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1. Introduction

Computing in its traditional sense involves manipulation of numbers for the most part.
Symbolic computation has been developed in the meantime especially in Artificial
Intelligence, but often without preserving the capability of interfacing the symbolic
processing of information with numerical data. By contrast, humans employ mostly words
and qualitative descriptions when providing assessments of situations, or reasoning about
complex physical or human systems, even if a part of the data refers to numerical scales. For a
long time, fuzzy sets have been advocated by Zadeh (1973) as a methodology for interfacing
numerical data about the world (which are often imprecisely perceived), with linguistic
categories or classes used in reasoning. In particular, it is the case for fuzzy rules or fuzzy
algorithms where words are interpreted as the labels of fuzzy sets. There are different kinds of
situations where the underlying reasoning process can be handled within the framework of a
limited vocabulary. When developing his approach to approximate reasoning, Zadeh (1979)
was already separating the combination/projection machinery acting at the levels of the fuzzy
set membership functions, from the knowledge representation and linguistic approximation
steps which respectively turn the linguistic input information into possibility distributions and
restate the obtained conclusions into a prescribed vocabulary understandable by the user. The
fuzzy set framework should supply the right tools for mixing a symbolic treatment to be
performed at the level of the linguistic labels with facilities for permanently interfacing them
with their fuzzy set semantics along the reasoning process. Indeed, fuzzy sets restore gradual
transitions between categories on continuous universes, which would be lost if the interface
between labels and data were provided by crisp sets only. In this paper, we investigate the
feasibility of such a view on a particular type of reasoning: the order of magnitude reasoning
in terms of closeness and negligibility relations. The same line of research has been explored
on more general patterns of approximate reasoning by Dubois, Foulloy, Galichet and Prade
(1997).

Qualitative reasoning, handled at the level of comparative relations, may be, viewed as
a simple illustration of the idea of computing with words recently emphasized by Zadeh
(1996, 1999). As the expression suggests, 'computing with words' is a methodology in which
words are used in place of numbers for computing and reasoning. As pointed out by Zadeh
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(1996), there are two major imperatives for computing with words. "First, computing with
words is a necessity when the available information is too imprecise to justify the use of
numbers, and second, when there is a tolerance for imprecision which can be exploited to
achieve tractability, robustness, low solution cost, and better report with reality. Exploitation
of the tolerance for imprecision is an issue of central importance in computing with words",
Zadeh (1996) wrote. A key idea underlying computing with words is that it involves a fusion
of symbolic processing and computation with fuzzy variables. The following summarizes
Zadeh’s main points. Computing with words is based on a granulation process, which
generally serves as a way of achieving data compression. A granule g is a fuzzy set of points
drawn together by similarity. A word w (e.g., young) is a label of granule g. In computing
with words, a granule g which is a denotation of a word w is viewed as a fuzzy constraint on a
variable. The rules of inference in fuzzy logic are employed to propagate fuzzy constraints
from premises to conclusions. Thus, the techniques of computing with words underlie, in one
way or another, almost all the apparatus of fuzzy logic.

This paper focuses on a particular type of reasoning where computation can be
handled at the word level, as it will be shown: qualitative reasoning about relative orders of
magnitude, where fuzzy constraints expressing closeness or negligibility relations have to be
propagated. Building inference systems endowed with the ability to reason about physical
systems in the same way as humans —or at least engineers— do, has led to the development
of qualitative reasoning (Kuipers, 1994; MQ&D Project, 1995; Travé-Massuyès, Dague and
Guerrin, 1997). The main aim of qualitative reasoning is both to address the need to deal with
physical systems where some magnitudes are not easy to quantify (numerical data are not
available), and to be able to reason at a qualitative or symbolic level (for example, reasoning
directly in terms of orders of magnitude). The last decade has seen significant progress
towards the development of formal methods for qualitative reasoning about the behavior of
physical systems. The simplest formalism used in qualitative reasoning is based on the sign
algebra (–, 0, +); see for instance (Dormoy, 1989; Kuipers, 1994). Such models are enough to
represent the sign of quantities and the direction in which each quantity affects another
quantity. Information about magnitudes, or even relative orders of magnitude is not
represented. As a consequence, the sign-based approach has too limited an expressive power
in some practical cases to be widely applicable. A major limitation lies in the fact that often
the sign of the result of an operation can be determined only if the order of magnitude of the
involved parameters are considered. The only knowledge of the sign of the quantities
involved in a mathematical expression often leaves completely indeterminate the sign of the
result. Reasoning with relative orders of magnitude is an attempt towards overcoming these
limitations. See (Raiman, 1991) for a general discussion.

This type of qualitative reasoning corresponds to a particular form of commonsense
reasoning where ideas of closeness, comparability and negligibility are involved. The first
attempt to formalize such reasoning appeared with the formal system FOG, proposed by
Raiman (1986, 1989). FOG is based on three basic relations expressing the relations
'negligible in relation to' (Ne), 'close to' (Cl), and 'has the same sign and order of magnitude
as', i.e., 'is comparable to' (Co). FOG includes one axiom and 31 inference rules, which allow
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for deduction from pieces of knowledge expressed in terms of relative orders of magnitude.
This set of rules was proved to be consistent by giving an interpretation to the three relations
in the framework of Non-Standard Analysis. Note that FOG handles relative orders of
magnitude through a purely symbolic computation process. Nevertheless, no numerical
interpretation is provided for the symbolic computation of orders of magnitude in the FOG's
approach which thus does not allow for the incorporation of numerical values. This drawback
is remedied in the system O(M) proposed by Mavrovouniotis and Stephanopoulos (1987,
1988), where the primitive relations ('much smaller than', 'moderately smaller than', 'slightly
smaller than', 'exactly equal', 'slightly larger than', 'moderately larger than', 'much larger than')
are interpreted in terms of the location of the quotient of the two compared quantities in some
interval. All these intervals are disjoint, and defined via a unique parameter which is fixed
according to the application context. The fact that this parameter is fixed creates some
problem since the result of the (repeated) composition of the primitive relations cannot always
be expressed by a primitive relation if we want to perfectly adhere to the interval semantics.
Indeed for instance, if x/y ∈ [a, b] and y/z ∈ [a, b], with a > 0, then x/z ∈ [a2, b2], and [a2,

b2], or more generally [an, bn], are not necessarily included into an interval corresponding to
the semantics of a primitive relation. Dague (1993) also provides an attempt to give a
numerical interpretation to FOG-like relations manipulated in a formal way. However, FOG
or O(M) do not take into account the fact that the satisfaction of relations such as Ne, Cl, or
"much larger than", by two numerical values is often a matter of degree. Moreover FOG does
not cope with the fact that it is also context-dependent. FOG does not acknowledge either that
a relation of closeness (resp. negligibility) is usually transitive in a weak (resp. strong) sense
(which will be made precise in the following), rather than just transitive (Dubois and Prade,
1989a). The same type of limitation applies to O(M) as well. The modeling of relations Ne, Cl
and Co by means of fuzzy relations constitutes an appropriate framework for solving these
problems.

