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Interfacial swimmers are objects that self-propel at an interface by autonomously gen-
erating a gradient of surface tension, often through the continuous release of a surfactant.
While the case of asymmetric swimmers has long been studied, experiments have shown
that spontaneous motion is also possible for symmetric swimmers. The basic mechanism of
symmetry-breaking is qualitatively well-established but one key aspect of the phenomenon
that has proved particularly difficult to elucidate is the role of Marangoni effects in the
self-propulsion. We address this question by numerical methods, which can fully handle
the complex interplay between swimmer motion, fluid flow, surfactant distribution, and
Marangoni stresses. Our swimmer is a disk releasing a soluble surfactant in a deep-layer
fluid. We investigate how the swimming velocity, represented by a Péclet number Pe∗

depends on its characteristics, as encapsulated in the Marangoni number M. We analyze
the properties of the swimming diagram Pe∗(M) and compare with approximate models
to understand their origin. We find that the low-Pe∗ regime exhibits a bistability region:
spontaneous swimming involves a threshold Marangoni number, a discontinuity in velocity
and possibly hysteresis. Those features are present only for a full description of the problem
and reveal the subtle but key role of Marangoni flows. The large-Pe∗ regime features a
robust asymptotic scaling law Pe∗ ∼ Mα , whose exponent α � 0.72 is close to the 3/4
value predicted by a simplified model, indicating a much weaker influence of Marangoni
flows. While our results were obtained assuming a point-source swimmer in the Stokes
flow regime, we show that the picture remains very similar when considering a spatially
extended source size, finite Reynolds number, or a fixed concentration swimmer. We
discuss our findings in relation to experiments.

DOI: 10.1103/PhysRevFluids.6.104006

I. INTRODUCTION

A nonuniform surface tension generates at the liquid-gaz interface a tangential stress, the
consequences of which are known as “Marangoni effects” [1,2]. Be it intentional or not—the con-
tamination of water surfaces is often unavoidable in practice—the presence of surface-active species
is the most pervasive cause for change in surface tension but local variation in temperature, solute
content or liquid composition may also be at play. Given these various possible origins, Marangoni
effects are ubiquitous. They reduce the velocity of a rising bubble [3,4], damp capillary and ocean
waves [5,6], slow down the drainage of soap films and foams [7], thicken the film deposited on
a dipped solid [8], and thwart the drag reduction of superhydrophobic surfaces [9]. The common
theme here is that any tendency to make the surfactant distribution inhomogeneous is counteracted.
Besides drop break up or coalescence [10–12] and tears of wine [13], the relevance of Marangoni
phenomena also extends to the biological world, in bacterial colonies [14] or surfactant-producing

*Christophe.Ybert@univ-lyon1.fr

2469-990X/2021/6(10)/104006(34) 104006-1 ©2021 American Physical Society

https://orcid.org/0000-0002-2987-9042
https://orcid.org/0000-0002-2793-7229
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.6.104006&domain=pdf&date_stamp=2021-10-21
https://doi.org/10.1103/PhysRevFluids.6.104006


DOLACHAI BONIFACE et al.

marine phytoplankton [15], and to technological applications such as desalination devices [16]. In
fact, in the many situations where the role of interfaces can not be neglected, Marangoni effects are
potentially essential. It is therefore no surprise that they have been under investigation for more than
two centuries.

Within the rich history of Marangoni phenomena [1], one particularly old strand of research is
the one devoted to interfacial swimmers. Also called Marangoni surfers, these objects self-propel
at a liquid-air or liquid-liquid interface by autonomously generating a gradient in surface tension.
First observations with small camphor scrapings moving spontaneously on water surface date back
to the 18th Century [17,18] and as noted by Lord Rayleigh in 1890, the phenomenon, before
being understood, “had puzzled several generations of inquirers” [19]. More than one century
later, the interest in Marangoni swimmers was revived, this time focusing on the nonlinear and
collective phenomena, such as synchronization, pattern formation and self-organization [20–26].
The advent of active matter [27] gave further impetus to the study of interfacial swimmers and
they are by now under intense scrutiny [22,28,29]. The recent demonstration of swimming velocity
reaching 104 body length per second show how efficient Marangoni propulsion can be [30]. While
autonomous motion was first investigated for asymmetric swimmers such as camphor boats [31,32],
it was later realized that this is not a necessary condition. Spontaneous swimming is also possible
for systems such as camphor disks, that are perfectly symmetric, and thus release surfactant or
heat in an isotropic manner. The underlying symmetry-breaking mechanism was first explored
around the thermal or solutal hydrodynamic instabilities of active drops [33–35] and later in the
context of autophoretic colloids [36]. Beyond the physics of propulsion, ongoing work has also
started to explore possible applications: interfacial swimmers may be designed as biocompatible
and multifunctional [37], and exploited for energy conversion and power generation [38,39], or as a
building block for more advanced devices such as beating filaments [40].

There is in the motion of interfacial swimmers one phenomenon whose coupling with other
processes has made it particularly difficult to account for: Marangoni flows. As a consequence,
modeling efforts have often avoided the hurdle: they focused on the surfactant distribution at the
swimmer edge and on the resulting driving force, but neglected the flow induced all over the
surrounding fluid by a nonuniform surfactant distribution. The body of work relying on such a
simplification is significant, as seen for instance in Refs. [41–46] and literature cited therein. We also
adopted this approach in our recent study of symmetric Marangoni swimmers [47]. Our point-source
model entirely discarded Marangoni flows but the prediction for velocity and its size dependence
seemed to capture surprisingly well the experimental data obtained on camphor disks. Such an
agreement was unexpected in at least two ways. First, the existence of Marangoni flows around
camphor swimmers has been evidenced since the 19th Century [18,48] and neglecting them is far
from straightforward owing to a magnitude comparable with the swimmer velocity. Second, one
exact calculation with an asymmetric swimmer [31] indicates that for the system studied, Marangoni
flows may significantly decrease the propulsion velocity. There is certainly no obvious reason as
why one could simply dispense with Marangoni flows in the modeling of symmetric Marangoni
swimmers, but doing so leads to predictions that were nonetheless reasonable. Our motivation for
this work was to understand this paradox.

The problem of Marangoni flows in interfacial swimmers is challenging because of the intricate
couplings between fluid motion, surfactant advection and diffusion and swimmer displacement.
There are, however, less involved situations where Marangoni flows could be analyzed and under-
stood. The first is the transient spreading dynamics of surfactant punctually deposited at the interface
[49,50]. The second involves a fixed, steady release of surfactant, a configuration which has received
much attention in recent years [51–55]. The flow in the vicinity of the source exhibits some generic
features [56] whereas at large distance, the velocity field decays as a power law whose exponent
depends on the type of surfactant [57]. Besides, experiments with fixed symmetric and asymmetric
interfacial swimmers—camphor disks and boats, respectively—hint at differences in the resulting
Marangoni flow [58]. Moving closer to the interfacial swimmer configuration, the case of a mobile
source was addressed theoretically in Ref. [59]. The predicted scaling laws, however, are not directly
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applicable because the shallow water assumption does not hold for most experiments. Finally, the
first characterization of Marangoni flows around a swimmer in motion were obtained recently using
experimental and numerical methods. They reveal a divergent flow behind the swimmer [60] and
how the direction of motion may be reversed on very shallow films [61]. To date though, only
asymmetric swimmers have been considered.

The role of Marangoni flows in the self-propulsion of symmetric interfacial swimmers thus
remains an open question. The goal of this work is to fill this gap. Using numerical methods,
the only approach that can handle the full complexity of the problem, we focus on the swimming
velocity, the key experimental observable. By comparing swimming with and without Marangoni
flows, we assess their influence on self-propulsion. Depending on the regime considered, we find
that Marangoni flows play a very different role. They are essential in the vicinity of the threshold to
decide how symmetry breaking occurs. However, in the regime of large velocity, their influence is
surprisingly modest. We discuss the implications of these findings in connection with experimental
results.

While the writing of this work was being finalized, two studies by Ender and coworkers appeared
that address a very similar problem [62,63]. As will be discussed below, our results are essentially
consistent with their findings on overlapping topics, but differ with their work on a number of
elements. Let us point out the main differences. (i) Our swimmer is not a hemisphere but an infinitely
thin disk. This geometry is by far the most widespread [24,41,46,58,64–69], presumably because
it is most convenient to craft efficient—high velocity—swimmers. As we shall see, this seemingly
minor difference can modify qualitatively some aspects of the swimming response. (ii) Our study
focuses mostly on steady creeping flow, as Refs. [62,63], but also briefly considers finite Reynolds
number and transient regimes. (iii) We examine in detail the vicinity of the symmetry breaking
mechanism, where the influence of Marangoni flows is the strongest. Our study is thus largely
complementary to the work of Ender et al. and should help to provide a complete picture.

The remainder of this article is organized as follows. Section II presents the modeling assump-
tions and governing equations, as well as the implementation of the numerical method. Section III
introduces the force balance that characterizes the swimming point and the resulting swimming
diagram. We examine in turn the regime of low velocity, i.e., close to the instability where the
motions sets in, and the asymptotic regime of large velocity. Several extensions—including finite
Reynolds number—are discussed in Sec. IV. A summary and some perspectives are given in Sec. V.
Finally, several technical points—among which some experimental results—are gathered in the
Appendices.

II. MODEL AND METHOD

A. Physical system and equations

1. Governing equations

Our swimmer is a disk releasing a soluble surfactant and placed at the interface between air and
a liquid that occupies the semi-infinite space below, as illustrated in Fig. 1. We note a the radius of
the disk, D its surface, ∂D its perimeter, and S the air-liquid interface. The experimentally observed
spontaneous swimming corresponds to such a disk moving in the laboratory reference frame at a
stationary velocity U ∗, set by the system geometry and physicochemistry. To gain more insights, we
consider here a more general situation where the disk moves at an arbitrary instantaneous velocity U ,
which unless specified is assumed constant. For U �= U ∗, this requires that an external force Fop is
applied by an operator so that the total force vanishes in steady state F = 0. In the following, this
problem is treated in the disk reference frame with origin O at the disk center; positions are noted
r = (x, y, z) and the fluid flow far away from the swimmer is fixed to −Uex (see Fig. 1). We assume
a Newtonian incompressible liquid, whose velocity field u(r, t ) obeys the Navier-Stokes equation

∇ · u = 0, ρ

(
∂u
∂t

+ u · ∇u
)

= ∇ · σ = −∇p + η�u. (1)
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FIG. 1. (a), (b) Schematic of the symmetric Marangoni swimmer studied (a) and of the simulation
box (b) together with notations used. The swimmer reference frame is considered with origin at the
disk center O, and with a flow velocity −Uex imposed far away from it. Note that the picture is not to
scale, since L/a = 400 in practice. (c) Snapshot from simulation illustrating the self-generated surfactant
asymmetry around the swimmer and the associated flow streamlines. The red wake represents the accumulation
of surfactant at the back.

