence of set ZT ⊂ Ω×(0, T ) withmeas(ZT ) =
0 such that uk(x, t) → u(x, t) for all (x, t) ∈ Ω × (0, T ) \ ZT when k → ∞. Therefore, for all
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(x, t) ∈ Ω× (0, T ) \ ZT there exists a positive constant L = L(x, t) > 0 verifying |uk(x, t)| < L,

for all k ∈ N. Then, using the definition of fk, we obtain that

if |uk(x, t)| < L, for all k ∈ N then fk(uk(x, t)) = f(uk(x, t)), for all k ≥ L,(2.22)

that is,

(2.23) fk(uk(x, t))− f(uk(x, t)) → 0 when k → ∞ for all (x, t) ∈ Ω× (0, T ) \ ZT .

On the other hand, employing the continuity of f it follows that

(2.24) f(uk(x, t))− f(u(x, t)) → 0 when k → ∞ for all (x, t) ∈ Ω× (0, T ) \ ZT .

From (2.23) and (2.24) the convergence (2.21) holds.

Lemma 2.3 (Strauss). Let O be an open and bounded subset of RN , N ≥ 1, 1 < q < +∞ and

{un}n∈N a sequence which is bounded in Lq(O). If un → u a.e. in O, then u ∈ Lq(O) and un ⇀ u

weakly in Lq(O). In addition, if 1 ≤ r < q we also have un → u strongly in Lr(O).

Proof. See [4] (Exercise 4.16) or [30]. �

Gathering together (2.18), (2.19) and Lions’ Lemma, we deduce that

fk(uk) ⇀ f(u) weakly in L
p+1
p (Ω× (0, T )).(2.25)

Going back to problem (1.9), multiplying by ϕ θ, where ϕ ∈ C∞
0 (Ω), θ ∈ C∞

0 (0, T ) and per-

forming integration by parts, we obtain

−

∫ T

0

θ′(t)

∫

Ω

∂tuk(x, t)ϕ(x) dxdt+

∫ T

0

θ(t)

∫

Ω

∇uk(x, t) · ∇ϕ(x) dxdt(2.26)

+

∫ T

0

θ(t)

∫

Ω

fk(uk(x, t))ϕ(x) dxdt+

∫ T

0

θ(t)

∫

Ω

a(x)∂tuk(x, t)ϕ(x) dxdt = 0.

Passing to the limit in (2.26) and observing convergences (2.13)-(2.15) and (2.25), we get

−

∫ T

0

θ′(t)

∫

Ω

∂tu(x, t)ϕ(x) dxdt+

∫ T

0

θ(t)

∫

Ω

∇u(x, t) · ∇ϕ(x) dxdt(2.27)

+

∫ T

0

θ(t)

∫

Ω

f(u(x, t))ϕ(x) dxdt+

∫ T

0

θ(t)

∫

Ω

a(x)∂tu(x, t)ϕ(x) dxdt = 0,

for all ϕ ∈ C∞
0 (Ω) and θ ∈ C∞

0 (0, T ). We conclude that

∂2
t u−∆u+ f(u) + a(x)∂tu = 0 in D′(Ω× (0, T )),(2.28)

and since

a(·)∂tu ∈ L∞(0, T ;L2(Ω)), ∆u ∈ L∞(0, T ;H−1
∂ΩD

(Ω)), (here H−1
∂ΩD

(Ω) = (H1
∂ΩD

(Ω))′),

a(x)∂tu ∈ L2(0, T ;L2(Ω)) and f(u) ∈ L∞(0, T ;L
p+1
p (Ω)),

we deduce that ∂2
t u ∈ L2(0, T ;H−1

∂ΩD
(Ω)) and

∂2
t u−∆u+ f(u) + a(x)∂tu = 0 in L2(0, T ;H−1

∂ΩD
(Ω)).(2.29)

Applying Lemma 8.1 of Lions-Magenes [22], we deduce that

(2.30) u ∈ Cw(0, T ;H
1
∂ΩD

(Ω)) and ∂tu ∈ Cw(0, T ;L
2(Ω)),

where Cw(0, T ; Y ) = space of functions f ∈ L∞(0, T ; Y ) whose mappings [0, T ] 7→ Y are weakly

continuous, that is, t 7→ 〈y′, f(t)〉Y ′,Y is continuous in [0, T ] for all y′ ∈ Y ′, dual of Y .

Our first result reads as follows:
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Theorem 2.2. Assume that a ∈ L∞(Ω) and f ∈ C1(R) satisfies f(s)s ≥ 0 for all s ∈ R. In
addition, suppose that assumptions (2.2), (2.3) and (2.4) are in place. Then, problem (1.1) has at
least a global solution in the class

u ∈ Cw(0, T ;H
1
∂ΩD

(Ω)), ∂tu ∈ Cw(0, T ;L
2(Ω)), ∂2

t u ∈ L2(0, T ;H−1
∂ΩD

(Ω)),

provided that {u0, u1} ∈ H1
∂ΩD

(Ω)× L2(Ω). Furthermore, assuming that 1 ≤ p ≤ n
n−2

, n ≥ 3 or

p ≥ 1, n = 1, 2, we have the uniqueness of solution.

Proof. The uniqueness of solution as well as to prove that u(0) = u0 and ∂tu(0) = u1 follow the

same ideas used in Lions [21] (Theorem 1.2). �

2.2. Recovering the regularity in time for the range 1 ≤ p < n
n−2

, n ≥ 3. When p ≥ 1,
n = 1, 2, the result is trivially verified and it will be omitted.