The paper is organized as follows. Section 2 gives the necessary background on the
formal system FOG. Section 3 introduces fuzzy equality and inequality relations (such as
'approximately equal', 'much larger than') modelled in terms of difference, and presents a set
of inference rules based on these relations. We show that the composition of such relations
reduces to simple fuzzy arithmetic operations. However, a simple example suggests that the
modelling in terms of difference may be more appropriate for temporal relations. In Section 4,
we discuss the modeling of the basic relations of FOG using fuzzy relations in terms of ratios
of values. New inference rules, based on relations Ne and Cl, are established. The
composition of the fuzzy relations representing relations Ne and Cl also reduces to simple
arithmetic operations on fuzzy numbers which play the role of parameters underlying the
semantics of Ne and Cl. Results of inferences are always expressed in terms of the relations
Ne and Cl, but based on fuzzy parameters which are symbolically computed from the fuzzy
parameters underlying the relations appearing in the premises. This machinery contributes to
provide a standard numerical semantics for the symbolic computation performed by the
FOG's rules, as well as by the new inference rules which are proposed. Illustrative examples
for solving equations, in an approximate way, are presented in Section 5, while the
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concluding remarks point out some problems which are faced for the development and the
efficient implementation of the approach.

2. The Formal System FOG

The FOG system is based on three relations, which capture closeness, negligibility and
comparability and which are respectively denoted by Cl, Ne and Co. These three operators
are:

x Ne y, which stands for x is negligible in relation to y;
x Cl y, which stands for x is close to y, understood as

(x – y) is negligible in relation to y;
x Co y, which stands for x has the same sign and order of magnitude as y.

The underlying idea is that if x Ne z then y Ne z (when x Co y).

FOG has one axiom (A1: x Cl x) and 31 inference rules. Hereafter, we give some of these
rules ([x] denotes the sign (+, –, 0) of the quantity x):

1) x Cl y ⇒ y Cl x 8) x Ne y ⇒ (x+y) Cl y

2) x Cl y ⇒ x Co y 9) (x+y) Cl z, y Ne x ⇒ x Cl z

3) x Cl y, y Cl z ⇒ x Cl z 10) x Ne y, z Cl t ⇒ x · z Ne y · t

4) x Cl y, y Ne z ⇒ x Ne z  11) x Ne y, z Ne x ⇒ x · z Ne y · t

5) x Co y, y Co z ⇒ x Co z 12) x · y Cl z · t, x Cl z, [x] ≠ 0 ⇒ y Cl t

6) x Ne y, y Ne z ⇒ x Ne z  13) x · y Cl z · t, x Ne z, [z] ≠ 0 ⇒ t Ne y

7) x Co y, y Cl z ⇒ x Co z  14) x · y Ne z · t, z Ne x, [x] ≠ 0 ⇒ y Ne t.

Note that both Cl and Co are equivalence relations (i.e., reflexive, symmetric and transitive),
with Co coarser than Cl. The FOG rules, which can be justified from the point of view of
Non-Standard Analysis, describe how the three relations work together and allow for the
propagation of initial qualitative information. Most of the rules have an explicit intuitive
interpretation and need no explanation. Note that they are not independent (e.g., rules 2 and 5
⇒ rule 7). Note that FOG has been used successfully in the DEDALE system of analog

circuit diagnosis (Dague et al., 1987), and in macroeconomics (Bourgine and Raiman, 1986).
Nevertheless, FOG has several limitations, as announced in the introduction:

• No standard numerical interpretation of the three relations Ne, Cl and Co is provided in this
approach. It may create interface problems with genuine numerical values. It does not allow
for the incorporation of quantitative information such as the assessment of numerical
values. However, such information is often available and useful when solving engineering
problems. FOG cannot use this type of information because it does not relate numbers to
order of magnitude relations. Moreover FOG is unable to express a gradual change from
one order of magnitude to another in the computation process, due to the absence of gradual
transitions between the orders of magnitude (Dague, 1993).
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• FOG does not take into account the fact that the extent to which two numerical values
satisfy the relations Ne, Cl and Co is often a matter of degree and is also context-dependent
(for example, the relation 'negligible' does not mean the same thing in a preliminary-design
context and a detailed-design context).

• FOG cannot express that the relations are "weakly", or "strongly", transitive rather than just
transitive in the usual sense. For instance, if 'a is close to b' and 'b close to c', it is not so
true that we should conclude that 'a is close to c' in any case (at least with a too restrictive
acceptance of "close"). This exemplifies the weakening of transitivity. In order to avoid
undesirable transitivity effects and obtain results at least approximately valid with respect
to a numerical semantics, Raiman is obliged to introduce arbitrary limitations on the
chaining of rules (by means of control techniques).

The use of fuzzy relations for modeling relations Ne, Cl and Co can solve the above
problems, and provide numerical semantics to the symbolic calculus of orders of magnitude
performed by the FOG system.

