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Abstract

We evaluate Weibull’s approach and the coupled criterion (CC) ability to reproduce bending

failure stress variations as a function of specimen size in two porous materials, namely gypsum

or zinc oxyde. Whereas both approaches well reproduce the size effect in gypsum specimens,

only the CC succeeds in correctly predicting the failure stress variation for ZnO specimens.

We thus question the basis assumption of increasing critical flaw size with increasing specimen

size associated to Weibull’s approach. Employing the CC to predict prematurate specimen

failure initiating from a critical pore, we determine a relation between the failure force de-

crease and the corresponding possible critical pore size range. For the three tested gypsum

types, we estimate the critical pore size range to lie around 50-250 microns, not retrieving

increasing critical pore size with increasing specimen size, as assumed in Weibull’s approach,

but rather a constant critical pore size range for all specimens.

Keywords: Strength; porosity/flaw; size effect; Four-point bending; Coupled criterion ;

1. Nomenclature

a, b : constants

d : pore diameter

E : Young’s modulus

Fc : Failure force

Gc : Critical energy release rate

Ginc : Incremental energy release rate
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h : Specimen width

hd : Pore center to specimen edge distance

KIc : Critical stress intensity factor

l : Crack length

lc : Initiation crack length

lmat : Material characteristic length

Lspan : Four point bending lower span distance

lspan : Four point bending upper span distance

m : Weibull’s modulus

PF : Weibull’s model probability of failure

t : Specimen thickness

Uc : Initiation prescribed displacement

V : Specimen volume

V ′ : Specimen volume sollicitated under tension

VEFF : Specimen effective volume

V0 : Weibull’s model constant

vp : Pore volume fraction

W : Potential energy

x, y : Cartesian coordinates

ν : Poisson’s ratio

ρ : density

σ : opening stress

σc : tensile strength

σmax : maximum stress under bending

σ0 : Weibull’s model constant

CC : Coupled Criterion

LEFM : Linear Elastic Fracture Mechanics
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2. Introduction

Increasing bending strength (i.e., the maximum bending stress in the specimen at failure)

corresponding to decreasing specimen size is usually observed under bending. The bending

strength dependency on the specimen dimensions is called ”size effect”, which describes the

nominal failure stress variation as a function of a characteristic structure dimension. This

topic was extensively studied by Bazant et al. [1, 2, 3, 4]. They proposed to combine the

theory of plasticity and Linear Elastic Fracture Mechanics (LEFM) to reproduce deterministic

size effects. It was made possible since through the combination of both approaches, a

characteristic length emerges: EGc

σ2
y

, where E is the material Young’s modulus, Gc the critical

energy release rate and σy the yield limit.

An explanation of size effect based on the weakest link theory was earlier introduced by

Weibull [5, 6, 7]. This is a statistical description of failure relying on the fact that it occurs

due to the presence of a critical flaw inside the material in an area sollicitated under tension.

Moreover, it assumes that the smaller the specimen, the smaller the probability to encounter

a large critical flaw. Based on these assumptions, the failure probability is expressed as a

function of the specimen volume sollicitated under tension and the maximum local stress level.

Weibull’s approach was widely used to predict the strength of ceramic materials [8, 9, 10].

It was also shown that other statistical distribution functions could lead to a better fit of

the experimentally observed size effect [11], since Weibull’s description may predict either

weaker [8] or stronger [12] size effects than observed experimentally. Even if it is constructed

from mechanical considerations, this approach remains an empirical statistical description

that is not based on a mechanical description of failure. In particular, this approach does

not contain any material characteristic length [1].

An approach from which emerges a characteristic length is the coupled criterion (CC). It

was introduced by Leguillon [13] in order to predict crack initiation, which is not achieved

employing classical LEFM because of the assumption of a pre-existing crack. The CC con-

sists in combining stress and energy requirements to determine the initiation crack length

and loading. A characteristic length emerges from coupling both conditions, which allows

deterministic size effects to be assessed. The CC was successfully employed to describe size

effects in composites [13, 14, 15, 16], in notched or plain concrete specimens [17], in specimens
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with blunt notches [18, 19, 20] or holes [18, 20, 21, 22, 23, 24]. The size effect assessment by

the CC offered an alternative explanation to the statistical approach. Leguillon et al. [25]

even combined the CC and Weibull’s approach in order to explain the difference between the

bending and tensile strengths.

This work is dedicated to assess the ability of Weibull’s approach and the CC to reproduce

failure stress variation as a function of specimen size in gypsum and ZnO specimens under

four-point bending. Experiments are presented in Section 3. In Section 4, we recall both

approaches for size effect assessment, which is presented in Section 5. In section 6, we use the

CC in order to predict crack initiation from a critical pore and estimate the possible critical

pore range in the tested specimens.

3. Experiments

The size effect analysis is based on two series of experimental tests on gypsum [26] and

zinc oxide (ZnO) taken from [8].