The goal of this subsection is to prove that if 1 ≤ p < n
n−2

, n ≥ 3, the related solutions to

problem (1.1) are in the class

u ∈ C0([0, T ];H1
ΩD

(Ω)), ∂tu ∈ C0([0, T ];L2(Ω))

and, in addition, one has

{uk, ∂tuk} → {u, ∂tu} in C0([0, T ];H1
ΩD

(Ω))× C0([0, T ];L2(Ω)).

To prove the above statements, we need to prove that

fk(uk) → f(u) strongly in L2(Ω× (0, T )).(2.31)

In fact, first we observe that
∫ T

0

∫

Ω

|fk(uk)− f(u)|2 dxdt(2.32)

.

∫ T

0

∫

Ω

|fk(uk)− f(uk)|
2 dxdt+

∫ T

0

∫

Ω

|f(uk)− f(u)|2 dxdt.

In view of (2.2) one has
∫

Ω

|f(uk)− f(u)|2 dx .

∫

Ω

|uk − u|2 dx+

∫

Ω

|uk|
2(p−1)|uk − u|2 dx

+

∫

Ω

|u|2(p−1)|uk − u|2 dx

= I1,k + I2,k + I3,k

We observe that since p−1
p

+ 1
p
= 1, Hölder inequality yields

I2,k ≤

(∫

Ω

|uk|
2p

) p−1
p
(∫

Ω

|uk − u|2p
) 1

p

.

Choosing p < n
n−2

it implies that 2p < 2n
n−2

= 2∗ and, consequently, from (2.13) and (2.16) we

deduce that I2,k → 0 as k → +∞. Analogously, we also deduce that I3,k → 0 as k → +∞. We

trivially obtain that I1,k → 0 as k → +∞. Then,

∫ T

0

∫

Ω

|f(uk)− f(u)|2 dxdt → 0 as k → ∞.(2.33)
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From (2.32) it remains to prove that
∫ T

0

∫

Ω

|fk(uk)− f(uk)|
2 dxdt → 0 as k → ∞.(2.34)

Let us consider, initially, t ∈ [0, T ] fixed and define

Ωt
k := {x ∈ Ω : |uk(x, t)| > k}.

Observing that

fk(uk)− f(uk) = 0, if |uk(x, t)| ≤ k,

we have

∫

Ω

|fk(uk)− f(uk)|
2 dx =

∫

Ωt
k

|fk(uk)− f(uk)|
2 dx(2.35)

.

[∫

Ωt
k

|f(uk)|
2 dx+

∫

Ωt
k

|f(−k)|2 dx+

∫

Ωt
k

|f(k)|2 dx

]

.

[∫

Ωt
k

[|uk|
2 + |uk|

2p] dx+

∫

Ωt
k

[|k|2 + |k|2p] dx

]

.

[∫

Ωt
k

|uk|
2p dx+

∫

Ωt
k

|k|2p dx

]

.

∫

Ωt
k

|uk|
2p dx.

Before analyzing the term on the RHS of (2.35) we note that since H1
ΩD

(Ω) →֒ L
2n−

1
2

n−2 (Ω) and

the convergence (1.8) are in place, we obtain
(∫

Ωt
k

k
2n−

1
2

n−2 dx

)
.

(∫

Ωt
k

|uk|
2n−

1
2

n−2 dx

)
(2.36)

= ||uk(t)||
2n−

1
2

n−2

L
2n−

1
2

n−2 (Ωt
k
)

. ||uk(t)||
2n−

1
2

n−2

H1
ΩD

(Ω)
. [Euk

(0)]
2n−

1
2

n−2 ≤ C,

for all t ∈ [0, T ], where C is a positive constant which does not depend on k and t. Thus, it yields

meas(Ωt
k) . k

−2n+1
2

n−2 , for all t ∈ [0, T ].(2.37)

Let β := 2n
(2p)(n−2)

, for n ≥ 3. Observe that we have the following inequalities:

p <
n

n− 2
⇔ 2n > (2p)(n− 2) ⇔ 2p <

2n

n− 2
= 2∗ ⇔ β > 1.

Setting α > 0 such that 1
α
+ 1

β
= 1, we deduce that α = 2n

2n−(2p)(n−2)
and using Hölder inequality

we get

∫

Ωt
k

|uk|
2p dx ≤ (meas(Ωk))

2n−(2p)(n−2)
2n

(∫

Ωt
k

|uk|
2n
n−2

) (2p)(n−2)
2n

(2.38)

= (meas(Ωk))
2n−(2p)(n−2)

2n ||uk(t)||
2p

L
2n
n−2 (Ω)

.
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Thus, from (2.37) and (2.38) we conclude

∫ T

0

∫

Ωt
k

|uk|
2p dx ≤ k

(

−2n+1
2

n−2

)

( 2n−(2p)(n−2)
2n )

∫ T

0

||uk(t)||
2p

L
2n
n−2 (Ω)

dt(2.39)

. k

(

−2n+1
2

n−2

)

( 2n−(2p)(n−2)
2n )

∫ T

0

||uk(t)||
2p

H1
ΩD

(Ω)
dt

. k

(

−2n+1
2

n−2

)

( 2n−(2p)(n−2)
2n )

[Euk
(0)]p,

Employing the fact that Euk
(0) ≤ C for all k ∈ N and

(
−2n+ 1

2

n−2

)(
2n−(2p)(n−2)

2n

)
< 0, in light of

inequality (2.39) , we prove that

∫ T

0

∫

Ωt
k

|uk|
2p dx → 0, as k → +∞.(2.40)

Gathering (2.35) and (2.40) together, we conclude (2.34) which proves (2.31).