3. Fuzzy Equalities and Inequalities

In this section, we consider particular fuzzy relations which are of interest in practice
in some forms of qualitative reasoning. Approximate equalities and strong inequalities (e.g.,
"much greater than") are examples of binary fuzzy relations which can be easily handled
using fuzzy arithmetic techniques. An approximate equality can be modelled by a fuzzy
relation E of the form µE(x,y) = µL(|x – y|). For instance:

µE(x,y) = 1 if |x – y| ≤ δ;
µE(x,y) = 0 if |x – y| ≥ δ + ε;

µE(x,y) = (δ + ε – |x – y|) / ε otherwise (1)

where δ and ε are respectively positive and strictly positive parameters which modulate the

approximate equality. Then the approximate equality of quantities a and b (in the sense of E)
will be denoted by:

a – b ∈ L (2)

with the following intended meaning: the possible values of the difference a – b are restricted
by the fuzzy set L. Here L is a fuzzy set centered in 0, i.e., µL(d) = µL(–d), or if we prefer
µE(x,y) = µE(y,x). See Figure1. It ensures the symmetry of the approximate equality relation.

Classical equality is recovered for δ = 0 and ε → 0. We shall write equivalently (a,b) ∈ E(δ,ε)

(⇔ (b,a) ∈ E(δ,ε)). Moreover (a,b) ∈ E(δ,ε) ⇔ (a – b, 0) ∈ E(δ,ε).

Similarly a more or less strong inequality can be modelled, for instance, by a relation I
of the form:
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µI(x,y) = 1 if x ≥ y + λ + ρ;

µI(x,y) = 0 if x ≤ y + λ;

µI(x,y) = (x – y – λ) / ρ otherwise (3)

with λ ≥ 0 and ρ > 0. A constraint of the form 'a is slightly / moderately /…/ much larger than
b' (in the sense of I) can then be written, with µI(x,y) = µK(x – y):

a – b ∈ K (4)

where K is a fuzzy interval such that K = [K,+∞), where µ[K,+∞)(t) = sups≤t µK(s)). It means

that K identifies itself with the set of values equal or greater than a value restricted by K. See
Figure1. According to the values of parameters λ and ρ, the modality which specifies how

much a is larger than b may be linguistically expressed by "slightly", "moderately",
"much",…, in a given context. When λ = 0 and ρ → 0 the usual inequality relations '>' or '≥'

are recovered. We shall write (a,b) ∈ I(λ,ρ) equivalently to a – b ∈ K.

The composition of two fuzzy relations E and I, with µI(x,y) = µK(x – y) et µE(y,z) =
µL(y – z) is defined by:

∀x, ∀z, µEôI(x,z) = supy∈Y min(µK(x – y), µL(y – z))
=       sups,t   min(µK(s), µL(t))
        x–z=s+t
= µK⊕L(x – z), (5)

where ⊕ denotes the addition extended to fuzzy intervals (e.g., Dubois and Prade, 1987).

Indeed arithmetic operations are extended to fuzzy quantities in the following way:

µK©L (u) =  sups,t  min(µK(s), µL(t)),
                        u=s∗t

where © denotes the extension of the arithmetic operation ∗ to fuzzy sets of the real line.

Note that if K and L have trapezoidal membership functions, i.e., K = (k1, k2, k3, k4)
where [k1, k4] is the support of µK and [k2, k3] is the core of µK, and L = (l1, l2, l3, l4), with

a similar understanding of the components of the 4-tuple, then K ⊕ L = (k1 + l1, k2 + l2,

k3 + l3, k4 + l4) et K Á L = (k1 – l4, k2 – l3, k3 – l2, k4 – l1). In the Figure 1, L =
(–δ–ε, –δ, δ, δ + ε), Κ = (λ, λ + ρ, +∞, +∞) and L ⊕ K = (λ – δ – ε, λ + ρ – δ, +∞, +∞). For

more details about fuzzy arithmetic, see (Dubois and Prade, 1987).
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Let us take an example. If we know for instance that: 'a is approximately equal to b' (i.e.,
a – b ∈ L) and that 'b is much greater than c' (i.e., b – c ∈ K), using (5) we can deduce that

a – c ∈ L ⊕ K. This result is represented in Figure 1. Symbolically, this inference can be

written:
(a,b) ∈ Ε(δ,ε) and (b,c) ∈ I(λ,ρ) ⇒ (a,c) ∈ I(λ – δ – ε, ρ + ε) (6)

which means that if a and b are approximately equal (in the sense of the approximate equality
relation E defined with parameters δ et ε) and b is (more or less) larger than c (in the sense of

the fuzzy inequality relation I defined with parameters λ and ρ) then we infer that a is (more

or less) larger than c (in the sense of of the fuzzy relation I defined with parameters λ – δ – ε
and ρ + ε). Note that I(λ – δ – ε, ρ + ε) means 'larger than' only if λ – δ – ε > 0, strictly

speaking. Otherwise if λ – δ – ε ≤ 0, it is at least somewhat possible that a is not greater than

c, when (a,c) ∈ I(λ – δ – ε, ρ + ε); and it is fully possible that a is not greater than c, if λ + ρ –

δ ≤ 0. Note also that (a,b) ∈ I(λ,ρ) ⇔ (a – b, 0) ∈ I(λ,ρ).

In the same way, we can justify the following inference rules:

(a,b) ∈ Ε(δ,ε) and (b,c) ∈ E(δ',ε') ⇒ (a,c) ∈ E(δ + δ', ε + ε'), (7)
(a,b) ∈ I(λ,ρ) and (b,c) ∈ I(λ',ρ') ⇒ (a,c) ∈ I(λ + λ', ρ + ρ'). (8)

Other rules expressing the behavior of fuzzy relations E and I with respect to arithmetic
operations can be easily derived. For instance, we have

(a,b) ∈ Ε(δ,ε) ⇒ (a + c, b + c) ∈ E(δ,ε) (9)
(a,b) ∈ I(λ,ρ) ⇒ (a + c, b + c) ∈ I(λ,ρ) (10)
(a,b) ∈ Ε(δ,ε) and (c,d) ∈ E(δ',ε') ⇒ (a + c, b + d) ∈ E(δ + δ', ε + ε') (11)