3.1. Bending tests on gypsum

Three types of gypsum with different pore fraction vp, density ρ, Young’s modulus E

and Poisson’s ratio ν are studied [27, 28, 29]. They also exhibit different critical energy

release rates Gc and tensile strengths σc [26] and are referred to as γ-gypsum, α-gypsum and

β-gypsum. Gypsum samples are prepared by hydration of hemihydrate. Hemihydrate only

exists in two forms, alpha or beta, leading to alpha and beta gypsum after hydration. The

sample referred to as gamma gypsum is process by hydration of alpha hemihydrate with a

low amount of water. Their properties are given in Tab. 1.

gypsum type vp ρ (g/cm3) E (GPa) ν Gc (J/m2) σc (MPa)
γ 15 % 1.94 + 0.03 38 + 1 0.21 3.5 + 1.5 12.7 + 2
α 30 % 1.59 + 0.03 16 + 0.5 0.21 7.5 + 1.5 9.9 + 1.5
β 50 % 1.03 + 0.03 3.8 + 0.5 0.21 2.5 + 2 3.3 + 1

Table 1: Properties of the three types of gypsum.

Four-point bending tests are performed at ambient temperature on several specimens of

each gypsum type exhibiting different widths in order to assess a possible size effect. Two

bending apparatus respectively with (Lspan = 90.5 mm, lspan = 30 mm) and (Lspan = 35 mm,
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lspan = 10 mm) lower and upper span distance, are used depending on the specimen width.

The α-, β- and γ-gypsum specimen dimensions and corresponding failure forces (Fc) and

bending stresses (σmax) are given respectively in Tabs. 2, 3 and 4. The relation between

σmax and Fc is derived from Euler-Bernoulli beam theory:

Fc =
2

3

th2σmax
(Lspan − lspan)

, (1)

where t and h are respectively the specimen thickness and width.

Number of specimens α 10 8 21
h (mm) 4.01 + 0.15 5.23 + 0.15 10.05 + 0.33
t (mm) 3.03 + 0.07 10.17 + 0.32 10.25 + 0.38
ρ (g/cm3) 1.59 + 0.05 1.61 + 0.02 1.58 + 0.07
Fc (N) 16.25 + 1.18 37.39 + 2.48 122.75 + 16.05

σmax (MPa) 12.29 + 1.19 12.15 + 1.36 10.66 + 1.32
Lspan (mm) 35.00 90.50 90.50
lspan (mm) 10.00 30.00 30.00

Table 2: Dimensions, failure force Fc and bending stress σmax corresponding to α-gypsum specimens.

Number of specimens β 11 9 8 21
h (mm) 2.63 + 0.2 4.14 + 0.11 5.32 + 0.06 10.27 + 0.4
t (mm) 7.15 + 0.76 2.92 + 0.03 10.02 + 0.26 10.65 + 0.33
ρ (g/cm3) 1.02 + 0.03 1.05 + 0.02 1.05 + 0.04 1.05 + 0.03
Fc (N) 4.62 + 1.39 4.87 + 0.60 11.11 + 0.43 37.49 + 9.58

σmax (MPa) 3.48 + 0.76 3.47 + 0.45 3.16 + 0.54 3.22 + 0.84
Lspan (mm) 35.00 35.00 90.50 90.50
lspan (mm) 10.00 10.00 30.00 30.00

Table 3: Dimensions, failure force Fc and bending stress σmax corresponding to β-gypsum specimens.

Number of specimens γ 2 9 5 17
h (mm) 2.18 + 0.01 4.17 + 0.17 5.04 + 0.19 10.13 + 0.36
t (mm) 8.36 + 1.29 3.00 + 0.08 10.15 + 0.22 9.83 + 0.33
ρ (g/cm3) 1.94 + 0.01 1.94 + 0.04 1.93 + 0.04 1.95 + 0.04
Fc (N) 18.12 + 3.47 25.04 + 6.34 35.31 + 6.72 144.25 + 25.26

σmax (MPa) 16.94 + 0.74 16.43 + 2.06 12.82 + 2.18 12.94 + 1.84
Lspan (mm) 35.00 35.00 90.50 90.50
lspan (mm) 10.00 10.00 30.00 30.00

Table 4: Dimensions, failure force Fc and bending stress σmax corresponding to γ-gypsum specimens.

The measured failure stress decreases with increasing specimen width for the three types of

gypsum, hence highlighting a size effect. Therefore the bending strength cannot be considered
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Figure 1: Typical fracture surface of β-gypsum specimen containing spherical pores of different sizes and
located at different positions along the specimen width.

as an intrinsic material property since it depends on the specimen size, as mentioned in [25].

Fig 1 shows typical fracture surfaces observed in β-gypsum specimens. The fracture surfaces

highlight the presence of spherical isolated pores, located at different position along the

specimen width and with different sizes. In some cases, a cluster of several pores may also

be observed.