Now, we define the sequence zµ,σ = uµ − uσ, µ, σ ∈ N, and from (1.9) we deduce

1

2

d

dt

{
||∂tzµ,σ(t)||

2
L2(Ω) + ||∇zµ,σ(t)||

2
L2(Ω)

}
+

∫

Ω

a(x)|∂tzµ,σ|
2 dx(2.41)

=

∫

Ω

(fµ(uµ)− fσ(uσ)) (∂tuµ − ∂tuσ) dx.

Integrating (2.41) over (0, t), we obtain

1

2

{
||∂tzµ,σ(t)||

2
L2(Ω) + ||∇zµ,σ(t)||

2
L2(Ω)

}
+

∫ t

0

∫

Ω

a(x)|∂tzµ,σ|
2 dxds(2.42)

≤
1

2

{
||u1,µ − u1,σ||

2
L2(Ω) + ||∇u0,µ −∇u0,σ||

2
L2(Ω)

}

+

∫ t

0

∫

Ω

(fµ(uµ)− fσ(uσ)) (∂tuµ − ∂tuσ) dxds.

The convergences (1.8), (2.14) and (2.31) imply that the terms on the RHS of the (2.42) con-

verges to zero as µ, σ → +∞. Thus, we deduce that

uµ → u in C0([0, T ];H1
ΩD

(Ω)) ∩ C1([0, T ];L2(Ω)),(2.43)

lim
µ→+∞

∫ T

0

∫

Ω

a(x)|∂tuµ|
2dx ds =

∫ T

0

∫

Ω

a(x)|∂tu|
2dx ds,(2.44)

for all T > 0.

2.3. Estimating Fk(uk). Inequality (2.11) gives

|Fk(s)| ≤ c[|s|2 + |s|p+1],

for all s ∈ R and k ∈ N.



ZAREMBA BOUNDARY CONDITION 12

Since 1 ≤ p < n
n−2

if n ≥ 3 and n
n−2

< n+2
n−2

we obtain 2 ≤ p + 1 < 2n
n−2

= 2∗. Consequently,

there exists ε > 0 such that p + 1 + ε = 2∗. Then, H1
ΩD

(Ω) →֒ Lp+1+ε(Ω) and, consequently,
∫

Ω

|Fk(u0,k)|
p+1+ε

p+1 dx ≤ c

∫

Ω

|u0,k|
2(p+1+ε)

p+1 + |u0,k|
p+1+ε dx(2.45)

. ||u0,k||
p+1+ε

H1
ΩD

(Ω)
≤ C.

Analogously,
∫

Ω

|Fk(uk(x, t0))|
p+1+ε

p+1 dx . ||uk(·, t0)||
p+1+ε

H1
ΩD

(Ω)
≤ CEuk

(0)p+1+ε,(2.46)

for all t0 ∈ [0, T ]. The boundedness of Euk
(0) implies that there exists χ ∈ L

2∗

p+1 (Ω) verifying the

following convergence:

Fk(uk(·, t0)) ⇀ χ weakly in L
2∗

p+1 (Ω), as k → +∞.(2.47)

In what follows we are going to prove that χ = F (u(·, t0)). Indeed, from (2.43) we obtain

uk(·, t0) → u(·, t0) strongly in L2(Ω). Thus,

(2.48) uk(x, t0) → u(x, t0) a. e. in Ω.

Note that,

|Fk(uk(x, t0))− F (u(x, t0))|(2.49)

≤ |Fk(uk(x, t0))− F (uk(x, t0))|+ |F (uk(x, t0))− F (u(x, t0))|.

The convergence (2.48) and the continuity of F imply

F (uk(x, t0)) → F (u(x, t0)) a. e. in Ω.(2.50)

In light of inequality (2.49), to prove that

Fk(uk(x, t0)) → F (u(x, t0)) a. e. in Ω.(2.51)

it remains to prove that

Fk(uk(x, t0))− F (uk(x, t0)) → 0 a. e. in Ω,

In fact, from (2.22), there exists a positive constant L = L(x, t) > 0 such that

|Fk(uk(x, t0))− F (uk(x, t0))| =

∣∣∣∣∣

∫ uk(x,t0)

0

fk(s)ds−

∫ uk(x,t0)

0

f(s)ds

∣∣∣∣∣

≤

∫ L

−L

|fk(s)− f(s)|ds = 0, if k ≥ L.(2.52)

Therefore, combining (2.49), (2.50) and (2.52), we obtain (2.51). Thus, from (2.46) and Lions

Lemma we deduce that

Fk(uk(·, t0)) ⇀ F (u(·, t0)) weakly in L
2∗

p+1 (Ω), as k → +∞,(2.53)

proving that χ = F (u(·, t0)).
In addition, employing Strauss Lemma we also deduce that

Fk(uk(·, t0)) → F (u(·, t0)) strongly in Lr(Ω), as k → +∞,(2.54)

for all 1 ≤ r < 2∗

p+1
and t0 ∈ [0, T ].