(a,b) ∈ I(λ,ρ) and (c,d) ∈ I(λ', ρ' ) ⇒ (a + c, b + d) ∈ I(λ + λ', ρ + ρ' ) (12)
(a,b) ∈ Ε(δ,ε) and (c,d) ∈ I(λ,ρ) ⇒ (a + c, b + d) ∈ I(λ – δ – ε,ρ + ε) (13)
(a + b, c) ∈ Ε(δ,ε) and (a,b) ∈ I(λ,ρ) ⇒ (a, c – a) ∈ I(λ – δ – ε, ρ + ε) (14A)
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(a + b, c) ∈ E(δ,ε) and (a,b) ∈ I(λ,ρ) ⇒ (c – b, b) ∈ I(λ – δ – ε, ρ + ε) (14B)

(a + b, c) ∈ I(λ,ρ) and (c,a) ∈ I(λ',ρ') ⇒ (b,0) ∈ I(λ + λ', ρ + ρ') (15)
(a + b, c) ∈ Ε(δ,ε) and (a,c) ∈ E(δ',ε') ⇒ (0,b) ∈ E(δ + δ', ε + ε') (16)
(a + b, c) ∈ E(δ,ε) and (c,a) ∈ I(λ,ρ) ⇒ (b,0) ∈ I(λ – δ – ε, ρ + ε) (17)
(a – c, b) ∈ Ε(δ,ε) and (c,a) ∈ E(δ',ε') ⇒ (0,b) ∈ E(δ + δ', ε + ε') (18)

(a + b, c + d) ∈ E(δ,ε) and (c,a) ∈ E(δ',ε') ⇒ (b,d) ∈ E(δ + δ', ε + ε') (19)

(a + b, c + d) ∈ I(λ,ρ) and (c,a) ∈ E(δ,ε) ⇒ (b,d) ∈ I(λ – δ – ε, ρ + ε) (20)

(a + b, c + d) ∈ I(λ,ρ) and (c,a) ∈ I(λ',ρ') ⇒ (b,d) ∈ I(λ + λ', ρ + ρ') (21)

Proof: Let us look at the proof of some of these inference rules.

• The left side of (11) can be written under the form, with L' = (–δ'–ε', –δ', +δ', δ' + ε')
supx,y,z,t min (µE(δ,ε)(x,y), µE(δ',ε')(z,t))

                u=x+z; v=y+t
=      supx,y,z,t      min (µL(x – y), µL' (z – t)) = µL⊕L' (u – v).

        u–v=(x–y)+(z–t)

This last result implies that (a + c, b + d) ∈ E(δ + δ', ε + ε').

• Rule (17) can be established noticing that

supx,z min(µE(x + y, z), µI(z,x))

                                                 = supx,z min(µL(x + y – z), µK(z – x))

                                              = µL⊕K(y), observing that y=(x+y–z)+(z–x).

Thus, we conclude that (b,0) ∈ I(λ – δ – ε, ρ + ε) when (a + b, c) ∈ E(δ,ε) and (c,a) ∈
I(λ,ρ). Note that it is certain that b > 0 only if λ – δ – ε > 0.

• Now, considering rule (20), the composition of relations (a + b, c + d) ∈ I(λ,ρ) and (c,a) ∈
E(δ,ε) is given by

supx,z min(µI(x + y, z + t), µE(z,x))
  = supx,z min(µK((x + y) – (z + t)), µL(z – x))

           = µK⊕L(y – t), observing that y–t=[(x+y)–(z+t)]+(z–x).

This means that (b,d) ∈ I(λ – δ – ε, ρ + ε).

The rules (9)-(21) are not independent. (9)-(10) are particular cases of (11)-(12) replacing
(c,d) by (c,c), noticing that (c,c) ∈ E(0,0) and (c,c) ∈ I(0,0). Similarly, (16) and (15) are

particular cases of (19) and (21) respectively for d = 0. Rule (18) can be obtained from (16)
by noticing that (a – c, b) ∈ E(δ,ε) ⇔ (a, b + c) ∈ E(δ,ε) and (a,c) ∈ E(δ',ε') ⇔ (c,a) ∈
E(δ',ε'). Besides, rule (17) can be generalized into the rule

(a + b, c + d) ∈ E(δ,ε) and (c,a) ∈ I(λ,ρ) ⇒ (b,d) ∈ I(λ – δ – ε, ρ + ε).

Then, letting a + b = C, c + d = A, c = A + B, a = C + D, we obtain
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(C,A) ∈ E(δ,ε) and (A + B, C + D) ∈ I(λ,ρ) ⇒ (–D, –B) ∈ I(λ – δ – ε, ρ + ε)

which is nothing but (20), noticing that (–d, –b) ∈ I(λ',ρ') ⇔ (b,d) ∈ I(λ',ρ') always holds. y

As it can be seen, arithmetic computations on fuzzy numbers are mirrored at a
symbolic level by inference rules which exhibit formal manipulations of the parameters
underlying the approximate equality and inequality relations. The fuzzy number-based
interpretation of these relations provides a natural semantics, and interfaces the symbolic level
with the numerical one. From these inference rules, new conclusions can be symbolically
drawn, still keeping the ability to interpret the obtained result numerically. For instance, from
(7) and the equivalence (a + b, c) ∈ E(δ,ε) ⇔ (a, c – b) ∈ E(δ,ε), we can conclude for

instance that

if (a – c, b) ∈ Ε(δ,ε) and (d + b, c) ∈ E(δ',ε') then (a – c, c – d) ∈ E(δ + δ', ε + ε').

Lastly, let us recall that this kind of fuzzy relations (i.e., relations E and I) can offer a useful
setting for representing and processing temporal knowledge (Dubois and Prade, 1989b). For
instance

• Knowing that the date 'b' takes place "much after" the date 'a' is represented by π(a,b)(x,y) =
µI(y,x), where I is defined by (3) and where the meaning of "much" is modelled by means

of the parameters λ and ρ. π(a,b) is the joint possibility distribution expressing the

precedence relations between dates a and b.

• Knowing that dates 'a' and 'b' are "approximately equal" is represented by π(a,b)(x,y) =
µE(x,y), where E is defined by (1) and where the meaning of "approximately" is modelled

by means of the parameters δ and ε.

Let us consider an example of reasoning involving temporal knowledge, where we have the
following information about dates a, b, c and d:

i) dates a and b almost coincide (in the sense of E(δ,ε));

ii) dates b and c are "approximately equal" (in the sense of E(δ',ε'));

iii) date a + b takes place "much after" date c + d (in the sense of I(λ,ρ)).