3.2. Bending tests on ZnO

Previously performed experiments on ZnO specimens under four-point bending and ex-

hibiting three different widths are also analyzed [8]. The material behavior is linear elastic

until brittle failure. The material properties are E = 110 GPa, ν =0.35, σc =100 MPa and

KIc = 1.27 MPa.m0.5 (Gc =12.9 J/m2) [30]. The material contains about 5 vol % porosity.

The specimen and apparatus dimensions are summarized in Tab. 5 as well as the failure

force and stress. It can be noted that data corresponding to the largest specimens were

reported from [8], whereas the data corresponding to the two other sets of specimens (two

first columns in Tab. 5) were calculated from the individual (respectively 100 and 109 tested

specimens) experimental results. It can be observed that almost no size effect is highlighted

since the failure stress lies around 100 MPa with some scattering that is larger for smaller

specimens.
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Number of specimens 100 109 42
h (mm) 1.50 + 0.03 3.00 + 0.02 6.00 + 0.02
t (mm) 2.01 + 0.02 3.98 + 0.04 8.00 + 0.04
Fc (N) 33.70 + 5.70 122.8 + 16.70 666.0 + 42.0

σmax (MPa) 95.70 + 15.80 101.9 + 12.90 104.0 + 6.50
Lspan (mm) 13.00 40.00 60.00
lspan (mm) 4.33 20.00 30.00

Table 5: Dimensions, failure force Fc and bending stress σmax corresponding to ZnO specimens.

4. Approaches for size effect assessment

4.1. Weibull’s model

Weibull’s model is based on the theory of the weakest link and provides a statistical

description of brittle failure. It is based on the assumption that failure is initiated by the

most critical flaw in a specimen, and that the larger the specimen, the larger the probability

to encounter a large critical flaw and vice-versa. It also takes into account the stress level to

which the specimen is subjected, the failure probability being larger for larger stress levels.

Based on these considerations, an empirical model giving the failure probability of a specimen

of volume V = htLspan undergoing a stress gradient σ is derived:

PF (σ, V ) = 1− exp

(
−
(
σmax
σ0

)m
VEFF
V0

)
(2)

where VEFF =
∫
V ′

(
σ

σmax

)m
dV with V ′ the volume sollicitated under tension. m is called

the Weibull’s modulus and σ0 and V0 are fitting parameters so that for VEFF = V0 and

σmax = σ0, the failure probability is 1-1
e
. In the case of four-point bending, V ′ corresponds

to the specimen volume delimited by [0, t] × [0, h
2
] × [−Lspan

2
, Lspan

2
], therefore the effective

volume is:

VEFF =
V (m lspan

Lspan
+ 1)

2(m+ 1)2
(3)

The Weibull’s modulus is representative of failure stress data scattering. For given speci-

men dimensions, wide (resp. narrow) failure stress distributions are obtained for small (resp.

large) m values. The determination of Weibull’s modulus can be obtained with the following

approach:

i) The specimens are sorted by increasing failure stress σi,

7



ii) Each specimen is given a failure probability Pi(σi) = i−0.5
N

, where N is the specimen

number,

iii) m is calculated as the slope of a linear fitting of the curve representing ln(ln( 1
1−Pi

)) as

a function of ln(σi).

We illustrate the Weibull’s modulus determination in Fig. 2 for the 21 α− gypsum

specimens having a h ≈ 10 mm width. Given Eq. (2) and two samples having different

effective volumes (V
(1)
EFF and V

(2)
EFF ), the failure stress of specimen 2 (σ

(2)
max) required to have

the same failure probability is, knowing the failure stress of specimen 1 (σ
(1)
max):

σ(2)
max = σ(1)

max

(
V

(1)
EFF

V
(2)
EFF

) 1
m

(4)

The size effect arises from Eq. (4) from which it can be deduced that the smaller the

specimen, the larger the failure stress. From this relation we can also observe that failure

stress exhibits a linear variation (slope − 1
m

) as a function of the specimen effective volume

in a log-log representation. Finally, the validity of the Weibull’s approach can be assessed by

first identifying the Weibull’s modulus on a given set of specimens with similar dimensions.

Then, a blind prediction of the failure forces (or stresses) of other specimens with different

dimensions can be performed and compared to the failure forces and stresses measured ex-

Figure 2: Example of determination of the Weibull’s modulus m for α-gypsum specimens.
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perimentally. In the sequel, the Weibull’s modulus identification is performed on specimens

exhibiting h ≈10 mm width for α−, β− and γ−gypsum specimens (largest number of tested

specimens) and for specimens having h ≈1.5 mm width for ZnO specimens.

