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Abstract

The matched asymptotic (MA) approach of the coupled criterion (CC) enables studying crack

initiation at a pore located near a free edge, which leads to a competition between three possible

crack initiation mechanisms, namely crack initiation in the ligament, at the pore side opposite to

the free edge or simultaneously at both pore sides. The mechanism that is the most likely to occur

depends on both the pore-to-free edge ligament size and the material characteristic length to pore

diameter ratio. Simultaneous crack initiations at both pore sides occur for large enough ligament

size. For smaller ligament sizes, unilateral pore crack initiation is more likely to occur, within the

ligament for small characteristic length to pore diameter ratios and at the pore side opposite to the

free edge otherwise. The CC MA approach enables estimating the initiation remote imposed stress

as well as the initiation crack length.

Keywords: Coupled criterion; pore; matched asymptotic expansions; free edge

1. Introduction

Finite Fracture Mechanics (FFM) framework [1, 2, 3] consists in studying finite crack increments

instead of infinitesimal ones as in classical Linear Elastic Fracture Mechanics (LEFM) approach [4].

Whereas LEFM assesses the propagation of an already existing crack, a main interest of FFM is the

possibility to study its nucleation. Among this framework, the coupled criterion (CC) [5] has proved

to be an efficient approach for crack initiation assessment in various situations [6]. This approach is

based on the simultaneous fulfillment of a stress condition and of a discrete energy balance between

the states prior and after crack initiation. It requires as inputs the material strength and critical

energy release rate and enables the determination of the initiation loading and corresponding crack

increment.
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The CC application is based on the calculation of the stress field prior to crack initiation and of the

potential energy release as a function of the crack length. These functions can be obtained through

existing available analytical functions [7] or more generally calculated by means of Finite Element

(FE) simulations of the problem under investigation. The CC is computationally efficient since

it generally requires only a few linear elastic calculations. It can also account for nonlinearities

[8, 9, 10, 11]. The CC efficiency compared to other fracture modeling approach is particularly

highlighted in the context of inverse identification approaches of the fracture parameters [12, 13].

Indeed, contrary to other modeling approaches such as cohesive zone models, the material strength

and critical energy release rate are only implemented during the post-processing phase of the FE

calculations.

The original implementation of the CC was established by Leguillon [5] to study crack initiation

at V-notches based on the matched asymptotic (MA) expansion procedure developed by Leguillon

and Sanchez-Palencia [14]. The MA approach focuses on a domain surrounding the initiation

crack zone. The boundary conditions imposed to this domain are asymptotic displacement or

stress fields corresponding to the studied geometry (such as, e.g., a V-notch, a hole or a bimaterial

interface). It relies on the assumptions that the initiation crack increment is small and far enough

from the structure boundaries that may influence these displacement and stress fields. Under these

assumptions, the full-FE and MA approaches yields equivalent results [15, 16, 17, 18, 19], the MA

approach being even more computationally efficient since it requires fewer calculations without

modeling the whole specimen geometry.

Crack initiation at a circular hole using the CC was studied by several authors, mainly based

on analytical or full-FE approaches. Weißgraeber et al. [6] set up a closed form analytical CC

formulation to assess crack initiation at elliptical holes in an infinite medium under remote tensile

loading and studied the aspect ratio and size influence on the imposed stress at initiation. The

elliptical hole problem was addressed using the CC by Carpinteri et al. [20]. Sapora and Cornetti

[21] studied crack initiation at a circular hole in infinite medium under biaxial loadings and the

stability of the initiated crack depending on the loading biaxiality. Asymmetric crack initiation in

a plate with a centered hole under combined tension bending was studied by Rosendahl et al. [22].

They highlighted a competition between three mechanisms, namely asymmetric crack initiation

at the hole, crack initiation at only one hole side or at the specimen free edge, that may occur

depending on the hole size and bending to tensile stress ratio. The CC was also implemented to

assess crack initiation in PMMA specimens containing a circular hole under tensile loading and
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enabled retrieving the failure stress variation from the material tensile strength for small holes to

one third of it for large enough holes [23, 24, 25]. Romani et al. [26] tested gypsum specimens with

a circular hole under compression and detected crack initiation using digital image correlation, the

initiation stress predictions were in agreement with the experimental measurements. The CC was

also successfully used to predict the initiation stress in Brazilian Disk tests on polymer specimen

with a centered hole, taking into account the nonlinear material behavior [11].

The CC was also applied to predict crack initiation in composite specimens with a hole . Martin

et al. [27, 28] enriched the classical point stress criterion by considering both stress and energy

conditions. They highlighted the limit of the point stress criterion by evidencing that the initiation

crack length depends on the hole size to specimen width ratio. Camanho et al. [29] studied a similar

problem based on analytical formulae of the stress and energy conditions for different laminate layups

and highlighted the suitability of the approach to predict the initiation stress for configurations not

exhibiting debonding as main damage mechanism, which would have required extra FE calculations

to implement the CC. Catalanotti et al. [30] predicted net tension crack initiation in fastened

joints composites by modeling the fastener influence on the hole as a contact pressure on the hole

contour. Felger et al. [31] studied the influence of the composite orientation with respect to tensile

direction on mixed mode crack initiation in composites specimens with a hole and correctly covered

the experimentally observed size effect and the influence of the material anisotropy on the plate’s

effective strength. This was done employing the matched asymptotic approach of the CC [32], which

was also used by Leguillon et al. [33] to examine the problem of a crack blunted by a pore and the

influence of two neighboring pores ahead of a primary crack.