Let us consider the question: What can be said about date b with respect to d? Information in
(i)-(iii) can be represented respectively by the following relations:

i) (a,b) ∈ E(δ,ε) or (b,a) ∈ E(δ,ε);
ii) (b,c) ∈ E(δ',ε');
iii) (a + b, c + d) ∈ I(λ,ρ).

By the transitivity rule (7), we obtain (a,c) ∈ E(δ + δ', ε + ε'). Since E is symmetric, this last
result implies that (c,a) ∈ E(δ + δ', ε + ε'). Rule (20), applied to this last relation and to the
relation in (iii), enables us to conclude that
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(b,d) ∈ I[λ – (δ + δ') – (ε + ε'), ρ + (ε + ε')].

This means that date b is "much after" date d, where the meaning of "much" is modelled by
means of parameters λ' = λ – (δ + δ') – (ε + ε') and ρ' = ρ + (ε + ε'), provided that λ' > 0.

4. Symbolic reasoning with fuzzy negligibility and closeness relations

4.1. Modeling closeness and negligibility

In the previous section, we have seen that some relational order of magnitude
information can be expressed in practice by fuzzy relations whose membership functions
depend on difference of values. If we prefer, we can also work in terms of the ratio x/y, rather
than in terms of the difference x – y, especially when both x and y are positive. Then an
approximate equality is modelled by a fuzzy relation µE(x,y) = µM(x / y) where M is a fuzzy
interval such as µM(1) = 1, i.e., M represents a "fuzzy one". More or less strong inequality

relations can be obtained by sustituting x / y to x – y in definition (3) of µK, i.e., µI(x,y) =
µK(x / y). The use of ratios look natural for the modeling of negligibility relations. When µK

and µL are functions of x / y (instead of x – y), we obtain µIôE(x,z) = µK⊗L(x / z) instead of

(5), where ⊗ denotes the product extended to fuzzy numbers. In the following, we shall omit

'⊗' when writing products.

As pointed out by Dubois and Prade (1989a), the idea of relative closeness (Cl) can be
captured by the following approximate equality relation between numbers x and y:

µCl(x,y) = µM(x / y) (22)

where the characteristic function µM is such that µM(1) = 1 (since x is close to x), µM(t) = 0 if
t ≤ 0 (since two numbers which are close should have the same sign), and µM(t) = µM(1 / t) in
order to ensure that µCl(x,y) = µCl(y,x). In other words, M is a fuzzy interval which restricts

values around 1 and which is equal to its "inverse", M–1 which is defined by µ
M–1(t) =

supt=1/s µM(s) = µM(1 / t). Thus, we have the semantic equivalence

(a,b) ∈ Cl ⇔ (b,a) ∈ Cl. (23)

Strict equality is recovered for M = 1, i.e., µ1(x/y) = 1 if x = y and µ1(x/y) = 0 otherwise.

Raiman, in his inference system FOG, relates the ideas of closeness and of
negligibility in the following way: 'a is close to b' is equivalent to 'a – b is negligible in
comparison with b'. In other words, 'a is negligible in comparison with b' if and only if 'a + b
is close to b' (see rule 8 of FOG). It leads to define the extent to which x is negligible in
comparison with y, by
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µNe(x,y) = µM((x + y) / y) = µM(1 + x / y). (24)

By definition, if a, b, c > 0 then the following equivalence hold, ∀c:

(a,b) ∈ Cl ⇔(ac,bc) ∈ Cl,
(a,b) ∈ Ne ⇔ (ac,bc) ∈ Ne.

The third relation Co is such that (see rule 2 of FOG): a Cl b ⇒ a Co b, which means that
comparability is a less restrictive notion than closeness. Note that it is desirable to have not
only the fuzzy relation inclusion Cl ⊆ Co but also to express that a and b are no longer
comparable (in the sense of Co) when a becomes negligible in comparison with b, or b
becomes negligible in comparison to a. This leads to the definition:

((a,b) ∈ Co ⇔ ¬ [(a,b) ∈ Ne or (b,a) ∈ Ne])
i.e., µCo(x,y) = 1 – max(µNe(x,y), µNe(y,x))

= min(1 – µM(1 + x / y), 1 – µM(1 + y / x)). (25)

However, in the rest of the paper, we only consider rules involving the more basic relations Cl
and Ne.

4.2. Inference rules with Cl and Ne relations

In the following we show that it is possible to develop inference rules where the fuzzy
sets which parametrize the closeness and negligibility relations are manipulated at a symbolic
level. The use of fuzzy relations can provide, as we shall see, an appropriate numerical
semantics to the order of magnitude symbolic calculus performed by the formal system FOG.
From now on, we use the notations Cl[M] and Ne[M] in order to express that Cl (resp. Ne) is
defined from a membership function µM by (22) (resp. (24)). Using fuzzy arithmetic, the

following inference rules can be established (Dubois and Prade, 1989a, 1991):

(a,b) ∈ Ne[M] ⇔ (a + b, b) ∈ Cl[M] (26)

(a,b) ∈ Cl[M] ⇔ (a – b, b) ∈ Ne[M] (27)

(a,b) ∈ Ne[M] ⇔ (–a,b) ∈ Ne[2 Á M] (28)

(a, a + b) ∈ Ne[M] ⇔ (b, a + b) ∈ Cl[2 Á M] (29)

(a,b) ∈ Cl[M] and (b,c) ∈ Cl[N] ⇒ (a,c) ∈ Cl[MN] (30)

(a,b) ∈ Ne[M] and (b,c) ∈ Ne[N] ⇒ (a,c) ∈ Ne[(M Á 1)(N Á 1) ⊕ 1] (31)

(a,b) ∈ Cl[M] and (b,c) ∈ Ne[N] ⇒ (a,c) ∈ Ne[M(N Á 1) ⊕ 1] (32)

(a,c) ∈ Cl[M] and (b,a) ∈ Ne[N] ⇒ (a + b, c) ∈ Cl[MN] (33)

(a,c) ∈ Cl[M] and (b,c) ∈ Ne[N] ⇒ (a + b, c) ∈ Cl[M ⊕ N Á 1] (34)