4.2. The coupled criterion

The coupled criterion has been developed in order to study crack initiation. It is founded

on the fact that the nucleation of a crack requires two separate conditions to be simultane-

ously fulfilled. The first condition results from a balance of the kinetic, potential and crack

surface creation energies between the states before and after crack initiation. It states that

the potential energy released due to crack initiation must be larger than the energy required

for the crack surface creation. The second condition formulates that the stress state must be

larger than the material tensile strength. The initiation loading is determined as the min-

imum loading for which both conditions are simultaneously fulfilled, which also allows the

determination of the initiation crack length. Its application and numerical implementation in

the case of four-point bending is detailed in [26, 31]. The application of the CC showed that

for specimens large enough compared to the material characteristic length (lmat = EGc

(1−ν2)σ2
c
),

the bending strength is close to the tensile strength, otherwise it depends on the specimen

width and the material elastic (E, ν) and fracture (Gc, σc) properties. An analytical expres-

sion of the bending strength involving these parameters was derived in [26]:

σmax

σc
=

(
h

lmat

)a
+ 1(

h
lmat

)a
+ b

(5)

where a=0.884 and b=0.179. This expression can be used for any material under linear

elasticity and small deformation assumption in the range h
lmat

> 0.1. Therefore, knowing

the specimen dimensions and material properties, it provides an analytical estimate of the

failure stress σmax an thus of the corresponding failure force Fc based on the CC. An analytical

expression of the initiation length can also be derived [26].

4.3. The coupled criterion for a specimen containing a pore

The CC may also be applied following Weibull’s approach reasoning that failure occurs

from the most critical flaw in the specimen. In the sequel, we make the following assumptions:
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� The critical flaw is a pore with diameter d and located at a distance hd from the surface

undergoing tension (cf. Fig. 3a)

� The pore is located within the specimen volume undergoing tension and lies within the

specimen middle plane,

� The pore is entirely located within the specimen, i.e. we do not consider surface flaws.

The presence of a pore has an influence on the stress variation along the specimen width

[32]. Indeed, it induces two local stress concentrations around the pore, in addition to the

stress concentration at the specimen surface induced by the specimen bending. These stress

concentrators are priviledged crack initiation locations, we thus study three crack initiation

scenarii in the sequel:

1) A crack initiates from the hole, on the side of the specimen surface undergoing tension,

2) A crack initiates from the hole, on the side opposite to the specimen surface undergoing

tension,

3) A crack initiates from the specimen surface undergoing tension.

It can be noted that other scenarii may happen such as the simultaneous initiation of

more than one cracks at several stress concentrators, which are not studied herein.

Similarly to the case without a pore, crack initiation requires both stress and energy criteria

to be simultaneously fulfilled. The energy condition compares the incremental energy release

rate Ginc, defined as the ratio between the potential energy released by crack initiation

Figure 3: a) Four-point bending specimen containing a pore. Crack initiation scenarii b) at the hole on the
side of the specimen edge under tension, c) at the hole on the side opposite to the specimen edge under
tension and d) at the specimen edge under tension.
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(−∆W = W (0) −W (l)) and the crack extension (l), to the material critical energy release

rate Gc. The stress condition compares the opening stress to the material strength all along

the initiation crack path. These conditions writes: Ginc(lc, Uc) = −∆W (lc)
lc

= Gc

σ(l, Uc) > σc ∀ l 6 lc
(6)

It can be noted that in Eq. (6), the initiation length and loading levels are a priori unknown.

They can be determined by solving the system, which reverts to determining the minimum

imposed displacement (and the corresponding crack length) for which both conditions are

fulfilled.

Under the assumption of linear elasticity and small deformations, the CC implementation

requires the calculation of i) the stress field along the crack path before crack initiation and ii)

the potential energy release as a function of the crack length. The former is determined based

on a 2D FE calculation (plane strain assumption) without crack and the latter is calculated

while successively doubling the mesh nodes along the crack path to vary the crack length.

The main expected differences compared to 3D calculations is the failure force level, since

initiation crack lengths obtained in 2D are representative of 3D initiation crack extensions in

the specimen middle plane [21, 33]. The mesh size along the crack path can be choosen based

on the knowledge that the initiation length is a fraction of the material characteristic length

lmat [34]. In practice, a lmat

100
minimum mesh size is adopted, typically resulting in meshes

containing ≈5000 degrees of freedom. For a given configuration (i=1, 2 or 3, cf. Fig. 3b-

d), the CC allows computing the initiation crack length l
(i)
c and imposed displacement U

(i)
c .

The crack initiation scenario which is likely to happen is the one minimizing the imposed

displacement among the three studied scenarii. A comparison of the different scenarii and

the corresponding CC solutions is presented in Section 6.

5. Size effect

Size effect assessment using either Weibull’s approach or the CC is evaluated for gypsum

and ZnO specimens.
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5.1. Gypsum specimens

The failure force corresponding to all the specimens (cf. Tab 2-4) are computed using

the CC or Weibull’s approach. For each type of gypsum, the Weibull’s modulus is identified

based on the set of largest specimens (cf. Tab. 2-4) following the procedure described in

Section 4. The obtained values are:

� α−gypsum: mα=17

� β−gypsum: mβ=9

� γ−gypsum: mγ=16

The failure forces predicted by Weibull’s approach for the other specimens (cf. Tab. 2-4) are

then obtained using Eqs. (4) and (1). The failure forces obtained using the CC or Weibull’s

approach are shown in Figs. 4 and 5. First, it can be observed that both approaches give

Figure 4: Failure forces obtained with the CC as a function of specimen width for a) α−, b) β− and c) γ−
gypsum.