Now we are in a position to establish the following result:
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Theorem 2.3. Assume that a ∈ L∞(Ω) is a nonnegative function and f ∈ C1(R) satisfies f(s)s ≥
0 for all s ∈ R. In addition, suppose that f verifies assumption (2.2) with 1 ≤ p < n

n−2
, n ≥ 3 and

p ≥ 1, n = 1, 2 and assumption (2.4). Then, given {u0, u1} ∈ H1
ΩD

(Ω)×L2(Ω) problem (1.1) has

an unique global solution in the class

u ∈ C0([0, T ];H1
ΩD

(Ω)), ∂tu ∈ C0([0, T ];L2(Ω)), ∂2
t u ∈ L2(0, T ;H−1

∂ΩD
(Ω)).

In addition, the energy identity is verified, namely

Eu(t2) +

∫ t2

t1

∫

Ω

a(x)|a(x)∂tu(x, t)|
2 dxdt = Eu(t1), 0 ≤ t1 ≤ t2 < +∞, where(2.55)

Eu(t) :=
1

2

∫

Ω

|∂tu(x, t)|
2 + |∇u(x, t)|2 dxdt+

∫

Ω

F (u(x, t)) dxdt.

3. EXPONENTIAL DECAY TO PROBLEM (1.1)

Throughout this section we will assume that 1 ≤ p < n
n−2

if n ≥ 3 and p ≥ 1 if n = 1, 2. Under

these conditions we have the following embeddings:

H1
ΩD

(Ω) →֒ L2p(Ω) →֒ Lp(Ω).(3.1)

Consider the auxiliary problem

(3.2)





∂2
t uk −∆uk + fk(uk) + a(x)∂tuk = 0 in Ω× (0,+∞),

uk = 0 on ∂ΩD × (0,+∞),

∂νuk = 0 on ∂ΩN × (0,+∞),

uk(x, 0) = u0,k(x); ∂tuk(x, 0) = u1,k(x), x ∈ Ω,

whose associated energy functional is given by

Euk
(t) :=

1

2

∫

Ω

|∂tuk(x, t)|
2 + |∇uk(x, t)|

2 dxdt+

∫

Ω

Fk(uk(x, t)) dxdt,(3.3)

where Fk(λ) =
∫ λ

0
Fk(s) ds and the energy identity reads as follows

Euk
(t2)− Euk

(t1) = −

∫ t2

t1

∫

Ω

a(x)|∂tuk|
2 dxdt,(3.4)

for all 0 ≤ t1 ≤ t2 < +∞.

Let T0 > 0 be associated to the geometric control condition, that is, every ray of the geometric

optics enters ω in a time T ∗ < T0. Thus, our goal is to prove the observability inequality established

in the following lemma.

Lemma 3.1. There exists k0 ≥ 1 such that for every k ≥ k0, the corresponding solution uk of

(3.2) satisfies the inequality

Euk
(0) ≤ C

∫ T

0

∫

Ω

a(x)|∂tuk|
2 dxdt dxdt,(3.5)

for all T > T0 and for some positive constant C = C(||{u0, u1}||H1
0 (Ω)×L2(Ω)).

Proof. The initial datum {u0, u1} ∈ H1
ΩD

(Ω) × L2(Ω) in the original problem (1.1) is either zero

or not zero.

In the first case, when {u0, u1} = (0, 0) and, observing (1.8), we can consider {u0,k, u1,k} =
(0, 0) for all k ≥ 1 and the corresponding unique solution to the auxiliary problem (1.9) will be

uk ≡ 0. Then, (3.5) is verified.
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In the second case, there exists a positive number R > 0 such that

0 < ||{u0, u1}||H1
ΩD

(Ω)×L2(Ω) < R,

consider, for instance R = 2||{u0, u1}||H1
ΩD

(Ω)×L2(Ω).

Therefore, there exists, k0 ≥ 1 such that for all k ≥ k0, {u0,k, u1,k} satisfies

||{u0,k, u1,k}||H1
ΩD

(Ω)×L2(Ω) < R.(3.6)

We are going to prove that under condition (3.6) on the initial datum, the corresponding solution

uk to (1.9) satisfies (3.5). Our proof relies on contradiction arguments. So, if (3.5) is false, then

there exists T > T0 such that for every k ≥ 1 and every constant C > 0, there exists an initial

datum {uC
0,k, u

C
1,k} verifying (3.6), whose corresponding solution uC

k violates (3.5).

In particular, for every k ≥ 1 and C = m ∈ N, we obtain the existence of an initial datum

{um
0,k, u

m
1,k} verifying (3.6) and whose corresponding solution um

k satisfies

Eum
k
(0) > m

∫ T

0

∫

Ω

a(x)|∂tu
m
k |

2 dxdt.(3.7)

Then, we obtain a sequence {um
k }m∈N of solutions to problem (1.9) such that

lim
m→+∞

Eum
k
(0)

∫ T

0

∫
Ω
a(x)|∂tum

k |
2 dxdt

= +∞.

Equivalently

lim
m→+∞

∫ T

0

∫
Ω
a(x)|∂tu

m
k |

2 dxdt

Eum
k
(0)

= 0.(3.8)

Since Eum
k
(0) is bounded, (3.8) yields

lim
m→+∞

∫ T

0

∫

Ω

a(x)|∂tu
m
k |

2 dxdt = 0.(3.9)

Furthermore, there exists a subsequence of {um
k }m∈N, still denoted by {um

k } , verifying the

following convergences:

um
k ⇀ uk weakly-star in L∞(0, T ;H1

ΩD
(Ω)), as m → +∞,(3.10)

∂tu
m
k ⇀ ∂tuk weakly-star in L∞(0, T ;L2(Ω)), as m → +∞,(3.11)

um
k → uk strongly in L∞(0, T ;Lq(Ω)), as m → +∞, for all q ∈

[
2,

2n

n− 2

)
,(3.12)

where the last convergence is obtained using Aubin-Lions-Simon Theorem (see [29]). The proof

is divided into two distinguished cases: uk 6= 0 and uk = 0.