(a,c) ∈ Ne[M] and (b,c) ∈ Ne[N] ⇒ (a + b, c) ∈ Ne[M ⊕ N Á 1] (35)

(a,b) ∈ Cl[M] and (c,d) ∈ Ne[N] ⇒ (a · c, b · d) ∈ Ne[M(N Á 1) ⊕ 1] (36)

(a,b) ∈ Ne[M] and (c,d) ∈ Ne[N] ⇒ (a · c, b · d) ∈ Ne[(M Á 1)(N Á 1) ⊕ 1] (37)

(a,b) ∈ Cl[M] and (c,d) ∈ Cl[N] ⇒ (a · c, b · d) ∈ Cl[MN] (38)
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(a + b, c) ∈ Cl[M] and (b,a) ∈ Ne[N] ⇒ (a,c) ∈ Cl[MN]. (39)

Most of these rules have counterparts in the FOG system. For instance, the rules (30)-(32) and
(39) are the counterparts of the following rules of FOG:

(a,b) ∈ Cl and (b,c) ∈ Cl ⇒ (a,c) ∈ Cl,

  (a,b) ∈ Ne and (b,c) ∈ Ne ⇒ (a,c) ∈ Ne,

 (a,b) ∈ Cl and (b,c) ∈ Ne ⇒ (a,c) ∈ Ne,

       (a + b, c) ∈ Cl and (b,a) ∈ Ne ⇒ (a,c) ∈ Cl.

The fuzzy relations approach shows that these rules are only "qualitatively valid". The
repeated use of some of these rules without control can lead to dubious conclusions. Fuzzy
relations enable us to acknowledge that the relation Cl is “weakly transitive” (since for M =
N, Cl[M] ⊆ Cl[M2], i.e., 'a may be less close to c' than 'a is close to b'), and that the relation

Ne is “strongly transitive” (since for M = N, Ne[M] ⊇ Ne[(M Á 1)(M Á 1) ⊕ 1], i.e., 'a is

more negligible in comparison with c' than 'a in comparison with b', and 'b with c').

In order to equip all the rules of FOG with numerical semantics, we propose new
inference rules (not studied in Dubois and Prade (1989a)) involving the product of the
considered quantities:

(a · b, c · d) ∈ Ne[M] and (c,a) ∈ Ne[N] ⇒ (b,d) ∈ Ne[(M Á 1)(N Á 1) ⊕ 1] (40)

(a · b, c · d) ∈ Cl[M] and (c,a) ∈ Cl[N] ⇒ (b,d) ∈ Cl[MN] (41)

(a · b, c · d) ∈ Cl[M] and (a,c) ∈ Ne[N] ⇒ (d,b) ∈ Ne[M(N Á 1) ⊕ 1] (42)

Proof:

• The composition of relations (a · b, c · d) ∈ Ne[M] and (c,a) ∈ Ne[N] can be written under

the form:

   supx,z min (µNe[M](x · y, z · t), µNe[N](z,x))

                               = supx,z min(µM(1 + [x · y / z · t]), µN(1 + z / x))

                               =       supu, v               min(µM(u), µN(v)), letting
 
u=1+[x·y/z·t] and v=1+z/x

                      (u-1)(v–1)+1=1+y/t
                               = µ[(M Á1)(NÁ1)⊕1] (1 + y / t).

   This implies that (b,d) ∈ Ne[(MÁ 1)(NÁ 1) ⊕ 1].

• In the same way, we can establish rules (41) and (42). Considering the rule (42), the
composition of relations (a · b, c · d) ∈ Cl[M] and (a,c) ∈ Ne[N] can be written under the

form:

supx,z min (µCl[M] (x · y, z · t), µNe[N](x,z))

                = supx,z min(µM(x · y / z · t), µN(1 + x / z))

                = supx,z min(µM(z · t / x · y), µN(1 + x / z))

                =         supu, v     min(µM(u), µN(v)), letting u=z·t/x·y and v=1+x/z
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             u(v–1)+1=1+t/y

                = µ[M(NÁ1)⊕1](1 + t / y).

This latter result implies that (d,b) ∈ Ne[M(NÁ 1) ⊕ 1].  y

The syntactic approximations of rules (40), (41) and (42) are given by the following
FOG's rules:

(a · b, c · d) ∈ Ne and (c,a) ∈ Ne ⇒ (b,d) ∈ Ne

(a · b, c · d) ∈ Cl and (a,c) ∈ Cl ⇒ (b,d) ∈ Cl

(a · b, c · d) ∈ Cl and (a,c) ∈ Ne ⇒ (d,b) ∈ Ne.

In the following, we show that it is possible to derive other symbolic inference rules which
are not explicit in the formal system FOG. First, we start with simple rules whose premises
are not compound, namely

(a, a · b) ∈ Ne[M] ⇒ (1 + b, b) ∈ Cl[M] if a ≠ 0 (43)

(a, a · b) ∈ Cl[M] ⇒ (1,b) ∈ Cl[M] if a ≠ 0 (44)

(a – b, a) ∈ Ne[M] ⇒ (b,a) ∈ Cl[2 Á M] (45)

(a – b, a) ∈ Cl[M] ⇒ (b,a) ∈ Ne[2 Á M]. (46)

These rules can be easily proved by using the definitions of relations Cl and Ne given in (22)
and (24) respectively.