Figure 5: Failure forces obtained with Weibull’s approach as a function of specimen width for a) α−, b) β−
and c) γ− gypsum.
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α−gypsum β−gypsum γ−gypsum

h (mm) 10.05 + 0.33 10.27 + 0.4 10.13 + 0.36
Weibull 5.8 % 11.5 % 6.5 %

CC 6.5 % 12.8 % 8.3 %

h (mm) 5.23 + 0.15 5.32 + 0.06 5.04 + 0.19
Weibull 9.9 % 3.5 % 14.6 %

CC 5.9 % 3.0 % 17.4 %

h (mm) 4.01 + 0.15 4.14 + 0.11 4.17 + 0.17
Weibull 5.3 % 24.6 % 8.5 %

CC 4.3 % 6.5 % 9.2 %

h (mm) 2.63 + 0.2 2.18 + 0.01
Weibull 19.0 % 13. %

CC 10.0 % 4. %

Table 6: Mean difference between numerical predictions (CC or Weibull) and experimentally measured failure
forces.

satisfying agreement with experimental data and allow traducing the size effect of increas-

ing failure stress with decreasing specimen size. The mean relative difference between the

failure forces measured experimentally and obtained using either Weibull’s model or the CC

are given in Tab 6. The mean relative difference between predictions and experimentally

measured failure forces are in slight better agreement for small specimens with the CC than

with Weibull’s approach, especially for β−gyspum specimens. This can also be observed by

studying the failure stress variation as a function of the specimen effective volume. According

to Weibull’s approach, the variation should follow a line with slope − 1
m

in a log-log represen-

tation. The experimental data are shown as well as this line in Fig. 6. Whereas the size effect

is well described for γ− and α−gypsum, it can be seen that for β−gypsum the prediction

seems to slightly overestimate experimental data for the smallest specimens. This may be

explained by analyzing the ratio between the specimen width and the material characteristic

length for each gypsum type specimens. It results in ratios h
lmat

between 3 and 15 and for

γ−gypsum specimens, between 4 and 10 for α−gypsum specimens and between 11 and 45

for β− gypsum specimens. Therefore, a larger influence of specimen size on failure stress

variation is theoretically expected for α−gypsum and γ−gypsum than for β−gypsum spec-

imens [26]. On the contrary, Weibull’s approach predicts a larger size effect for β−gypsum

that corresponds to the smallest Weibull’s modulus value among the three gypsum types.

Finally, for gypsum specimens, we can conclude that both the CC and Weibull’s model are

able to reproduce the failure stress or force variation as a function of the specimen size.
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Figure 6: Failure stress as a function of the specimen effective volume for a) α− and γ− and b) β− gypsum
specimens. The dashed line represent a line with slope (− 1

m ).

5.2. ZnO specimens

The same approach as for gypsum specimens is followed for ZnO specimens tested in [8]. A

m =18.8 Weibull’s modulus is identified based on the set of smallest specimens following the

procedure described in Section 4. Fig. 7 shows the failure stress and failure force measured

experimentally and predicted using either the CC or Weibull’s model as a function of the

specimen effective volume. The CC allows a correct prediction of the failure stress variation

whereas Weibull’s approach underestimates the failure stress for the two sets of specimens for

Figure 7: (a) Failure stress as a function of the specimen effective volume and b) failure force as a function
of the specimen thickness for ZnO specimens. The dashed line in a) represent a line with slope (− 1

m ).
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which blind predictions are performed. Actually, the studied set of specimens does not really

exhibit a significant size effect of increasing failure stress with decreasing specimen effective

volume, the failure stress being rather constant within the studied range of specimen size.

Having a deeper look at the CC results, it appears that lmat = 0.16 mm and the specimen

widths are 1.5 mm, 3.0 mm and 6.0 mm so that it results in ratios h
lmat

respectively around

9.4, 18.8 , 37.5. For such ratios, bending failure stresses close to the tensile strength σc are

expected (respectively 1.11σc, 1.06σc and 1.03σc) [26]. Therefore even if the CC predicts

a size effect of increasing stress with decreasing specimen effective volume, this size effect

remains moderate given the range of specimen width compared to material characteristic

length.

