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Simple Summary: Pediatric high-grade gliomas are incurable brain tumors for which there is a
critical need for new therapeutic strategies as well as treatment-predictive biomarkers. This study
examined the expression of DNA repair and cell cycle genes in pediatric high-grade gliomas with
distinct driving mutations. The aim is to propose a novel classification of these tumors based on
sub-groups exposing therapeutic vulnerabilities. Several DNA repair factors were identified that
might become new diagnostic markers.

Abstract: Background: Pediatric high-grade gliomas (pHGGs) are the leading cause of mortality in
pediatric neuro-oncology, displaying frequent resistance to standard therapies. Profiling DNA repair
and cell cycle gene expression has recently been proposed as a strategy to classify adult glioblastomas.
To improve our understanding of the DNA damage response pathways that operate in pHGGs and
the vulnerabilities that these pathways might expose, we sought to identify and characterize a specific
DNA repair and cell-cycle gene expression signature of pHGGs. Methods: Transcriptomic analyses
were performed to identify a DNA repair and cell-cycle gene expression signature able to discriminate
pHGGs (n = 6) from low-grade gliomas (n = 10). This signature was compared to related signatures
already established. We used the pHGG signature to explore already transcriptomic datasets of DIPGs
and sus-tentorial pHGGs. Finally, we examined the expression of key proteins of the pHGG signature in
21 pHGG diagnostic samples and nine paired relapses. Functional inhibition of one DNA repair factor
was carried out in four patients who derived H3.3 K27M mutant cell lines. Results: We identified a
28-gene expression signature of DNA repair and cell cycle that clustered pHGGs cohorts, in particular
sus-tentorial locations, in two groups. Differential protein expression levels of PARP1 and XRCC1
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were associated to TP53 mutations and TOP2A amplification and linked significantly to the more
radioresistant pHGGs displaying the worst outcome. Using patient-derived cell lines, we showed
that the PARP-1/XRCC1 expression balance might be correlated with resistance to PARP1 inhibition.
Conclusion: We provide evidence that PARP1 overexpression, associated to XRCC1 expression, TP53
mutations, and TOP2A amplification, is a new theranostic and potential therapeutic target.

Keywords: pediatric high-grade gliomas; DNA damage repair; prognostic clustering; PARP1; XRCC1

1. Introduction

Despite their low incidence, pediatric high-grade gliomas (pHGGs), including dif-
fuse intrinsic pontine gliomas (DIPGs), are the leading cause of mortality in pediatric
neuro-oncology. Resistance to standard therapies is a frequent occurrence in pHGGs [1–3].
Recurrent, mutually exclusive mutations affecting K27 (K27M) and G34 (G34R/V) in the
N-terminal tail of histones H3.3 and H3.1 act as key biological drivers of pHGGs. These
mutations lead to distinct epigenetic reprogramming, telomere maintenance mechanisms,
and oncogenesis scenarios, resulting in distinct subgroups of patients characterized by
differences in tumor localization, clinical outcome, as well as concurrent epigenetic and
genetic alterations [4]. However, contrasting with our understanding of the molecular
biology of pHGGs, there has been little improvement in the treatment of pHGGs, for which
genotoxic chemotherapy and ionizing radiation (IR) remain mainstays of therapy [1–3,5]. In
sus-tentorial locations, radiotherapy follows surgical resection, which tends to be extensive,
and is associated at least with DNA alkylating agents like temozolomide (TMZ) [6]. In
thalamic pHGGs and DIPG, targeted therapies are nowadays proposed concomitantly to
irradiation and prolonged until progression [1–3,5,7]. Preventing resistance to chemoradia-
tion through the targeting of the underlying pathways is crucial to improve the efficiency
of the current treatments. Tumor resistance to irradiation and DNA alkylating agents are
promoted in part by complex DNA repair mechanisms orchestrated by the DNA damage
response (DDR). These include O6-methylguanine-DNA methyltransferase (MGMT) which
removes O6-methylguanine (O6-meG), the most cytotoxic lesion induced by TMZ, in a
direct, suicidal reaction resulting in the transfer of the methyl group to a cysteine residue in
the active site of MGMT [8]. Unrepaired O6-meG lesions ultimately lead to replication fork
collapse and double-stranded DNA breaks (DSBs). As in adult glioblastoma (aGBM) [9],
MGMT expression is a crucial biomarker of response to TMZ in pHGG patients [10]. Other
DNA repair mechanisms include direct repair mechanisms mediated by the oxidative
demethylases ALKBH2/3, as well as the base excision repair (BER) pathway, the mismatch
repair (MMR) pathway, and pathways that repair DSBs by homologous recombination
(HR) or non-homologous end-joining (NHEJ). These pathways are paramount to preserve
genetic integrity and cell survival [11–13]. Thus, a hypermutator phenotype resulting from
mutations in DNA polymerase genes and defective MMR was found to act as a driving
force in a subset of pHGGs [14,15]. MMR defects were also observed following treatment
of adult and pediatric HGGs displaying specific gene promoter methylation patterns [16].
Recent studies have associated alterations in DNA damage (DD) repair control with his-
tones and/or p53 mutations. Histone post-translational modifications (PMTs) constitute an
important epigenetic determinant of the structure and function of chromatin. Such histone
PTMs appear to modulate the DDR [17]. In H3.3 K27M DIPG, radioresistance was found
to be driven by TP53 mutations and could be prevented by RNAi-mediated depletion of
the serine/threonine-protein kinase CHK1 required for checkpoint-mediated cell cycle
arrest and activation of DNA repair in response to DD or unreplicated DNA [18]. In those
DIPG, histone H3 demethylase inhibition using GSK-14 enhanced the efficiency of IR by
inhibiting DSB repair by HR [19]. In contrast, H3.3 G34 mutants were found to display
increased genomic instability and replicative stress, as well as a defective HR-mediated
repair [20,21]. In aGBM, a novel classification was recently achieved using unique DNA
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repair and cell cycle gene expression signatures exposing vulnerabilities to DNA damaging
agents and inhibitors of the DNA damage response [22]. The evidence therefore suggests
that targeting DD repair components might contribute to the prevention of therapeutic
resistance while offering new therapeutic approaches against pHGGs.

