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Twofold Fuzzy Sets in Single and Multiple Fault Diagnosis, Using Information about Normal Values

This paper proposes a general approach to diagnosis based on fuzzy pattern matching, making use of consistency and inclusion hased indices in the setting of possibility tbeory. The approach was first developed for biuary attributes and single faults. lt was then generalized to any kind of attributes (including multidimen sional ones). The paper presents a refined representation (wbere a distinction is made between effects that are possible for sure and effects that are just not impossible, and where information about (ab)normal values is used). Moreover, an extension to multiple fault diagnosis and to "cascading faults" is outlined.

INTRODUCTION

Therc has becn a continuous interest in fuzzy set-bascd ap proaches to diagnosis for about 25 years, starting with the early . work of Sanchez [START_REF] Sanchez | Solutions in composite fuzzy relation equations: ap plication to medical diagnosis in Brouwerian logic[END_REF], and continuing with the development of applications in medicine (sce [START_REF] Buisson | Practical Applications of Fuzzy Technologies, chapter Approximate reasoning in computer-aided medical de cision systems[END_REF] for a rcview) and in industrial processes (e.g., see [START_REF] Ulieru | lntelligentManufacturing and Fault Diagnosis (Il). Soft computing approaches to fault diagnosis[END_REF]). This paper presents some extensions of a diagnosis approach based on possibility thcory and on fuzzy pattern matching. It somewhat departs from previous proposais by emphasizing the use of possibility distributions for represent ing uncerlain pieces of knowledge, rather than using fuzzy re lations for modelling the intensity of symptoms. This approach, which was first proposed for binary attributes [3], has been ex tended more recently to numcrical attributcs in [START_REF] Dubois | A general approach to diagnosis in a fuzzy setting[END_REF]. The intercst of this approach is discussed and exemplified in [START_REF] De Mouzon | Using consistency and abduction based indices in possibilistic causal diagnosis[END_REF] for single fault diagnosis. Severa] further extensions of this approach are presented be low. Section II provides the background and briefly discusses the handling of multidimensional attributes. Section III deals with some rcfincments in knowledge rcpresenlation. Il first in troduces the use of twofold fuzzy sets (instead of simple fuzzy sets) for a better representation aiming al distinguishing be twecn effects which are possible for sure, and effccts which are just not forbidden. Besides, it allows for the representation of normal behaviour information, which can be useful for the diag nosis. Section IV takes advantage of the latter improvement in order to cope with multiple-fault diagnosis. Finally, Section V briefly discusses the detection of "cascading faults".

Il POSSIBILISTIC DIAGNOSIS

The framework developed for single-fault diagnosis is first presented and then extended to multidimensional attributes.

A Background

The approach is based on fuzzy relational knowledge: The relation between the value of each considered (binary, discrete or continuons) attribute a and each possible fault fis described by a possibility distribution rc[: Ua--+ [0, 1], where Ua is the domain of attribute a. This relation can be causal, thus describ ing the effect of / on a by telling which values of a are (more or less) possible when f (alone) occurs. But it is not necessarily so, as it may also represent a necessary condition on attribute a for f to appear (e.g., testis and womb cancer can respectively appcar only on men and women). In fac!, for concrete applica tions, il is not feasible to ask for ail rc[ relations, especially when faults and attributes are numerous. So only known relations are described through rd distributions. When rr.[ is not available, it either means that the value of a is not affected by the presence of f, or that this relation is not yet known. Tuen, rc[ can be taken as equal to 1 everywhere: no information enables us to discard a value for attribute a when fault f is prescnt. The observations may also be pervaded with imprecision and uncertainty: a possibility distributionµ� : Ua --t (0, 1] repre scnts the (more or Jess) possible values of attribute a according to the observation O (e.g., reflecting sensor reliability). Two fuzzy pattern matching indices [ 4] between effects ( rc{,) and observations(µ�) are computed for the diagnosis: • cons" evaluatcs how consistent the hypothesis of the presence of a fault (f) is with the observations:

cons"(f) = min cons"[, a0! (1) 
where .!'t is the sel of ail the attributes and cons"[ evaluates the consistency off with the observation of a:

cons"[== sup min (µ�(u),1t[{u)). 