More complex rules expressing the behavior of the relations Cl[M] and Ne[N] with
respect to arithmetic operations (addition, subtraction and product) either in the premise or in
the conclusion, can be derived as well

(a,c) ∈ Ne[M] and (b,a) ∈ Ne[N] ⇒ (a + b, c) ∈ Ne[(M Á 1)N ⊕ 1] (47)

(a,b) ∈ Ne[M] and (c,b) ∈ Ne[N] ⇒ (a, b + c) ∈ Ne[(M Á 1)N ⊕ 1] (48)

(a · b, c · d) ∈ Ne[M] and (a,c) ∈ Cl[N] ⇒ (b,d) ∈ Ne[(M Á 1)N ⊕ 1] (49)

(a + b, c) ∈ Cl[M] and (b,c) ∈ Cl[N] ⇒ (a,c) ∈ Ne[M Á N ⊕ 1] (50)

(a + b, c) ∈ Cl[M] and (b,c) ∈ Ne[N] ⇒ (a,c) ∈ Cl[M Á N ⊕ 1] (51)

(a + b, c) ∈ Ne[M] and (b,c) ∈ Ne[N] ⇒ (a,c) ∈ Ne[M Á N ⊕ 1] (52)

(a – b, c) ∈ Cl[M] and (b,a) ∈ Ne[N] ⇒ (c,a) ∈ Cl[M(2 Á N)] (53)

(a – b, c) ∈ Cl[M] and (a,c) ∈ Cl[N] ⇒ (b,c) ∈ Ne[N Á M ⊕ 1] (54)

(a – b, c) ∈ Ne[M] and (a,c) ∈ Cl[N] ⇒ (b,c) ∈ Cl[N Á M ⊕ 1] (55)

(a – b, c) ∈ Cl[M] and (b,c) ∈ Ne[N] ⇒ (a,c) ∈ Cl[M ⊕ N Á 1]. (56)

Proof: Let us look at the proof of some of these rules:

• Rule (47) can be established noticing that

supx,y min(µNe[M](x,z), µNe[N](y,x))
                   

x+y=w

= supx,y min(µM(1 + x / z), µN(1 + y / x))
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x+y=w

=        supu,v        min(µM(u), µN(v)), letting u=1+x/z and v=1+y/x
     (u–1)v+1=1+w/z

= µ(MÁ1)N⊕1](1 + w / z).

    This means that (a + b, c) ∈ Ne[(MÁ1)N ⊕ 1].

Rule (48) can be obtained similarly noticing that 1 + xy  – 1
y

y + z + 1 = 1 + x
y + z and using

µN 1 + zy  = µN
y

y + z .

• The result of rule (50) can be easily obtained noticing also that

supy min(µCl[M] (x + y, z), µCl[N](y,z))
= supy min(µM((x + y) / z), µN(y/x))
= µ[MÁN⊕1](1 + x / z), observing that 1+(x/z)=[(x+y)/z]–(y/z)+1.

Then we conclude that (a, c) ∈ Ne[MÁ N ⊕ 1].

• In rule (53), the composition of relations (a – b, c) ∈ Cl[M] and (b,a) ∈ Ne[N] leads to

supy min(µCl[M] (x – y, z), µNe[N](y,x))
= supy min(µM((x – y) / z), µN(1 + y / x))
= supy min(µM(z / (x – y)), µN(1 + y / x))
=     supu,v    min(µM(u), µN(v)), letting u=z/(x–y) and v=1+y/x

      u(2–v)=z/x

= µ[M(2ÁN)](z/x).

This expresses that (c, a) ∈ Cl[M(2 Á N)].   y

5. Propagation of Relative Orders of Magnitude: Some Examples

In this section, we show that the previous inference rules can be useful for solving
equations in an approximate way. Such equations involve arithmetic expressions and order of
magnitude relations (expressed in terms of parametrized relations Cl and Ne).

Example 1: The following relations are supposed to be known to hold:

(c · d, a · b) ∈ Cl[M]; (a + c, c) ∈ Cl[N]; (d / b, f / e) ∈ Cl[P].

The problem is to compare the orders of magnitude of quantities e and f. The following
relations can be easily obtained:

(a · b, c · d) ∈ Cl[M] (since the relation Cl is symmetrical)

(a,c) ∈ Ne[N] (using the definition of Ne in terms of Cl, i.e., rule (27))
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By applying rule (42), we can deduce that (d,b) ∈ Ne[M(N Á 1) ⊕ 1]. The relation

(d / b, f / e) ∈ Cl[P] implies that (d · e, b · f) ∈ Cl[P]. Rule (42), based on this latter relation

and (d,b) ∈ Ne[Q] with Q = M(N Á 1) ⊕ 1, enables us to conclude that (f,e) ∈ Ne[PM(N Á

1) ⊕ 1]. If we start with classical equalities, i.e., a · b = c · d and d / b = f / e, then letting M =

1 and P = 1, it leads to (f,e) ∈ Ne[N]. Now, if the parameter e = 100, then we can come up

with an estimate of the parameter f under the form of a fuzzy number F, namely:

µF(x) = µNe[N](x,100) = µN(1 + x / 100) = µ[100(NÁ1)](x)

i.e., F = 100(N Á 1), which can be easily computed. This illustrates that fuzzy relations can
provide a natural framework for interfacing symbolic information and numerical data.

Example 2: (taken from Mavrovouniotis and Stephanopoulos (1988))

(d,b) ∈ Ne[M]; (b,c) ∈ Ne[N]; (e,g) ∈ Ne[P];

a – b – c – d = 0; a · e · f – c · g · h = 0.

The question now is to compare the values of f and h. By applying rule (26), we get
(d + b, b) ∈ Cl[M]. Substituting a – c to d + b (because a – b – c – d = 0), we obtain (a – c,

b) ∈ Cl[M]. Rule (32), based on this latter relation and (b, c) ∈ Ne[N], enables us to deduce

that (a – c, c) ∈ Ne[M(N Á 1) ⊕ 1]. This relation implies that (a,c) ∈ Cl[M(N Á 1) ⊕ 1].

Using rule (36), we get (a · e, c · g) ∈ Ne[Q(P Á 1) ⊕ 1], with Q = M(N Á 1) ⊕ 1. Since

(a · e / c · g) = h / f, the pair (h,f) should satisfy the same fuzzy relation, i.e., (h,f) ∈ 
Ne[Q(P Á 1) ⊕ 1]. This example can be solved using other inference rules. For example, the

chaining of rules (31), (35) and (27) enables us to obtain (a,c) ∈ Cl[R ⊕ N], with R =

(M Á 1)(N Á 1); then using rule (36) we get (a · e, c · g) ∈ Ne[(R ⊕ N)(P Á 1) ⊕ 1] and

finally (h,f) ∈ Ne[(R ⊕ N)(P Á 1) ⊕ 1].