Here, to improve our understanding of the DDR pathways that operate in pHGGs and
the vulnerabilities that these pathways might expose, we first challenged gene expression
datasets from pHGG cohorts, including DIPG and sus-tentorial tumors, with the DNA
repair and cell cycle gene expression signatures initially identified in aGBMs [23]. Through
comparison with low-grade pilocytic astrocytomas (LGG), we next identified a novel and
specific DNA repair and cell cycle gene expression signature of 28 genes (hereafter referred
to as the pHGG signature) that segregated pHGGs from LGGs. Notably, this signature
shared key components of the DDR with the aGBM signature. Analysis of selected genes
of the pHGG signature at the gene and protein expression levels revealed its correlation to
TP53 mutation and highlighted high PARP1 and XRCC1 protein expressions as immuno-
histochemical theranostic biomarkers of worst therapeutic response in pHGGs. Finally, we
used primary patient-derived cell lines to correlate the PARP-1/XRCC1 expression balance
with resistance to PARP1 inhibition.

2. Materials and Methods
2.1. Pediatric High-Grade Gliomas’ Collection

Twenty-one pHGGs (3 DIPGs, 8 supra-tentorial, and 10 thalamic locations) were
collected and included in the study after obtaining written informed consents from parents
and patients. Aged from 7 to 19 years, pHGGs were followed from January 2008 to
January 2016 at the University Hospital of Strasbourg (UHS). The research protocol was
validated by the local institutional ethics committee. They were all screened by Next-
Generation Sequencing (NGS) for driver mutations including H3.3 and H3.1 K27M, H3.3
G34V/R, IDH1R132H, and BRAFv600 mutations as already described [19]. We also explored
TP53 mutations, as well as PARP1 and TOP2A amplifications. Fresh-frozen and paraffin-
embedded specimens were obtained from the Centre de Ressources Biologiques of UHS
(declaration number DC-2017-3090). MMR deficient patients and gliomatosis cerebri were
not included in this cohort. We used formalin-fixed, paraffin-embedded (FFPE) specimens
for the tissue-microarray (TMA) construction comprising the 21 diagnostic samples and
9 paired relapses. Six out of the 21 fresh frozen diagnostic tissues were provided for
transcriptomic analyses. Ten pilocytic astrocytomas (PAs) treated in our Strasbourg’s center
were also selected for omics comparison. All pHGG patients were treated in first line
therapy with IR, which was systematically associated to temozolomide except for DIPGs.

For the statistical analyses, we defined 3 classes in our 21-pHGG population, based
on the clinical evolution of patients: (1) group 1 comprised patients with a very early
relapse, where the progression/relapse was observed within 5 months of diagnosis in
DIPG and within 9 months in thalamic and sus-tentorial locations, (2) group 2 comprised
patients where the progression/relapse occurred after 6 or 9 months depending on the
same respective locations, and (3) group 3 comprised patients with a long-term survival
above 36 months.

2.2. Patient-Derived Cell Lines (PDCL) Generation

As already described in our previous publication [23], we generated different cell lines
from patient biopsies at diagnosis. All lines (BT35, BT69, BT68, and BT83) harbor the H3.3
K27M mutation and were derived from 2 thalamic pHGGs and 2 DIPGs, respectively. BT68
and BT69 are cultures as neurospheres and BT35 and BT83 as a monolayer cell line. We
also used a commercialized cell line, which is UW479.

2.3. Transcriptomics and Biostatistical Analyses

Total RNA was prepared from the 6 pHGG diagnostic samples, 10 Pas, and 4 PDCLs
using Trizol reagent (ThermoFisher Scientific, Waltham, MA, USA). RNA concentrations
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were quantified on a NanoDrop™ 3300 fluorospectrometer (ThermoFischer scientific,
Waltham, MA, USA). Gene expression analysis was performed using Affymetrix U133
Plus 2.0 chips. Data were read with the affy package and normalized with RMA. Gene
expression was annotated with Ensembl genes from build 37 assembly 71. We also used
already published DIPG and sus-tentorial pHGGs’ RNA datasets [24,25].