B Multidimensianal attributes

The approach straightforwardly extends to multidimensional attributes, at the formai level, using joint possibility distribu tions such as rcL a 2 from Va 1 x V a 2 to [O, 1] and conjunctions of observations, i.e. µ� 1 ," 2 (u1, u2) == min(µ� 1 (u1) ,µ� 2 (u2) ). How ever, it is useful in practice to identify the cases where the computation can still be done al the level of one-dimension at tributes. Indeed, it is often not nccessary to use explicit multidi mensional distributions: Two major kinds of multidimensional attributes can be distinguished and represented in terms of one dimension possibility distributions. The first kind conccms formula-linloed multidimensional at tributes: For instance, assume that when fault f is present, attributes a 1 and a2 should no longer be approximately equal. The possible values (u1 and uz) of a1 and az for this symptom offault f may be represented as 1Tii 1 ,a 2 (u1,u2) == n;(u1 -u2), where a' is the new attribute a' = a1 -az and the closer to Ou' is, the doser rr;, (u' ) is to O. The second kind concerns projection-decamposable multidi mensional distributions: Tuen, a symptom is describcd as sev eral one-dimension manifestations linked together with logi cal connectors. For instance, when fault f occurs, both at tribute a1 and a2 are high or attribute a2 is close to O. Then, n1i_a 2 = max(min(1t 1 ! 1 , itt), rr''tz), where rr!, expresses that a1 is high, n' t2 expresses that az is high and n" t2 expresses that a2 is close to O. Of course, the two kinds of attributes can be mixed.

III REFINEMENTS OF THE REPRESENTATION

This section first introduces the use of twofold fuzzy sets for the knowledge representation. This enables us to make the dis tinction between what is just not impossible (because it is not rulcd out by the experts' beliefs) and what is known as fcasi ble (because it has already been observed). Moreover, under the single-fault hypothesis, the fact that fault f bas no effect on attributc a means that a stil! takes normal values and this infor mation can be useful to discard the prcsencc off when a takes abnormal values. So Section B introduces the representation of (ab)normal values of attributcs and its impact on the diagnosis. Note also that a good diagnosis should explain all the abnormal behaviours observed on the attributes. For simplicity, the results below arc prescnted for one-dimension attributes only and could be easily extended to multidîmensional attributes.

A Twofold fuzzy sets

In the initial representation framework, n! expresses the known restrictions on the values of attribute a linked to the pres ence of fault f. This idea of possibility may correspond to val ues which are just not known as impossible, since they are not ruled out by /. ln particular, when nothing is known, n! is 1 everywhere. However, it may be useful to identify among the values restricted by n{ those which are really known as feasible, because they have been observed in usual cases.

Thus a second possibility distribution (Dt: V a --+ (0, 1)) can bt! used for describing how typical the feasible values are known to be. For instance, we may know that whcn someonc has in fluenza, some range of body tcmperaturc is guaranteed possible (according, for example, to former typical observations on peo ple suffering from the same disease ), while some other values around may not be a priori forbidden, although we arc not sure that they can really take place. li will be assumed that a feasible value v for attributc a when fault f is prcscnt (i.e. D[ ( v) > 0) should be such that nt ( v) = 1, for consistency reasons. So, the support of D[ is included in the core of n{ Il entails ô[ ::::; rc{ When nothing is known, Dt is O cverywhere. Indced, 6{, ex presses to what extent a value of attribute a is known as feasible whcn f occurs.

Two other indices, cons 6 and rel", may be defined (following cons" [START_REF] Boverie | Using fuzziness for causal diagnosis in en gine dyno test bcnches[END_REF] and rel" [START_REF] Cayrac | Handling uncertainty with possibility theory and fuzzy sets in a satellite fault diagnosis ap plication[END_REF], resp.) with cons 6! and re/ 6 ! (resp.) by replacing rc[ by &t (in cons rr!, (2) and rel rr!, (4), resp.). coni (resp. rel 0 ) expresses to what extent it is possible (resp. certain) to have observed only typical effects or conditions of a fault. This enables us to make the distinction betwecn a fault f that has an unknown cffect on an attribute a (nt == 1 and o! == 0) and a fault f' that has no effect on attribute a (nf == 1 and ô( == 1), which was not possible in the initial framcwork. Note that the pair (nt.Dt) could be summarized as a unique possibility distribution whose core would be the corc of &t and whose support would be the support of n{ This is a way of putting together the ideas of feasibility and non-impossibility. Yet, the pair ( rct, Dt) provides a more refincd represcntation. As pointed out in [START_REF] Cayrol | Fuzzy pattern matching[END_REF], cons" 2: rel it holds, so cons ° 2: rez' 6 still holds. As it! > Dt, it follows that cons" > cons 0 and rel" > re/ 0 .

