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FREE GROUP PRESENTATION OF TRIANGULAR PLANAR
SHAPES AND THEIR BETTI NUMBERS

JAMES F. PETERS

Abstract. This paper introduces free group presentations of planar path tri-
angular shapes and their corresponding Betti numbers. Paths are maps in
homotopy theory. The edges of path triangles are homotopic paths. Main re-
sults in this paper are that (1)every path triangle has a free group presentation
and (2) every path path triangle has a geometric realization.
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1. Introduction

In this paper, the conventional planar triangle is replaced by a path triangle with
0-cells (vertices) attached to 1-cells (edges) in a cell complex. In homotopy theory,
a path is a continuous map h : I → X from the unit interval to a space X. In the
plane, a path triangle is geometrically realized as a 1-cycle. In effect, every path
triangle results in a geometric realization of a simplified form of homotopy system,
introduced by J.H.C. Whitehead [15, 16], namely:

Theorem [16, Theorem 2,§6]. A given homotopy system, ρ, has a geometric
realization, if dim≤ 4.

In its simplest form, ρ is free group realized geometrically as a 1-cycle (sequences
of 1-cells (edges) with no end vertex and with nonvoid interior). In the plane, each ρ
is geometrically realized as a |ρ|, which is a new form of triangle in a path-connected
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2 JAMES F. PETERS

cell complex. A path is a continuous mapping h : I → X from h(0) to h(1) [13,
§2.1, p. 11].

In this form of triangulation, edges between vertexes are a geometric realization
of paths in a finite, bounded cell complex in a CW (closure-finite weak) space K
introduced by Whitehead [15, §5]. Briefly, a CW space K is Hausdorff (points
in K reside in disjoint neighborhoods), the closure of every cell complex is K and
every nerve complex (nonvoid intersection of cell complexes in K) is in K.

Path triangles lead to new forms of path cycles [8], Alexandrov nerves [7] as well
as good covers [9] on a planar triangulated cell complex.
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Figure 1. Three Paths that Construct the Sides of a Path Tri-
angle E in space K, leading to its geometric realization |E| as a
2-cell (triangle)
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Figure 2. Curviliner, overlapping path triangle cycles

2. Preliminaries

The basic building block in this work is a path triangle E (denoted by h4E.
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Definition 1. Path.
Let I = [0, 1], the unit interval. A path in a space X is a continuous map h : I → X
with endpoints h(0) = x0, h(1) = x1 and h(t) ∈ [h(0), h(1)], for all t ∈ I [13,
§2.1,p.11]. The geometric realization of a path h is denoted |h|. �

Lemma 1. Every path has a geometric realization as an edge.

Proof. From Def. 1, a path h : I → X includes all points h(t), t ∈ [0, 1], i.e., we
have the closed set of points

{h(0), . . . , h(t), . . . , h(1)} , for 0 ≤ t ≤ 1,

which is geometrically realized as an edge |h|. �
From Lemma 1, the geometric realization of a path h is a 1-cell (edge) |h| in a

cell complex. In attaching paths together to construct a path triangle E, the end
result is a path cycle with a geometric counterpart |E| that is a 1-cycle.

Definition 2. 1-Cycle.
In a CW space K [15], a 1-cycle E (denoted by cycE) is a collection of path-
connected vertexes (0-cells) on edges (1-cells) attached to each other with no end
vertex and cycE has a nonvoid interior. �

.

Definition 3. Path Triangle.
A path triangle h4 E is a sequence of three overlapping paths with no end path
and with a nonvoid interior. In the plane, the geometric realization of h4 E is a
2-cell (triangle) denoted by |h4 E|. �

Example 1. A sample path triangle E and its geometric realization |E| are shown
in Fig. 1. From Lemma 1, we know that every path in E has a geometric realization
as a 1-cell (edge). Here, triangle 4v1v2v3 is a geometric realization path triangle
h4 E containing overlapping paths h1, h2, h3, i.e.,

h1, h2, h3 ∈ h4 E 7→ edge >v1v2 ∈ 4v1v2v3, with
h1(0) := h3(1) := v1, h1(1) := h2(0) := v2 and
h1(t) := vertex p ∈ edge >v1v2, t ∈ [0, 1].

h1, h2, h3 ∈ h4 E 7→ edge >v2v3 ∈ 4v1v2v3, with
h1(1) := h2(0) := v2, h2(1) := h3(0) := v3and
h2(t) := vertex q ∈ edge >v2v3, t ∈ [0, 1].

h1, h2, h3 ∈ h4 E 7→ edge >v3v1 ∈ 4v1v2v3, with
h2(1) := h3(0) := v3, h3(1) := h1(0) := v1and
h3(t) := vertex r ∈ edge >v3v1, t ∈ [0, 1]. �

Proposition 1. Every path triangle has a geometric realization as a 1-cycle.