Gene expression analyses were carried out in multiple steps. First, we performed
hierarchical clustering on gene-scaled data using pheatmap R package with Euclidian
distance as a similarity measure. To predict the G1/G3 proliferation status of the pHGG
samples, we first combined the aGBM dataset from the Köln cohort [22] (hereby called
reference aGBM dataset) with each pHGG dataset, using ComBat from sva package [26]
for batch correction. We then trained a random forest classifier on the G1 and G3 groups
of the Köln dataset and verified that it reproduced the tumor classification of our aGBM
dataset previously obtained [22]. Finally, we predicted groups for the combined dataset
and visualized probabilities generated by a random forest. We compared the performance
of our signatures using well-established gene signatures of cell cycle and DNA repair from
MsigDB (Cell cycle GSEA (170 genes, https://www.gsea-msigdb.org/gsea/msigdb/cards/
CELL_CYCLE_PHASE (accessed on 6 April 2021), DNA repair GSEA (150 genes, https:
//www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_DNA_REPAIR (accessed on
6 April 2021), Reactome_DNA_repair GSEA (332 genes, https://www.gsea-msigdb.org/
gsea/msigdb/cards/REACTOME_DNA_REPAIR (accessed on 6 April 2021), as well as
the biological process terms “DNA repair” and “cell cycle” from Gene Ontology (GO). We
also considered the union of cell cycle and DNA repair signatures as well as DDR-specific
subsets included in cell cycle signatures. As an additional approach, we used unsupervised
consensus independent component analysis (ICA). Here, the components are defined as
statistically-independent signals in the space of genes, whose biological relevance can be
assessed using standard functional annotation (e.g., enrichment analysis) [27]. ICA presents
the advantage that it simultaneously corrects for confounding factors such as platform
effect and disentangles cell type heterogeneity and intra/inter-tumor heterogeneity, thus
resulting in clear biological signals. ICA requires larger datasets to be properly applied,
therefore we combined presented data with publically available data from TCGA (GBM
and LGG cohorts).

To identify a DNA repair and cell cycle gene expression signature of pHGG, a differ-
ential analysis was done between the 6 pHGGs of our patient collection and 10 pilocytic
astrocytomas. First, principal component analysis (PCA) was performed to assess the
consistency of the data. Then, a relative intensity analysis (pHGGs/pilocytic astrocytomas)
was performed to obtain fold change (FC). Only genes with higher than 1.3 or lower than
−1.3 were considered to have a significant difference. Finally, a gene ontology enrichment
analysis was performed using Panther (PANTHER—Gene List Analysis (pantherdb.org))
to detect the underlying biological processes. The pHGG signature was challenged with
the various pHGG and PDCL datasets using the analytic approaches described for the
aGBM signatures.

2.4. TOP2A and PARP1 Gene Expression

Total RNA was prepared from the 21 pHGG specimens studied by IHC using the
RNeasy Plus Universal Tissue Mini kit (Qiagen, Hilden, Germany). The mRNA expression
levels of TOP2A and PARP1 was then measured by quantitative RT-PCR using the SYBR
Green Master I technology on a LightCycler (Roche, France). The results were expressed as
2−∆Ct sample/2−∆Ct control = 2−(∆Ct sample−∆Ct control)= 2−∆∆Ct. PBGD (Cy5-labelled forward
primer 5′-CTGGTAACGGCAATGCGGCT-3′ and reverse primer 5′-GCAGATGGCTCCGAT
GGTGA-3′ (amplified product of 328 bp on cDNA)) was used as reference gene [28] and
a calibrating pool of normal brain tissue RNA (10 hippocampal scleroses) was used to
assess the normal ranges of each gene expression. The primers were targeting mRNA of
PARP-1 [29] and TOP2A (Cy5-labelled forward primer 5′-GCCATTGGCTGTGGTATTG-3′

and TOP2A reverse primer 5′-GAGAAGCTTCTCGAACATTGAG-3′).

https://www.gsea-msigdb.org/gsea/msigdb/cards/CELL_CYCLE_PHASE
https://www.gsea-msigdb.org/gsea/msigdb/cards/CELL_CYCLE_PHASE
https://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_DNA_REPAIR
https://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_DNA_REPAIR
https://www.gsea-msigdb.org/gsea/msigdb/cards/REACTOME_DNA_REPAIR
https://www.gsea-msigdb.org/gsea/msigdb/cards/REACTOME_DNA_REPAIR
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2.5. TMA Constitution and Immunohistochemistry (IHC)

FFPE tumor samples from patients were gathered on a TMA block using a tissue
arrayer (MTA BOOSTER 01 V2.04, Excilone, Elancourt, France) with 3 representative
areas selected per tumor. IHC was performed using an automated tissue staining system
(Ventana Medical Systems, Inc., Tucson, AZ, USA). The APE1, MPG, XRCC11, RAD51,
PARP1, and p53 antibodies were purchased from Abcam (Paris, France) and Ki67 from
Dako (clone MIB-1, Dako, Santa Clara, CA, USA). Two pathologists analyzed protein
expression independently.