Here ρ is the fluid density, η its dynamic viscosity, p the pressure, and � the Laplacian. The stress
tensor σ is given by σ = −pI + τ, with I the identity tensor and τ = η(∇u + ∇uT ) the viscous
contribution. The concentration field c(r, t ) of the soluble surfactant released by the swimmer is
governed by advection and diffusion,

∂c

∂t
+ ∇ · (uc) = D�c, (2)

with D the diffusion coefficient. These equations have to be complemented by boundary conditions
(BCs). For the concentration field under the swimmer, we have

−D∂zc|D = J (r), (3)

where J (r) is the flux of surfactant at position r for a swimmer at the origin. Unless mentioned
otherwise, we will consider a simplified configuration where the release occurs only at the swimmer
center, that is J (r) = J δs(r), with J the total release rate of solute and δs the two-dimensional
Dirac delta function. In addition, vanishing of the far-field concentration c(r, t )|r→∞ = 0 and of the
normal solute flux on the free-surface −D∂zc|S = 0 is imposed. While solute transport is coupled
to the flow equation through the advective term of Eq. (2), reciprocal coupling with the flow field
occurs through BCs. Indeed, the presence of the surfactant modifies the surface tension γ through

γ = γ0 − κcs, (4)

with γ0 the surface tension of a bare interface, κ a constant coefficient and cs ≡ c(z → 0) the
volume concentration of surfactant in the vicinity of the interface. Spatial heterogeneities in
concentration thus induce gradients in surface tension which result in a Marangoni stress at the
liquid-gas interface S ,

σ · n|S = ∇sγ , (5)

where n is the unit vector normal to the interface and pointing outside the liquid and ∇s = Is · ∇
is the surface gradient, with Is = I − n ⊗ n the surface identity tensor. This BC is complemented
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again by the usual conditions on fluid velocity: no-slip below the swimmer u(r, t )|D = 0, uniform
far-field u(r, t )|r→∞ = −Uex and impenetrability of the free surface u(r, t ) · n|S = 0.

2. Simplifying assumptions

In writing the equations above and in using them below, we make a number of simplifying
approximations that we now discuss in detail.

(i) A flat interface. In principle, a free surface can deform in response to the hydrodynamic
pressure so that the most general boundary condition for stress there [Eq. (5)] would include in the
right-hand side a Laplace pressure term −γ Cn. Here C is the local mean curvature of the surface
whose shape and position adjust so that the liquid pressure matches the Laplace pressure jump.

Assuming an undeformed flat interface C = 0 implies that the flow pressure cannot overcome
surface tension effects. This corresponds to a small capillary number Ca = ηU/γ in the viscous
regime and to a small Weber number We = ρU 2a/γ in the inertial regime. Experimental values are
typically U = 7 mms−1 for a = 4 mm so that Ca � 10−3 and We � 0.3. The flat interface is thus
a reasonable approximation. Consistent with this assumption, the swimmer lower face is chosen to
coincide with the interface: the thickness, therefore, plays no role and can formally be taken as zero.

(ii) Fast equilibration of surfactant coverage. To describe the surfactant distribution in
the general case, it would be necessary to introduce a surface concentration 
 governed
by the advection-diffusion ∂t
 + ∇s · (u
) = Ds�s
 + Jex, where �s is the surface Laplacian, Ds

the surface diffusion coefficient, and Jex is the net flux of surfactant coming from the bulk liquid
to the surface. In its simplest form, such an exchange flux Jex could be written as Jex = racs(
sat −

) − rd
(csat − cs ), where 
sat and csat are surface and volume concentrations at saturation, and ra

and rd are adsorption and desorption rates.
Considering distinct dynamics for the surfactant at the surface and in the bulk would add a level

of sophistication to a problem that is already quite complex. For the sake of simplicity, we assume
infinitely fast exchange dynamics between the bulk and surface surfactant. In this limit of high
sorption rates, equilibration is instantaneous between the volume concentration near the surface cs

and the surface concentration 
; the former thus fixes the latter. The surface tension may then be
written as γ (cs), i.e., a function of cs only as taken in Eq. (4).

Three remarks are related to the surfactant dynamics. First, we do no consider evaporation of
surfactant into the air. As discussed in Appendix E, measurement of camphor evaporation gives a
time constant on the order of hour, and a Biot number much below unity, indicating that its role
in self-propulsion is negligible. This often-mentioned peculiarity of camphor is, however, likely to
contribute to the long term rejuvenation of the system, and thus to the remarkable longevity of the
swimmer activity. Second, our set of assumptions makes our model directly applicable to a swimmer
releasing heat rather than a soluble surfactant. Third, another simple limiting case for the surfactant
dynamics is to consider a strictly insoluble surfactant [31,57]. Yet, real systems usually require a
finite solubility to treat the surfactant release from the core of the swimmer and this limit is therefore
difficult to address consistently. This case will not be considered in the following.

(iii) Linear dependence in γ (cs). Equation (4) indicates that the surface tension decreases linearly
with the concentration cs. Such an assumption is common in the literature and may be justified by
starting from a Langmuir isotherm γ = γ0 + RT 
sat ln(1 − 
/
sat ), with R the gas constant and
T the temperature. Assuming 
 
 
sat and cs 
 csat, one finds κ = RT KH, with the Henri length
KH = ra
sat/rd csat. This assumption is valid only if the surface and bulk content remain well below
their saturation value. To the best of our knowledge, only one experiment reported the fore-aft
surface tension asymmetry around a camphor boat, with typical amplitude �γ � 1 mNm−1 [70].
This suggests that even outside Henri’s regime, a linearized approach around a working point should
be justified.

(iv) Imposed flux and punctual release. Equation (3) indicates that the swimmer imposes a
fixed flux of surfactant. This corresponds approximately to the experimental situation fulfilled with
camphor swimmers of Ref. [47]. The assumption of punctual release is chosen to allow a direct
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comparison with a point-source model that we investigated in a previous work [47], but it will be
relaxed in Sec. IV A.

(v) Steady state. Unless mentioned otherwise, the fluid flow is assumed stationary. Unsteady
swimming with intermittent motion or time-varying velocity, as sometimes observed experimentally
[20,21,69], is therefore not explored here. Nonetheless, we will consider briefly in Sec. III B 1 a
transient regime, the relaxation toward steady state.

3. Dimensionless numbers

To make the governing equations dimensionless a classical choice is to set the swimmer radius a
as unit length, and the velocity U as unit velocity. This introduces well-known numbers

Re = Ua

ν
, Pe = Ua

D
, (6)

where ν = η/ρ is the kinematic viscosity of the fluid. As usual, the Reynolds number Re indicates
the relative magnitude of inertial and viscous effects in the Navier-Stokes equation. The Péclet
number Pe compares the surfactant transport by flow advection to transport by diffusion.

In the following, we shall, however, adopt a different nondimensionalizing based on another
velocity scale UM . This scale corresponds to the typical Marangoni velocity associated with surface
tension gradients UM = κcb/η, with the concentration scale set by cb = J /Da [71]. Finally, with
unit stress chosen as ηUM/a, the Eqs. (1) and (2) become in steady state

M

Sc
ũ · ∇̃ũ = −∇̃ p̃ + �̃ũ, M ũ · ∇̃c̃ = �̃c̃, (7)

where all quantities are dimensionless, as indicated by the tilde. These equations are complemented
by dimensionless BCs for the concentration

c̃(r̃)|r̃→∞ = 0, −∂z̃ c̃|D = δ̃s(r̃), −∂z̃ c̃|S = 0, (8)

and for the velocity

ũ(r̃)|r̃→∞ = −Pe

M
ex, ũ(r̃)|D = 0, τ̃ · n|S = −∇̃sc̃, ũ(r̃) · n|S = 0. (9)

In the above equations, we have introduced two additional dimensionless numbers

Sc ≡ ν

D
= Pe

Re
, M = κJ

ηD2
. (10)

The Schmidt number Sc is the ratio of momentum and mass diffusivities in the liquid. The
Marangoni number M corresponds to a Péclet number UMa/D based on the Marangoni velocity
and compares advective transport by such flows with diffusion. It can also be viewed as a balance
between chemical activity and damping effects. The chemical activity of the swimmer combines
the solute release rate J and the Marangoni susceptibility κ which quantifies its ability to con-
vert concentration gradients in mechanical stress. It is then moderated by damping effects from
transport properties in the fluid, with viscosity reducing the achievable velocities for given applied
stresses, and diffusivity smearing out heterogeneities. As a cautionary remark, we note that naming
conventions for dimensionless groups are not uniform. The definition used here are also found in
Refs. [61,72,73] but in other works such as Refs. [36,62], our M number was called a Péclet number.

In most real systems, only the Marangoni number M can be controlled. Re and Pe both involve
the spontaneous swimming velocity which is an outcome of the experiment, while Sc is set by the
nature of the liquid and solute. Considering for concreteness the camphor swimmers of Ref. [47],
typical values of Re, Pe, and M are around 102, 105, and 1010, respectively. As can be seen, Re is
not small and inertial effects are significant in experimental systems. In the following, we will,
however, investigate in detail the limit of Stokes flow reached when Re → 0 (Sc → ∞). This
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particular case is worth considering on several grounds. First, a quantitative comparison can be
made with analytical approaches as developed for such system with a point-source model [47].
Second, analytical solution for the Stokes flow around a disk may be exploited, as will be shown
below, and used to provide physical insight that can help to examine more realistic regimes. Third,
this situation is easier to handle with numerical methods as it eliminates one source of nonlinearity.
Finite values for the Reynolds (Schmidt) number will also be considered, but less extensively in
Sec. IV B. In the numerical computations presented below, the swimmers configuration involve Pe
and M values that can reach 104 and 107. Though still smaller than experimental value by one or
several orders of magnitude, they fall in the correct regime of values much higher than unity.

B. Numerical method

Even within our idealized description, the steady motion of a swimmer is a problem coupling
several physical phenomena whose analytical solution appears out of reach. Accordingly, we resort
to a numerical approach based on the finite element method (FEM). In practice, the software
COMSOL, a multiphysics commercial platform, is used. In this section, we briefly present the details
of our implementation and how the reliability of the results was checked.

1. Geometry and boundary conditions

The configuration and our conventions are shown in Fig. 1. Because the system is symmetric
with respect to the y = 0 plane, only one half of the domain is considered. The simulation box is
a rectangular cuboid with dimension Lx/2 = Ly = Lz = L. The boundary closest to the swimmer
center is thus at a distance L. Remembering that the unit length is the swimmer radius, we set
L = 400, a large value so as to minimize finite size effects.