The abovementioned works refer to crack initiation at a circular hole either in infinite medium or

centered in a specimen of finite width. However, few works consider the interaction between a

pore and a free edge [34]. The objective of this work is to implement the MA approach of the CC

to the problem of crack initiation around a pore close to a free edge. The CC MA approach is

explained in Section 2 and an example of CC solution is detailed in Section 3. The conditions for

crack initiation within the pore-to-free edge ligament(either from the pore or from the free edge)

are described in Section 4 and other crack initiation mechanisms such as crack initiation beyond

the pore or simultaneous crack initiation at both pore sides are finally studied in Section 5.
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Figure 1: a) Specimen containing a pore close to a free edge under tensile loading. Crack initiation scenarii at the
hole b) in the pore-to-free edge ligament, c) at the pore side opposite to the free edge or d) at both pore sides.

2. Crack initiation at a pore near a free edge

2.1. Matched asymptotic approach

We consider the problem of crack initiation in the vicinity of a pore that is close to a free

edge, under tensile loading for instance as depicted in Fig. 1a. The stress concentrations induced

around the pore may lead to several scenarii: a crack initiating at the pore side in the pore-to-free

edge ligament, a crack initiating at the pore side opposite to the free edge or simultaneous crack

initiation at both pore sides. This two dimensional model is representative of either a cylindrical

cavity (extrusion along the third direction) or a spherical cavity (in the cavity middle plane).

The MA approach consists in studying two configurations, the first one at the scale of the

specimen, in which the pore is small compared to the specimen dimensions and can thus be neglected,

and the second one focusing only on a zone close to the pore. The matching of both configurations

has to be made in an intermediate zone in order to derive expressions for the stress and the potential

energy from which crack initiation will be determined using the CC. We thus consider a two-scale

problem to solve under plane strain linear elasticity assumption. The first problem is written at

the specimen scale. The displacement field U d (the superscript d refers to the presence of a pore

of diameter d) is solution of the following set of equations:


−∇ · σ(U d) = 0

σ(U d) = C : ∇U d

σ(U d) · n = 0 along the free edge, n is the normal to the free edge.

(1)

It is assumed that the pore diameter d and the crack initiation length (`c) at the pore are relatively

small compared to the specimen dimensions, this assumption has to be checked afterwards to ensure
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the validity of the MA approach. Therefore, the actual solution can be approximated by:

U d(x1, x2, l) = U 0(x1, x2, 0) + small correction (2)

where U 0(x1, x2, 0) is the solution to an idealized problem without pore, e.g. tensile loading of a

plain specimen (d = 0). The correction in Eq. (2) decreases to 0 when d tends towards 0. This

approximation is valid except near the pore, it is called the outer field. The asymptotic displacement

field corresponding to a straight free edge can be calculated as Trλt(θ)+o(rλ), where λ = 1 and t(θ)

are obtained solving an eigenvalue problem [14]. T represents the Generalized Stress Intensity Factor

(GSIF) for a free edge, i.e. the remote imposed stress for a pure tensile loading. The displacement

field in the plain specimen can thus be written as:

U 0(x1, x2, 0) = U 0(0, 0) + Trt(θ) + ... (3)

To have a detailed form of the actual solution U d, the initial domain is stretched by 1/d. We define

the new dimensionless space variables as yi = xi/d and the dimensionless crack length µ = `/d.

The dimensionless distance between the free edge and the pore tip is ε = (hd − d/2)/d. As d tends

towards 0, the corresponding domain becomes unbounded. It is called the inner domain, in which

the pore diameter is 1. The inner domains in the three possible initiation configurations (initiation

in the pore-to-free edge ligament, on the pore side opposite to the free edge or simultaneously on

both pore sides) are depicted in Fig. 2. The actual solution is assumed to expand in the following

way:

U d(x1, x2, `) = U d(dy1, dy2, dµ) = F0(d)V 0(y1, y2, µ) + F1(d)V 1(y1, y2, µ) (4)

Figure 2: Inner domain sketch for crack initiation a) in the pore-to-free edge ligament, b) at the pore side opposite
to the free edge or c) at both pore sides.
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with

lim
d→0

F1(d)

F0(d)
= 0 (5)

The V i form the inner field, they are solutions to problems with prescribed behaviour at infinity.

They must match at infinity with the behaviour of the far field. Therefore there exists an area,

far from the free edge in the inner expansion and close to it in the outer expansion where both

expansions given in Eq. (2) and Eq. (4) hold true. Matching the terms in Eq. (3) and Eq. (4)

leads to :



F0(d) = 1

V 0(y1, y2, µ) = U 0(0, 0)

F1(d) = Td

V 1(y1, y2, µ) ≈ γt(θ)

(6)

with γ = r/d. The symbol ≈ means that V 1 behaves like γt(θ) at infinity, it can thus be written

as:

V 1(y1, y2, µ) = γt(θ) + V̂
1
(y1, y2, µ) (7)

We have to prove that V̂
1
(y1, y2, µ) exists and verifies the equilibrium equations. By combining

Eqs. (4) and (6) into Eq. (1), and noticing that the free edge remains a free edge in the inner

domain, V̂
1

is solution to the following problem:



−∇y · σ̂ = 0 where ∇y = 1
d∇x

σ̂ = C : ∇yV̂
1

σ̂ · n1 = −T · n2 along the free edge, n1 = (0, 1), n2 = (1, 0)

σ̂ · n2 = −T · n2 along the crack faces and the pore edge

σ̂ · n = −T · n2 along the pore edge

V̂
1

decreases at infinity

(8)