2.6. Cell line Characterization, Drug Testing, and Irradiation

PDCL BT35, BT68, BT83, and BT69 were plated in 96-well flat bottom plates (5000 cells/
well) in normoxic conditions at 21% of oxygen. Cell growth (% of occupied area) was
imaged with an IncuCyte™ ZOOM cell imaging system (Essen BioScience, Ann Arbor,
MI, USA) for 10 days and analyzed using the Incucyte Zoom software. Olaparib was
used over a concentration range of 0.1 to 100 µM. All drug testing experiments were done
in duplicate.

2.7. IHC Statistical Analyses and Correlations with Outcome

The GraphPad Prism 7 software was used for box plots generation showing the
mean +/− s.e.m. Comparisons between 2 groups were performed using the non-parametric
Mann–Whitney test. Comparisons between the 3 groups of therapeutic response were done
using the non-parametric Kruskal–Wallis test. Drug inhibition curves and a 50% inhibitory
concentration (IC50) calculation were generated with the GraphPad software for all cell
lines at 96 h.

SPSS 11.5 was used for Kaplan Meier survival analyses. A p-value of <0.05 was
considered statistically significant and n.s. was reported for non-statistically significant
results (p > 0.05). We also did a multivariate comparison of prognostic biomarkers using a
Cox regression models.

A heatmap was generated using the Excel software with all tumor characteristics and
protein expressions.

3. Results
3.1. Stratification of Pediatric High-Grade Glioma (pHGG) Using Adult Glioblastoma (aGBM)
DNA Damage (DD) Repair Signature

We previously described unique DNA repair and cell cycle gene expression signatures
that resulted in the classification of aGBM specimens into two major groups (G1 and G3)
displaying inverse expression profiles, and a third less-defined group (G2). Specifically, we
originally identified a 52-gene signature that could be refined into a 27-gene signature able
to reproduce the initial classification (Figure S1). Of note, our 27-gene signature contained
important effectors and regulators of the cell cycle, chromosome segregation, and mitosis
(e.g., AURKA, AURKB, CCNA2, CCNB1, CDC25C, CDC6, CDK1, CENPA, CENPF, MKI67,
KIAA0101/PCLAF, PLK1, PTTG1, TOP2A), all up-regulated in G3 specimens compared
to G1 specimens. It also contained genes encoding crucial HR factors such as the RAD51
recombinase, the chromatin remodelers RAD54B and RAD54L, and enzymes involved in
Holliday junction resolution (EME1/MUS81 complex) and/or NER (ERCC3 (XPB), ERCC4
(XPF)). Also in the signature were genes encoding the DNA glycosylase NEIL3, Fanconi
Anemia factors (FANCD2, UBE2T), the ubiquitin protein ligase UBE3B, and two specialized
DNA polymerases, POLM and POLQ, involved in the non-homologous end-joining (NHEJ)
pathways of DSB repair. Consistent with the upregulation of the cell cycle gene component
of the 27-gene signature, G3 tumors were highly proliferative compared to G1 tumors.
Furthermore, Gene Ontology (GO) analysis of the biological processes that distinguished
the G1 and G3 groups indicated that G3 group tumors developed cellular programs to
sustain high proliferation (e.g., cell cycle and cell division, chromosome organization and
segregation, DNA replication and repair, chromatin assembly). In contrast, G1 tumors
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engaged critical survival processes (e.g., apoptosis and autophagy, cellular adhesion,
response to stress).

As a first step to investigate whether our signatures could shed new light in the
classification of pHGGs, we studied a minimal set of six pHGG patients composed of
wild-type (wt) or H3.3 K27M thalamic tumors, as well as wt or BRAFv600e mutated frontal
tumors. To this end, and with the goal of exploiting as much as information as possible,
we used the 52-gene signature. Indeed, this signature is composed of two components
of similar size displaying co- or anti-expression regulation, respectively, in the G1 and
G3 groups. As shown in Figure 1A, we observed clusters of samples displaying different
profiles of our 52-gene signature. We next predicted the G1/G2/G3 status of the pHGG
specimens following combination of the pHGG dataset with our reference aGBM dataset
and Random Forest analysis. Our signature predicted robustly pHGG specimens with G1
or G3 status as well as less-defined tumors (G2) (Figure 1B,C). However, no correlation
could be established between this status and the H3.3/BRAF mutational status as G1
tumors comprised wt thalamic (n = 1) or frontal mutated BRAF (n = 1), while G3 tumors
were wt frontal (n = 2) or thalamic mutated H3.3 (n = 1) (Figure 1C). With the caveat that
this is a small dataset, these observations suggest that the 52-gene expression signature
established in aGBMs can indeed capture features related to cell cycle and DNA repair in
pHGG tumors. However, the observed segregation does not correlate with underlying
driver mutations affecting histones or BRAF, neither with treatment response groups as
defined in Section 2.1.