Boundary conditions (BCs) on the box depend on the face considered. For the bottom, front and
side faces, the hydrodynamic BC is a fixed velocity −Uex, whereas the BC for surfactant transport is
a vanishing concentration. The rear face serves as an outlet for the flow and advected surfactant [74].
On the top surface, the no-slip BC below the swimmer imposes a vanishing velocity there. At the flat
free surface, the flow BC combines a vanishing normal velocity associated with non penetrability of
the interface, with a tangential Marangoni stress given by Eq. (7) for τ. Regarding the surfactant, it
is released from a point-source at the disk center—except in Sec. IV A where spatially extended
source will be considered—and a no-flux “insulating” BC applies everywhere else at the top
surface.

2. Mesh design

An essential step in using the FEM is the choice of a mesh, which always involves a compromise:
a finer mesh usually offers better accuracy but the price to pay is a higher computation time. We
have adapted our mesh to make it appropriate for the physics of the problem, by locally refining the
elements only in those regions where strong gradients exist. More specifically, the mesh is a set of
tetrahedrons partitioning space, whose characteristic size ξ and growth rate χ can be adjusted [75].
In practice, we defined three areas where ξ and χ are constrained to ensure sufficient accuracy. In
the vicinity of the point source, we set ξ = 5 × 10−4. Along the swimmer contour that delineates a
sharp border between the no-slip and Marangoni stress BCs, we choose ξ = 2.5 × 10−3. Finally, in a
large neighborhood around the swimmer—a disk centered at the origin with radius 10—the mesh is
constrained to a maximal size ξm = 5 × 10−2 and a maximal growth rate χm = 1.1. The remaining
space does not require particular attention and coarser elements with size up to ξm = L/20 can be
used without affecting the calculation. Nevertheless, a rather low growth rate χm = 1.15 is used to
ensure that the mesh close to the swimmer remains sufficiently fine. The resulting mesh usually
involves several millions of elements and typically leads to computation times of several hours on a
dedicated workstation.
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3. Finite-size effects and convergence in mesh

Two requisites must be met by our choice of box size and mesh. First, finite-size effects must
be negligible, meaning that our box, though finite, can nevertheless faithfully mimic an infinitely
large system. Second, convergence in mesh should be ensured, meaning that upon successive mesh
refinement, the results reach a well-defined limit. That both requirements are satisfied is shown in
Appendix F. We estimate that forces, the quantities of prime interest in what follows, are obtained
with a few percent accuracy.

In contrast to experiments, the swimmer velocity U is imposed at an arbitrary value. For any
given choice of parameters, the resulting outcome of a simulation is thus the steady concentration
and velocity fields together with the external operator force Fop required to satisfy the force balance
condition F = 0. The velocity U ∗ that would be adopted by a free swimmer is reached when the
external force exerted by the operator vanishes. We now discuss in detail such force balance and the
different contributions it involves.

III. FORCE BALANCE AND SWIMMING BEHAVIOR

A. Contributions to force balance

1. Flow and surface tension contributions

In addition to the external operator force, the force balance in steady state is classically formu-
lated using the capillary force Fc generated on the swimmer perimeter and the viscous force Fv

exerted by the fluid underneath, namely,

F ≡ Fc + Fv+Fop = 0, Fc ≡
∮

∂D
γ n∂Ddl, Fv ≡

∫
D

nD · τdS. (11)

Here F is the total force on the swimmer, n∂D is the unit vector normal to the contact line along the
interface and nD the unit vector normal to the swimmer surface [76]. For better clarity, the triple bar
is used for equality that defines a symbol.

The influence of surface tension is not limited to the capillary force but also arises indirectly
through the fluid: Marangoni stress at the free surface generates a flow that eventually contributes
to the force on the disk via viscous interactions. Surface tension effects thus encompass a direct
capillary contribution and a flow-mediated Marangoni contribution. To get an in-depth understand-
ing of how swimming spontaneously arises from chemical release, it is meaningful to isolate all
contributions from surface tension. This is possible in the Stokes regime by using the Lorentz
reciprocal theorem, which has proved very valuable in the context of self-propelled particles in
general [77,78] and interfacial swimmers in particular [79,80].

Applying the Lorentz theorem requires the introduction of a dual problem, which differs from the
initial problem only in the choice of the boundary conditions. This is generally a simpler situation
where analytical results are available. Here, the dual problem is that of an inert disk moving atop
the interface at a velocity U : in the swimmer reference frame considered this corresponds to a fixed
disk submitted to a flow −Uex at infinity. It thus differs from the initial problem by the fact that the
interface is free of surfactant. The reciprocal theorem then allows rewriting the viscous force as

Fv = F̂v + FvM, F̂v ≡ −CηaUex, FvM ≡
(∫

S

û
U

· ∇sγ dS

)
ex. (12)

Here any quantity of the dual problem is indicated with a hatted symbol Q̂. As detailed in
Appendix B 2 and Eq. (B9), the associated flow field û for such a disk moving edgewise [81] is
known analytically [82], as is the Stokes drag F̂v for which C = 16/3.

We are now in a position to reformulate the force balance with a term, called the Marangoni
force FM, which gathers both capillary and viscous contributions from surface tension. Using
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FIG. 2. Evolution of dimensionless forces: the capillary Fc, viscous Marangoni FvM, Marangoni FM, and
Stokes drag F̂v forces as a function of Pe for M = 300. Positive forces (solid symbols) correspond to motor
contributions, and negative (empty symbols) to resistive ones: the viscous Marangoni force FvM changes sign
around Pe = 2.4. Stable spontaneous swimming occurs at Pe∗ = 4.8.

Eq. (12) together with the divergence theorem, one can write

FM ≡ Fc + FvM = −
(∫

S
γ∇s · û

U
dS

)
ex. (13)

Given the integral expression for the Marangoni force FM, the power Uex · FM it would develop
for a free swimmer moving at velocity Uex is reminiscent of the rate of change of surface energy:

Ėγ = −
∫
S

γ∇s · udS. (14)

As discussed in details in Appendix A, with ∇s · u the local rate of area creation, the integrand is
the two-dimensional analog to the power of pressure forces in compressible systems. In the free
swimming regime (Fop = 0), this term quantifies the amount of—chemical—power available to the
system. The reason why û appears in Eq. (13) in place of the total flow u is that some of the chemical
power is lost in extra bulk viscous dissipation : only a fraction of the initial budget is thus available
for the swimmer.

2. Forces evolution and swimming criterion

Magnitude and sign of forces. We first start by examining how surface tension effects evolve
for imposed flow of arbitrary velocity, before focusing on equilibrium points where the swimmer is
force-free, with force balance achieved without external operator (Fop = 0). In the following, all the
numerical results for forces are shown as dimensionless numbers. Starting from the motionless state,
we can see in Fig. 2 that a finite advection Pe > 0 induces a capillary force Fc which is motor, that
is with a direction opposite to the flow. The magnitude increases with Pe until reaching a maximum
around Pe � 10, after which it decreases toward zero. The trend observed for the Marangoni force
FM is similar.

Qualitatively, such a behavior can be rationalized as follows. Whereas the system in the rest
state is fore-aft symmetric, advection by the fluid will skew the chemical cloud by bringing solute
from the front to the rear. Such a convection generates a capillary force that will always be a
driving contribution Fc = Fcex, Fc > 0, as visible from Eq. (11). This is the basis for the qualitative
understanding of a symmetry breakdown in chemically or thermally active systems [36]. Regarding
the Marangoni force, a similar picture applies. The surface divergence appearing in Eq. (13)
can be written according to Eq. (B9) as ∇s · û = − f (r) cos θ with f (r) = 4U/(3πar̃

√
r̃2 − 1)
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being positive for all r̃ > 1. Combined with Eq. (4) and with the skewed chemical cloud, this
implies that in response to convection the Marangoni force is always motor FM > 0. If now we
consider specifically the large Pe regime, then we note that while the surfactant is emitted by
the swimmer with a constant flux J , it is carried away with an advection velocity U , setting a
relevant concentration that scales as J/U . The local concentration is thus a decreasing function of
Pe and so is the amplitude of surface tension variations. This directly translates into Marangoni
and capillary forces both decreasing toward zero. While a proper treatment would require boundary
layer considerations, this simple argument is sufficient to understand the observed trend in the limit
of high Pe.

We finally comment on the sign of forces. As may be expected intuitively, the capillary and (total)
Marangoni forces are always found to be driving contributions. However, the behavior of the viscous
Marangoni contribution is more complex: as can be seen in Fig. 2, the viscous Marangoni force can
be either motor or resistive in our system, depending on the strength of imposed convection. A
resistive contribution is arguably the natural expectation from previous studies. In particular, for an
asymmetric swimmer releasing an insoluble surfactant in the diffusive regime (Pe 
 1), the viscous
Marangoni force was shown to be resistive at the swimming point [31,79]. Though our system is
different—symmetric, with soluble surfactant and finite Pe—this observation still holds. As can be
seen in Fig. 2, FvM becomes resistive for Pe = 2.4, and remains so at the swimming point (Pe∗ =
4.8). That flow-mediated Marangoni contribution could be motor was, however, recently identified
for partly immersed swimmers [61–63,72]. For asymmetric swimmers, the sign reversal occurs in
the shallow water regimes and was ascribed to pressure-effects induced by depth-constrained flows.
Because we consider only a deep-water configuration and the pressure field does not enter into the
force balance [83], the reversal of the flow-mediated contribution must have a different origin. It
is actually controlled by the strength of convection, as also observed independently for symmetric
half-spheres [62,63].

Swimming diagram. The condition for spontaneous motion is the existence of a stable swimming
point, i.e., a stable equilibrium point with finite velocity. An equilibrium (or fixed) point is reached
when the Marangoni force exactly balances the classical Stokes drag force, as specified in Eq. (13),
in the absence of operator force. In dimensionless form and with our conventions, this force-free
condition reads as

F̃M(Pe, M) = 16Pe

3M
for Pe = Pe∗. (15)

As illustrated in Fig. 3, the balance of forces corresponds to the existence of an intersection point
between the Marangoni force F̃M and a linear curve with a slope set by M. Spontaneous swimming
also requires that the swimming point is stable, meaning that a perturbation induces a net restoring
force:

ex · ∂ (FM + F̂v)

∂Pe

∣∣∣∣
Pe=Pe∗

< 0. (16)

Graphically, this condition is fulfilled when the drag force line intersects the Marangoni force from
below.