Case (a): uk 6= 0.

For m ∈ N, um
k is the solution to the problem




∂2
t u

m
k −∆um

k + fk(u
m
k ) + a(x)∂tu

m
k = 0 in Ω× (0, T ),

um
k = 0 on ∂ΩD × (0, T ),

∂νu
m
k = 0 on ∂ΩN × (0, T ),

um
k (x, 0) = um

0,k(x); ∂tu
m
k (x, 0) = um

1,k(x), x ∈ Ω.
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Taking (3.9)-(3.12) into consideration we obtain

(3.13)





∂2
t uk −∆uk + fk(uk) = 0 in Ω× (0, T ),

uk = 0 on ∂ΩD × (0, T ),

∂νuk = 0 on ∂ΩN × (0, T ),

∂tuk = 0 a.e. in ω.

Defining yk = ∂tuk, the above problem yields




∂2
t yk −∆yk + f ′

k(uk)yk = 0 in Ω× (0,+∞),

yk = 0 on ∂ΩD × (0,+∞),

∂νyk = 0 on ∂ΩN × (0,+∞),

yk = 0 a.e. in ω.

Once f ′
k(uk) ∈ L∞(Ω× (0, T )) since fk is globally Lipschitz, for each k ∈ m ∈ N, we deduce

from Assumption 1.2 that yk = ∂tuk ≡ 0. Returning to (3.13) we conclude that uk ≡ 0 as well

and we obtain the desired contradiction.

Case (b): uk = 0.

Setting

αm :=
√
Eum

k
(0), and vmk :=

um
k

αm

,(3.14)

in light of (3.8), we obtain

lim
m→+∞

∫ T

0

∫

Ω

a(x)|∂tv
m
k |

2 dxdt = 0.(3.15)

According to (3.14), the sequence {vmk }m∈N is the solution to the following problem:

(3.16)





∂2
t v

m
k −∆vmk +

1

αm

fk(u
m
k ) + a(x)∂tv

m
k = 0 in Ω× (0, T ),

vmk = 0 on ∂ΩD × (0, T ),

∂νv
m
k = 0 on ∂ΩN × (0, T ),

vmk (x, 0) =
um
0,k

αm

; ∂tv
m
k (x, 0) =

um
1,k

αm

and the associated energy functional is given by

Evm
k
(t) =

1

2

∫

Ω

(
|∂tv

m
k |

2 + |∇vmk |
2
)
dx+

1

α2
m

∫

Ω

Fk(u
m
k ) dx,

since
1

αm

∫

Ω

fk(u
m
k )∂tv

m
k dx =

1

α2
m

d

dt

∫

Ω

F (um
k ) dx.

Note that Evm
k
(t) = 1

α2
m
Eum

k
(t) for all t ≥ 0 and, in particular, for t = 0

Evm
k
(0) =

1

α2
m

Eum
k
(0) = 1, for all m ∈ N.(3.17)

In order to achieve the contradiction we are going to prove that

lim
m→+∞

Evm
k
(0) = 0.(3.18)
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Indeed, initially, we observe that (3.17) yields the existence of a subsequence of {vmk }m∈N,

reindexed again by {vmk }, such that

vmk ⇀ vk weakly-star in L∞(0, T ;H1
ΩD

(Ω)), as m → +∞,(3.19)

∂tv
m
k ⇀ ∂tvk weakly-star in L∞(0, T ;L2(Ω)), as m → +∞,(3.20)

vmk → vk strongly in L∞(0, T ;Lq(Ω)), as m → +∞, for all q ∈

[
2,

2n

n− 2

)
.(3.21)

For some eventual subsequence, we have that αm → α with α ≥ 0.

If α > 0, thus, passing to the limit in (3.16) and considering convergences (3.15), (3.19) - (3.21),

we deduce

(3.22)






∂2
t vk −∆vk +

1

α
fk(uk) = 0 in Ω× (0, T ),

vk = 0 on ∂ΩD × (0, T ),

∂νvk = 0 on ∂ΩN × (0, T ),

∂tvk = 0 a.e. in ω.

The above problem yields, for wk = ∂tvk, in the distributional sense,

(3.23)






∂2
twk −∆wk +

1

α
f ′

k(uk)wk = 0 in Ω× (0, T ),

wk = 0 on ∂ΩD × (0, T ),

∂νwk = 0 on ∂ΩN × (0, T ),

wk = 0 a.e. in ω.

Once 1
α
f ′
k(uk) ∈ L∞(Ω× (0, T )), using again Assumption (1.2) we conclude that wk = ∂tvk ≡

0, and, therefore, returning to (3.22) we deduce that vk ≡ 0.

If α = 0, first, observe that hypothesis (2.6) yields

1

α2
m

|fk(u
m
k )|

2 ≤ c
1

α2
m

|um
k |

2 = c
1

α2
m

α2
m|v

m
k |

2,

and

1

α2
m

∫ T

0

∫

Ω

|fk(u
m
k )|

2 dxdt ≤ c

∫ T

0

∫

Ω

|vmk |
2 dxdt.(3.24)

We are going to prove that

(3.25)
1

αm

fk(αmv
m
k ) ⇀ f ′(0)vk in L2(0, T ;L2(Ω)) as m → ∞.