Figure 1. Clustering of pHGG (pediatric high-grade gliomas) using aGBM (adult glioblastoma) DNA repair and cell cycle
gene expression signatures. (A) Segregation of the indicated pHGG specimens obtained with the 52 gene signature of
aGBMs. (B,C) Prediction of the proliferation status of the pHGG specimens following random forest analysis using the
“Köln” cohort of aGBMs of Gobin et al. [22] as training dataset. Green and red bars indicate G1 (less proliferative) and G3
(more proliferative) aGBM samples, respectively. These groups display opposite profiles of the gene expression signature.
Grey bars indicate undefined tumors, referred to as G2 in Gobin et al. Following combination with the training dataset (B),
the probability of each pHGG specimens (indicated by blue bars) to belong to the G1 or G3 group was assessed (C).
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We next considered a cohort of DIPG specimens with either H3.1 K27M or H3.3 K27M
mutations [24]. As seen with the previous small pHGG cohort, Random Forest analysis
identified G1, G2, and G3 specimens (Figure 2A). However, H3.1 and H3.3 mutant tumors
could not be segregated into two separate groups based on our DNA repair and cell cycle
gene expression signature (Figure 2B, see also Figure S2A for a heatmap based on the
aGBM signature). This observation suggests that the H3.1/H3.3 mutant status is not a
determinant of this classification and that the impact of the K27M mutation on cell cycle
and DNA repair might be similar irrespective of the nature of the histone that carries it
(H3.1 or H3.3). To ascertain this notion, we verified that well-characterized signatures of
cell cycle and/or DNA repair (see Section 2.3 of Materials and Methods for a description)
also failed to distinguish H3.1 from H3.3 mutant tumors (data not shown). We then used
ICA. We first combined the H3.1/H3.3 dataset with a TCGA dataset comprising adult
GBM (171 samples) and low-grade gliomas (LGGs, 530 samples) to allow a sample size
affording robust analysis. We then examined the ability of the “cell cycle component” of
ICA to segregate H3.1 and H3.3 tumors into separate groups. However, confirming our
previous approaches, no segregation of mutant H3.1 and H3.3 specimens was observed
(Figure S2B,C).

Figure 2. Group prediction in larger cohorts of pHGG using adult DD repair and cell cycle signature. Prediction of the G1,
G2, and G3 status of the indicated specimens from a cohort of DIPG (A,B) or sus-tentorial pHGGs (C,D). Predictions were
obtained by random forest analysis using the Köln cohort of aGBMs as training dataset, as in Figure 1.

We next characterized a cohort of 20 specimens comprising sus-tentorial or thalamic
tumors [25]. This pHGG group includes wt pHGGs (n = 7), as well as tumors harboring
H3.3 G34R (n = 2), H3.3 K27M (n = 8), or mutant IDH1 (n = 3). Again, we were able
to assign a G1 or G3 status to most tumors while also identifying less-defined tumors
(Figure 2C). Notably, all three IDH1 mutant specimens were G1, whereas a majority of
H3.3 K27M tumors were G3 (4/7) and the two H3.3 G34R tumors had an ill-defined
G2 status (Figure 2D). However, wt tumors and to a certain extent H3.3 K27M tumors
were distributed among the three groups. A heatmap illustrating the segregation of the
sus-tentorial specimens based on the aGBM DNA repair and cell cycle gene expression
signature is shown in Figure S3.
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3.2. Stratification of Thalamic and Hemispheric pHGGs with a Pediatric Specific 28-Gene
Expression Signature of DNA Repair and Cell Cycle

As the DNA repair and cell cycle gene expression signatures established in aGBM did
not afford segregation of mutant H3.1 and H3.3 specimens, we next sought to determine
whether a specific pHGG signature could be identified that afforded such segregation. As
a first step to identify a signature of pHGGs, we compared transcriptomic datasets from
pHGGs to that of a cohort of low-grade gliomas composed of pilocytic astrocytomas (PAs).
Using PCA, we were able to segregate the two populations of tumors based on principal
component 1 (PC1) (Figure 3A). Of note, the first two PCs accounted for approximately
45% of the total variance. PAs formed a more compact group than pHGGs, suggesting that
the pHGG group was more heterogeneous, in line with the driver heterogeneity in such
tumors and the phenotypic diversity. We next identified a list of 185 genes that displayed
a 1.3-fold over-expression in pHGGs compared to PAs. GO enrichment analysis of this
list revealed major statistical enrichments in GO modules corresponding to cell cycle and
DDR processes. We noted the presence in this list of a set of 28 DNA repair and cell cycle
genes, hereafter referred to as 28-DD repair genes (Figure 3B). Among this signature were
genes involved in cell cycle (AURKA, CCNB1, CDC25C, CDC45, CDK1, CDKN3A, DTL,
FOXM1, KIAA0101/PCLAF, MCM10, MCM4, PMAIP1, TOP2A, TRIP13), as well as genes
bridging cell proliferation to DD response promotion (CHEK1, E2F7, E2F8, GSTE1), and
key components of various DNA repair pathways (EXO1, RAD51, RAD51AP1, PARPBP,
FANCI, FANCD2, UBE2T, BRIP1, NEIL3). Notably, this signature shared 10 genes with the
aGBM signatures (AURKA, CCNB1, CDC24C, CDK1, KIAA0101/PCLAF, TOP 2A, RAD51,
NEIL3, FANCD2, and UBE2T) (Figure 3C).

