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Abstract

Two (proper) colorings of a graph are adjacent if they differ on exactly one vertex. Jerrum proved
that any (d + 2)-coloring of any d-degenerate graph can be transformed into any other via a sequence
of adjacent colorings. A result of Bonamy et al. ensures that a shortest transformation can have a
quadratic length even for d = 1. Bousquet and Perarnau proved that a linear transformation exists for
between (2d + 2)-colorings. It is open to determine if this bound can be reduced.

In this paper, we prove that it can be reduced for graphs of treewidth 2, which are 2-degenerate.
More formally, we prove that there always exists a linear transformation between any pair of 5-
colorings. This result is tight since there exist graphs of treewidth 2 and two 4-colorings such that
a shortest transformation between them is quadratic.

1 Introduction

Reconfiguration problems consist in finding step-by-step transformations between two feasible solu-
tions of a problem such that all intermediate states are also feasible. Such problems model situations
where a solution already in place has to be modified for a more desirable one while keeping some
properties all along. Reconfiguration problems have been studied in various fields such as discrete ge-
ometry [6], optimization [1] or statistical physics [20]. For a complete overview of the reconfiguration
field, the reader is referred to the two recent surveys on the topic [21, 22]. In this paper, our reference
problem is graph coloring.

In this work, we will focus on the diameter of the reconfiguration graph. The diameter of the recon-
figuration graph plays an important role, for instance in random sampling, since it provides a lower
bound on the mixing time of the underlying Markov chain (and the connectivity of the reconfiguration
graph ensures the ergodicity of the Markov chain!). Since proper colorings correspond to states of the
anti-ferromagnetic Potts model at zero temperature, Markov chains related to graph colorings received
a considerable attention in statistical physics and many questions related to the ergodicity or the mixing
time of these chains remain widely open (see e.g. [13, 19]).

Graph recoloring. All along the paper G = (V, E) denotes a graph, n := |V| and k is an integer. For
standard definitions and notations on graphs, we refer the reader to [14]. A (proper) k-coloring of G is a
function o : V(G) — {1, ..., k} such that, for every edge zy € E, we have o(z) # o(y). Throughout the
paper we only consider proper colorings and will then omit the proper for brevity. The chromatic number
X(G) of a graph G is the smallest k such that G admits a k-coloring. Two k-colorings are adjacent if they
differ on exactly one vertex. The k-reconfiguration graph of G, denoted by G(G, k) and defined for any

*This work was supported by ANR project GrR (ANR-18-CE40-0032).
1 Actually, it only gives the irreducibility of the chain. To get the ergodicity, we also need the chain to be aperiodic. For the
chains associated to proper graph colorings, this property is usually straightforward.
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k > x(@G), is the graph whose vertices are k-colorings of G, with the adjacency relation defined above.
Cereceda et al. provided an algorithm to decide whether, given two 3-colorings, one can be transformed
into the other in polynomial time, and characterized graphs for which G(G, 3) is connected [11, 12].
Given any two k-colorings of G, it is PSPACE-complete to decide whether one can be transformed
into the other for k > 4 [5].

The k-recoloring diameter of a graph G is the diameter of G(G, k) if G(G, k) is connected and is equal
to +oo otherwise. In other words, it is the minimum D for which any k-coloring can be transformed
into any other one through a sequence of at most D adjacent k-colorings. Bonsma and Cereceda [5]
proved that there exists a family G of graphs and an integer k such that, for every graph G € G there
exist two k-colorings whose distance in the k-reconfiguration graph is finite and super-polynomial in n.

Cereceda conjectured that the situation is different for degenerate graphs. A graph G is d-degenerate
if any subgraph of G admits a vertex of degree at most d. In other words, there exists an ordering
v1, ...,y of the vertices such that for every ¢ < n, the vertex v; has at most d neighbors in v;11, ..., vy.
It was shown independently by Dyer et al. [16] and Cereceda et al. [11] that for any d-degenerate graph
G and every k > d + 2, G(G, k) is connected. However the (upper) bound on the k-recoloring diameter
given by these constructive proofs is of order ¢ (where c is a constant). Cereceda [10] conjectured that
the the diameter of G(G, k) is of order O(n?) as long as k > d + 2. If correct, the quadratic function is
sharp, even for paths or chordal graphs as proved in [4]. Bousquet and Heinrich [8] proved that the
diameter of G(G, k) is n?*1, improving the 2" upper bound of [16]. The conjecture is known to be true
for a few graph classes such as chordal graphs [4] or bounded treewidth graphs [3, 17].