Since

1

αm

fk(αmv
m
k )− f ′(0)vk =

1

αm

fk(αmv
m
k )−

1

αm

f(αmv
m
k ) +

1

αm

f(αmv
m
k )− f ′(0)vk,

if we prove that

(3.26)
1

αm

fk(αmv
m
k )−

1

αm

f(αmv
m
k ) → 0 in L2(0, T ;L2(Ω))

and

(3.27)
1

αm

f(αmv
m
k )− f ′(0)vk ⇀ 0 in L2(0, T ;L2(Ω)),

as m → ∞, we prove (3.25).
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To prove (3.26), let’s consider

Ωt
m = {x ∈ Ω : |um

k (x, t)| > k}.

Employing definition (1.10), |fk(αmv
m
k ) − f(αmv

m
k )| = 0 in Ω \ Ωt

m. Then, hypotheses (2.1)
and (2.2) yield

∥∥∥∥
1

αm
fk(αmvmk )−

1

αm
f(αmvmk )

∥∥∥∥
2

L2(0,T ;L2(Ω))

=

∫ T

0

∫

Ωt
m

∣∣∣∣
1

αm
fk(αmvmk )−

1

αm
f(αmvmk )

∣∣∣∣
2

dxdt

=
1

α2
m

∫ T

0

∫

Ωt
m

|fk(αmvmk )− f(αmvmk )|2 dxdt

.
1

α2
m

∫ T

0

∫

Ωt
m

|fk(αmvmk )|2 dxdt+
1

α2
m

∫ T

0

∫

Ωt
m

|f(αmvmk )|2 dxdt

.

∫ T

0

∫

Ωt
m

|f(k)|2 + |f(−k)|2 dxdt+
1

α2
m

∫ T

0

∫

Ωt
m

|αmvmk |2 + |αmvmk |2p dxdt

.

∫ T

0

∫

Ωt
m

|k|2 + |k|2p dxdt+
1

α2
m

∫ T

0

∫

Ωt
m

|αmvmk |2 + |αmvmk |2p dxdt

.
1

α2
m

∫ T

0

∫

Ωt
m

|umk |2 + |umk |2p dxdt+
1

α2
m

∫ T

0

∫

Ωt
m

|αmvmk |2 + |αmvmk |2p dxdt.

Since p > 1, k ≥ 1 and k < |um
k | = |αmv

m
k | in Ωt

m, we obtain
∥∥∥∥

1

αm
fk(αmvmk )−

1

αm
f(αmvmk )

∥∥∥∥
2

L2(0,T ;L2(Ω))

.
1

α2
m

∫ T

0

∫

Ωt
m

|αmvmk |2p dxdt

. α2(p−1)
m ‖vmk ‖2p

L2p(0,T ;L2p(Ω))
→ 0, as m → ∞,

which proves the convergence (3.26).

On the other hand, f ∈ C2(R) and, consequently, from Taylor’s Theorem and (2.1) we have

f(s) = f ′(0)s+R(s), where |R(s)| ≤ C(|s|2 + |s|p).(3.28)

Hence

1

αm

f(αmv
m
k ) = f ′(0)vmk +

R(αmv
m
k )

αm

(3.29)

and

(3.30)

∣∣∣∣
R(αmv

m
k )

αm

∣∣∣∣ ≤ C
(
αm|v

m
k |

2 + |αm|
p−1|vmk |

p
)
.

In light of identity (3.28), we establish
R(αmvm

k
)

αm
=

f(αmvm
k
)

αm
− f ′(0)vmk and hypotheses (2.1) and

(2.2) imply that |f(αmv
m
k )| . |αmv

m
k |+ |αmv

m
k |

p. Then, we deduce that
∥∥∥∥
R(αmv

m
k )

αm

∥∥∥∥
2

L2(0,T ;L2(Ω))

. ‖vmk ‖
2
L2(0,T ;L2(Ω)) + |αm|

2(p−1)‖vmk ‖
2p
L2p(0,T ;L2p(Ω)) ≤ C,

for some constant C > 0. We obtain a subsequence of
R(αmvm

k
)

αm
and γ ∈ L2(0, T ;L2(Ω)) such that

(3.31)
R(αmv

m
k )

αm

⇀ γ in L2(0, T ;L2(Ω)).
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Besides, employing inequality (3.30) and observing (3.1), we get

∣∣∣∣
∣∣∣∣
R(αmv

m
k )

αm

∣∣∣∣
∣∣∣∣
L1(0,T ;L1(Ω))

.

∫ T

0

∫

Ω

αm|v
m
k |

2 dxdt +

∫ T

0

∫

Ω

αp−1
m |vmk |

p dxdt

= αm

∫ T

0

‖vmk ‖
2
L2(Ω) dt+ αp−1

m

∫ T

0

‖vmk ‖
p

Lp(Ω) dt

= αm||v
m
k ||

2
L2(0,T ;L2(Ω)) + αp−1

m ||vmk ||
p

Lp(0,T ;Lp(Ω)) → 0.(3.32)

From (3.31) and (3.32) we conclude that

(3.33)
R(αmv

m
k )

αm

⇀ 0 in L2(0, T ;L2(Ω)).

Observing (3.21), (3.29) and (3.33), the convergence (3.27) is proved.