Proof. From Def. 3, a path triangle h4E is a collection of path-connected vertexes
with no end vertex and with nonvoid interior. From Lemma 1, the geometric
realization of each path in h4 E is an edge. Consequently, the sequence of paths
in h 4 E has a geometric realization as a sequence of 1-cells (edges) attached to
each other. Hence, from Def. 2, we obtain the geometric realization of h4 E as a
1-cycle. �
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3. Path Triangle vs. Veech Triangular Billiard

Path triangles resemble but are structurally different from the geometric repre-
sentation of the motion of billiard ball inside the boundary of a polygon. Billiards
in polygons in the Euclidean plane were introduced by A.N. Zemljakov and A.B.
Katok [17]. A billiard in a polygon Q in R2 is a dynamical system produced
by the frictionless motion of a point-sphere ( billiard ball) inside Q with elastic
reflection from the boundary of Q. Triangular billiards were introduced by V.A.
Veech [14] as a part of a study of Delaunay partitions. A triangular billiard is
an isosceles triangle containing edges that are finite billiard trajectories that begin
and end in distinct vertices. By contrast, the edges in a path triangle are paths
(from homotopy theory) having varying length edges with a particular direction
indicated by arrows, geometrically realized as triangles.

4. Path Triangles the Conform to Curvilinear Shapes

So far, we have only considered path triangles geometrically realized as planar
triangles with straight edges. To accommodate the need to cover curvilinear shapes
with path triangles, we introduced curvilinear path triangles. This is made possible
by defining paths (from homotopy theory) that have intermediate path prints that
follow a curved path between vertices.

Definition 4. Curvilinear Path Triangle.
A curvilinear path triangle is a path triangle h4E whose edges have intermediate
values that follow a curvilinear path, i.e., for a path h ∈ h4 E, the edge traced by
h(t), 0 < t < 1 is curilinear yielding a curved edge instead of the usual straight edge
in a conventional path triangle. �

We use the notation [h] for a path class, which is a collection of paths that
identical end points.

Example 2. Overlapping Path Triangle Classes. A sample collection of over-
lapping curvilinear path triangle classes [h], [k], [ℓ] is shown in Fig. 2. �

The overlapping path triangle classes in Example 2 provide an exotic example
of an Alexandrov nerve complex. Notice that each path triangle in Fig. 2 is an
example of a cell complex.

Definition 5. Alexandrov Nerve Complex.
A nerve complex NrvE in a CW space is a collection of nonempty cell complexes
with nonvoid intersection. This is an example of an Alexandrov nerve [1, §4.3,p.
39]. �

A vertex with a collection of triangles attached to it, is called the nucleus of the
attached triangles (also called the nucleus of an Alexandrov-Hopf nerve complex or
Nerv [2]).

Lemma 2. [7] Every vertex in the triangulation of the vertices in a CW space is
the nucleus of an Alexandrov nerve complex.

Theorem 1. [7] A CW space containing n path triangle vertexes contains n
Alexandrov-Hopf nerve complexes.

Proof. Immediate from Lemma 2. �
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5. Path Triangle Cycles

Path triangles lead to path cycles, which are geometrically realized as 1-cycles.

Proposition 2. Every path triangle has a geometric realization as a 1-cycle.

Proof. This is a direct consequence of Lemma 1 and Def. 2. �

Lemma 3. Every collection of overlapping path class triangles has a geometric
realization as a collection of overlapping 1-cycles.

Proof. Immediate from Prop. 2. �

Theorem 2. Every collection of overlapping path class triangles is a collection of
Alexandrov nerves with geometric realization as overlapping 1-cycles.

Proof. Immediate from Def. 5 and Lemma 3. �

The result in Theorem 2 have important implications in the study of overlapping
vector fields, which is a common occurrence in the formation of vortexes in trade
winds [12], electromagnetic vector field shapes [3] and in sequences of video frame
shapes [10, 4, 6].