One can wonder what happens if k increases. No non trivial lower bound on the diameter of G(G, k)
is known for d-degenerate graphs G when k > d + 3. Bousquet and Perarnau [9] showed that the
diameter of G(G, k) is linear when k > 2d + 2. Bartier and Bousquet [7] proved that the diameter of
G(G, k) is linear for bounded degree chordal graphs as long as k£ > d + 4. The problem remains open
for bounded treewidth graphs or general chordal graphs.

The class of planar graphs also received a considerable attention. Feghali proved that G(G, k) is
almost linear (precisely O(n - Polylog(n))) when G is a planar graph and k > 8 [18]. Dvorak and Feghali
also showed that it becomes linear when & > 10 [15]. One can naturally ask for which graph classes the
diameter of G(G, k) becomes linear when k > d + 2.

In this paper, we investigate the class of outerplanar graphs and more generally the graphs of
treewidth 2. Since graphs of treewidth 2 are 2-degenerate, the result of [9] ensures that there exist
linear transformations between any pair of 6-colorings. We also know that such a result is impossible
for 4-colorings [4] (the diameter is quadratic). So the only open case is when k& = 5. In this note, we
answer this question and show:

Theorem 1. Let G be graph of treewidth at most 2 and k = 5. There exists a constant ¢ such that, for every pair
of 5-colorings o, B of G, there exists a transformation from « to [ recoloring each vertex at most c times.

Note that since outerplanar graphs have treewidth 2 and the quadratic diameter for k£ = 4 obtained
in [4] also holds for outerplanar graphs, it also completely characterizes the recoloring diameter of
outerplanar graphs.

One can naturally ask if the results of Theorem 1 can be extended further. In particular we ask the
two following questions, where the second generalizes the first one:

Question 2. Does there exists a constant C' such that, for every graph G of treewidth at most d, the
diameter of G(G, k) is linear when k > d + C?

Question 3. Does there exists a constant C' such that, for every d-degenerate graph G, the diameter of
G(G, k) is linear when k > d + C?

Outline of the paper Before going into the details of the proof, let us describe from a high level point
of view how the proof works, and how the paper is organized. The first step in the proof of Theorem 1
is to show that it is sufficient to prove the result for chordal graphs with cliques of size at most 3,
instead of graphs of treewidth 2. This reduction to chordal graphs is done in Section 2. Proving that
the result holds for chordal graphs is the main technical part of the paper, and is done in Section 3. The
proof for chordal graphs is algorithmic in nature. We first describe the procedure, introduced in [9],
which builds a recoloring sequence by making greedy choices. We prove that the recoloring sequences



produced by this procedure recolor each vertex of the graph a constant number of times. This is done
by first proving some properties of the sequences produced by this algorithm in Section 3.1, and then
showing in Section 3.2 how these properties can be used to bound the number of times that each vertex
is recolored. The core of the proof proceeds by contradiction. Assuming that a vertex is recolored a
large number of times puts some very strong constraints on the recoloring sequence on its neighbor.
This in turn is used to show that the algorithm would recolor x a much smaller number of times in this
sequence.

2 Reduction to chordal graphs

Let G = (V, E) be a graph of treewidth at most d and T be a tree decomposition of G. A tree decompo-
sition (T, X) is a tree T given with a bag function X such that, for every v € V(T'), X' (u) is a subset of
V(QG), for every edge e = xy in E(G), there exists a node u of T such that {z,y} C X'(u). Moreover, for
every z € V(G), the subset of nodes containing z in their bags is connected.

The clique number of G, denoted by w(G) is the maximum size of a clique in G. The following lemma
is sufficient to prove Theorem 1.