The number and nature of swimming points depend on the value of M, as illustrated in Fig. 3.
For low M, the force-free condition is only satisfied with zero velocity, this is the motionless state.
At higher M, both stable and unstable swimming points may be found. In the following, we focus
primarily on the resulting swimming diagram. Because the influence of Marangoni flows is very
different, we consider separately the regime of low Pe∗ where the instability sets in (Sec. III B), and
the asymptotic regime of high-Pe∗ (Sec. III C). Before proceeding, we remind that all results within
this Sec. III are obtained in the Stokes regime and with a point-source release of surfactant.
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FIG. 3. Dimensionless force balance condition and swimming points for different Marangoni numbers, as
given by Eq. (15). Symbols show the numerical results for the dimensionless Marangoni force F̃M and dashed
lines the right-hand side of Eq. (15), which is proportional to the Stokes drag. Stable and unstable swimming
points are indicated with solid red and empty blue circles, respectively.

B. Bifurcation regime (Pe∗ small)

1. A swimming diagram with a bistable region

The swimming diagram in the region of low Pe, shown in Fig. 4, reveals that depending on the
Marangoni number M, three distinct behaviors are possible. Below a critical value Mc � 250, only
the motionless state exists, the disk is no swimmer. As M exceeds Mc, the number of fixed points
actually changes from 1 to 3 (5 if accounting for the two possible directions in swimming but for
simplicity only one is considered hereafter, as in Fig. 4). The motionless state remains a stable fixed
point [84], but an additional pair of swimming points, one stable and one unstable, have appeared,
thus defining a region of bistability where swimming and rest states are both possible. Finally, at
a second critical value M′

c � 410, the unstable swimming point merges with the motionless state.
Because the latter is now unstable, the only stable state is swimming at a finite velocity.

In line with previous studies on the propulsion of symmetric particles [36,47,63,85,86], spon-
taneous swimming appears only above a threshold value Mc (note, however, the case of a
hemispherical swimmer [63], for which the threshold Mc vanishes as the vessel size L diverges but
the approach is only logarithmic Mc ∼ 8/ ln L). To date, bifurcations in such interfacial swimming
systems were reported as supercritical pitchfork [63,85], with a stable swimming state appearing
when the motionless state loses its stability. Here we have some evidence of a different bifurcation
diagram. The data suggests that the bifurcation is saddle-node at Mc and subcritical pitchfork at
M′

c. To the best of our knowledge, the resulting bistability region has not been observed before
[87]. Interestingly, it echoes some of the behaviors predicted for active droplets in bulk systems for
which a richer panel of transitions have been unveiled [33,86], including bistable regimes and finite
amplitude instabilities [34,89]

The swimming diagram identifies only the fixed point obtained for steady swimming but their
stable or unstable nature should indicate what the spontaneous evolution of the system is when
initiated from an arbitrary state. To confirm the expected behavior, we extended our numerical
calculations to describe time-dependent swimming [90]. Figure 5 shows the temporal evolution of
the swimming velocity Pe(t ) for various choices of the initial value Pein and M number. In all cases,
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FIG. 4. Swimming diagram in the low-Pe regime, near the onset of spontaneous motion. Stable and
unstable swimming points obtained from full numerical solutions are shown, respectively, with solid red
and empty blue circles. A region of bistability (purple colored area) occurs for Marangoni number in the
range [Mc � 255, M′

c � 410]. The dash-dot line and grey circles represent the swimming diagram predicted
by simpler models, respectively, uniform convection and translating disk approximations (see Sec. III B 2).
Note that the gray hatched low-Pe region corresponds to a parameter range for which finite size effects may
affect the data [84].

the velocity relaxes toward the closest accessible stable state. For M < Mc, the motion gradually
stops, in line with the absence of spontaneous swimming at small M. When M > M′

c, whatever the
initial value, the velocity is seen to converge to the stable swimming point. The motionless state is
now unstable and spontaneous symmetry breaking occurs for infinitesimal perturbations. Finally, in
the bistable region of the swimming diagram, the final state depends on the location of Pein with
respect to the unstable fixed point Pe∗

(u). If below, then the initial motion is damped until complete
stopping; if above, then the stable swimming point is eventually reached.

The bistable region has at least two consequences. First, there is a range of swimming velocity
that is forbidden, specifically Pe∗ ∈ [0, Pe∗

c ] with Pe∗
c � 3. Since the Péclet number of spontaneous

swimming can not be made arbitrarily small, one may not rely on the low-Pe assumption that
was used in the past to attack the problem of asymmetric swimmers analytically [31,32]. The
second consequence is the existence of hysteresis. Let us assume that M can be varied at will
and that perturbations to the swimmer are negligible. Upon increasing M from zero, the disk
will switch to motion at M′

c, while upon decreasing M from a large value, the motion will stop
at Mc. Both transitions are discontinuous with a finite jump in velocity. If perturbations are present,
then the jump might take place anywhere in the [Mc, M′

c] interval. It must be said that varying
the Marangoni number while keeping the same swimmer is a priori difficult in experiments. With
fluid and surfactant fixed, one should change the swimmer size or release flux, which is in general
impossible for chemical swimmers. We note, however, that our results equally apply to a thermal
swimmer, where the heat released would locally lower the surface tension [30,32,91]. Changing the
power of light illuminating the disk might be a practical way to control the Marangoni number of
a given swimmer. Finally, to finish with the implication of bistability, one may wonder whether it
plays any role in the intermittent swimming behavior that was observed in several cases [21,69].

2. Discussion: Origin of bistability

Our goal here is to better understand the bistability observed in the swimming diagram of
symmetric Marangoni swimmers. To examine when this new feature appears, we consider simpler
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FIG. 5. Relaxation toward stable state, as probed by time-dependent numerical calculations. (a) Swimming
diagram showing steady-state solutions Pe∗(M) and initial conditions Pein spanning the different regimes.
Relaxation from a point initially in the gray hatched area is expected toward the lower value of Pe∗. (b)
Relaxation of the velocity Pe(t ) for the different initial conditions. Top: M > M′

c; middle: Mc < M < M′
c;

bottom: M < Mc.

models, whose common starting point is Eq. (13) for the Marangoni force. With F̂v given by the
Stokes expression, there is in the force balance only one unknown quantity, the surface tension
distribution γ involved in the integral expression for FM. We recall that for spontaneous swimming,
the system is force-free Fop = 0. Our approach is to evaluate this surface tension distribution—or
equivalently the surfactant concentration field—by decoupling the transport problem from the
Stokes equation for the flow. In the convection-diffusion equation for the surfactant [Eq. (7)], the
true fluid velocity is thus replaced by an approximate flow field uapp. The simplest possibility is to
take a uniform flow field uapp = −Uex, which, as shown in our recent work, can yield meaningful
results [47], and is thereafter referred to as the uniform convection approximation (UC). A less crude
approximation is uapp = û, i.e., the flow around a fixed disk and velocity −Uex at infinity in the
absence of surfactant, that for convenience is called the translating disk approximation (TD). It can
be viewed as the first step of an iterative scheme for solving the coupled flow-transport equations.
All calculations involved in these two simplified models are detailed in Appendix B.

Within the uniform convection approximation (uapp = −Uex), all forces can be evaluated in
closed form. As in the full problem, one finds that, depending on the imposed Pe, the viscous
Marangoni force can be either motor or resistive. Indeed, at low Pe—the regime of interest for
the bifurcation—the viscous Marangoni force exceeds the capillary force and is thus the dominant
driving contribution. Specifically, we find FM ∼ −Pe ln Pe and Fc ∼ Pe at low Pe. Looking at the
force balance, this implies that there is no threshold value Mc for swimming. Instead, a stable
swimming point always exists, which is given by

Pe∗
UC = 8 exp

(
−16π

M
− γE − 1

2

)
, for Pe∗ 
 1, (17)

where γE is the Euler γ constant. This prediction is very different from the true swimming diagram,
as shown in Fig. 4. It is actually possible to use the UC model to assess the magnitude of Marangoni
convection and its relevance to solute transport (see Appendix B 1). It is found that Marangoni
convection can not be neglected below a limit Péclet number and would likely alter the bifurcation
properties.
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FIG. 6. Swimming diagram in the high-Pe regime. Points obtained from the full numerical solution are
shown with solid red circles when stable and blue circles when unstable. Dash-dot line and grey circles
represent the swimming points predicted by the uniform convection and translating disk approximations
introduced in Sec. III B 2.

Turning now to the more elaborate translating disk approximation (uapp = û), the problem must
be solved numerically. Here again, we observe as before a change of sign of the viscous Marangoni
force: from driving to resistive when increasing the Pe number. The new feature, however, is that
spontaneous swimming is now obtained above a critical Marangoni number Mc � 8, in closer
correspondence to the full problem. The threshold nonetheless remains significantly lower than
expected and the associated swimming diagram also misses the bistable regime.

The swimming diagram thus appears to be very sensitive, both quantitatively and qualitatively,
to the description of surfactant transport. This is somewhat expected close to a transition where
susceptibility to perturbation is maximum. Accounting for Marangoni convection in the surfactant
transport appears to be a key ingredient in the low-Pe regime, and its most conspicuous consequence
is the bistability region where stable motionless and swimming states coexist. In addition to this
qualitative change in the bifurcation, Marangoni flows also make the swimming regime more
difficult to reach, with the threshold Mc shifted to a higher value. This is in line with qualitative
expectations that Marangoni flows will smear out concentration heterogeneities, thus delaying
the onset of significant chemical asymmetries. In contrast with such a simple picture, however,
we have seen that when considered in detail, Marangoni effects on swimming capabilities are
more ambiguous. Besides its role on transport, we evidenced that flow-mediated viscous force
systematically promotes symmetry-breaking in the low Péclet regime and this holds true for both
approximations considered. As we shall see in the next section, in the high-Pe regime, the role of
Marangoni flows is much less significant.

C. Asymptotic swimming regime (large Pe∗)

We now focus on swimming characteristics in the large Pe, large M regime, much above
the symmetry-breaking threshold. As mentioned above, this is the regime corresponding to most
experimental conditions to date with camphor disks and more generally to macroscopic Marangoni
swimmers where M � Mc. Figure 6 shows the stable steady state as a function of the Marangoni
number M. In the explored regime, the swimming velocity Pe∗ is found to increase as a power law
Pe∗ ∼ Mα with an exponent α = 0.72 ± 0.02. Here again, such a behavior can be compared with
expectations from the simplified models introduced above. The uniform convection approximation
leads to an asymptotic swimming regime that, as discussed in Appendix B 1, also obeys a power
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law,

Pe∗
UC = (AUC M)2/3, with AUC = 
(3/4)

8π
(5/4)
. (18)

Despite the drastic approximation involved in the UC model, the asymptotic swimming regime
predicted has exponent and magnitude quite close to the full solution, as visible in Fig. 6. We
proceed by considering the translating disk approximation which incorporates effects from the no-
slip BC at the disk surface. Strikingly, the numerical results obtained are very close to those of the
full model (Fig. 6), with a difference never exceeding 10 %. Interestingly, within this simplified
model it is possible to trace back the origin of the asymptotic power law. In doing so, we focus
on the TD approximation on the capillary force, assuming that the total Marangoni force obeys a
similar scaling [92]. In the large-Péclet regime considered here, the solute emitted in the center of
the swimmer will marginally diffuse before reaching the rear edge of the disk. Let us call w̃ and δ̃,
both much smaller than unity, the horizontal and vertical extent of the solute plume at the perimeter.
Because of solute conservation, the injected rate J must balance the outgoing leak rate at the rear
c�wδU , which in dimensionless form yields a typical edge concentration,

c̃� = (
Pe w̃δ̃

)−1
. (19)

With w̃ < 1, the capillary force is immediately obtained as F̃c = c̃�w̃ so that, assuming that the total
Marangoni force obeys a similar scaling as the capillary force, the force balance yields

16Pe∗

3M
= 1

Pe∗ δ̃(Pe∗)
. (20)

The swimming velocity is therefore fully determined once the thickness of the solute boundary layer
is known as a function of Pe.

