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This paper introduces free group presentations of planar path triangular shapes and their corresponding Betti numbers. Paths are maps in homotopy theory. The edges of path triangles are homotopic paths. Main results in this paper are that (1)every path triangle has a free group presentation and (2) every path path triangle has a geometric realization.

Introduction

In this paper, the conventional planar triangle is replaced by a path triangle with 0-cells (vertices) attached to 1-cells (edges) in a cell complex. In homotopy theory, a path is a continuous map h : I → X from the unit interval to a space X. In the plane, a path triangle is geometrically realized as a 1-cycle. In effect, every path triangle results in a geometric realization of a simplified form of homotopy system, introduced by J.H.C. Whitehead [START_REF] Whitehead | Combinatorial homotopy. I[END_REF][START_REF]Combinatorial homotopy. II[END_REF], namely:

Theorem [START_REF]Combinatorial homotopy. II[END_REF]Theorem 2,[START_REF] Peters | Foundations of computer vision. computational geometry, visual image structures and object shape detection, intelligent systems reference library[END_REF]. A given homotopy system, ρ, has a geometric realization, if dim≤ 4.

In its simplest form, ρ is free group realized geometrically as a 1-cycle (sequences of 1-cells (edges) with no end vertex and with nonvoid interior). In the plane, each ρ is geometrically realized as a |ρ|, which is a new form of triangle in a path-connected cell complex. A path is a continuous mapping h : I → X from h(0) to h [START_REF] Alexandroff | Elementary concepts of topology[END_REF] [13, §2.1, p. 11].

In this form of triangulation, edges between vertexes are a geometric realization of paths in a finite, bounded cell complex in a CW (closure-finite weak) space K introduced by Whitehead [15, §5]. Briefly, a CW space K is Hausdorff (points in K reside in disjoint neighborhoods), the closure of every cell complex is K and every nerve complex (nonvoid intersection of cell complexes in K) is in K.

Path triangles lead to new forms of path cycles [START_REF] Peters | Descriptive proximal homotopy. Properties and relations[END_REF], Alexandrov nerves [START_REF]Homotopic nerve complexes with free group presentations[END_REF] as well as good covers [START_REF]Good coverings of proximal alexandrov spaces. Homotopic cycles in jordan curve theorem extension[END_REF] on a planar triangulated cell complex.
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. Three Paths that Construct the Sides of a Path Triangle E in space K, leading to its geometric realization |E| as a 2-cell (triangle) Proof. From Def. 1, a path h : I → X includes all points h(t), t ∈ [0, 1], i.e., we have the closed set of points {h(0), . . , h(t), . . . , h(1)} , for 0 ≤ t ≤ 1, which is geometrically realized as an edge |h|.
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From Lemma 1, the geometric realization of a path h is a 1-cell (edge) |h| in a cell complex. In attaching paths together to construct a path triangle E, the end result is a path cycle with a geometric counterpart |E| that is a 1-cycle.

Definition 2. 1-Cycle.

In a CW space K [START_REF] Whitehead | Combinatorial homotopy. I[END_REF], a 1-cycle E (denoted by cycE) is a collection of pathconnected vertexes (0-cells) on edges (1-cells) attached to each other with no end vertex and cycE has a nonvoid interior.

.

Definition 3. Path Triangle. A path triangle h E is a sequence of three overlapping paths with no end path and with a nonvoid interior. In the plane, the geometric realization of h E is a 2-cell (triangle) denoted by |h E|.

Example 1. A sample path triangle E and its geometric realization |E| are shown in Fig. 1. From Lemma 1, we know that every path in E has a geometric realization as a 1-cell (edge). Here, triangle v 1 v 2 v 3 is a geometric realization path triangle h E containing overlapping paths h