So cons 11 6 and rel [START_REF] Ulieru | lntelligentManufacturing and Fault Diagnosis (Il). Soft computing approaches to fault diagnosis[END_REF] • See [START_REF] De Mouzon | Causal diagnosis in engine dyno test benches: A possibilistic treat ment[END_REF] for other refincmcnts using discri-min and lcximin, which amount to vector comparisons of cons"{, (or rel"[).

B Information on (ab)normal values

In fac!, it is not fully satisfying to represent the information that the values of attribute a and the prcsencc of fault f' arc not linked with distributions rrf = 1 and af = 1. Indeed, when f al one is present, a should take normal values in this case.

So, some information on (ab)normal behaviour of attributes is needed. Let P a : U a --t [O, 1] be the possibility distribution expressing which values of attribute a are known as (more or less) abnormal. For short, it is assumed here that the normal behaviour of attribute ais defined as Tl a = 1 -P a • Now, the former knowlcdge reprcsentation may benefit from this new information. When rtb and ôb are not givcn (i.e. a (j.

'l( J ), it is because the expert states one of the following cases: f (alone) is not linked to values of a, so a should keep normal values when f oceurs. We gct the twofold fuzzy set:

n[ = 1-Pa; ô[ (u) = 1 if Pa(u) = 0; ô[ is O else. ( 5 
)
Let 'l{_ J denote the set of attributes which are f;f_ot linked to f.

/ could be linked to values of a but we do not know to which ones, which mcans that no value of a is known as impossi ble (resp. feasibte) when f atone occurs: i.e. Ttt (resp. 6b) is l (resp. 0) everywhere. Let 'U t dcnote the set of attributes which have an !l_nknown link to f.

'JCJ stilt corresponds tu any other case for the attributes (Know11 links). So, 'tff E Y: ,('lCt,'ll t ,9-lt) is a 3-partition of 5l. 'l1 f should be as small as possible (as every link between the presence of faults and the values of the attributes should be known, cven only roughty) and 'l{_ f can be very large. Then, this information on rc[ and ô[ is used with the former (cons" and re/ 6 ) indices. So ret 6 is O as soon as 'l1 f :p 0 and cons" in equation (1) is computed with min instead of min. aE 'K.rU�r aE>t The foltowing toy example shows the benefits of this new in formation for the diagnosis. Let 5I = { a1, ai} and fi and h be two faultss.t.'l(J, = {ai},9,l fi = {a2} and'l(h = {a1,az}, with ( h "'h ) _ ( fi "'fi ) ( . _ ,, [, _ , nt2 d h < p ( . 7ta 1 , ua 1 --1ta 1 , ua 1 so cons 1 -cons 1 , an 1t a 2 _ az 1.e. 

IV MULTIPLE-FAULT DIAGNOSIS

This section discusses the practical handling of multiple faults, which is often left aside, sinec it has not the computa tional simplicity of the "single fault assumption". By multiple faults is meant a combination of faults that are present simul taneously. For instance: A person may have both measles and white tonsillitis. Theoretically speaking, the approach to single fault diagnosis can detect and identify multiple faults as well, by describing, for each possible combination of faults, the associ ated links to attributes values. Yet, if any set of multiple faults are possible, then one would have to define the associated links for 2" faults, if n is the number of single faults. Such a knowl edge base would be difficult to obtain in practice and would be quite redundant as in many cases the effeets linked to multiple faults are just the "sum" of the effects linked to the different single faults. For instance, measles gives fever and read spots on the body skin, and white tonsillitis gives fever (also) and white spots in the throat. Then, when someone suffers from both measles and white tonsillitis, fever, red spots on the body skin and white spots in the throat are expectcd.

ln the fottowing we propose a general approach to the han dling of multiple faults. The idea is to represent the effects of single faults onty and then to be able to compute the effeets of any multiple faults (may be in a rather imprecise way).