Generally, different results (some less restrictive than others) can be obtained from
different chainings of inference rules, as suggested by the above example. The conjunctive
combination of these partial results restricting the possible values of a ratio of interest enables
us to refine the conclusion. Note that the most restrictive result would be obtained by
applying the combination/projection method (Zadeh, 1979), because in this approach all the
existing constraints are exploited. Nevertheless, this approach can be computationally
untractable in practice, and no explanation can be provided for the obtained results using such
a global handling of the constraints.

Example 3: Let us now consider a practical example of a counter-current heat exchanger as
described in (Mavrovouniotis and Stephanopoulos, 1988). The important parameters in the
analysis of the device are the molar-heat KH and the molar-flowrate FH of the hot stream, and
the molar-heat KC and the molar-flowrate FC of the cold stream. Four temperature
differences are defined: DTH is the temperature drop of the hot stream, DTC is the
temperature rise of the cold stream, DT1 is the driving force at the left end of the device, and
DT2 is the driving force at the right end of the device. The two following equations hold

(e1) DTH – DT1 – DTC + DT2 = 0
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(e2) DTH · KH · FH = DTC · KC · FC.

The first one is a consequence of the definition of the temperature differences, and the second
one is the energy balance of the device. Let us take the following assumptions expressed as
orders of magnitude relations

(i) (DT2, DT1] ∈ Cl[M]

(ii) (DT1, DTH) ∈ Ne[N]

(iii) (KC, KH) ∈ Cl[P].

The problem now is to deduce the relation between the parameters FC and FH. Rule (32),
based on the relations (i) and (ii) enables us to obtain

(DT2, DTH) ∈ Ne[M(N Á 1) ⊕ 1].

The following inferences are easily obtained as well

(DT1, DTH) ∈ Ne[N] ⇒ (– DT1, DTH) ∈ Ne[2 Á N] (by rule (28))

(DT2, DTH) ∈ Ne[M(N Á 1) ⊕ 1] and (–DT1, DTH) ∈ Ne[2 Á N]

⇒ (DT2 – DT1, DTH) ∈ Ne[M(N Á 1) ⊕ 2 Á N] (by rule (35)).

In the latter result, we can substitute DTC – DTH to DT2 – DT1 using equation (e1), we get

(DTC – DTH, DTH) ∈ Ne[M(N Á 1) ⊕ 2 Á N].

Then applying rule (27), we get

(DTC, DTH) ∈ Cl[M(N Á 1) ⊕ 2 Á N].

Rule (38), based on this relation and relation (iii) enables us to conclude that

(DTC · KC, DTH · KH) ∈ Cl[(M(N Á 1) ⊕ 2 Á N)P]

and finally since DTC · KC / DTH · KH = FH / FC, see equation (e2), the pair (FH, FC)
should satisfy the same fuzzy relation, i.e.,

(FH, FC) ∈ Cl[(M(N Á 1) ⊕ 2 Á M)P].

6. Conclusion

Fuzzy relations can provide an appropriate semantics for inference rules about relative
orders of magnitude. Each rule has a precise interpretation in terms of fuzzy sets. The
composition of relations Ne[M] and Cl[N] reduces to simple arithmetic operations on the
fuzzy numbers M and N. Moreover, the fuzzy relations calculus enables us to reason about
closeness and negligibility in a rigorous way without being obliged to introduce arbitrary
limitations on the chaining of rules (by means of control techniques) in order to avoid
undesirable transitivity effects for instance. The approach is faithful to the gradual nature of
comparators. Another clear advantage of the use of fuzzy relations is that it enables us to
interface numbers with symbolic information in a convenient way as hinted in example 1.
Thus, it provides an example of computing with the words 'negligible' and ' close to' in a



Fuzzy Qualitative Reasoning with Words (D. Dubois, A. Hadj-Ali, H. Prade) 17

symbolic manner, in full agreement with the numerical semantics underlying these words. As
briefly suggested in Section 3, a similar approach based on other fuzzy relations could be also
developed in temporal reasoning (where approximate equalities or fuzzy ordering relations
can apply to dates), or even in spatial resoning.

A noticeable feature of the approach is the separation of the symbolic processing of
the labels of the inferred relations from the expression of their semantics in terms of their
membership functions. It is why it is important to always check that the produced conclusions
are semantically meaningful, e.g. that the obtained relation of closeness is not too permissive.
If a relation Ne[P] of negligibility is rather obtained, we should make sure that it is in
agreement with the intuitive semantics underlying this notion (e.g., µP(2) = 0, otherwise x
would be negligible with respect to itself, since µP(1 + x / x) = µP(2)). Indeed even if we start

with relations having semantically meaningful parameters, it may happen that after several
chainings of the rules, the result is no longer a closeness or a negligibilty relation semantically
speaking, in spite of its appearance at the syntactic level.

Future works should deal especially with: i) the conception of a complete system of
inference rules (for particular types of equations systems, for example, linear equations
involving only addition and subtraction operations, and product by a constant); ii) the choice
of a set of formal computation rules which enables us to write equations in a suitable way
when necessary (since the form of equations can interfere with the possibility of applying
inference rules); iii) to implement this system and the set of computation rules in order to
obtain automated strategies for simplifying equations involving relative orders of magnitude
relations and arithmetic expressions. This should be useful for solving numerical equations, in
an approximate way, for physico-chimical systems, or for the qualitative calculus of
probabilities (Dubois and Prade, 1991; Dubois et al., 1993).

Finally, it should be also emphasized that reasoning with relative orders of magnitude
can be seen as a particular type of fuzzy Constraint Satisfaction Problems (Dubois, Fargier
and Prade, 1996), which may provide a source of inspiration for the implementation. Thus,
there is a balance to find between a minimal complete set of rules and a larger set of rules
exhibiting some redundancy, but offering more possibilities of being applicable to a given set
of constraints. See (Hadj-Ali et al., 1998; Dubois et al., 1999) for the study of a reduced set of
rules from which all the rules provided in Section 4 can be derived. Moreover it is possible to
approximate all these rules using symmetrical fuzzy numbers as parameters (e.g. in terms of
MN, if both M and N are symmetrical); a method for establishing the inconsistency of a set of
hypotheses w.r.t. a set of equations, is also hinted (see Hadj-Ali et al., 1999).
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