Definition 6. Path-Connected.
A pair of 0-cells v, v′ in a cell complex E is path-connected, provided there is a
sequence of paths h1, . . . , hk, starting with h1(0) := v and ending with hk−1(1) =
hk(0) := v′. �

Lemma 4. Every pair of vertexes in a path triangle is path-connected.

Proof. Let h4E (briefly, E) be a path triangle in a triangulated cell complex and
let v, v′ be vertexes in E. We want to move from v to v′ in this path triangle. Also
let h, h′ be paths in E Let h ∈ E with h(0) := v and h(1) := h′(0). If h(1) = v′,
then h, h′ is the desired path. Otherwise, we follow path h′ until we reach vertex
v′. �

6. Free Group Presentation of Path Triangles

A finite group G is free, provided every element x ∈ G is a linear combination
of its basis elements (called generators) [5, §1.4, p. 21]. We write B to denote
a nonempty basis set of generators

{
g1, . . . , g|B|

}
and G(B,+) to denote the free

group with binary operation +.

Definition 7. Rotman Presentation[11, p.239]
Let X = {g1, . . . } ,4 = {v =

∑
kgi, v ∈ groupG, gi ∈ X} be a set of generators of

members of a nonempty set X and set of relations between members of G and the
generators in X. A mapping of the form {X,4} → G, a free group, is called a
presentation of G. �

We write G(V,+) to denote a group G on a nonvoid set V with a binary oper-
ation +. For a group G(V,+) presentable as a collection of linear combinations of
members of a basis set B ⊆ V , we write G(B,+).

Definition 8. Free Group Presentation of a Cell Complex.
Let 2K be the collection of cell complexes in a CW space K, E ∈ 2K containing
n vertexes, G(E,+) a group on nonvoid set E with binary operation +, 4 =
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{v =
∑

kgi, v ∈ E, gi ∈ E} be a set of generators of members in E, set of relations
between members of E and the generators B ⊂ E, gi ∈ B, v = himod n(0) ∈ K,
ki the ith integer coeficient modn in a linear combination

∑
i,j

kigj of generating

elements gj = hj(0) ∈ B. A free group presentation of G is a continuous map
f : 2K ×4 → 2K defined by

f(B,4) =

v :=
∑
i,j

kigj ∈ 4 : v ∈ E, gj ∈ B, ki ∈ Z


=

B ×4 7→ free group G presentation of G(E,+)︷ ︸︸ ︷
G(

{
g1, . . . , g|B|

}
,+). �

Lemma 5. [8]
Every path cycle in a CW space has a free group presentation.
Proof. Let E be a set of vertices in the range of the paths h : I → E in a path
cycle hCycE in a CW space K, G(hCycE,+) a group on path vertexes of hCycE
with move operation +, and let

B ⊂ hCycE,

4 =
{
v =

∑
khi(0), v, hi(0) ∈ hCycE

}
.

be the basis B set of members of hCycE and set of relations 4 between members
of hCycE and the generators in basis B. Then the free group presentation of G is
a mapping f : 2K ×4 → 2K defined by

f(B,4) =

v :=
∑
i,j

kihj(0) ∈ 4 : v ∈ hCycE, hj ∈ B, ki ∈ Z


=

B × 4 7→ free group presentation of G(hCycE,+)︷ ︸︸ ︷
G(

{
h1, . . . , h|B|

}
,+).

�
Proposition 3. Every path cycle in a path triangle has a free group presentation.
Proof. Immediate from Lemma 5. �
Example 3. From Prop. 3, each of the path cycles the path class triangles in
Example 2 has a free group presentation. �

Lemma 6. Every free group presentation of a path cycle has a geometric realization.
Proposition 4. .
Every path class triangle has a geometric realization.
Proof. The result follows from from Prop. 6, since every path class triangle is a
collection of overlapping path triangles with the same beginning vertex and the
same ending vertex. �
Theorem 3. Every path triangle has free group presentation.
Proof. This results is an immediate consequence of Lemma 5, since every path
triangle contains a path cycle. �
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A simplified view of path triangles results is a consequence of the fact that
every free group has a Betti number. A Betti number is a count of the number
generators in a free group [5, §4,p. 24]. The Betti number of a free group G is also
the rank of G.

Proposition 5. Every path triangle has a Betti number.

Proof. Let h 4 E be a path triangle. From Lemma 5, h 4 E has a free group
presentation G(β,+), since h4 E is also a path cycle. Hence, the rank of G (i.e.,
|β|) is the Betti number of h4 E. �
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