Lemma 4. There exists a constant c such that for every chordal graph H with w = 3, there exists a transformation
from any 5-coloring of H into a 3-coloring of H by recoloring each vertex at most c times.

The proof of Lemma 4 is postponed to Section 3.2. Let us explain how we can use it to prove
Theorem 1

Proof of Theorem 1. Let G be a graph of treewidth at most 2 and «, 8 be two 5-colorings of G. Let T be a
tree decomposition T" of G that can be found in linear time by [2].

Let us first transform G into a chordal graph H with clique number at most three. The transfor-
mation is based on a trick used in [17]. For every bag B of T, we merge the vertices of B colored the
same in o. We repeat until we obtain a graph H' such that no bag contains two vertices of the same
color. Note that tw(H') < tw(G) since we only identify vertices belonging to the same bags. Since
we merged vertices colored the same in o, the coloring o/ which is the coloring of H' where a vertex
receives the color of its color class in G is proper and well-defined. Note that, in H’, vertices belonging
to the same bag receive distinct colors. So ' is also a coloring of H which is the chordal graph whose
clique tree is T. In other words, H is the graph obtained from H’ by transforming every bag of the
tree decomposition of H' into cliques.

By Lemma 4, o’ can be transformed into a 3-coloring of H by recoloring every vertex at most ¢
times. Feghali observed in [17] that it implies that, in G, we can transform « into a 3-coloring y; of
G by recoloring every vertex of G at most ¢ times. With a similar argument, we can transform J in a
3-coloring 7, by recoloring every vertex at most ¢ times. The following claim concludes the proof of
Theorem 1 by taking d = 2.

Claim A. Let G be a graph of treewidth at most d and ~s, v, be two (d+1)-colorings of G using colors {1,...,d+
1}. If k > 2d + 1, ~ys can be transformed into -y, by recoloring every vertex at most twice.

We perform the following recolorings. We denote by X; the subset of vertices colored with i in .
For every i < d, recolor one by one all the vertices of X; with color d 4 1 + 4. Then recolor the vertices of
X441 with their target colors. Finally recolor all the vertices of X; for ¢ < d with their target color. The
resulting coloring is v; and we claim that at every step, the current coloring is proper. Indeed, during
the first phase, the color classes are the same (we simply change the color classes of the X;s). When

X441 is recolored, all the vertices that receive a color in {1, ..., d + 1} in the current coloring have their
final color. The property is kept all along the rest of the recoloring algorithm, which completes the proof
since ; is proper. ¢ O

So, in what follows, our goal is to prove Lemma 4.



3 Best choice algorithm

Our proof of Lemma 4 is algorithmic and is based on an algorithm already used for instance in [9]. Our
main contribution consists in making a careful analysis of its behavior for chordal graphs with clique
number at most 3, and showing that the recoloring sequence produced by the algorithm recolors each
vertex a constant number of times. We start by describing the algorithm and its properties.

In the following, given a graph G and two colorings o and /3 of G, a recoloring sequence S is a se-
quence 5152 ... s; where each s; is a pair (v, ¢) describing the vertex v and the color ¢ which characterize
the i-th step of the sequence. All the intermediate colorings described by this sequence must be proper.
The restriction of S to X, denoted S|x, is the recoloring sequence obtained from S by keeping only re-
colorings of vertices in X. In particular if X is a single vertex v, then S, denotes the sequence of colors
taken by the vertex v in the recoloring sequence S. With this notation, |5),| is the number of times the
vertex v is recolored in the sequence S.

Part of our proof relies on the identification of patterns in a recoloring sequence S. Given a sequence
of vertices vy ... v, we say that S contains this pattern if there is an index ¢ such that for all j < ¢, s,
recolors the vertex v;. Given an integer r, we also denote by v7" the pattern where v, is recolored
times in a row (without any other vertex interleaved in S), and (v; ...v,)" to denote that the pattern
v1 ... is repeated r times in a row in the sequence S.

Consider a d-degenerate graph G, two k-colorings «, 8 of G with k > d + 2, and a vertex u of G with
degree at most d. Let o’ and 3’ be the restrictions of « and 3 to G — u and S a recoloring sequence from
o' to . Let us now explain how we can extend this recoloring sequence to the whole graph.