Finally, contrary to the case of gypsum specimens for which both methods were able to

reproduce the experimentally observed size effect, only the CC allows a correct description of

the failure stress variation as a function of the specimen effective volume. Two explanations

may be provided based either on the CC or the Weibull’s approach point of view. The first

explanation, based on the CC, is that for specimens sufficiently large with respect to the

material characteristic length, no size effect or only a slight variation of the failure stress as

a function of the specimen size is expected. The second explanation, related to Weibull’s

approach assumption, relies on considerations about the material microstructures. Diffused

porosity in gypsum specimens is mainly of the micrometer size but there are also some isolated

macropores arising from manufacturing, thus following Weibull’s approach assumptions. On

the contrary, ZnO specimens contain a large number of flaws gathering into groups and

interacting between them [11], so that the Weibull’s approach assumption of failure being

controled by one (the largest) flaw may not be verified.

6. Failure induced by a critical pore

In this section, we study the influence of a single pore on crack initiation and especially

the relation between the characteristics of the pore (size and location) and the corresponding

variation of the failure force.
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6.1. Crack initiation in presence of a pore

We first study which of the three scenarii given in section 4.3 is more likely to trigger

crack initiation in the specimen containing a pore. The most critical scenario is determined

as the one minimizing the failure loading predicted by the coupled criterion. We recall that

it requires both the stress and the energy conditions given in Eq. (6) to be simultaneously

satisfied. We therefore analyze i) the stress along the crack path and ii) the incremental

energy release rate variation as a function of the crack length in the three cases. They are

shown in Fig. 8 as a matter of example for a pore with the following characteristics: hd
h

= 0.15

and d
h

= 0.09 (cf. Fig. 3 for the definition of the geometry parameters). The stress variation

as a function of the distance to the specimen edge under tension y
h

is shown in Fig. 8a. The

pore induces two stress concentrations at the two hole tips which magnitudes are larger than

that of the stress level at the specimen edge under tension. It results in the following stress

variations (prior to crack initiation) as a function of the crack length for the three possible

scenarii (Fig. 8b):

case 1) The stress is a decreasing function of the crack length on the ligament between the hole

and the specimen edge under tension. It also decreases again for crack lengths larger

than the ligament length, starting for a value larger than the minimum stress attained

over the ligament so that its overal variation is non-monotonic.

Figure 8: a-b) Stress along the specimen middle plane for a 1 mm applied displacement at the upper spans
as a function of a) the normalized distance to the specimen edge under tension or b) the normalized crack
length; c) Incremental energy release rate as a function crack lengths for the three studied crack initiation
scenarii and the case without a pore. Illustration of the results for hd = 0.15h and d = 0.09h. The three
investigated scenarii are recalled on the left part of the figure.
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case 2) The stress exhibits a monotonically decreasing variation as a function of the crack

length.

case 3) The stress is increasing over the ligament and then decreasing for crack lengths larger

than the ligament length.

Fig. 8c shows the incremental energy release rate variation as a function of the normalized

crack length, which variation is monotonically increasing for the three studied scenarii. For

a given crack length, both the incremental energy release rate and the stress magnitudes are

smaller for scenario 2 than for scenario 1. It means that a larger loading level is necessary in

order to fulfill simulatenously both criteria for scenario 2, which is thus unlikely to happen.

For crack lengths larger than the ligament lengths, scenarii 1 and 3 yield the same results due

to similar stress and incremental energy release rate variations. Reminding that the stress

criterion states that the stress must be larger than the strength all over the initiation crack

path, it yields that for scenario 3, the initiation crack length cannot be smaller than the

ligament length. Indeed, if the stress criterion is reached for a crack length l < hd, it is also

reached for a crack length l = hd because of the increasing stress variation as a function of

the crack length. Moreover, the incremental energy release rate for scenario 3 is smaller than

for scenario 1 for a given crack length smaller than the ligament length. We thus conclude

that for this first example (hd = 0.15h and d = 0.09h), crack initiation occurs starting from

the hole on the side of the specimen edge under tension (scenario 1).

Crack initiation length is not known a priori, it is an output of the coupled criterion that

is determined solving Eqs. (6). It is, however, related to lmat [34]. Depending on lmat

value with respect to hd and d, two cases may be distinguished: if lmat is large enough,

then crack initiation length is larger than hd + d
2
, which means that at initiation the crack

jumps quasi-instantaneously over the hole (Fig. 9a). Otherwise, if lmat is small enough, then

crack initiation occurs within the ligament between the hole and the specimen edge under

tension (Fig. 9b). In both cases, crack initiation is likely to be immediately followed by

unstable propagation, so that crack initiation and subsequent propagation steps cannot be

distinguished experimentally.