The simples! hypothesis, called "superposition hypothesis", is that effects of multiple faults are just the sum of the effects of the single faults involved in the multiple faults, i.e. the effects of all the involved single faults are present. ln this case, when multiple faults arc present, each of them can be selected using the indices cons" and rel" of the single fault case. The idea is to look for sets of faults with minimal cardinality (in prac tice one fault sets, first, then two faults sets and so on) whose joint effects are consistent and relevant w.r.t. the observations. This procedure is inspired from the parsimonious covering pro cedure, which was first suggested by Peng and Reggia in [START_REF] Peng | Abductîve inference models for di agnostic problern-solving[END_REF]. From a crisp point of view, the "superposition hypothesis" means that the effects of multiple fautts on an attribute are the intersection of the effects of the corresponding single faults on the same attributc (the effeets being represented by sets of pos sible values).

Note that when f E F and a E 9-l f , then fis not tinked to a and so it has no incidence on the computation of the link between F and a. If the above situation holds V f E F for attribute a, then Fis not linked to a (a E 'J.f.J.): nf and 6f fottow [START_REF] De Mouzon | Using consistency and abduction based indices in possibilistic causal diagnosis[END_REF]. Otherwisc:

VF Ç:F ,VaE.:il,VuE Va, n F (u) = min n[(u) a fE{gEF\aE'l(_g} (6) 
and o;;•(u) = min ô[(u). fE(gEFlaE'l(_gU'll g } Note that the minimum in [START_REF] De Mouzon | Extensions of the fuzzy pattern matching approach to diagnosis[END_REF] should always be based on f E {g E F J a E �U 'll g }, But from a computational point ofview, the f such that a E 'l1 f can be left asidc (rc{ = 1). On the eon trary, if {gE FI a E 'll g } f. 0, then �=O.

Note that pair ( n;., 6;;°) is stitl a twofold fuzzy set. The fuzzy intersection is justified for both n; and ô1;' as rt;. represents the fuzzy set of values which are made impossible by none of the f E F and 6f the fuzzy set of values which are known feasible for all the f E F.

Yet, the "superposition hypothesis" is not always acceptable: Sorne effects cannot superpose as they are contradictory (they lead to rcf = 0, i.e. attribute a may not have a value when F is present!), For instance, let disease a give fever, disease 13 give hypothermia. What can be computed for the cffect on the body temperature when those two diseases are simultaneously present? Will the effect of one fault be stronger than the effect of the other? or wilt both effects compensate into a normal body temperature? or will the simultaneous presence of the Iwo dis eases lead to something different, as a very strong fever? Here, the "superposition hypothesis" cannot hold.

In fact, all these types of effect combination can be mod eled. For instance, "one effect is stronger" (but we do not know which one: It may depend on the person or on the states of the diseases) is captured by the union, in the crisp case, and leads to: '<IF Ç '.f ,'<la E�,'vu E U 0 ,n:t'(u) = maxJEf;:EFlaE 'Kg }n:{(u) and of(u) = maxfE{gEFlaE 1(. U '11,}ô{(u). Note that (rc;,oi) is still a twofold fuzzy set. Ali types of effect combination can be computed. The important point is that the calculation must yield a twofold fuzzy set. Another combination of interest could be the worsening of the effects. For instance, if one disease gives fever and an other too, the presence of both diseases might give a strong fever.

Il might seem that wc are back to the initial problcm: For cv ery multiple faults, and each attribute, the type of combination must be defined. This is !rue when there are no means to "guess" the type of combination. Yet, in most of the cases (in the domain where this multi-fault diagnosis is applied), the "superposition hypothesis" holds, unless it cornes to a contradiction. In the cases wherc a contradiction is reached, ail types of combination can be found. But, as a general approach is nceded, we might just say that when "superposition hypothesis" does not hold for F on a, F bas an effect on a but it cannol be computed precisely. So, � = 1 (a could possibly take any value when F is prescnt) and � = 0 (no value is more characteristic than another). Of course, when this effect combination computation is not satis fying for multiple fault '.f on attribute a, it is still possible to define � and � in the knowlcdge base.

V CASCAüING FAULTS Another interesting phenomenon in diagnosis problems is the possible cascade from one fault to another: Fault fi may have some effects such that after a while fault [2 will occur so on ... ). For instance, if you do not stop early enough your in fluenza, you may get bronchitis. Thcn, you might have both influenza and bronchitis at the same lime. Using multiple-fault diagnosis, these cascading faults can be identified as several successive single or multiple faults. Here: First influenza takes place as a single disease, then both in fluenza and bronchitis. Yet, the cascade itself is not recognized through the diagnosis although it could be a good help in the diagnosis process. lndecd, a cascade is rathcr a single fault inducing other faults than a multiple fault involving several independent faults. In order to take this into account in the parsimonious covering proccdure, a cascade (no matter how many faults it induces or whether it is cycling or not) is counted as only one fault.