Remark 3.1. The case p = 1 is trivially contemplated once the truncation is not necessary.

Since convergences (3.26) and (3.27) are proved, we conclude convergence (3.25).

Passing to the limit in (3.16) as m → +∞, we obtain

(3.34)





∂2
t vk −∆vk + f ′(0)vk = 0 in Ω× (0, T ),

vk = 0 on ∂ΩD × (0, T ),

vk = 0 on ∂ΩN × (0, T ),

∂tvk = 0 a.e. in ω,

and defining wk = ∂tvk, it satisfies the following problem:

(3.35)





∂2
twk −∆wk + f ′(0)wk = 0 in Ω× (0, T ),

wk = 0 on ∂ΩD × (0, T ),

wk = 0 on ∂ΩN × (0, T ),

wk = 0 a.e. in ω.

Using Assumption (1.2) we obtain that wk = ∂tvk ≡ 0 and returning to (3.34) we deduce that

vk ≡ 0.

Then, in both cases α = 0 and α > 0, we obtain that vk ≡ 0. Consequently, inequality (3.24)

and convergence (3.21) yield that

1

α2
m

∫ T

0

∫

Ω

|fk(u
m
k )|

2 dxdt → 0 in L2(0, T, L2(Ω)) as m → +∞.(3.36)

In order to achieve a contradiction we need to prove that Evm
k
(0) → 0 as m → +∞. In fact,

from (3.16), we can write vmk = ymk + zmk such that ymk and vmk are, respectively, solutions of the

following problems:




∂ty
m
k −∆ymk = 0 in Ω× (0, T ),

ymk = 0 on ∂ΩD × (0, T ),

∂νy
m
k = 0 on ∂ΩN × (0, T ),

ymk (0) = vmk (0), ∂ty
m
k (0) = ∂tv

m
k (0),
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and 



∂tz
m
k −∆zmk = −

1

αm

fk(u
m
k ) + a(x)∂tu

m
k in Ω× (0, T ),

zmk = 0 on ∂ΩD × (0, T ),

∂νz
m
k = 0 on ∂ΩN × (0, T ),

zmk (0) = 0, ∂tz
m
k (0) = 0.

Setting

EL
vm
k
(t) :=

∫

Ω

(
|∂tv

m
k (x, t)|

2 + |∇vmk (x, t)|
2
)
dx,

the linear part associated with energy Evm
k
(t), then we can write

Evm
k
(t) = EL

vm
k
(t) +

1

α2
m

∫

Ω

Fk(uk((x, t))) dx.(3.37)

In the sequel, let us estimates the nonlinear term of the RHS of (3.37) in terms of EL
vm(t).

Estimate for I1 :=
1

α2
m

∫
Ω
Fk(uk(x, t)) dx.

Taking (2.4) into account, one has

|I1| ≤
1

α2
m

∫

Ω

[
|um

k |
2 + |um

k |
p+1
]
dx

=
1

α2
m

[
||um

k (t)||
2
L2(Ω) + ||um

k (t)||
p+1
Lp+1(Ω)

]
.

If p = 1, it follows, in view of (3.14), that

|I1| ≤
2

α2
m

||um(t)||2L2(Ω) = 2||vmk (t)||
2
L2(Ω) . EL

vm
k
(t).

Now, if p > 1 then p+1 > 2 and, therefore p+1 = 2+ ε for some ε > 0, Thus, having in mind

that the map t 7→ Evm is non increasing and Evm(0) = 1, we infer

|I1| ≤
[
||vmk (t)||

2
L2(Ω) + αp−1

m ||vmk (t)||
p+1
L2(Ω)

]

=
[
||vmk (t)||

2
L2(Ω) + αp−1

m ||vmk (t)||
2+ε
L2(Ω)

]

. EL
vm
k
(t) + αp−1

m [EL
vm
k
(t)][Evm

k
(0)]

ε
2

. [1 + αp−1
m ]EL

vm
k
(t).

In any case, we deduce

|I1| . EL
vm
k
(t).(3.38)

So, combining (3.37) and (3.38) we obtain

Evm
k
(t) . EL

vm
k
(t), for all t ∈ [0, T ].(3.39)

Now, employing the observability given in (1.15) and having in mind that EL
vm
k
(0) ≡ Eym

k
(0),

we deduce from (3.39) that

Evm
k
(0) . EL

vm
k
(0) = Eym

k
(0) ≤ c

∫ T

0

∫

ω

|∂ty
m
k (x, t)|

2 dxdt.(3.40)
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From (3.40), observing that a(x) ≥ a0 > 0 in ω and since vmk = ymk + zmk , we obtain

Evm
k
(0) .

∫ T

0

∫

Ω

a(x)|∂tv
m
k (x, t)|2 dxdt+

∫ T

0

∫

Ω

|∂tz
m
k (x, t)|2 dxdt.(3.41)

On the other hand, using the well-known result which establishes that the map {z0, z1, f} 7→
{z, ∂tz} ∈ L∞(0, T ;H1

∂ΩD
(Ω))×L∞(0, T ;L2(Ω)) associating the initial data {z0, z1, f} ∈ H1

∂ΩD
(Ω)×

L2(Ω)× L1(0, T ;L2(Ω)) to the unique solution to the linear problem

(3.42)





∂2
t z −∆z = f in Ω× (0, T )

z = 0 on ∂ΩD × (0, T ),

∂νz = 0 on ∂ΩN × (0, T ),

z(0) = z0, ∂tz(0) = z1

is linear and continuous; we obtain, from (3.41), and, in particular, considering z0 = z1 = 0 and

f := − 1
αm

fk(u
m
k )− a(x)∂tu

m
k , that

Evm
k
(0) .