Figure 3. A specific 28-gene DNA repair and cell cycle gene expression signature distinguishes pHGGs from pediatric low-
grade gliomas. (A) Principal component analysis score plot for pilocytic astrocytoma (PA) samples and pHGG specimens.
(B) Identity and features of the 28 DNA repair and cell cycle genes composing the signature of pHGGs. Underlined genes
are also present in the aGBM signatures of Gobin et al. (C) Venn diagram showing how the 28-gene pHGG signature
overlaps with the 52- and 27-gene aGBM signatures, and list of the 10 genes shared by these signatures. (D) Heatmap
illustrating the segregation of sus-tentorial pHGG specimens into 2 groups based on the pediatric DDR gene signature.
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To validate the novel signature and evaluate its prognostic and theranostic value,
we then carried out hierarchical clustering in cohorts of sus-tentorial/thalamic or DIPG
pHGGs described above. Importantly, as shown in the heatmap of Figure 3D, the 28-gene
DD repair signature clustered clearly the thalamic and hemispheric tumors in two groups
characterized by the relative overexpression or downregulation of its gene components.
These groups were reminiscent of the G3 (more proliferative) and G1 (less proliferative)
groups identified with aGBM signature. Of note, the G3-like group comprised most
of the hemispheric tumors with mutant H3.3 histone, whereas wild-type, BRAF, and
IDH1 mutated pHGGs were in the G1-like subgroup. Supporting its relevance for the
classification of sus-tentorial/thalamic tumors, none of the well-characterized signatures
of cell cycle and/or DNA repair described in Materials and Methods provided a better
segregation pattern than our 28-gene signature, resulting instead in more heterogeneous
grouping (data not shown). When the DIPG cohort was considered, the pHGG signature
again identified G1-like and G3-like groups (this latter comprising a little more H3.3
K27M mutated tumors), as well as a third group of tumors displaying a less defined gene
expression profile, reminiscent of the G2 group identified in aGBM (Figure S4).

3.3. DNA Repair Pathways Have a Prognostic Impact in pHGG

As our pHGG gene signature confirmed the predominant involvement of several
DDR pathways in clustering groups of pHGGs, we set out to validate a selection of its
components at the protein level, using the cohort of pHGGs described in Table 1, for
which we also determined key molecular drivers. Based on time to relapse, we generated
three subgroups of pHGGs comprising, respectively, 13 patients presenting a very early
relapse, four patients presenting “standard” relapse times, and four patients considered as
long-term survivors (above two years) (Figure 4A). The long-term survivors either bore the
BRAFv600e mutation (one patient) or displayed LGG-like omic expression (three patients)
(data not showed). This clinical subgrouping based on sensitivity to first line therapy was
significantly linked to overall survivals (OS curves in Figure 4A, p = 0.006). Using TMA
slides from this cohort, we analyzed the protein expression levels of components of the
HR, BER, NHEJ, and DNA single-strand break (SSB) repair pathways (e.g., RAD51, MPG,
XRCC1, APE1, and PARP1). We choose those markers as they are used in routine setting
in pathology departments and were linked to the DNA repair pathways exposed in both
pediatric and adult signatures. We also examined the proliferation marker KI67 and com-
bined those analyses to TP53 status, as well as TOP2A amplification. The clinical, protein,
and molecular results obtained with this pHGG cohort are summarized in Figure 4A and
Table 1.

Among DNA repair proteins, RAD51, MPG, and APE1 were consistently hyper-
expressed in all pHGG tumors, both at diagnosis and relapse (Figure 4A,B). Statistically
significant differences were observed when the expression levels of these three proteins
were compared with that of XRCC1 and PARP1 (Figure 4B, p = 0.001 and p = 0.006,
respectively). Representative immunostainings are presented in Figure S5. Notably, our
analysis of XRCC1 and PARP1 suggested the existence of two groups of patients with
low or high expression of these proteins. We then did comparative analyses using non-
parametric Kruskal–Wallis tests (Figure 4C) to compare XRCC1 and PARP1 expression
levels in the three subgroups of our cohort. Notably, PARP1 and XRCC1, as well as KI67,
were significantly overexpressed in the subgroup displaying very early relapse and this
high expression correlated with a worst OS (Figure 4C). Upregulation of PARP1 in this
subgroup was also observed at the mRNA level, as assessed by RT-qPCR (data not showed).
Of note, TP53 mutation was present in 10/21 pHGGs and was significantly associated with
a worst outcome and hyper-expression of XRCC1, MPG, KI67, and PARP1 (Figure 5A,B).
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Table 1. Patients’ clinical and theranostic characteristics.