The system of equations has a unique solution with a finite energy [14] (extension of Lax-Milgram

theorem to unbounded domains). As a consequence of the finite energy, the solution decreases to 0

at infinity. The expansion finally writes:

U d(x1, x2, `) = U d(dy1, dy2, dµ) = U 0(0, 0) + Td[γt(θ) + V̂
1
(y1, y2, µ)] (9)
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The change in potential energy is written as [14, 35]

−δWp = Ψ(U d(x1, x2, `),U
d(x1, x2, 0)) (10)

= Ψ(U d(x1, x2, `),U
0(x1, x2))−Ψ(U d(x1, x2, 0),U 0(x1, x2)) (11)

where

Ψ(f , g) =
1

2

∫
Γ
[σ(f) · n · g − σ(g) · n · f ]ds (12)

Ψ is a path independent integral where Γ is any closed contour starting and finishing on the free

edge and surrounding the studied crack initiation location, n is the inwards normal to this contour.

Thus, it comes:

−δWp = T 2d2Ψ(γt(θ),V 1(y1, y2, 0)) + T 2d2Ψ(V 1(y1, y2, µ), γt(θ))

= T 2d2[Ψ(V 1(y1, y2, µ), γt(θ))−Ψ(V 1(y1, y2, 0), γt(θ))]

= T 2d2[B(µ)−B(0)]

(13)

with B(µ) = Ψ(V 1(y1, y2, µ), γt(θ)). According to the expansion before crack initiation, the stress

field writes:

σ(µ) = T σ̃ε(µ) (14)

The stress function σ̃ε can be computed in the inner domain bounded at a large distance for a given

dimensionless distance between the pore tip and the free edge ε. The index ε in σ̃ indicates that

this function is computed for a given value of ε, the MA approach thus enables the calculation of

the stress variation along the crack path prior to crack initiation as well as the potential energy

release as a function of the dimensionless crack length. These two functions are used in the sequel

to implement the coupled criterion to assess crack initiation.

2.2. The coupled criterion

The coupled criterion states that crack initiation can occur if two conditions are fulfilled [5]:

� the stress must be larger than the material strength σc along the crack path before initiation,

� the potential energy released by crack opening must be larger than the energy required for

crack nucleation: Gc`, where Gc is the material critical energy release rate.
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The second condition leads to defining the incremental energy release rate Ginc = −δWp/` =

−δWp/(dµ), which can be calculated using Eq. (13):

Ginc(µ) = T 2d
B(µ)−B(0)

µ
= T 2dgε(µ)

1− ν2

E
(15)

The dimensionless function gε(µ) = B(µ)−B(0)
µ

E
1−ν2 can be obtained by computing the potential

energy difference as a function of the dimensionless crack length in the inner domain. It is done

by finite element calculations, the inner domain being artificially bounded at a distance large with

respect to µ, ε and 1 (the dimensionless pore size in the inner domain). The index ε in gε indicates

that this function is computed for a given value of ε, for several dimensionless crack lengths µ. It can

be checked that the function gε(µ) is independent of the material Young’s modulus and Poisson’s

ratio. Applying the coupled criterion Ginc(µ) ≥ Gc and σ(µ) ≥ σc all along the crack path prior to

initiation, it results in the following equation system to be solved: T 2dgε(µ)1−ν2
E ≥ Gc

T σ̃ε(µ) ≥ σc
(16)

Combining both equations finally yields the equation that must be solved to determine the dimen-

sionless initiation crack length µc and the corresponding initiation crack length `c = dµc:

gε(µ)

σ̃ε(µ)2

1− ν2

E
=

1

d

Gc
σ2
c

(17)

which rewrites as:
gε(µ)

σ̃ε(µ)2
=

1

d

EGc
(1− ν2)σ2

c

=
`mat
d

(18)

where `mat is the material characteristic length defined as `mat = EGc
(1−ν2)σ2

c
. Eq. (18) can be solved

using Newton’s method for instance. Once Eq. (18) is solved to determine the dimensionless

initiation crack length µc, the critical GSIF at initiation is obtained as:

Tc =

√
EGc

(1− ν2)dgε(µc)
= σc

√
`mat
d

1

gε(µc)
=

σc
σ̃ε(µc)

(19)

The CC implementation thus enables the determination of both the initiation crack length and

remote imposed stress. It can be noted that the remote failure stress depends on the pore size since

the actual pore diameter d appears in Eqs. (18) and ((19)).
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2.3. Finite Element calculations

For a given dimensionless pore to free edge ligament size ε, two functions are computed by

means of FE calculations, namely the dimensionless stress σ̃ε and incremental energy release rate

gε. Both functions are computed in the inner domain for several dimensionless crack lengths µ. The

inner domain is theoretically unbounded so that in FE calculations, a domain sufficiently large with

respect to the small parameters, i.e. the pore size which is equal to 1 and the dimensionless ligament

size and crack length. It can be noted that the validity of the MA approach also relies on the fact

that the small parameters all are in the same order of magnitude, therefore the calculation are

limited to dimensionless crack lengths 0 < µ < 10. A square with side L inner domain is defined,

and boundary conditions consist in prescribed displacements (Eq. (3)) at the domain fictitious

boundaries. These displacement writes:

 U 0
x(y1, y2) = 1−ν2

E Ty1

U 0
y(y1, y2) = −ν(1+ν)

E Ty2

(20)

Since the inner domain is theoretically unbounded, the fictitiously bounded domain size used for

the FE calculations must be large enough so that it has no influence on the calculation of σ̃ε and

gε. We performed calculations for inner domain sizes L =100, 200, 500, 1000 and 5000. Full-

integration plain strain four-node elements are used. The meshes are refined in the vicinity of the

pore, the mesh size is set to min(1/10, ε/10) in the pore to free edge ligament and 1/10 along the

crack path on the pore side opposite to the free edge. Whatever the inner domain size used for

FE calculations, differences on dimensionless stress along the crack path before initiation smaller

than 0.1% are obtained. Fig. 3 shows the dimensionless incremental energy release rate and the

ratio involve in Eq. (18) variations as a function of the dimensionless crack length for several inner

domain sizes. Whatever the inner domain size, almost no differences are observed on the pore to

free edge ligament. For a L = 100 domain size, differences between 1% and 10% are obtained

compared to the case with a L = 5000 inner domain size, for dimensionless crack lengths µ > 2.