∫ T

0

∫

Ω

a(x)|∂tv
m
k (x, t)|

2 dxdt +
1

α2
m

∫ T

0

∫

Ω

|fk(u
m
k )|

2 dxdt.(3.43)

Thus, from (3.15), (3.36) and (3.43) we deduce that Evm
k
(0) → 0 as m → +∞ as desire to

prove in (3.18).

�

In what follows, we are going to conclude the exponential stability to the problem (1.1).

Thanks to inequality (3.5), the auxiliary problem (1.9) satisfies the following observability in-

equality:

(3.44) Euk
(0) ≤ C

∫ T

0

∫

Ω

a(x)|∂tuk|
2 dx dt, for all T ≥ T0, and k ∈ N, k ≥ k0,

where C is a positive constant which does not depend on k ∈ N.

Passing to the limit as k → +∞ and observing convergences (2.43), (2.44) and (2.54), the above

inequality yields the observability inequality associated to the original problem (1.1), that is,

(3.45) Eu(0) ≤ C

∫ T

0

∫

Ω

a(x)|∂tu|
2 dx dt, for all T ≥ T0.

On the other hand, passing to the limit as k → +∞ and considering the same convergences

(2.43), (2.44) and (2.54), identity (2.9) yields the identity associated to the original problem (1.1),

namely,

Eu(t2)−Eu(t1) +

∫ t2

t1

∫

Ω

a(x)|∂tu|
2 dx dt = 0, for all 0 ≤ t1 < t2 < +∞.(3.46)

Gathering together (3.45), (3.46), and since the map t 7→ Eu(t) is a non-increasing function, we

obtain

(3.47)
Eu(T0) ≤ C

∫ T0

0

∫

Ω

(
a(x)|∂tu|

2
)
dx dt

= C (Eu(0)− Eu(T0)) ,

that is,

Eu(T0) ≤

(
C

1 + C

)
Eu(0).(3.48)
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Repeating the same steps for mT0, m ∈ N, m ≥ 1, we deduce

Eu(mT0) ≤
1

(1 + Ĉ)m
Eu(0),

where Ĉ = C−1. Consider t ≥ T0 and t = mT0 + r, 0 ≤ r < T0. Thus,

Eu(t) ≤ Eu(t− r) = Eu(mT0) ≤
1

(1 + Ĉ)m
Eu(0) =

1

(1 + Ĉ)
t−r
T0

Eu(0).

Defining C := e
r
T0

ln(1+Ĉ)
and λ0 :=

ln(1+Ĉ)
T0

> 0, we obtain

(3.49) Eu(t) ≤ C e−λ0tEu(0) for all t ≥ T0,

which proves the exponential decay to problem (1.1) and we prove the following result.

Theorem 3.1. Under the assumptions of Theorem 2.3 and Assumptions 1.1 and 1.2 there exist

positive constants C and γ such that the following exponential decay holds

(3.50) Eu(t) ≤ C e−λ0tEu(0), for all t ≥ T0.

for every solution to problem (1.1), provided that the initial data are taken in bounded sets of the

phase-space H := H1
∂ΩD

(Ω)× L2(Ω).
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[23] P. Martinez. A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev.

Mat. Complut., 12(1):251–283, 1999.

[24] L. Miller. Escape function conditions for the observation, control, and stabilization of the wave equation, SIAM

J. Control Optim. 41, 1554-1566 (2002).

[25] M. Nakao, Energy decay for the linear and semilinear wave equations in exterior domains with some localized

dissipations, Math. Z. 4 781-797 (2001).

[26] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathemat-

ical Sciences 44 (Springer-Verlag, New York, 1983).

[27] J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds, Comm.

Pure Appl. Math. 28 501-523 (1975).

[28] A. Ruiz, Unique Continuation for Weak Solutions of the Wave Equation plus a Potential, J. Math. Pures. Appl.

71 455-467 (1992).

[29] J. Simon, Compact Sets in the space Lp(0, T ;B), Ann. Mat. Pura Appl. 146 65-96 (1987).

[30] W. A. Strauss, On weak solutions of semilinear hyperbolic equations, Anais da Academis Brasileira de Ciências,

71, 1972, 645-651.

[31] L. Tebou, Stabilization of the wave equation with localized nonlinear damping. Journal of Differential Equations

1998; 145:502-524.

[32] L. Tebou, Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping, Discrete and Con-

tinuous Dynamical Systems, 36 7117-7136 (2016).

[33] D. Toundykov. Optimal decay rates for solutions of a nonlinear wave equation with localized nonlinear dissi-

pation of unrestricted growth and critical exponent source terms under mixed boundary conditions. Nonlinear

Anal., 67(2):512–544, 2007.

[34] R. Triggiani and P. F. Yao, Carleman estimates with no lower-order terms for general Riemann wave equations.

Global uniqueness and observability in one shot. Special issue dedicated to the memory of Jacques-Louis Lions.

Appl. Math. Optim. 46 (2002), no. 2-3, 331–375.

[35] E. Zuazua, Exponential decay for semilinear wave equations with localized damping, Comm. Partial Differential

Equations, 15 205-235 (1990).

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF MARINGÁ, 87020-900, MARINGÁ, PR, BRAZIL.
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