The same analysis as previously is presented for a smaller pore, close to the specimen center,
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Figure 9: Incremental energy release rate to fracture toughness and stress to strength ratios as a function of
the normalized crack length for initiation lengths a) large (lmat = h) and b) small (lmat = 0.1h) with respect
to the ligament length (Scenario 1). Yellow circles represent the normalized initiation crack length.

with the following characteristics: hd
h

= 0.25 and d
h

= 1
40

. The stress variation as a function

of the distance to the specimen edge under tension y
h

is shown in Fig. 10a. As noticed in the

previous case, the pore induces two stress concentrations at the two hole tips in addition to

the stress concentration at the specimen edge under tension. It results in the following stress

variations as a function of the crack length for the three possible scenarii (Fig. 10b):

case 1) The stress is a decreasing then increasing function of the crack length on the ligament

between the hole and the specimen edge under tension. It also decreases again for crack

lengths larger than the ligament length, starting for a value larger than the minimum

Figure 10: a-b) Stress along the specimen middle plane for a 1 mm applied displacement at the upper spans
as a function of a) the normalized distance to the specimen edge under tension or b) the normalized crack
length; c) Incremental energy release rate as a function crack lengths for the three studied crack initiation
scenarii and the case without a pore. Illustration of the results obtained for hd = 0.25h and d = h/40. The
three investigated scenarii are recalled on the left part of the figure.

18



stress attained over the ligament so that its overal variation is non-monotonic.

case 2) The stress exhibits a monotonically decreasing variation as a function of the crack

length.

case 3) The stress is a decreasing then increasing function of the crack length on the ligament

between the specimen edge under tension and the hole. It decreases for crack lengths

larger than the ligament length, starting for a value larger than the minimum stress

attained over the ligament so that its overal variation is non-monotonic.

Fig. 10c shows the incremental energy release rate variation as a function of the normal-

ized crack length, which variation is monotonically increasing for the three studied scenarii.

For a given crack length, both the incremental energy release rate and the stress magnitudes

are smaller for scenario 2 than for scenarii 1 and 3. It means that a larger loading level

is necessary in order to fulfill simulatenously both criteria for scenario 2, which is therefore

unlikely to happen. As noted previously, for crack lengths larger than the ligament lengths,

scenarii 1 and 3 yield the same results due to similar stress and incremental energy release

rate variations. For a given value of crack length, the incremental energy release rate is

smaller for scenario 1 than for scenario 3, so is the stress except for small crack lengths. We

thus conclude that for this first example, crack initiation occurs starting from the specimen

edge under tension (scenario 3).

If lmat is large enough, then crack initiation length is larger than hd + d
2
, which means that

at initiation the crack jumps quasi-instantaneously over the hole (Fig. 11a). For sufficiently

small lmat for which crack initiation length is smaller than hd + d
2
, crack initiation occurs

within the ligament between the specimen edge under tension and the hole. In both cases,

unstable crack propagation follows crack initiation.

Finally, two crack initiation scenarii are likely to happen:

� Crack initiating from the hole, on the side of the specimen edge under tension. This

initiation configuration is likely for sufficiently small ligament size hd − d
2
.

� Crack initiating from the specimen edge under tension. This initiation configuration
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Figure 11: Incremental energy release rate to fracture toughness and stress to strength ratios as a function of
the normalized crack length for initiation lengths a) large (lmat = h) and b) small (lmat = 0.1h) with respect
to the ligament length (Scenario 3).

is likely if the pore is sufficiently far from the specimen edge under tension (for large

enough hd − d
2
)

In both cases crack initiation is followed by unstable crack propagation so that experimentally

we cannot distinguish crack initiation from crack propagation steps, the specimen failure

occurs quasi-instantaneously after crack initiation. Moreover, it can be noted that the failure

force in presence of a pore is always smaller or equal to the failure force without a pore, the

CC allows quantifying this force decrease due to the pore.

6.2. Determination of critical pore size

As observed in Fig. 4, the CC predictions are close to the experimental measurements

but there is still some discrepancy between numerical and experimental failure forces. A

possible explanation is that we did not take into account the possible presence of a critical

pore triggering failure in the simulations. In previous section we showed the ability of the CC

to predict for given pore location and diameter the failure force and therefore the failure force

decrease due to the pore compared to the case without pore. In this section we use these

results to characterize the critical pore size in the tested gypsum specimens considering,

as for Weibull’s analysis, that failure may be due to the presence of a critical pore. The

same assumptions as previously are made, i.e. that the pore is located within the specimen
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area under tension and that it entirely lies within the specimen. The presence of a pore is

expected to result in a decrease in the failure force (Fc=Fc(hd, d)) compared to the failure

force (F ref
c ) corresponding to the same configuration without a pore. We can thus define a

force decrease ratio ( Fc

F ref
c

) corresponding to a given pore diameter (d) and location (distance

to the specimen edge under tension hd).