These differences reduce to between 1% and 3% for µ > 5 for L = 200 and down to 0.3% for

L = 500. For L = 1000, differences smaller than 0.1% are obtained. In practice, the size of the

domain can thus be set to 100max(µ, ε) = 1000, which results in FE meshes containing around 3000

nodes. Since the crack lies on a symmetry plane of the inner domain, only one half is modeled and

the crack length is increased to compute gε by successively releasing the symmetry condition on

the crack path nodes. For a given crack initiation configuration, 10 FE calculations with varying ε

9



are performed, each calculation lasts around 1 minute. If the actual pore-to-free edge ligament size

does not strictly correspond to a calculated ε value, crack initiation length and stress are obtained

by interpolation of the computed values.

3. Example of CC solution

We illustrate the matched asymptotic approach CC solution with the following example of a

pore which diameter is 0.1 mm, the pore center is located at 0.15 mm from the free edge loaded

in tension in a material with the following properties: E = 3000 MPa, ν = 0.2, σc = 10 MPa,

Gc = 5 J/m2. The corresponding characteristic length is lmat=0.156 mm. The corresponding

dimensionless distance to the porosity is ε = (hd − d/2)/d = 1. The functions g1 and σ̃1 are

computed as a function of the dimensionless distance y2 or crack length µ = `/d (Fig. 4). In

Fig. 4b-c), g1 and σ̃1 are displayed as a function of the dimensionless crack length. In this first

example, we only consider crack initiation in the pore to free edge ligament. Because of the stress

concentrations at the pore side, the crack is likely to initiate from the pore (cf. Fig. 2). Therefore,

the dimensionless crack length µ = 0 corresponds to the pore side located towards the free edge,

whereas µ = ε corresponds to a crack that breaks the ligament between the pore and the free edge

and µ > 1 to a crack which reinitiates on the pore side opposite to the free edge. The functions gε,

σ̃ε and thus gε/σ̃
2
ε are neither continuous nor monotonous because of the pore, which has a direct

implication in the CC solution. Indeed, solving Eq. (18) enables determining the dimensionless

initiation crack length µc. However, remember that the stress condition of the CC must be fulfilled
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Figure 3: Dimensionless a) incremental energy release rate b) normalized by the square dimensionless stress as a
function of the dimensionless crack length for ε = 1.
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on the whole crack path just before initiation. This is directly checked if µc < ε, i.e. the crack

initiates in the ligament between the pore and the free edge since in this region, both gε and σ̃ε are

monotonous. If solving Eq. (18) yields a dimensionless initiation crack length µc > ε, it has to be

checked afterwards that the stress conditions is verified all along the crack path (cf. Section 4).

Fig. 5 shows the variation of gε/σ̃
2
ε as a function of µ as well as an illustration of Eq. (18)

which solution enables the determination of the dimensionless initiation crack length µc = 0.49 < ε.

The initiation stress is determined using Eq. (19), which yields Tc = 8.0 MPa. The corresponding

initiation crack length is `c = dµc = 0.049 mm. Another way to solve the coupled criterion consists

in rewriting Eqn. (16) so that:

 T ≥
√

EGc
(1−ν2)dgε(µ)

= σc
√

`mat
dgε(µ)

T ≥ σc
σ̃ε(µ)

(21)

which reverts to determining µ so that

T ≥ σc min
µ

max (

√
`mat
dgε(µ)

,
1

σ̃ε(µ)
) (22)

Fig. 6a shows the variation of the remote stress required to fulfill either the stress or the energy

criterion as a function of the dimensionless crack length. Solving Eqn. (22) reverts to first determine

for a fixed µ the maximum stress required to fulfill both criteria and then to find its minimum µc.

This is equivalent to displayGinc/Gc and σ/σc and compare these functions to 1, µc being determined

as the length for which both criteria first exceed 1 for a minimum imposed loading.
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Figure 4: Dimensionless a-b) incremental energy release rate and c) stress as a function of a) the distance to the
free edge y2 or b-c) the dimensionless crack length µ for a dimensionless ligament size ε = 1. The pore position is
highlighted on a).
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crack length. b) Graphical representation of solution of Eqn. (18) enabling the initiation crack length determination.
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Figure 6: a) Imposed remote stress required to fulfill either the stress or the energy criterion and b) stress to strength
and incremental to critical energy release rate ratio as a function of the crack length. The intersection of the two
curves yields the initiation stress and crack length.

4. Crack initiation in the pore to free edge ligament

This section is dedicated to crack initiation occurring in the pore to free edge ligament. Other

crack initiation mechanisms are considered in Section 5. We remind that the match asymptotic

expansion approach remains valid provided d is small compared to the dimensions of the specimen,

and the small parameters µc and ε are in the same order of magnitude as 1 (dimensionless pore

diameter in the inner domain). Therefore, we perform calculations in the inner domain up to ε = 5,

meaning that the ligament size is at most five times the pore diameter. The functions gε and σ̃ε
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Figure 7: Dimensionless a) stress and b) incremental energy release rate as a function of the dimensionless crack
length for several pore-to-free edge dimensionless ligament sizes.

are computed within the ligament for several dimensionless pore-to-free edge ligament sizes ε (Fig.