We now consider two possibilities for the boundary layer thickness δ̃(Pe), the details of which are
gathered in Appendix B 2. In the classical treatment [93], one obtains δ̃(Pe) ∼ Pe−1/3 and therefore
Pe∗ ∼ M3/5. However, such an exponent does not match the one obtained numerically in Fig. 6 and
suggests an underestimation of the driving force. In fact, the boundary layer considered so far is
relevant for a plate that is semi-infinite. What we need instead is the boundary layer just below the
disk edge. As shown in Appendix B 2, the flow field has then a different structure, because vertical
convection becomes dominant and squeezes the boundary layer, leading to

δ̃(Pe) ∼ Pe−2/3, Pe∗
TD ∼ M3/4. (21)

This regime is very close to the one observed in numerical simulation, both for the translating disk
model and for the full problem. We note that Eq. (21) differs from the prediction obtained by Ender
et al. [62,63] for hemispherical swimmers. This shows that the swimmer shape, by altering the
boundary layer, may also influence the swimming properties.

To conclude this section, the asymptotic swimming regime is very different from the low-Pe
regime in that it depends only weakly on the level of description retained. While the oversimplified
but fully tractable uniform convection model predicts a slightly lower exponent than the numerical
value, a decoupled model approximating the advective transport by the surfactant-free flow field
yields nearly quantitative agreement with the exact solution and allows rationalizing the scaling
of swimming velocity from boundary layer considerations. In stark contrast with the bifurcation
regime, this demonstrates that in the asymptotic swimming regime, forces acting on the swimmer,
and therefore the propulsion velocity, are barely influenced by transport from Marangoni flows.
This is consistent with the previous evidence that force balance in the asymptotic regime is ruled
by solute boundary layer properties, and can be further undertood in the following way. In the
limit of Pe � 1 and M � 1, where fore-aft asymmetry is fully established, one expects—in line
with recent velocimetry measurement on asymmetric swimmers [60]—that Marangoni flows u − û
have for typical magnitude the propulsion velocity U , because both have the same physical origin.
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FIG. 7. Swimming diagram for a swimmer with spatially extended source. The source radius is as = 0 (◦),
0.5 (�), 0.6 (�), 0.7 (�), 0.75 (♦); as in previous figures red solid (respectively blue empty) symbols stand for
stable (respectively unstable) swimming points. (Left inset) Threshold Mc as function of ε = 1 − as/a. Source
radius symbols are identical to main figure, with two additional values as = 0.85 (�) and 0.91 (�). (Right
inset) Swimming curve in the high-Pe regime. Gray circles represent point source results for the translating
disk approximation.

Therefore, the Péclet number will remain the relevant parameter for the boundary layer, whose
properties remain essentially unchanged by Marangoni transport. The same holds true for the
conservation arguments and the associated force balance developed above, thus explaining the minor
role of Marangoni flows. As a last remark, estimation of Marangoni flows in the UC model (see
Appendix B 1) also suggests that they would marginally affect swimming properties in the asymp-
totic regime.

IV. EXTENSIONS

A. Swimmer with spatially extended source

Our swimmer so far involves a point-source of surfactant, with emission only at the disk center.
This assumption was convenient to build a toy model amenable to analytical treatment [47].
If localized release is found in asymmetric swimmers such as camphor boats [46,94], then the
most common situation for symmetric swimmers is a uniform release all over the disk surface
[41,47,62,64,66,67,95]. We now examine the effect of such an extended chemical source. The
surfactant is emitted over a disk with radius as with a surfacic flux J = J /πas

2 so that the total
flux J is conserved. For convenience, we introduce the notation ε = 1 − as/a and refer to the limit
ε → 0, where the entire disk acts as a source, as “full release.”

The swimming diagram for swimmers with fixed total flux but an increasingly larger source is
shown in Fig. 7. Compared to punctual source case, the qualitative behavior is the same but there are
some quantitative changes as the source grows in size. The most conspicuous is the shift in threshold
Mc and M′

c to much higher values, discussed below, and which results in a growing extent of the
bistability region. Besides, the branch of unstable swimming tends to approach the stable branch
above, thus widening the basin of attraction of the motionless state. By contrast, one observes at
large Péclet numbers only a small shift toward lower swimming velocity but the asymptotic behavior
shows little change. In fact, all the swimming points approach a master curve, which is again a power
law Pe∗ ∼ Mα , with an exponent slightly weaker than in the point source regime α = 0.67 ± 0.02
instead of 0.72. It could a priori be expected that the source size influences the portion of perimeter
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FIG. 8. Swimming diagram at finite Schmidt number Sc (or nonzero Reynolds number Re). (a) Low-Pe:
evolution of the near-bifurcation regime. Stable and unstable points are indicated with filled and void symbols,
respectively. (b) High-Pe: asymptotic swimming regime. Experimental data is obtained from Ref. [47]. The
dashed line is a power-law fit, giving an exponent 0.68 ± 0.02.

where capillary forces apply, thus possibly altering the scaling law derived above. Yet, well above
the threshold, swimming is overall very similar with a punctual or an extended source.

The major effect of an extended source is to make the swimming more difficult, and we now
focus on this shift in threshold. When the source radius approaches the swimmer radius (ε → 0),
the threshold actually diverges (see inset in Fig. 7), implying that a fully releasing disk would not
swim. To understand the origin of this phenomenon, we used again the UC and TD approximations
which allow to test the relevant contributions. It turns out that the divergence appears only when
including the Marangoni flow contribution to the surfactant transport. As discussed in detail in
Appendix D, we ascribe the divergence to our specific choice of boundary conditions and geometry.
The assumption of a fixed normal flux on the source and zero outside imposes a discontinuity
at the source edge and results in a divergence of the concentration gradient. As the source edge
approaches the disk perimeter, the surfactant concentration becomes more and more homogenous
and less asymmetric, decreasing the driving forces that eventually becomes insufficient to maintain
motion. This phenomenon is peculiar to our configuration because the discontinuity in flux normal
to the swimmer (and surface) can approach the triple line. It would disappear for swimmers that
are spherical, elliptical or cylindrical in shape. The ε divergence is thus a combined effect of our
fixed flux boundary condition and zero-thickness disk geometry. As such, it is a consequence of our
idealized description and is probably not relevant to experimental system [96].

If the ε-divergence can be regarded as a specificity of the geometry, then Fig. 7 suggests that the
key quantity controlling the swimmer velocity is the total release rate J and not the source size. We
have tested experimentally this prediction by using core-crown swimmers where camphor is emitted
only in the central region. Practical details and data are provided in Appendix G. In the asymptotic
regime where Pe∗ ∼ Mα , and for swimmers of similar size, the ratio U/J α should remain constant.
Choosing α = 0.68 in agreement with experiments (see below discussion of Fig. 8), we indeed
found a good rescaling for the velocity of core-crown swimmers, even though error bars preclude a
stringent test of the exponent value. Overall, this suggests that as a first approximation, the point-
source assumption is a reasonable one.

B. Inertial effects: Finite Schmidt and Reynolds numbers

Results presented so far all assumed a Stokes flow, i.e., a vanishing Reynolds number corre-
sponding to a negligible inertial term in the Navier-Stokes equation. However, a typical value for
camphor disks [47] is Re � 3 × 102, implying that inertial effects are significant and that the fluid
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flow should be described with the Navier-Stokes equation. As can be seen in our Eq. (7) for ũ, it
is natural within the chosen dimensionless form to characterize inertial effects with the Schmidt
number Sc = Pe/Re and we do so thereafter. Note that it is also consistent with the fact that we
focus on a velocity which is selected by the swimmer and not imposed externally: Reynolds number
will vary while maintaining a fixed Schmidt number set by the fluid properties. On the practical
side, viscous boundary layers develop below the swimmer and at the liquid-gas interface behind. A
specific mesh was designed to accommodate those effects.

The influence of inertial effects on the swimming curve is shown in Fig. 8. Overall, it is quite
modest although quantitatively significant especially in the asymptotic regime. In the low-Pe regime
close to the bifurcation, there is only a 25% reduction of the swimming threshold Mc and a small
increase of swimming velocity. In both cases, occurrence of spontaneous swimming is facilitated
by the intrinsic nonlinearity of the flow equation. An opposite effect is seen in the high-Pe regime
where compared to the Stokes limit, swimming velocities are reduced. The asymptotic regimes
nonetheless preserves a power law Pe∗ ∼ Mα with an apparent exponent decreasing slightly as iner-
tial effects grow: α � 0.72, 0.65, 0.62, 0.60 for Sc = ∞, 103, 102, 10, respectively. As we detail
in Appendix C, finite Re numbers induce a viscous boundary layer and an even thinner concentration
boundary layer. A scaling argument then predicts for the swimming velocity Pe∗ ∼ M1/2 Sc1/6, as
found in Ref. [63]. Such an exponent should be considered as a lower bound. Indeed, we saw in the
Stokes regime that proper scaling requires accounting for edge effects which make the boundary
layer thinner. If a similar phenomenon occurs here, then one would expect a higher exponent, as
observed numerically.

We are finally in a position to compare our numerical prediction to experimental data. Figure 8
includes results from experiments we carried on with camphor disks [47]. The M values could
be computed from measurements of the dissolution rate for immersed swimmers. Our numerical
findings indicate that the swimming curve in the high-Pe regime is a power law with exponent
α in the range 0.6–0.75. In particular, for the experimentally relevant Schmidt numbers around
Sc = 103, we find an exponent α = 0.65. This is certainly close to the value α = 0.68 found in
experiments and to the prediction α = 2/3 of the toy model put forward in Ref. [47], which is
essentially equivalent to the present UC approximation. Thus, the predictions are very similar in an
oversimplified picture and in a full numerical treatment accounting for all complexities, including
Marangoni flows and inertial effects, and both are compatible with experiments. In light of these
results, we conclude that the success of the toy model originates in a series of compensations
between neglected physical effects (including no-slip boundary condition, Marangoni transport,
finite Reynolds) and as such should be viewed as somewhat incidental. A final comment is in order
regarding the prefactor in the power law. Extrapolation of the Stokes results to the much higher
M values typical in experiments leads to an overestimation of swimming velocities by almost an
order of magnitude. Accounting for inertial terms significantly reduces the discrepancy but the
predictions nonetheless appear to remain above experimental data. This suggests that other modeling
assumptions—from fixed-flux BC to the exchange kinetics or surface distortion—may need to be
revisited to reach a perfect quantitative match.