For this, let C be a binary relation in :f x :J, with C (/1, fz) = 1 if and only if fault fi may induce fault [2. Tuen, as soon as 3f, 3tocons"(f,to) > 0 and cons"(!/)= 0 for t 1 < to, it means that the presence off, or of a cascade starting with f (the possi ble cascades are given by C) is consistent with the observations. Here, cons"(f,t) is the result of cons"(!) at time t. The corre sponding extension is also valid for rel 0 .

In practice the diagnosis system first only searches for single faults. After one is found (fi), it searches for this single fault or cascades starting with this single fault. If necessary, it searches for a multiple fault of cardinality 2, made of fi (or one of its cascade) and another single fault (/2). Tuen it searches for a multiple fault of cardinality 2 made of fi (or one of its cascade) and /2 (or one of ils cascade), and so on. The underlying hy-pothesis is that a fault stays until it has been corrected, once it has occurred.

Another improvement is tu have C (fi, fz) expressing the lime for h to appear after /1 has taken place (may be in a fuzzy way). This additional information would be a useful ingredient to incorporate in cons 11 and re/ 0 in order to identify cascades.

If the hypothesis -that a fault lasts until it is corrected -does not hold, cascades have to be dcscribed as chroniclcs, giving also (possibly) fuzzy time periods during which each fault lasts before it disappears (see [START_REF] De Mouzon | Extensions of the fuzzy pattern matching approach to diagnosis[END_REF]).

VI CONCLUSION

This paper has shown how the basic fuzzy pattern matching approach to diagnosis problem could be refined in order to al low for a more refined representation framcwork (distinguishing betwcen effects which are surely possible and effccts which arc not impossible), to take advantage of normal behavior informa tion, and to cope with multiple faults.

The approach has been implcmcntcd on a car engine dyno test bcnch problem, where observations arrive in real lime. Pre liminary results are promising [START_REF] Boverie | Using fuzziness for causal diagnosis in en gine dyno test bcnches[END_REF].

  aEXf

a2

  takes abnormal values, if /z is present), while rtbt = 1 -Pa 2 • h h If cons""' = cons""' = 1 and µ� 2 :S 1 -Pa 2 (1.e. a2 has normal values), thcn the diagnosis will select /1 (with re/ 0 ) and discard h (with cons"), as expected. h h f Now, suppose that cons lla 1 = cons" 0 1 = l andµ� 2 :S: Oa� (i.e. a2 takes ab normal values linkcd with the prescnce of [2). The diag nosis should lead to h Yet, with rcfl = 1 and ô[l = 1, as in the approach of Sections A or II, h and fi are both proposed. Us ing the information on (ab)normal values (rc[l = 6bl = 1-PaJ leads to selccting h with rel 0 (cons"(f1 ) = 1 and rel r, (f2) 2: 0.5 as µ� 2 :S oli :S n[D and discarding fi with co1is" (cons"(f1) :S 0.5 as µ� 2 :S n[� � p" 2 and nbl = 1 -Paz>- Moreover, information on (ab)normal values may have an im portant role in multiple-fault diagnosis, as can be seen below.

reprl, (resp. ref'(f)) is 1 when the observation of a (

  resp. ail the observations) is (resp. are) compatible for sure with the presence off.Let x._ 1 denote the set of all attributes a for which there is a &,awn relation with the presence off. Tuen, if a if_ X..r, nt is 1 on Va. So, from a computational point of view, min can be aE.i'I replaced by min in (1) and (3).

	incom
	patible with the observation on a (resp. an observation);	
	• rel" evaluates how relevant to the observations a fault is:	
	rel"([)== min rel"( a0!	(3 )
	whcre rel"t evaluates to what extent the relation betwcen the
	observation of a and the presence off holds:	
		(4)
	where ➔D denotes Dienes' fuzzy implication: (x ➔Dy) =
	min(l-x,y).	

) uEUa cons"[ (resp. cons"([)) is O when the presence off is