Letty,...,t, be all the steps where the color of any neighbor of u is modified in S, and let ¢;, be the
new color assigned to the recolored neighbor at step ¢;. A best choice for u at step ¢t € {t1,..., ¢} is:

e the color (u) if 5(u) is distinct from ¢, ..., ¢,;
e or any valid choice for u at step ¢ which is distinct from {c¢;, with ¢; > ¢} otherwise;
e or the valid choice for u at step ¢ that appears the latest in the sequence (¢, )+, >+ otherwise.

The Local Best Choice for u extends the sequence S by recoloring only the vertex u. When a neighbor
v of u is recolored in S with the current color of u, we add a recoloring for u just before this recoloring
and we recolor u with a best choice. We do not perform any other recoloring for u except at the very
last step to give it color () if needed.

Let G be a chordal graph and v, .. ., v, be a degeneracy ordering of G. The Best Choice Recoloring
Algorithm is the algorithm which consists in making the Local Best Choice successively on vy, ..., v;.
We call a best choice recoloring a sequence S which can be obtained from this procedure for some degen-
eracy ordering of G. Observe that by construction, if S is a best choice recoloring for some graph G and
some degeneracy ordering vy, ..., v,, then for every index i > 0, if V; = {v;,...,v,}, then S}y, is a best
choice recoloring for G[V;].

3.1 Properties of the Best Choice Algorithm

In what follows, we always assume that G is a chordal graph with w = 3 and & = 5. The ordering
v1,...,0y is a perfect elimination ordering of G, and S = s;...s; is a best choice recoloring for this
ordering between two 5-colorings e and 5 of G. We denote by V; the set {v;,...,v,}, and G; = G[V;].
The perfect elimination ordering of G can be used to construct an acyclic orientation of the graph,
with the edge v;v; oriented towards v; if j > ¢. With this convention, each vertex of the graph has at
most 2 out-neighbors, and for every vertex v of G, we denote by N (v) these two out-neighbors, and
N*[v] = N*(v) U {v} the inclusive out-neighborhood. Because the ordering is a perfect elimination
ordering, the out-neighbors of a vertex are adjacent.

Given a vertex v, the step i of the sequence S is saved for v if s; recolors a vertex w € N*(v) and one
of the following holds:

e visnotrecolored atsteps 1,...,1%;

e v is not recolored at steps i, . .., ¢;



e the two steps preceding s; in S| y+1,) do not recolor v.

Informally, in the “worst case” scenario, when we apply the Best Choice Algorithm to extend a
recoloring sequence to a new vertex v, whenever we have to recolor v because of one of its neighbors
there are two possible choice of color to recolor v with. By choosing the correct color, the algorithm
recolors v once every two steps at most. This is formalized in the following observation:

Observation 5. For every vertex v and w € N¥(v), the patterns vv never occur in S|y+[,j, and the
pattern vwwv can occur at most once, at the very end of the sequence S n+1,-

Saved steps quantify how many additional steps are saved by the algorithm compared to the worst
case scenario. More precisely, we will show that every two saved recolorings for x reduce the number
of times x is recolored by one compared with the worst case scenario. In order to prove this result, we
will need one additional notion. We say that a step i recoloring a vertex v is caused by a vertex w if the
recoloring step following s; in S+, recolors w. Note that by construction, this recoloring step recolors
w with the color that v had just before the transformation s;. Moreover, all the steps recoloring v, except
possibly the last one where v is given its target color, are caused by one of the out-neighbor of v.

Let us start by proving a simple inequality on the number of times that a vertex v is recolored.