Patients’ Characteristics Numbers

Age (years)
mean 12.09
range 8–18

Sex
female 12
male 9

DIPG 3
thalamic pHGG 10

sus-tentorial pHGG 8
frontal 3
parietal 4
occipital 1

Histone status
wild type (wt) 8
H3.3 K27M 9
H3.1 K27M 2
H3.3 G34V 1
BRAFv600e 1

TP53 mutated tumors 10

Classification based on treatment response
very early relapse (group1) 13

“standard” relapse (group 2) 4
long-term survivors (group 3) 4

EFS (event-free survival) (month)
median 7
range 1–77

OS (overall survival) (months)
median 18
range 1–102

Deceased 18
Alive 3

On the other hand, PARP1 protein expression was also correlated to TOP2A amplifi-
cation (p = 0.0392) and high KI67 expression levels (upper 20%) in Figure 5B (p = 0.001).
Furthermore, high PARP1 expression level (upper 50%) was the unique biomarker asso-
ciated to histone mutated tumors (Figure 5B, p = 0.0012). Additionally, the presence of a
TOP2A amplification was linked to a worst outcome (Figure 5C). Finally, in multivariate
analyses, TP53 mutation and PARP1 protein expression remained significant (p = 0.0556,
HR: 0.64, CI95%: 0.320–0.855; p = 0.014, HR: 0.67, CI95%: 0.26–0.671).
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Figure 4. Immunohistochemical analyses in a tissue-microarray collection of 21 pHGGs and their significant correlations
with relapses and overall survival (OS). (A) Heatmap of clinical, molecular, and protein expressions in the 21 pHGGs
associated to a Kaplan Meier analysis of the overall survival discriminating the different subgroups (based on relapsing
time). (B) Analyses of RAD51, MPG, APE1, XRCC1, and PARP1 protein expressions in 21 pHGG diagnostic samples and
9 paired relapses. (C) Comparative analyses of PARP1, XRCC1, and KI67 expressions within each treatment response group,
together with an example of their histological immunostaining and Kaplan Meier analyses illustrating their significant
impact on overall survival (OS). * and ** signs are underlining statistical significances with a p below 0.05.

Figure 5. TP53 and PARP1 are major theranostic markers in pHGGs. (A) Significant associations between TP53 mutated
pHGGs and DD repair protein hyper-expressions (%) (XRCC1, MPG and KI67) and their significant involvement on worst
overall survival (OS). (B) Significant correlations between PARP1 hyper-expression and TP53 mutation, TOP2 amplification,
histone mutations, and KI67 expression (above 20%). (C) Kaplan Meier curves reporting the significant impact of TOP2A
amplification on pHGG OS.
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3.4. PARP1 as a Novel Theranostic and Therapeutic Target in Histone Mutated pHGGs

Our TMA analyses identified PARP1 and XRCC1 as theranostic markers linked to a
worst outcome and a particularly de novo IR-resistant subgroup (displaying a very early
relapsing time). As PARP1 overexpression was associated to histone mutated pHGGs,
we next characterized four H3.3 K27M mutation-bearing PDCLs generated from tumor
collection and a more recent diagnosis (BT83). The BT35, BT69, and BT68 PDCLs are
indicated by a red star in the upper panel of Figure 4A. They were representative of PARP-
expression groups 1 and 2. BT83 patient is part of group 1. A heatmap of the 4PDCL’s RNA
sequencing is presented in Figure 6A and is showing standardized profiles of the pHGG
signature. BT83 is the cell line, where we have a majority of pHGG signature gene under-
expression. Of note, all cell lines showed high PARP1 protein (Figure 4A or Figure 6B)
and RNA expression levels (Figure 6C). In contrast, no correlation between mRNA and
protein expression levels was observed for XRCC1 as illustrated by the fact that XRCC1
protein was not present in BT68 (Figure 6B) although it displayed the highest XRCC1
mRNA expression level (Figure 6C). We examined the cellular response of these cell lines
to the PARP1 inhibitor Olaparib, using automated microscopic assessment (IncuCyte©)
at 96 h of culture. BT83, in which the level of expression of the genes from the pHGG
signature was the lowest and where little or no XRCC1 mRNAs were detected, displayed
the greatest sensitivity to Olaparib, with a IC50 (half maximal inhibitory concentration)
<2 µM. In contrast, the other cell lines showed a higher IC50 ranging from 3.2 to 24.85 µM
(Figure 6D), which correlated in part with the co-expression of PARP1/XRCC1 proteins. We
also explored the UW479 commercialized cell line where the absence of PARP1 expression
previously described explained its resistance to Olaparib treatment [30].

Figure 6. DNA repair and cell cycle gene deregulation studied in patient-derived cell lines (PDCL) and PARP1 functional
inhibition. (A) Heatmap of standardized gene expression for BT83, BT35, BT69, and BT68 cell lines, based on the pHGG
gene signature. (B) Basal levels of protein expression detected by immunohistochemical analyses in the PDCL paired
tumors and in the UW479 cell line (*, based on previous publication [30]) in absence of Olaparib treatment. (C) Normalized
mRNA expression levels of XRCC1 and PARP1 in each cell line in the absence of Olaparib, as assessed by RNA sequencing.
(D) Response of each cell line to Olaparib as determined by a 96 h growth assay, and related IC50 calculations.
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4. Discussion