Fig. 12 shows the force decrease ratio for several distances of the pore center to the specimen

edge. Since we do not consider surface flaws, for a given hd the maximum pore size is

hd
2

. Our objective is to estimate the critical pore size given the failure force decrease ratios

measured experimentally. It can be observed that several pore configurations (pore diameter

and location) lead to the same failure force decrease ratio (Fig. 12a). Therefore we cannot

determine a unique pore diameter and location couple corresponding to a given failure force

decrease ratio. However, from these curves we can deduce an envelope of the force decrease

Figure 12: Failure force decrease ratio as a function of the normalized pore diameter obtained for several pore
distance to the specimen edge under tension. a) Minimum and maximum critical pore size determination as
the envelope of the curves and b) influence of the specimen size on the failure force decrease ratio envelope
variation. (c) Configurations corresponding to minimum and maximum pore size determined from (a).
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ratio which can be used in the following way: for a given Fc

F ref
c

, we determined the minimum

(dmin) and maximum (dmax) pore size that lead to such a force decrease (Fig. 12a). All

the intermediate pore diameters between dmin and dmax are also admissible, corresponding

to different pore locations in the specimen width hd. It can be noted that the failure force

decrease ratio envelope depends on both the specimen width h (cf. Fig. 12b) and on the

material characteristic length lmat. However, similar envelopes and therefore similar dmin

and dmax values are obtained for any (h,lmat) couple leading to the same h/lmat ratio.

Fig. 13 shows the minimum and maximum pore size determined based on the measured force

decrease ratios for the three types of gypsum specimens as a function of their density (Fig.

13a) and their width (Fig. 13b). The same specimen widths h as in the experiments were

used in the model to compute the pore size ranges. Reminding that all the pore diameters

between the determined minimum and maximum pore size are possible critical pore sizes

(corresponding to different pore locations within the specimen width), the estimated order

of magnitude of the critical pore sizes are is in the range 50-250 microns. This order of

magnitude is consistent with experimental observations [35] of gypsum specimen fracture

surfaces (Fig. 1). Several pore sizes and locations are observed on the fracture surfaces,

which may be more or less critical depending not only on their size but also on their position

with respect to the face undergoing tension. In some cases, a cluster of several porosities

Figure 13: Critical pore diameter (dc) ranges for α−, β− and γ− gypsum specimens as a function of (a)
gypsum density or (b) specimen width.
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may also be observed, which was not taken into account in the model. It can be observed

that similar order of magnitudes are obtained for the three types of gypsum even if they

exhibit different densities and pore fractions. A critical pore is much larger than the gypsum

mean pore size which depends on the quantity of water required for manufacturing. Gypsum

is processed by mixing of hemihydrate powder with water leading to an hydration reaction

and to the formation of entangled needle-shaped crystals. The porosity in the final material

is mainly of the micrometer size (interconnected pores betwen the gypsum crystals) and

macropores originating from entrapped air in the hemidrate powder before mixing [36, 37].

The presence of entrapped air in the slurry, that will lead to macropores in the material after

hydration and drying, is mainly controlled by the rheology of the slurry. For the three types

of gypsum considered in this work, the amount of water for mixing was adapted to have a

similar rheology of the slurry. The water on solid ratio used decreases for the processing

of gamma, alpha and beta gypsum respectively, leading to different relative densities (see

Tab. 1). Therefore, the characteristics of the macro porosity (number and diameter of pores)

depend mainly on the paste rheology which is similar between the three types of gypsum,

which gives an explanation to the similar estimated order of magnitude for the critical pore

size in the different specimens.

It can also be observed that the maximum possible critical pore size is slightly increasing with

decreasing specimen size: from around 50-150 microns for the largest specimens to around

50-250 microns for the smallest specimens. It may be related to the fact that larger relative

scattering and uncertainty is obtained for smaller specimen [26]. Morever, we remind that

dmin and dmax are only bounds to estimate a critical pore size that may be any values in

between. It can thus be concluded that a similar order of magnitude of critical pore size is

obtained whatever the specimen size. This result questions the basis assumption of Weibull’s

analysis that the larger the specimen, the larger the critical flaw triggering failure.

7. Conclusion

Both Weibull’s approach and the coupled criterion allow reproducing size effects of de-

creasing bending failure stress with increasing specimen size in several types of gypsum

specimens. Whereas the latter also succeeds in predicting the failure stress variation as a
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function of the effective volume of ZnO specimens, the former leads to a severe deviation

from the experimental results. It may be explained either based on the CC that predict no

(or limited) size effect for the range of specimen sizes, or based on considerations about fail-

ure not being driven by a single critical flaw but depending on possible interaction between

several flaws. We also show that the Weibull’s model assumption of larger critical flaws in

larger specimen may not hold true. Employing the same reasoning as Weibull’s approach that

failure is driven by the most critical flaw in the area sollicitated under tension, we simulate

crack initiation due to a critical pore using the coupled criterion. It results in a decrease of

the failure force with respect to the same configuration without a pore. This failure force

decrease can be associated with a range of pore size corresponding to several positions within

the specimen width. Based on the failure force measured experimentally, we thus estimate

the possible critical pore size ranges for the different gypsum types. A similar order of mag-

nitude around 50-250 microns is obtained for the three gypsum types. Moreover, we do not

retrieve increasing critical pore size with increasing specimen size, as assumed in Weibull’s

approach, but rather a constant critical pore size range for all specimens.
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