7). One one hand, whatever the dimensionless ligament size, gε increases monotonously over the

ligament ((Fig. 7)b). On the other hand, σ̃ε(µ) decreases monotonously on the ligament whatever

the dimensionless ligament size ((Fig. 7)a). Besides, it decreases down to a value smaller than 1,

which will have an importance for initiation crack length of the same order of magnitude as the

ligament size (see Section 4.2) or crack initiation lengths larger than the ligament size (see Section

5). The function gε(µ)/σ̃ε(µ)2 is depicted in Fig. 8 as well as the dimensionless initiation crack

length µc depending on `mat/d for several dimensionless ligament sizes. Because of the monotonous

variations of gε and σ̃ε, gε/σ̃ε is monotonously increasing (Fig. 8) thus Eqn. (18) has at most

one solution over the ligament size provided `mat/d is smaller or equal to the maximum value of

gε(µ)/σ̃ε(µ). This maximum value is the smallest for ε = 1 and increases with increasing ε > 1 or

decreasing ε < 1 (Fig. 8a). Fig. 8b shows the dimensionless crack length variations as a function

of `mat/d for several ε. The dimensionless initiation crack length increases with increasing `mat/d.

For a fixed dimensionless ligament size, crack initiation in the ligament may occur only for a given

range of `mat/d otherwise Eqn. (18) has no solution in the interval 0 < µ < ε. It means that crack

initiation in the ligament is constrained to a given range of `mat/d values , the case of larger `mat/d

is studied in Section 5. The range of `mat/d enabling crack initiation in the ligament is the smallest

for ε = 1 corresponding to 0 ≤ `mat/d ≤ 6.1. It means that if the ligament size is equal to the pore

diameter, crack initiation will not occur in the ligament for materials having a characteristic length
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Figure 8: Dimensionless a) incremental energy release rate to square stress ratio as a function of the dimensionless
crack length and b) crack length as a function of characteristic length to pore diameter ratio for several pore-to-free
edge distances.

larger than 6.1d. Since the dimensionless stress σ̃ε(µ) decreases down to a value smaller than 1, if

the initiation crack length is such that σ̃ε(µc) < 1, it yields T > σc crack initiation stress according

to Eq. (19). Therefore, another cracking mechanisms is likely to occur such as initiation at the pore

side opposite to the free edge or simultaneous initiation at both pore sides, studied in Section 5.

4.1. Influence of the pore-to-free edge ligament size

In this section, we study the influence of the pore distance to the free edge on crack initiation.

The material characteristic length is first set to `mat = 1 mm. Fig. 9a shows the dimensionless

initiation crack length µc variation as a function of the dimensionless ligament size ε for several

pore diameters. The corresponding initiation crack length as a function of the ligament size is also

shown (Fig. 9b). The dimensionless and actual initiation crack lengths first increase with increasing

(dimensionless) ligament size and then reach a plateau for ligament lengths approximately twice the

material characteristic length. It means that for pore-to-free edge ligaments large enough compared

to `mat, the initiation crack length is independent of the ligament size. In other words, the pore

is far enough from the free edge so that there is not interaction between each other. For ligament

sizes smaller than 2`mat, the crack initiation length increases with increasing ligament size. Fig.

10 shows the initiation remote imposed stress as a function of the ligament size for several pore

diameters and two values of material strength (σc = 10 MPa or σc = 20 MPa). If the pore is

located far enough from the free edge, there is no interaction between the free edge and the pore as

14



mentioned previously, therefore the initiation remote imposed stress is constant and only depends

on the pore diameter. However, the smaller the pore-to-free edge ligament, the smaller the remote

imposed stress.

We now consider a larger material characteristic i.e. `mat = 2 mm. Fig. 11 shows the cor-

responding dimensionless initiation crack length µc variation as a function of the dimensionless

ligament size ε for several pore diameters. The same conclusions as before can be drawn if the pore

is located far enough from the free edge for pores sufficiently large (ex: d = 1.2 mm) compared

to the material characteristic length. However, the dimensionless initiation crack length is close

to the ligament size for sufficiently small pores (ex: d = 0.4 mm, ε ≤ 2). Remember that the

dimensionless stress decreases from the pore to the free edge down to a value smaller than 1. We

note µ1
ε the dimensionless crack length for which σ̃ε(µ

1
ε) = 1. Therefore, if the initiation length is

such that µc > µ1
ε, crack initiation on the ligament is not likely to occur since it would require a

remote imposed stress larger than σc, which is illustrated on Fig. 12. In that case, another crack

initiation mechanism is expected, namely crack initiation at the pore side opposite to the free edge

or simultaneous crack initiations at both pore sides.