C. Concentration swimmer

We have focused so far on swimmers emitting surfactant at a prescribed flux. As a final extension
of our study, we now investigate a different type of swimmer where the boundary condition for
surfactant release is instead a fixed concentration. For brevity, we refer to those two classes as
“flux swimmers“ and “concentration swimmers.” They correspond to the two simplest choices for
boundary conditions, Neumann and Dirichlet, respectively. The assumption of fixed concentration
is indeed expected to be relevant in the numerous instances where the swimmer is entirely made
of the surfactant itself. These include droplets [97] such as aniline oil and pentanol [101,102] or
swimmers made of solid, such as benzoquinone, aspirin, or pure camphor [24,103,104].
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FIG. 9. (a) Swimming velocity Pe
∗
(M∗) for concentration swimmers of various source radius as. The red

square symbols show Pe∗(M) for flux swimmer. (b) Swimming curve Pe
∗
(M ) for concentration swimmer. The

two dashed lines show the power law expected in the asymptotic regime, with exponent 1 and 3/4 (see text).

Applying the same method as above and going back to the Stokes regime, we find that concen-
tration swimmers with partial release do swim and their swimming velocity Pe

∗
was obtained for

different source radii (as = 0.2, 0.4, 0.6). Because concentration swimmers involve a Marangoni
number different than flux swimmers, comparing their swimming curves is not straightforward.
Nevertheless, one can measure the total flux J∗ released by the concentration swimmer in its swim-
ming state and associate the effective Marangoni number M∗ = κJ∗/ηD2, as defined previously.
Doing so, one can compare the swimming curves for flux and concentration swimmers, as shown in
Fig. 9(a). The curve Pe∗(M) for flux swimmers and the curve Pe

∗
(M∗) for concentration swimmers

are in fact identical [105]. Said otherwise, the velocity is the same for a swimmer with prescribed
flux J and a concentration swimmer releasing a flux J in its swimming state. This suggests that
at least in the conditions considered—sufficiently high M and release only partial—the release
mechanism influences the velocity only through the total flux emitted, which is in agreement with
finding of Refs. [62,63].

Exploiting this observation, we can now predict the velocity of a concentration swimmer. Let us
assume that the velocity of flux swimmer is Pe∗ = F (M), with F a known function and that the total
flux emitted by a concentration swimmer moving at an arbitrary velocity Pe is asDcoG(Pe), where
asDco is the total flux in a purely diffusion situation and G is a function. Given those assumptions,
the velocity Pe

∗
of the concentration swimmer is solution of

Pe
∗ = F[ M G(Pe

∗
)], M ≡ κasco

ηD
, (22)

where M defines a Marangoni number for a concentration swimmer with fixed value co within the
source radius as. Let us apply Eq. (22) to the asymptotic swimming regime, where both F and G
are power laws. In this case, Pe∗ = F (M) ∼ Mα as demonstrated previously. Regarding the flux
released by a concentration swimmer, there are two limiting cases to consider.

(i) Swimmer with nearly full release (as � a). One expects a local flux ∼Dco/δ(Pe), with δ(Pe) =
as Pe−μ the thickness of the diffusive boundary layer and μ = 1/3 [106] leading to a total flux
∼ as

2 × DcoPeμ/as, such that G(Pe) ∼ Peμ. Equation (22) then gives the swimming velocity Pe
∗

of the concentration swimmer as

Pe
∗ ∼ M α/(1−αμ). (23)

In particular, taking α = 3/4 leads to Pe
∗ ∼ M .
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(ii) Swimmer with very small source (as 
 a). As the source size vanishes, at a given Pe one can
expect the convection to become less significant. We have observed numerically that in the range of
Pe considered, the flux released actually shows limited variations with Pe, it changes by 20% for the
source radius as = 0.6 and even less for smaller radius. A simple approximation is then to consider
the flux as independent of Pe, which leads to

Pe
∗ ∼ M α. (24)

The numerical data for Pe
∗
(M ) is shown in Fig. 9(b). It lies in between the limiting cases (i)

and (ii) and as the source size decreases, it comes closer to the later. We conclude that at least in an
approximate manner, the swimming curve of a concentration swimmer with partial release may be
deduced from the swimming curve of a point-source swimmer.

As a final case, we consider the fully releasing swimmer, where concentration is imposed all over
the surface, including at the perimeter. We find a very different behavior: there is no spontaneous
motion. Because the concentration along the swimmer edge is fixed everywhere to the same
value, the capillary force vanishes. The viscous Marangoni force alone remains to yield a motor
contribution but is insufficient to maintain steady motion. Accordingly there is no swimming point
over the range of M and Pe explored. We surmise that this absence of swimming is not specific
to the disk geometry considered here and that it would also apply to systems with other shapes,
such as hemispherical or ellipsoidal, but this would have to be proven. In any case, our observation
raises some questions: do genuine concentration swimmers actually exist? For all experimental
system mentioned above where the swimmer is made of the surfactant itself and that do swim, is it
legitimate to assume that fixed concentration is imposed? This remains to be clarified.

V. CONCLUSIONS AND PERSPECTIVES

To summarize, we investigated the steady motion of interfacial disks releasing isotropically a
soluble surfactant. Using a full numerical description to account for all couplings at work, we
characterized the spontaneous swimming velocity and assessed the contribution of various forces by
comparison with simplified models. In this respect, it turns out that surface tension effects are more
complex than usually expected and are not subsumed in the capillary force; the contribution induced
by viscous Marangoni flows may be motor as well. Our main findings can be summarized as follows.
(i) The transition to swimming is discontinuous, occurs above a critical Marangoni number, and
involves a forbidden range of velocity and a bistability region, where steady motion and rest state
are both possible. A full account of Marangoni effects is crucial to capture these features, which are
absent in simplified models. (ii) In the regime of large Pe and M relevant to most experiments, the
swimmer velocity follows the power law Pe ∼ Mα with an exponent α close to 3/4. Here Marangoni
flows have little effect on the force balance for the swimmer and accordingly simplified descriptions
may capture the swimming behavior.

Throughout this study, we have focused exclusively on the various contributions that enter
the force balance and on the most accessible observable: the swimming velocity. Yet, a deeper
understanding may be possible by examining local properties such as the flow velocity and the
concentration fields. Preliminary inspection suggests that characterizing those fields is not obvious
especially when it comes to evaluate the accuracy of simplified models. Indeed, relevant charac-
teristics of flow and concentration fields may depend subtly on the observable of interest, be it the
force on the particle, or the solute dispersion, etc. We defer such an endeavor to a subsequent work.

Even for individual self-propulsion, there are several questions left open. First, is the dis-
continuous swimming transition observable? Swimmers of colloidal size [30] might be plausible
candidates to reach low values of Marangoni number at threshold, but only if the symmetry can be
maintained accurately as it is precisely expected to matter at the bifurcation [47,63]. Second, we
addressed here the limit case of soluble surfactants with fast equilibration kinetics but exploring
more general situations is also interesting. Indeed, it is known that in the case of a fixed source, the
nature of the surfactant—insoluble or soluble—modifies the scaling of the velocity field [52,57],

104006-20



ROLE OF MARANGONI FORCES IN THE VELOCITY OF …

and that for hemispherical swimmers, evaporation effect may be relevant [62]. Third, we have
focused essentially on steady swimming. Experimentally, the swimming modes are much richer
with the observation of intermittent motions [20,21,69] whose description would deserve dedicated
investigations.

Finally, beyond the individual behavior, a broader perspective is to address the role of Marangoni
forces in the other situations that have been explored experimentally, including interaction with a
wall or with another swimmer, and collective effects that emerge in assemblies. Given the numerical
demand and difficulty of a complete description, the only route to address such phenomena is to
design simplified models for swimmers. We believe point source models discussed here remain
useful approaches for guiding the exploration of more complex situations [107] with the present
work delimiting their capabilities and helping for further improvements.
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APPENDIX A: MARANGONI FORCE AND POWER BALANCE

We examine here the power balance of mechanical forces acting in the system. As we will see,
this involves the classical viscous bulk dissipation and the forces acting on the swimmer, together
with the rate of change of interfacial energy, that we introduce below to quantify the chemical power
available for the system.

The total interfacial energy in the system, and its time derivative—the rate of change in interfacial
energy—are defined as [108,109]

Eγ ≡
∫
S(t )

γ dS, Ėγ ≡ dEγ

dt
. (A1)

Following Ref. [108], the rate of change in surface energy Ėγ can be expressed as

Ėγ =
∫
S(t )

∂γ

∂t
dS +

∫
S(t )

γ Cu · ndS +
∫
S(t )

u · ∇sγ dS = −
∫
S

γ∇s · udS. (A2)

The first equality is generic, with the the last two terms corresponding, respectively, to the power of
Laplace forces, and to the one developed by Marangoni stresses (or equivalently by viscous stresses
at the interface). The second equality is peculiar to our configuration, as we used the assumption
of flat interface, that is, of vanishing curvature C. Because ∇s · u gives the local rate of surface
creation, the last expression is a two-dimensional analog to the work of pressure in compressible
three-dimensional systems.

Let us now consider the situation of interest. To do so, in the remainder of this Appendix, we
switch to the laboratory reference frame where the disk moves at velocity U = Uex and the fluid is
at rest at infinity. As already explained in the main text, maintaining steady-state motion for arbitrary
values of U generally requires an external force Fop to be applied. Because the associated Stokes
flow verifies ∇ · σ = 0, the total power of mechanical forces

∫
V u · ∇ · σdV is also zero. Using

the identity ∇ · (σ · u) = (∇ · σ ) · u + σ : ∇u and introducing the classical total rate of viscous
dissipation

Dv ≡ 1

2η

∫
V

τ : τdV, (A3)
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lead eventually to

Fop · U = Dv − Ėγ . (A4)

The power delivered by the external operator to the system thus decomposes into a bulk viscous
term—always dissipative—and a surface term which can act as a power source. Indeed, for
spontaneous swimming, Fop = 0, so that it is clear that the viscous bulk dissipation is sustained
by the chemical power injected in the system in the form of the rate of change of interfacial energy.