Lemma 6. For every vertex v of, if r is the number of saved recolorings for v, then the following inequality holds:

T ZwGN*(v) |S‘w|

Proof. The statement is proved by induction on m := 3, n+ (y) [Sjw]. If v is recolored at most once
during the sequence (which is the case when m = 0, i.e., when its out-neighbors are not recolored) the
conclusion follows immediately. Hence, let us assume that v is recolored at least twice. If v is not the
first recolored vertex of S|y[,), then the first recoloring is saved. If we consider the coloring o’ obtained
after this first recoloring, and S’ the subsequence of S which recolors o’ to 3, then by induction, v is
recolored at most % +1 times in §’, and consequently also in S. In this case the induction step
holds, consequently we can assume in the rest of the proof that v is the first vertex recolored in &+
Let us write S|y+[,] = s7...5;. We know that s recolors v, let us write ¢y and ¢; the colors of v
respectively before and after the transformation s7. Since v is recolored at least twice, this recoloring
must be caused by one of its out-neighbors say w, and w must be recolored in s} with the color c.
Consequently, there are still two colors that did not appeared in N *[v] in the transformation up to step
2. By Observation 5, either s3 recolors v, and in this case is the last step of S|+, (i.e., £ = 3); or s5 does
not recolor v. In the first case we have > c v+ () [ S| = 1, and since v is recolored twice, the inequality
holds. In the second case we consider the coloring ¢’ obtained after the transformation s, and let &’
be the subsequence starting after the step s recoloring o’ into 3. We know that v is recolored at one
less times in S’ than in S. Moreover, by definition neither s5 nor s4 are saved recolorings for v, hence
the number of saved recolorings for v in &’ is still equal to . Using the induction hypothesis on &', we
know that v is recolored at most m’TH +11in &', and since v is recolored one additional time in S, the
induction step holds. O

Hence in order to prove that a vertex is not recolored to many times, it is sufficient to show that
there exists a sufficient number of saved recolorings. The following lemma gives a sufficient condition
for a saved recoloring to appear.

Lemma 7. Let u be a vertex of G and v,w € N*(u). We write S|n+[,) = s}, ... sy Assume that the step i of
S|N+1u) recolors w and is caused by v, and step i + 1 is caused by w. Then either i + 3 > £ or the step i + 3 of
S|N+1u) Is saved for u.

Proof. Let ¢y (resp. ca, resp. c3) denotes the color of u (resp. v, resp. w) just before step i. By definition,
at step 7 + 1 the vertex u takes the color ¢; (since the step i is caused by u) and at step 7 + 2, w takes the
color ¢ (since i + 1 is caused by w). Thus, after step i + 2, the only colors which appeared for v and w at
steps i,7 4 1 and 7 + 2 are the colors ¢y, 2, c3. Since we make the best choice for v and there remain two
valid colors, u is not recolored at step i + 3 (and then is saved for u) except if it is the last step of S|n+(y
where vy receives its final color.



Lemma 8. Let u be a vertex of G, and v,w € N (v). If Sy, contains the pattern vow>"u then the initial,
intermediate and final colors of w in the subsequence corresponding to this pattern are pairwise distinct.

Proof. If the three colors are not pairwise distinct then only the initial and final colors of u can be the
same. Let c; be the initial color of u. Let s} ...s) be the subsequence of S|y, corresponding to the
pattern, then s} is caused by v, which implies that v is recolored in s, with ¢;. Since v and w are
adjacent, all the subsequent recolorings of w and u use a color different from ¢;, and in particular, the
final color of v is different from c;. O

Lemma 9. Let x, u, v, w be vertices of G such that Nt (z) = {u,v} and N*(u) = {v,w}. If i is the first index
such that x = v;, let us write ¢ = max;y~; |S),, |. If x is recolored at least c — 1 times in S, then:

1. the pattern vwvu appears at least c — 34 times in S| y+(u);

2. in the sequence of colors of x, there are at most 74 indices where three consecutive colors are not pairwise
distinct.

Proof. Let us prove the two points of the lemma successively.

1. Let us write S|+ () = s, ..., ;. Let us start by showing that few recolorings of u are caused by
v. Let i be an index such that the recoloring s; of u is caused by the recoloring s;, ; of v.

First observe that  is not recolored between s; and s; ;. Indeed, let us denote by c the color of u
before s;. Since the step i is caused by v, this means that v is recolored with c in sj ;. Moreover,
since z and u are adjacent, x is not colored c before s;. This implies that z is not recolored between
s; and s |, as it would be a recoloring caused by v, which can only happen if v is recolored with
the color of 2 which is not the case here.