4.2. Configurations prohibiting ligament crack initiation

The configurations for which crack initiation in the ligament is not likely to occur (Tc > σc)

are identified in this Section. They correspond to initiation crack lengths larger than µ1
ε for which

σ̃ε < 1. Fig. 13a shows the dimensionless stress variation as a function of the dimensionless
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Figure 9: a) Dimensionless or b) actual initiation crack length as a function of the dimensionless pore-to-free edge
ligament size for several pore diameters obtained for `mat = 1 mm.
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Figure 10: Initiation imposed remote stress as a function of the pore-to-free edge ligament size for several pore
diameters obtained for `mat = 1 mm (dashed lines: σc = 20 MPa, solid lines: σc = 10 MPa).
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Figure 11: a) Dimensionless or b) actual initiation crack length as a function of the dimensionless pore-to-free edge
ligament size for several pore diameters obtained for `mat = 2 mm.

crack length for several ligament sizes and Fig. 13b shows the variation of µ1
ε as a function of the

dimensionless ligament size. The range of dimensionless crack lengths prohibiting crack initiation in

the ligament increases with increasing ligament size. Since the dimensionless initiation crack length

µc depends on `mat/d (Fig. 8), it is thus possible to determine the configurations (ε, `mat/d) for

which crack initiation in the ligament is likely to occur or not. We computed the initiation crack

length and imposed remote stress as a function of ε and `mat/d (Fig. 14). The configurations for

which crack initiation in the ligament only are not likely to occur are determined in an equivalent

manner from Fig. 14a for µc ≥ µ1
ε or from Fig. 14b for T/σc ≥ 1.
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Figure 12: Initiation imposed remote stress as a function of the pore-to-free edge ligament size for several pore
diameters obtained for `mat = 2 mm (dashed lines: σc = 20 MPa, solid lines: σc = 10 MPa).
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Figure 13: a) Dimensionless stress as a function of the dimensionless crack length. Colored symbols represent the
ligament area for which σ̃ε < 1, b) crack length µ1

ε corresponding to σ̃ε = 1 (dashed line indicates the first bisector as
a guide line).

4.3. Influence of the pore diameter

We now assess the influence of the pore diameter on crack initiation. The material characteristic

length is first set to `mat = 0.2 mm. Fig. 15 shows the dimensionless initiation crack length variation

as a function of the pore diameter d for several pore-to-free edge ligament sizes. The corresponding

initiation crack length as a function of the pore diameter is also shown. The dimensionless initiation

crack length decreases as a function of the pore size whatever the ligament size (Fig. 15a), leading

to a possible non-monotonous variation of the initiation crack length as a function of the pore size
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(a) (b)

Figure 14: a) Dimensionless crack length and b) Initiation imposed remote stress to strength ratio as a function of
the dimensionless pore-to-free edge ligament size and material characteristic length to pore diameter ratio. The red
zones indicate the area for which µc > µ1

ε, i.e. for which Tc > σc.
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Figure 15: a) Dimensionless and b) actual initiation crack length as a function of the pore size for several pore
diameters obtained for `mat = 0.2 mm.

since lc = dµc (Fig. 15b). Fig. 16 shows the variation of the remote imposed stress at initiation as

a function of the pore size for several ligament sizes. The initiation imposed stress decreases as a

function of the pore size whatever the ligament size. Morevoer, if `mat ≤ hd, the initiation length

is smaller than µ1
ε therefore the initiation stress does not exceed σc.

We now consider a larger material characteristic length, `mat = 1 mm. Fig. 17 shows the

variation of the dimensionless initiation crack length µc as well as the corresponding initiation crack

length lc variations as a function of the pore diameter d for several pore-to-free edge ligament
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sizes. Both µc and lc are decreasing functions of the pore diameter whatever the liagement size.

Since the material characteristic length is larger than the ligament size, it results in dimensionless

initiation crack lengths in the range [µ1
ε, ε] for sufficiently small pore diameters, corresponding to

a configuration for which crack initiation in the ligament is not likely to occur (Fig. 18), which

is all the more highlighted as the pore is close to the free edge. The initiation imposed remote

stress decreases with increasing pore size whatever the pore distance to the free edge. Since the

incremental energy release rate is strictly increasing within the ligament, unstable crack propagation

occurs right after initiation, resulting in two possible scenarii. If the initiation stress is sufficiently

high, crack re-initiation at the opposite pore edge occurs and unstable crack propagation is observed

at the same remote imposed stress. Otherwise, the initiation stress must be increased to enable

crack re-initiation at the opposite pore edge, as also observed in [36] in the case of adhesively bonded

joint containing pores. After re-initiation, unstable crack propagation also occurs because of the

monotonously increasing incremental energy release rate.

5. Other crack initiation scenarii

Previous sections were dedicated to predict crack initiation in the pore-to-free edge ligament.

This section concerns other crack initiation mechanisms.

5.1. Crack initiation beyond the pore

We first study the possibility of crack initiation beyond the pore. This scenario implies that

the initiation length is larger than hd + d/2 and that the stress criterion is fulfilled on the whole
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Figure 16: Initiation imposed remote stress as a function of the pore diameter for several pore-to-free edge ligament
sizes obtained for `mat = 0.2 mm (dashed lines: σc = 20 MPa, solid lines: σc = 10 MPa).

19



0.2 0.4 0.6 0.8 1
0

1

2

3

d (mm)

µ
c

hd=0.2 mm
hd=0.4 mm
hd=0.6 mm

(a)

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

d (mm)

l c
(m

m
)

hd=0.2 mm
hd=0.4 mm
hd=0.6 mm

(b)

Figure 17: a) Dimensionless and b) actual initiation crack length as a function of the pore size for several pore
diameters obtained for `mat = 1 mm.

pore-to-free edge ligament, as well as on a certain distance starting from the pore side opposite

to the free edge. Whatever the pore diameter and pore-to-free edge ligament size, the normalized

stress distribution σ̃ε(µ) on the pore side opposite to the free edge varies between around 3 close to

the pore (stress concentration induced by the pore) to 1 far from the pore remote stress at infinity.