Of course, the same calculation can be carried for the dual problem, for which the rate of change
of interfacial energy vanishes so that

F̂op · U = −F̂v · U = D̂v. (A5)

Combined with Eq. (A4) and the force balance condition on the swimmer at steady-state Fop +
FM + F̂v = 0, this yields for the Marangoni force power

FM · U = Ėγ − δDv, δDv ≡ Dv − D̂v. (A6)

Overall, we find that the available power for the Marangoni force acting on the disk amounts to the
total available interfacial power diminished by the extra bulk dissipation between the actual and the
dual problems.

In addition, comparing with the Lorentz theorem expression for FM [Eq. (13)] and the definition
of Ėγ [Eq. (A2)], one can obtain an explicit expression for δDv in terms of a rate of change of
interfacial energy,

δDv = −
∫

�

γ∇s · δudS, δu ≡ u − û. (A7)

As is seen, it turns out that the fraction of total interfacial power lost as extra bulk dissipation δDv,
is exactly the rate of change of interfacial energy due to the extra flow δu.

APPENDIX B: SWIMMING PROPERTIES OF SIMPLIFIED MODELS

As introduced in Sec. III B 2, we consider here models whose basic idea is to decouple the
surfactant transport from other processes. In the solute transport equation, the true—and coupled—
flow field u is replaced by an approximation uapp.

1. Uniform convection approximation

a. Concentration field and forces

We start with a toy model where the approximate flow field is uniform uapp = −Uex. In this
simple framework [47], the solute concentration from a point-source and the capillary force given
by Eq. (11) are readily obtained as

c̃ = 1

2π r̃
exp

[
−Pe

2
r̃(1 + cos θ )

]
, F̃c = exp

(
−Pe

2

)
I1

(
Pe

2

)
, (B1)

with I1 the modified Bessel function of order 1. Using Eq. (13) and denoting as G the Meijer’s
function [110], the total Marangoni force is

F̃M = 4

3π

∫ ∞

1
exp

(
−Pe r̃

2

)
I1

(
Pe r̃

2

)
dr̃

r̃
√

r̃2 − 1
= −

√
2

3π3/2
G2,2

2,4

(
Pe2

4

∣∣∣∣∣
1
4 , 3

4
1
2 , 1

2 ,− 1
2 , 0

)
. (B2)

In the regime of small Péclet, the limiting behaviors are

Pe 
 1, F̃c � Pe

4
+ O(Pe2), F̃M � − Pe

3π

(
ln

Pe

8
+ γE + 1

2

)
+ O(Pe2), (B3)
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where γE is the Euler γ constant. In the opposite limit of large Péclet, we have

Pe�1, F̃c � 1√
πPe

+ O(Pe−3/2), F̃M� A√
πPe

+ O(Pe−3/2), A≡ 2

3
√

π


(3/4)


(5/4)
� 0.509.

(B4)
Examination of limit cases reveals that the viscous Marangoni force FvM = FM − Fc changes
behavior with Pe. At low Pe, it is a driving contribution, being actually dominant over the capillary
force because of the Pe ln Pe scaling. However, it changes sign to become a resistive, and at higher
Péclet cancels approximately half of the driving capillary force. Finally, combining Eq. (B3) for
F̃M and Eq. (15) leads to Eq. (17) for the swimming curve at low Pe∗, whereas in the asymptotic
regime, one recovers Pe∗ ∼ M2/3, as stated by Eq. (18).

b. Relevance of Marangoni convection

The uniform convection model reduces the convective contribution to solute transport to that
of an homogeneous velocity field, thus neglecting transport by Marangoni flows. Here we briefly
discuss the range of validity of this assumption.

One simple criterion to assess when Marangoni convection necessarily becomes relevant is
to compare the drift velocity U and the expected Marangoni velocities at the front uMar. of the
swimmer. Indeed, when uMar. > U , Marangoni flows are strong enough to revert the advection
transport, thus inducing solute transport toward the front that will significantly dampen the fore-aft
asymmetry required for swimming. The BC at the free surface is expressed as ∂z̃ũ‖ = −∇sc̃.
Assuming that the scale of variation in the vertical direction is a—no other one exists at low
Pe—gives the typical surface velocity ũMar. ∼ −∇sc̃. Using the solute concentration Eq. (B1) to
estimate the Marangoni velocity close to the front (r̃ � 1, θ = 0), flow reversal occurs for

e−Pe

2π
[1 + Pe] − Pe

M
> 0. (B5)

This equation provides a minimum Péclet number below which Marangoni convection cannot be
neglected. It can be solved in asymptotic regimes of low and high Pe:

Pe >
M

2π
for Pe 
 1, Pe > ln

(
M

2π

)
for Pe � 1. (B6)

Figure 10 shows where this condition is satisfied in the swimming diagram of the UC model. Clearly
this is not the case in low Pe region. However, in the asymptotic regime Pe∗ � 1, the predicted
swimming velocity becomes much larger than the limit where Marangoni effects come into play
thus suggesting that this simple approach becomes valid, in agreement with the discussion given in
the main text (Secs. III B 2 and III C). Note finally that when the estimated Marangoni convection
exceeds the moving velocity, the distribution of surfactant becomes more isotropic and bifurcation
to a swimming state is expected to be delayed. In this regard, it is interesting to remark that the
actual (discontinuous) bifurcation occurs at a critical Pe∗

c � 3 which is close to the value Pe � 3.4
where the swimming curve becomes invalid according to the criterion of Eq. (B5).

2. Translating disk approximation

We now examine a more elaborate treatment of the advective transport, where uapp = û, i.e., the
Stokes flow generated by an inert moving disk. Working in the disk reference frame, the disk is fixed
at the frame origin and submitted to a flow with velocity −Uex at infinity. This approximation thus
retains the no-slip boundary condition on the disk while discarding the effect of Marangoni flows
on the solute transport.

The interest of the approach is once again to obtain a transport problem which can be solved
independently, with solution parametrized by the velocity U , using the known flow field û. Instead
of the surface flow given in the main text by Eq. (B7), we now use the full tridimensional solution.
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FIG. 10. Relevance of Marangoni convection in the uniform convection model. The solid line is the
swimming curve and the shaded area is the domain where Marangoni convection can not be neglected.

Using Cartesian coordinates, it reads as [82]

û

U
= 2

3π

[
2x̃2λ3/2

�(λ + 1)2
−

√
λ

λ + 1
+ 3 arcsin

(
1√

λ + 1

)]
− 1,

v̂

U
= 2

3π

2x̃ỹλ3/2

�(λ + 1)2
,

ŵ

U
= 2

3π

2x̃z̃
√

λ

�(λ + 1)
, (B7)

with the notations

� = −1 + x̃2 + ỹ2 + z̃2, � =
√

4z̃2 + �2, λ = 1
2 (� + �). (B8)

Let us note that at the free surface z̃ = 0, the flow field can be conveniently expressed in polar
coordinates (see notations in Fig. 1) as

û
U

= 2

3π

{
3

[
arcsin

(
1

r̃

)
− π

2

]
(cos θer − sin θeθ ) +

√
r̃2 − 1

r̃2
(cos θer + sin θeθ )

}
. (B9)

In the regime of large Péclet, one expects a concentration boundary layer to appear whose
thickness results from a balance between advective and diffusive terms. We now discuss the possible
scalings for this thickness, which were used in Sec. III C to obtain prediction on the asymptotic
swimming regime. Consider first the central region, with � = 1 − (x2 + y2) = O(1), where solute
is released. Equation (B8) can be expanded in the vicinity of the surface to give

û

U
= − 8

3π

|z̃|√
�

+ O(z̃2),
ŵ

U
= 4

3π

x̃z̃|z̃|
�3/2

+ O(z̃3). (B10)

Following classical treatment of boundary layers [93], one rescales the z̃ direction by the boundary
layer thickness δ̃ according to Z = z̃/δ̃ and look for the scaling δ̃ ∼ Pe−m such that advective
diffusive terms appear at the same order

Pe(ZPe−m∂xc + x̃Z2Pe−m∂Zc) ∼ Pe2m∂2
ZZc, (B11)

thus implying m = 1/3 and

δ̃(Pe) ∼ Pe−1/3. (B12)
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Note that in this standard configuration, vertical and horizontal advective terms are involved at the
same order. As explained in the main text, Eq. (B12) yields for the swimming velocity predictions
that are not consistent with numerical results. The reason is that the discussion so far has focused
on the central region of the swimmer, whereas we need to evaluate the concentration near the edge
of the disk.

The velocity BC switches at the disk edge from no-slip to stress-free and as a consequence,
the velocity scalings are modified, leading to a different thickness for the solute boundary layer.
Specifically, when x̃2 + ỹ2 = 1, Eq. (B8) gives

û

U
= − 2

3π
(3 + ỹ2)

√
|z̃| + O(z̃),

ŵ

U
= 2

3π

√
|z̃| + O(z̃). (B13)

Performing a balance between advection and diffusion in this region now leads to

Pe(
√

ZPe−m′/2∂xc +
√

ZPem′/2∂Z c) ∼ Pe2m′
∂2

ZZc. (B14)

As a consequence, convection is now dominated by advection in the vertical direction and the
exponent for which it is balanced by diffusion is twice higher than previously: m′ = 2/3. The
vertical flow pinches the boundary layer, making it thinner

δ̃(Pe) ∼ Pe−2/3. (B15)

As discussed in the main text, this modified scaling provides a swimming behavior in the large-
Péclet regime that is consistent with the numerical result.

APPENDIX C: CONCENTRATION BOUNDARY LAYER AND ASYMPTOTIC SWIMMING
VELOCITY AT FINITE REYNOLDS NUMBER

In the regime of large Péclet number, a concentration boundary appears, whose thickness results
from a balance between advection and diffusion. The case of Stokes flow was treated above. Here we
consider the regime of finite Reynolds number. A viscous boundary layer appears, whose thickness
is classically given by [111]

δ̃v ∼ Re−1/2. (C1)

For real swimmers, the Schmidt number Sc is typically of order 103. The concentration boundary
layer is then much thinner than the viscous boundary layer and at the scale of the former, one can
approximate the velocity field as varying linearly in z:

û

U
� −|z̃|

δ̃v
. (C2)

Performing the same analysis as above in Appendix B 2, one eventually finds

δ̃3 ∼ δ̃v

Pe
and δ̃ ∼ Pe−1/2 Sc1/6. (C3)

To predict the swimming velocity in the asymptotic regime, we again consider the force balance.
Using the solute conservation developed previously in the Stokes regime, the capillary force is

F̃c = 1

Pe δ̃
. (C4)

In the viscous boundary layer regime, the drag force is now of the form Fv = a2ηU/δv which in
dimensionless form reads

F̃v ∼ Pe

M δ̃v
. (C5)
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FIG. 11. Surfactant concentration c(x) along the x axis (y = z = 0) as found by numerical calculation, for
different source radius as. M = 2000 is fixed and Pe is close to the swimming value Pe∗ (between 22.7 and
27) when defined, and Pe = 23 otherwise. (a) Full releasing swimmer with as = 1. The dashed line is the
prediction of Eq. (D2). (b) Increasing source radius. The hatched areas correspond to the swimmer extent.