If s} is the first recoloring of a vertex in N*[z], then it is saved for z. Otherwise, the recoloring
preceding s; in S|y [,) can be either:

e a recoloring of z, in which case it is caused by u, and by Lemma 7, this implies that either
5741 is the last, or before last, step of S|y +[4), or the step following s;, ; in S y+/,] is saved for
x.

e arecoloring of either v or v, and in this case sj_ ; is saved for x.

This implies that every time (except once) there is a recoloring of v caused by v, we can find a
saved step for =, and all these saved steps are different. Moreover, since z is recolored at least
¢ — 1 times, by Lemma 6 there are at most 5 saved recolorings for z, and consequently by the
observation above there are at most 6 recolorings of u caused by v.

Since = is recolored at least ¢ — 1 times, we know by Lemma 6 that u is recolored at least ¢ — 3
times. At most 6 of these recolorings are caused by v by the argument above. Hence, except the
last one, the other ¢ — 10 recolorings of u are caused by w. Moreover, since w is recolored at most
c times, it also means that there are at most 10 recolorings of w which do not cause a recoloring of
u.

Let us consider i and j such that s} and s} are two consecutive recolorings of u in Sy+(,). Our goal
is to show that except for a small number of choices of i, we have j =i+ 3,and s, . .. s; matches
the pattern vwvu. Observe that the following properties hold:

e By Observation 5, we have j > i 4+ 2, and j = ¢ + 2 can only happen once at the end of the
sequence.

o If j > i+ 3,ie, if there are at least three recolorings of v or w between s; and s, then at least
one of these recolorings is saved for w. This can happen at most 9 times since u is recolored
at least ¢ — 3 times, and using Lemma 6.

e If j =i+ 3 and s, does not recolor w, then we have a recoloring of v which is not caused
by w, which can happen at most 10 times by the arguments from the previous paragraph.

e Finally, if j =i + 3 and sj ; recolors w, and if s}, , does not recolor v, then it must recolor w
(it cannot recolor u by the assumption that j = i 4 3), in which case we have a recoloring of
w which does not cause a recoloring of u, which can happen at most 10 times.



Combining all the points above, and since u is recolored at least ¢ — 3 times, the pattern uwvu
occurs atleastc —4 — 1 — 9 — 10 — 10 = ¢ — 34 times, proving the first point of the lemma.

2. Let us now consider the second point. Since x is recolored at least ¢ — 1 times while its at most
two out-neighbors are recolored at most ¢ times, then by Lemma 6, there are at most 5 saved
recolorings for x. Let us write Sjy+[;] = s ...5;, and consider two indices i < j such that s]
and s; are two consecutive recolorings of x. Again, by Observation 5, we have j > i + 2, and
j = i+ 2 can occur only once at the end of the sequence. If j > i + 3, then s;_; is saved for
x, which can happen at most 5 times. In all the other cases, there are exactly two recolorings of
either u or v between s; and s;. By the point 1. above, we know that the pattern uwvu appears
at least ¢ — 34 times in S|y+[,). This implies that in the sequence S, .} there are at most 2 x 34
times where either two consecutive u or two consecutive v appear as a pattern. Hence, in all but
at most 68 + 5 + 1 = 74 occurrences, the subsequence s; . .. s; matches one of the patterns zuvx or
zvuz. By Lemma 8 the three colors taken by « during this portion of the recoloring sequence are
all different, which proves the second point of the lemma.

O

3.2 Proof of Lemma 4

Let c be a constant equal to 542. In order to prove Lemma 4, we will show that a best choice recoloring
sequence recolors each vertex at most ¢ times. This is proved by induction on the number of vertices
of G. This is clearly true when G contains a single vertex since the sequence will recolor this vertex at
most once. Assume that the conclusion holds for all the chordal graphs with clique number at most
three on n vertices. Let G be a graph with n + 1 vertices and let = be the first vertex in the elimination
ordering. Assume by contradiction that z is recolored ¢ + 1 times in a best choice recoloring sequence
for this elimination ordering. Using the induction hypothesis, all the vertices but « are colored at most
c times.