pHGGs are inevitably recurring leading to a fatal issue due to de novo and/or acquired
therapeutic resistance. Most pHGGs carry well-identified mutational drivers and up to 60%
of all pHGG harbor a somatic heterozygous mutation in histone proteins, a percentage that
varies according to the tumor exact location. Given the high chemo- and radioresistance of
pHGG tumors, past and recent publications have addressed the links between alterations in
DNA repair pathways and pHGG cell behavior [11,12,17–19], revealing that DNA damage
repair dysregulations were a significant feature of several subgroups of pHGG, including
DIPGs. Similar observations were done in adult glioblastomas. In this context, we reasoned
that predictive signatures might afford the characterization of pHGG subgroups based on
DNA repair and cell cycle gene expression variations [12,17]. We started with previously
established signatures of adult glioblastomas, composed of key effectors of the cell cycle as
well as components of crucial DNA repair factors [22]. Although our data show that the
signatures established in aGBMs can indeed capture features related to cell cycle and DNA
repair in pHGG tumors, the observed segregation did not correlate with underlying driver
mutations affecting histones, as shown in previous studies [18,20,21,31–33]. Our efforts
to identify a specific DNA repair and cell cycle gene expression signature of pHGGs led
to a 28-gene expression signature that was able to cluster the sus-tentorial and thalamic
pHGG group effectively. Of note, we were able to link histone mutated tumors to a more
proliferative group displaying upregulation of the gene components of our signature.
Previous studies have shown that the H3.3 G34 mutations impact several aspects of the
DDR [20,21,34]. Intriguingly, we could not segregate H3.3- and H3.1-mutated DIPG.
Nevertheless, as previously described in Werbrouck et al., 2019, when changes in protein
expression levels were investigated, we were able to segregate the population based
on DNA repair protein expression and TP53 mutations. In particular, we noted that
PARP1 and XRCC1 protein expression levels as well as alterations in two factors involved
in cell cycle modulation were associated to diagnostic and recurrent pHGGs. Several
publications [11,35–37] have uncovered DDR dysregulations associated to deregulations of
DNA repair and chromatin factors like PPM1D or BMI-I. On the other hand, functional
studies have revealed that depletion of either component of the H3K36me3: p75 axis
could affect the balance between the HR and NHEJ DSB repair pathways [34,38]. This
phenotypic diversity could explain in part why H3.3 and H3.1 mutated DIPG could not be
segregated as, globally, our cohort contained more histone mutated tumors with potential
DDR deregulations comparatively to wild-type, BRAFv600, or IDH1 mutants. In wild-
type tumors as well as other driver mutants and certain types of histone mutated pHGG,
where the DNA repair genes appear to be comparatively downregulated, it is possible
that some of the genes of our signature undergo transient upregulation in response to
standard therapy like IR. Finally, other determinants may underlie the segregation seen
with our cohorts. Indeed, alterations in DNA repair gene expression have recently been
associated to glycolytic metabolism and mTor signaling, which is frequently upregulated
in all pHGGs [39].

Our results also demonstrate that PARP1 plays a key role in the very early relapse
patients in addition to XRCC1. In addition to being a theranostic and prognostic pHGG
marker, PARP1 might also constitute a therapeutic target, e.g., for inhibition by Olaparib.
Our results confirmed previous preclinical work in DIPG [33,34], as the preclinical activity
of Olaparib in thalamic and DIPG H3.3 mutated tumors demonstrated an efficient response
(IC50 < 2 µM) only in the cell line were the genes of our pHGG signature displayed
important overall down-regulation. The balance between PARP1 and XRCC1 expression
might modulate response to PARP1. Previous studies in other cancer types have reported
the efficient targeting of PARP1 in XRCC1 deficient lines [40–42]. In our study, the most
sensitive cell to PARP1 blockade, e.g., BT83, displayed PARP1 expression and concomitant
absence of XRCC1 protein/mRNA expressions. Thus, single targeted therapy trials may
only encompass a minority of pHGG and combination therapies should be considered in
tumors displaying deregulated DDR.



Cancers 2021, 13, 2252 14 of 16

Finally, a recent study [33] has revealed the association of various DNA repair vulner-
abilities in DIPG with the inhibition of intra-tumor immune cells. The DD repair studies in
pHGG evidence the transversal role of its deregulation in de novo therapeutic resistance,
as well as its impact on pHGG brain microenvironment.

5. Conclusions

Collectively, our results highlight the possibility to stratify pHGGs with a specific DNA
repair and cell cycle gene signature, and reveal how subsets of pHGGs, especially thalamic
and sus-tentorial pHGGs, display specific alterations in the expression of DNA repair and
cell cycle genes. Validation studies at the protein expression level provide evidence that
PARP1 hyper-expression, associated to XRCC1 expression, TP53 mutations and TOP2A
amplification, might represent a new theranostic and therapeutic target in pHGGs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13092252/s1, Figure S1: Adult glioblastoma (aGBM) signatures, Figure S2: Heatmap
of hierarchical clustering in the DIPG cohort based on the 27-gene aGBM signature (A) and ICA
(Independent Component Analysis) of cell cycle gene biological processes in the DIPG cohort (B,C),
Figure S3: Heatmaps of hierarchical clustering in the sus-tentorial pHGG cohort with the 27-gene
aGBM signature, Figure S4: Heatmap illustrating the partial segregation of DIPG specimens from a
cohort containing H3.1 K27M and H3.3 K27M mutant samples based on the specific pHGG 28-DDR
signature, Figure S5: Immunohistochemical analyses. Examples of PARP1, XRCC1, KI67, RAD51,
MPG, and APE1 positive immunostainings.
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