Balancing the two forces and using Eqs. (C1) and (C3), one gets for the swimming velocity

Pe∗ ∼ M1/2 Sc1/6. (C6)

APPENDIX D: DIVERGENCE OF THRESHOLD FOR FULLY RELEASING DISK (ε → 0)

As explained in Sec. IV A, the swimming threshold Mc diverges when the source radius ap-
proaches the swimmer radius (as → a or ε → 0). Here we discuss a possible origin for this effect.

We consider a motionless disk releasing a chemical solute all over its surface with prescribed
flux and ask what the concentration field is when diffusion alone is at play. Choosing units so that
disk radius, diffusion coefficient, and flux are all unity, the answer is

c̆(r, z) =
∫ ∞

0
dkJ1(k)J0(rk)e−kz dk

k
, z > 0, (D1)

with Jn the Bessel function of order n. In the limit z → 0, the integral can be performed explicitly
and the result for the concentration at the surface c̆(r, 0) ≡ c̆(r) is then

c̆(r) = 2

π
E (r2), r < 1,

= 2

πr
[r2E (r−2) − (r2 − 1)K (r−2)], r > 1, (D2)

where K and E are the elliptic integrals of first and second kind, respectively. A noticeable feature
is the logarithmic divergence of c̆′(r) at the disk edge, namely for r → 1,

−c̆′(r) = − 1

π

(
2 + ln

|r − 1|
8

)
+ O(r − 1). (D3)

We show in Fig. 11 the concentration along the x axis, for a fully releasing swimmer (as = 1). A
divergence is indeed seen at the disk edge and the concentration below the disk (|x| < 1) is not far
from the pure diffusion prediction approximation given by Eq. (D2) [112].

What consequences are to be expected when the divergence in concentration gradient approaches
the disk edge? On the one hand, the surfactant is released closer and closer to the edge. On the other
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hand, the strong Marangoni stresses acting on the fluid in the immediate vicinity of the wall presum-
ably induce some fluid motion outward. Both effects combine to make the surfactant distribution
along the edge more and more homogeneous as ε → 0. This trend is visible in Fig. 11(b), which
displays the concentration profile at a fixed M. As the source radius as increases, the concentration
profile along the x axis gradually loses its asymmetry and come closer to the pure diffusion profile.
As a consequence, the surfactant concentration tends to be less heterogeneous along the edge,
and the Marangoni flows also becomes more symmetric, with increasingly canceling contribu-
tions. With the capillary and viscous Marangoni forces both subsiding, steady motion becomes
impossible. For instance, this happens for as = 0.75 in Fig. 11. Because of the coupling between
diffusion, Marangoni flows and the influence of the edge, it appears difficult to put this qualitative
picture on a quantitative basis. A justification of the scaling observed for Mc(ε) in Fig. 7 thus
remains elusive.

We note that the behavior observed here is particular to our configuration. Would the releasing
surface be a hemisphere as in Refs. [62,63], the concentration field in the pure diffusion problem
would be c̆(r) ∼ a2J /(Dr), which is regular everywhere for r � a. The singularity would also
disappear for an ellipsoid and for a cylindrical swimmer of finite thickness, because the flux at
the triple line is parallel to the interface. We conclude that the ε divergence is associated to a
mathematical divergence induced by the combination of our fixed flux boundary condition and zero-
thickness disk geometry. It must be added that due to a number of possible factors (slightly deformed
interface, swimmer partly immersed, finite exchange kinetics, etc) regularization is expected in a
real swimmer.

APPENDIX E: ON CAMPHOR EVAPORATION

We did not account for surfactant evaporation in our modeling. Even though evaporation is
often mentioned for explaining surface self-cleaning and the camphor boats ability to cross its own
wake, experiments with surfactant injection [51] show that bulk dissolution alone can provide an
efficient surface-cleaning pathway at short time. We thus chose to keep the parameters minimal
by not introducing this additional mechanism. We present here experimental measurement of the
evaporation rate and a discussion that further rationalize this assumption.

We measured the change in concentration in a camphor solution due to evaporation. In practice,
we used the same conditions as those used for our experimental study of camphor swimmers, as
described in Ref. [47]. A rectangular pool (17 × 27 cm) with height h = 1 cm is filled with a solution
of camphor (1 g L−1) and the mean concentration Cm(t ) in the solution is measured by spectroscopy.
The time evolution of Cm(t ) is shown in Fig. 12.

These data can be rationalized with a simple model. We assume that the flux of camphor leaving
the liquid through evaporation can be written as

J = k[C(0) − Cgaz] = −D ∂zC|z=0, (E1)

Here, C(z) is the concentration at position z, the interface is at z = 0, the concentration in the gaz
Cgaz is taken as negligible, and the evaporation constant k quantifies the interfacial transport from
bulk liquid to the gaz. Equation (E1) defines a Robin boundary condition, to which one can associate
a characteristic length λ = D/k and the Biot number

Bi ≡ hk

D
= h

λ
. (E2)

λ is analogous to a slip length or a Kapitza length in thermal transfer. Now, if the concentration
remains close to its mean value Cm, then one obtains

h Ċm(t ) = −J = −k Cm(t ), Cm(t ) = Cm(0) exp

(
−k

h
t

)
, (E3)
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FIG. 12. Time evolution of mean camphor concentration in a solution subject to evaporation. The line is a
fit to Eq. (E3).

and a fit to the data yields k = 6 × 10−7 m s−1. Two remarks are in order. First, we note that
such a value leads to λ = 10−3 m and Bi = 10. A Biot number much above unity indicates that
the concentration can not be approximated as uniform, if diffusion alone is at play. However, in
our experiments, periodic sampling of the solution and spontaneous convection due to external
perturbation ensure some mixing of the solution, so the uniform concentration remains a reasonable
approximation. Second, our value for k is well below the estimate made in Ref. [65], which
suggests an apparent evaporation rate k = 10−4 m s−1. Whereas the method there was indirect, our
measurement is direct and involves only evaporation.

We can now discuss the relevance of evaporation effects for the swimmer. Taking for the typical
size the radius a = 4 mm yields a Biot number Bi � 3.4. However, this value is only an upper
estimate. Indeed, the size which is relevant in this case is the thickness of the concentration boundary
layer. As discussed in the main text and Appendix B, it scales as δ = aPe−1/3 in the high-Pe regime.
For the typical camphor swimmer (a = 4 mm, v = 70 mm s−1, Pe = 3 × 105), we find

Bi = 4 × 10−2. (E4)

While this result was derived in the Stokes regime, on can expect even smaller values for finite
Reynolds numbers. In any case, a small Biot number indicates that diffusion acts on smaller
timescale than evaporation: the concentration in the solute layer released by the swimmer will thus
decrease primarily because the layer spreads by diffusion and not because some solute is lost by
evaporation. Finally, as a last argument, we also stress that the scaling arguments developed in the
main text describes what happens below the swimmer, where evaporation does not occur. Only
behind the swimmer could evaporation becomes significant, but the force balance is dominated by
the concentration in the vicinity of the edge. This again suggests that evaporation should not play a
key role in our system. Note finally that Ender et al. [63] showed that for a hemispherical swimmer
in the asymptotic regime, evaporation can be neglected if Bi 
 Pe1/5. Should the same criterion be
applicable to our disk-shaped swimmer, it would clearly be fulfilled.

In conclusion, the small value of Biot number indicates that evaporation has no significant
influence on the self-propulsion and accordingly it was discarded in our modeling. Nevertheless, we
believe evaporation does play a role for experiments where the water pool is finite. By eliminating
some of the camphor released by the swimmer, it reduces accumulation within the pool and
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FIG. 13. Finite size effects (left) and convergence in mesh (right) on the various forces considered in this
work. Sf and Mf are the size and mesh factors, respectively, and �F is the difference with the value in the
reference configuration Fref . The physical parameters are Re = 0, M = 230, and Pe = 3.

delays the point at which the interface is so charged in camphor that self-propulsion stops. This
phenomenon is relevant on the timescale of hours.

APPENDIX F: FINITE-SIZE EFFECTS AND CONVERGENCE IN MESH

Our default configuration for the FEM calculations relies on the box and mesh defined in
Sec. II B. To evaluate the finite size effects and ascertain the convergence in mesh, we have changed
systematically the box size L by a factor S f , and the mesh size by a factor M f . The refinement in
mesh applies everywhere, so the relative resolution between the various areas defined is maintained.
For a given quantity, we compute the relative difference with the result obtained in a reference
configuration with the largest box and finest mesh (S f = 2, M f = 1.5). The result for the various
forces considered in this work are shown in Fig. 13, for fixed physical parameters Pe = 3, M = 230.
We note that though the ranges of S f and M f are quite broad (0.1–2 and 0.05–1.5, respectively),
most forces deviate form their reference value by less than 3%. The only exception is the viscous
force Fv when computed with Eq. (11). However, using the alternative expression given by Eq. (12),
the convergence is much faster. Therefore, this is the route that was used throughout this work.
Overall, we see that the forces in the default configuration (S f = M f = 1) have reached values that
depends very little on the box size and mesh refinement, with variations smaller than a few percent.

APPENDIX G: VELOCITY OF CORE-CROWN SWIMMER

We investigated in Sec. IV A how the swimmer velocity depends on the spatial extent of the
source, i.e., the chemically active area. Here we address this question experimentally.

To modulate in a controlled manner the extent of the chemical source, we designed “core-crown”
swimmers, made of two assembled parts. The core is loaded with camphor while the crown is not.
We considered swimmers with radius a = 5 mm and an increasing source radius as. In contrast
to the numerical model, the total flux J is not constant but grows with the area of the source
As. Accordingly, the velocity increases as well. We can, however, account for this variable total
flux. Assuming Pe∗ ∼ Mα one would expect for v/Aα

s a constant value. Using for α the exponent
found from the experimental velocity of full-disk swimmer with various radii (α = 0.68 ± 0.02, see
Fig. 8) we indeed find a good rescaling. As shown in Fig. 14, data points normalized in this way
remain close to unity (dashed line), even though the error bars prevent a definitive assessment of the
exponent value. The main factor governing the velocity seems to be the total flux, the influence of
source size appears to be much weaker.
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FIG. 14. Rescaled swimming velocity of core-crown swimmers made of a chemically active core (orange)
and passive crown (grey). As/A is the ratio between the source and disk areas. Inset: raw data.
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