Crack initiation beyond the pore is possible only if T σ̃ε(µ) > σc ∀µ ≤ ε. Since the stress is

monotonously decreasing, this conditions reverts to T ≥ σc/min(σ̃ε(µ)) = σc/σ̃ε(ε). This condition

also ensures that σ̃ε(µ) ≥ σc ∀µ ≥ ε. Therefore, the minimum loading that allows crack initiation
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Figure 18: Initiation imposed remote stress as a function of the pore diameter for several pore-to-free edge ligament
sizes obtained for `mat = 1 mm (dashed lines: σc = 20 MPa, solid lines: σc = 10 MPa).
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beyond the pore is

T = σc/σ̃ε(ε) (23)

However, the energy condition must also be fulfilled to ensure crack initiation. It means that the

energy condition in Eqn. (16) must hold true for at least one value of µ. Combining Eqn. (16) and

(23) yields the following condition:
gε(µ)

σ̃ε(ε)2
=
`mat
d

(24)

The existence of a dimensionless crack length fulfilling the energy condition is actually checked since

gε is increasing for sufficiently large µ values so that it reaches any `mat/d for a large enough µ (Fig

19)a. We finally consider the example of a dimensionless pore-to-free edge ligament size ε = 2 for
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Figure 19: a) Normalized dimensionless incremental energy release rate for several dimensionless pore-to-free edge sizes
and b) initiation remote imposed stress for different `mat/d as a function of dimensionless crack length highlighting a
crack initiation beyond the pore.

`mat = 10 or `mat = 20. In both case, there is no solution for Eqn. 18 in the ligament. Fig. 19b

shows the variation of the remote stress that must be imposed in order to fulfill either the stress or

the energy criteria. The dimensionless crack initiation length can be determined as the minimum

loading for which both criteria are fulfilled. As explained previously, the remote stress that must

be imposed to fulfill the stress criterion on a length larger than the ligament size is limited by the

stress required to fulfill it on the ligament (σc/σ̃ε(ε)), which explains why the remote imposed stress

variation presents a plateau for lengths larger than the ligament size. The dimensionless initiation

crack length can be determined as the one fulfilling both criteria, it increases with increasing `mat/d.
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5.2. Crack initiation at the pore side opposite to the free edge

The pore actually induces stress concentrations at both sides, therefore the side opposite to the

free edge is also a possible crack initiation location. We thus study two additional crack initiation

scenarii, namely crack initiation at the pore side opposite to the free edge and simultaneous crack

initiation at both pore sides. When considering crack initiation at both pore sides, a possibility

consists in assuming a symmetrical configuration with the same crack length at both pore sides [37].

However, given the asymmetry of the studied configuration, we define the potential cracks based on

the stress isocontours. It means that the crack does not have the same length on both hole sides.

The main advantage of this approach is that for a given crack length, the stress criterion is strictly

fulfilled on the whole crack path prior to initiation. We computed the dimensionless incremental en-

ergy release rate and stress corresponding to these two scenarii for different dimensionless ligament

sizes (Figs. 20 and 21). For dimensionless ligament size ε < 1, the pore induced stress concentration
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Figure 20: Dimensionless a) stress, b) incremental energy release rate and c) ratio involved in Eq. (18) as a function
of dimensionless crack length for ε = 0.4.

magnitude differs on both sides of the pore. It is larger on the ligament than on the opposite side,

its magnitude increases with decreasing ligament size, see Fig. 7. The stress variation as a function

of the crack length along the ligament also differs since for sufficiently small crack lengths, it is

larger in the ligament than on the opposite side and conversely it is smaller in the ligament than

on the opposite side for larger crack lengths (Fig. 20a). The dimensionless incremental energy

release rate is larger on the ligament than on the opposite side (Fig. 20b). Qualitatively, it can thus

be expected that for sufficiently small initiation crack length (or equivalently for sufficiently small

`mat/d, crack initiation in the ligament occurs since both the dimensionless stress and incremental

energy release rate are larger than those corresponding to crack initiation at the opposite side. For

larger `mat/d (or larger initiation crack lengths), however, the dimensionless stress becomes larger

on the opposite side than on the ligament whereas the incremental release rate remains smaller.
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Therefore, it is not straightforward to determine which mechanism is the most likely to occur. It

can only be concluded that the resulting initiation crack length is larger for crack initiation on

the opposite side than on the ligament (Fig. 20c) and can be determined by solving Eqn. (18).

The mechanisms that is the most likely to occur is the one corresponding to the smallest imposed

remote stress. It can be noted that if two mechanisms lead to the same imposed remote initiation

stress Tc, the mechanisms that is the most likely to occur is the one corresponding to the larger

initiation crack length. Indeed, since the dimensionless incremental energy release rate increases

with increasing dimensionless crack length, a larger crack length corresponds to a larger dissipated

potential energy.

For dimensionless ligament size ε > 1 (see Fig. 21), the pore induced stress concentration mag-
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Figure 21: Dimensionless a) stress, b) incremental energy release rate and c) ratio involved in Eq. (18) as a function
of dimensionless crack length for ε = 3.5.

nitude is similar at both pore sides and the stress variation on each side of the pore is similar

(curves are almost superimposed in Fig. 21a) except for crack lengths close the the ligament length

(µ > µ1
ε) for which the dimensionless stress becomes smaller than 1 on the ligament and decreases

towards 1 on the side opposite to the free edge. The dimensionless incremental energy release rate

is similar on the ligament and on the opposite side for crack lengths sufficiently small with respect

to the ligament size (µ < ε/2). For larger crack lengths, it is larger on the ligament than on the

opposite side. Therefore, crack initiation may occur either at the ligament or at the opposite side

for initiation crack lengths sufficiently small with respect to the ligament length (or equivalently

for sufficiently small `mat/d. Crack initiation at the pore side opposite to the free edge is more

likely for sufficiently large `mat/d so that µ > µ1
ε). Whatever the dimensionless ligament size, it is

not straightforward to compare either one-side initiation or simultaneous crack initiation at both

sides based only on the dimensionless stress and incremental energy release rate variations. It can

only be concluded from Figs. 20c and 21c that the total initiation length is larger for simultaneous
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crack initiation at both sides than for one-side crack initiation. Once again, the determination of

the crack initiation configuration corresponds to the minimum initiation imposed remote stress.