If = has a single neighbor, then by Lemma 6, it is recolored at most § + 1 < c times, a contradiction.
Hence, we can assume that = has two neighbors y and z. Again, using Lemma 6, both y and z are
recolored at least ¢ — 1 times in S. Since G is chordal, yz is an edge of G, and we can assume without
loss of generality that z is an out-neighbor of y. Let y; be the second out-neighbor of y (if it exists).

By the first point of Lemma 9, there are at most 34 recolorings of y in S| y+[,] where the subsequence
starting at this point does not match the pattern yy;zy. Moreover, by the second point of Lemma 9
applied to z, there are at most 74 triplets of consecutive colors of z which are not composed of pairwise
distinct colors. Since both y and z are recolored at least ¢ — 1 times, there exists a subsequence S’ of
Sn+[y of the form (yy; 2)¢ where ¢ = |<52] = 5 and where three consecutive colors of z are always
pairwise distinct.

For X € {z,y,z,y1}, let us denote by ¢;* the color of X after the i-th recoloring of X in the sequence
S’, with the convention that ¢ is the initial color of X.

Note that all the recolorings of y are caused by y; in this subsequence, consequently, ¢/}, = ¢/ for

all 7 < ¢. Since we choose the best color for y when we recolor y from ¢/, ; to ¢/, ,, the set of colors

i, €lhg, €y, €7y are pairwise distinct. Indeed, if they were not, the algorithm could have chosen an
other color for y, which would postponed the recoloring of y, a contradiction with the fact that we made
a best choice for y. Using this fact, and the equality ¢}, = ¢/, it follows that ¢/, , is the unique color
which is not in the set {¢/, ¢/, |, ¢}, |, c7,,}, or stated differently, the colors ¢!, Y, |, c7 . ¢/ 5, ¢} 5 areall
pairwise disjoint. Writing this property for the index i + 1 gives that ¢/, ¢/ ,, ¢}, 5, ¢/ 5, ¢f 5 are all
pairwise disjoint. With the overlap between these two sets, it follows that we must have {c!, ¢}, ,} =
{cf 5, ¢i 3} Moreover, since cf, | # ¢, 3 by assumption on the sequence &', then we must have ¢, ; =
c/,and ¢f, | = ¢/, ;. Hence, we can see from these conditions that the vertex y takes the colors 1,2, 3,4, 5
successively (up to a permutation of colors), and similarly for y; and z, but with a shift of 1 and 3
respectively compared to y.

We can now use the fact that S’ is very constrained to show that there must be a sufficient number of
saved recolorings for x, which will contradict the assumption that x is recolored at least ¢ + 1 times. Let
us first assume that there is a recoloring of x caused by the recoloring of y from ¢} to ¢/, ;. This means

that z is colored ¢}, |, and is recolored with a color not in the set {c/, ¢/, ,c,c},,}. However, we also




T z Y Z Y T z Y z o
y |3 3-4 4-2 2-1 g
z |4 4-2 2-1 1-5 5-3

r |2 25 5-4

Figure 1: Example for &', .1 and the best choices it implies for . Initial colors of z, y, and z are 2, 3 and
4 respectively. Recolorings are ordered from left to right. The recolorings in red are saved for x.

know that ¢/, , = ¢, which implies that the recoloring of y from ¢, , to ¢/, , will be saved for z. In a
similar way, if the recoloring of x is caused by a recoloring of z from c; to ¢, ;, then the new color of =
will not be in the set {c, ¢, ¢!\, ¢/, ,}. And since ¢} = ¢! ,, the recoloring of z from ¢}, ; to ¢, , will
also be saved. An example of such a sequence S’ is given in Figure 1.

Hence, in the sequence &', for every recoloring of z, there is at least one recoloring saved for x.
Hence, either z is recolored at most ¢ — 2 times during &’, in which case there are at least 2 saved
recolorings for x, or z is recolored at least ¢’ — 2 = 3 times during &’, and by the argument above at
least two of these recolorings cause a recoloring saved for z (the last one might be at the end of §’). In
all cases, we obtain two saved recolorings for x, which is a contradiction of the assumption that x is
recolored at least ¢ + 1 times. Hence x is recolored at most c times and the inductive step holds.
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