The dimensionless initiation crack length and normalized remote imposed stress as a function of

the ligament size corresponding to one-side or simultaneous crack initiation are shown in Fig. 22

(`mat/d = 0.6) and Fig. 23 (`mat/d = 4.0). For sufficiently small `mat/d (Fig. 22), the dimensionless
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Figure 22: Initiation a) crack length and b) imposed remote stress to strength ratio as a function of the dimensionless
ligament size for either crack initiation in the ligament, at the opposite pore side or simultaneously at both sides for
`mat/d = 0.6

initiation crack length corresponding to crack initiation on the pore side opposite to the free edge

remains almost constant whatever the dimensionless ligament size. The initiation imposed remote

stress increases with increasing ligament size until a plateau that only depending on the pore size.

For dimensionless ligament size corresponding to the plateau, it is difficult to distinguish which

mechanism is the most likely to occur since they all result in similar initiation remote stress values.

The maximum energy dissipation principle can be invoked to conclude that crack initiation at both

sides is more likely to occur in that case since it corresponds to a larger initiation crack length

and thus a larger dissipated energy. However, for dimensionless ligament size smaller than that

corresponding to the plateau, crack initiation in the ligament is clearly more likely to occur since it

corresponds to the smallest initiation remote imposed stress.

For larger `mat/d (Fig. 23), the dimensionless initiation crack length increases with increasing di-

mensionless ligament size for the three initiation configurations. As expected, the configurations

of crack initiation in the ligament leading to a remote imposed stress larger than σc is not the

most likely to occur since a smaller initiation stress is obtained for crack initiation at the pore side
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opposite to the free edge. For large enough dimensionless ligament size, both configurations lead

to similar initiation remote imposed stress thus simultaneous crack initiation at both pore sides is

privileged. Finally, it seems that crack initiation occurs in the ligament except for configuration
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Figure 23: Initiation a) crack length and b) imposed remote stress to strength ratio as a function of the dimensionless
ligament size for either crack initiation in the ligament, at the opposite pore side or simultaneously at both sides for
`mat/d = 4.0

corresponding to the red zone depicted in Fig. 14, for which either crack initiation at the pore

side opposite to the free edge (for large ε) or simultaneous crack initiation (for intermediate ε and

large `mat/dratios) is more likely to occur. If the crack initiates on the pore side opposite to the

free edge, this is expected to trigger the ligament failure because, once a crack has initiated toward

the interior, it is more or less as if the pore was bigger. It is checked since it can be shown that

at crack initiation G ≥ Gc and that the differential energy release G rate increases with increasing

crack length, thus resulting in unstable crack propagation right after initiation.

6. Conclusion

The pore to free edge ligament size strongly influences crack initiation at a pore close to a

free edge. There is a competition between three possible mechanisms, namely crack initiation

in the ligament, at the pore side opposite to the free edge or simultaneously at both pore sides.

The mechanism that is the most likely to occur depends on two quantities: the ligament size

and the material characteristic length to pore diameter ratio. If the ligament is sufficiently large,

simultaneous crack initiation at both pore sides occurs, the imposed remote stress increasing up

to the material tensile strength for increasing lmat/d ratios. For small lmat/d ratios and ligament
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size, crack initiation in the ligament is privileged. However, for larger lmat/d and small enough

ligament size, crack initiation at the pore side opposite to the free edge occurs. The experimental

validation of the different crack initiation scenarios is not straightforward because of unstable crack

propagation occurring after initiation, contrary to configurations leading to an arrest length [38].

References

[1] Z. Hashin, Finite thermoelastic fracture criterion with application to laminate cracking analysis,

J. Mech. Phys. Solids 44 (1996) 1129–1145. doi:https://doi.org/10.1016/0022-5096(95)

00080-1.

[2] J. Nairn, Exact and variational theorems for fracture mechanics of composites with residual

stresses, traction-loaded cracks, and imperfect interfaces, Int. J. Fract. 105 (2000) 243–271.

[3] D. Taylor, P. Cornetti, N. Pugno, The fracture mechanics of finite crack extension, Eng. Fract.

Mech. 72 (2005) 1021–1038. doi:https://doi.org/10.1016/j.engfracmech.2004.07.001.

[4] A. A. Griffith, The phenomena of rupture and flow in solids, Philosophical Transactions of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences 221 (582-593)

(1921) 163–198.

[5] D. Leguillon, Strength or toughness? a criterion for crack onset at a notch, Eur. J. Mech. -

A/Solids 21(1) (2002) 61–72.

[6] P. Weißgraeber, D. Leguillon, W. Becker, A review of finite fracture mechanics: crack initiation

at singular and non-singular stress raisers, Archive Appl. Mech. 86(1-2) (2016) 375–401.

[7] P. Cornetti, N. Pugno, A. Carpinteri, D. Taylor, Finite fracture mechanics: A coupled stress

and energy failure criterion, Engng. Fract. Mech. 73 (2006) 2021–2033.
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