1 , h 2 , h 3 , i.e., h 1 , h 2 , h 3 ∈ h E → edge > v 1 v 2 ∈ v 1 v 2 v 3 , with h 1 (0) := h 3 (1) := v 1 , h 1 (1) := h 2 (0) := v 2 and h 1 (t) := vertex p ∈ edge > v 1 v 2 , t ∈ [0, 1]. h 1 , h 2 , h 3 ∈ h E → edge > v 2 v 3 ∈ v 1 v 2 v 3 , with h 1 (1) := h 2 (0) := v 2 , h 2 (1) := h 3 (0) := v 3 and h 2 (t) := vertex q ∈ edge > v 2 v 3 , t ∈ [0, 1]. h 1 , h 2 , h 3 ∈ h E → edge > v 3 v 1 ∈ v 1 v 2 v 3 , with h 2 (1) := h 3 (0) := v 3 , h 3 (1) := h 1 (0) := v 1 and h 3 (t) := vertex r ∈ edge > v 3 v 1 , t ∈ [0, 1].

Proposition 1. Every path triangle has a geometric realization as a 1-cycle.

Proof. From Def. 3, a path triangle h E is a collection of path-connected vertexes with no end vertex and with nonvoid interior. From Lemma 1, the geometric realization of each path in h E is an edge. Consequently, the sequence of paths in h E has a geometric realization as a sequence of 1-cells (edges) attached to each other. Hence, from Def. 2, we obtain the geometric realization of h E as a 1-cycle.

Path Triangle vs. Veech Triangular Billiard

Path triangles resemble but are structurally different from the geometric representation of the motion of billiard ball inside the boundary of a polygon. Billiards in polygons in the Euclidean plane were introduced by A.N. Zemljakov and A.B. Katok [START_REF] Zemljakov | Topological transitivity of billiards in polygons[END_REF]. A billiard in a polygon Q in R 2 is a dynamical system produced by the frictionless motion of a point-sphere ( billiard ball) inside Q with elastic reflection from the boundary of Q. Triangular billiards were introduced by V.A. Veech [START_REF] Veech | Teichmüller curves in moduli space, eisenstein series and an application to triangular billiards[END_REF] as a part of a study of Delaunay partitions. A triangular billiard is an isosceles triangle containing edges that are finite billiard trajectories that begin and end in distinct vertices. By contrast, the edges in a path triangle are paths (from homotopy theory) having varying length edges with a particular direction indicated by arrows, geometrically realized as triangles.

Path Triangles the Conform to Curvilinear Shapes

So far, we have only considered path triangles geometrically realized as planar triangles with straight edges. To accommodate the need to cover curvilinear shapes with path triangles, we introduced curvilinear path triangles. This is made possible by defining paths (from homotopy theory) that have intermediate path prints that follow a curved path between vertices.

Definition 4. Curvilinear Path Triangle.

A curvilinear path triangle is a path triangle h E whose edges have intermediate values that follow a curvilinear path, i.e., for a path h ∈ h E, the edge traced by h(t), 0 < t < 1 is curilinear yielding a curved edge instead of the usual straight edge in a conventional path triangle.

We use the notation [h] for a path class, which is a collection of paths that identical end points.

Example 2. Overlapping Path Triangle Classes. A sample collection of overlapping curvilinear path triangle classes

[h], [k], [ℓ] is shown in Fig. 2.
The overlapping path triangle classes in Example 2 provide an exotic example of an Alexandrov nerve complex. Notice that each path triangle in Fig. 2 is an example of a cell complex.

Definition 5. Alexandrov Nerve Complex. A nerve complex NrvE in a CW space is a collection of nonempty cell complexes with nonvoid intersection. This is an example of an Alexandrov nerve [1, §4.3,p. 39].

A vertex with a collection of triangles attached to it, is called the nucleus of the attached triangles (also called the nucleus of an Alexandrov-Hopf nerve complex or Nerv [START_REF] Alexandroff | Topologie. Band i[END_REF]). Lemma 2. [START_REF]Homotopic nerve complexes with free group presentations[END_REF] Every vertex in the triangulation of the vertices in a CW space is the nucleus of an Alexandrov nerve complex.

Theorem 1. [7] A CW space containing n path triangle vertexes contains n Alexandrov-Hopf nerve complexes.

Proof. Immediate from Lemma 2.

Path Triangle Cycles

Path triangles lead to path cycles, which are geometrically realized as 1-cycles.

Proposition 2. Every path triangle has a geometric realization as a 1-cycle.

Proof. This is a direct consequence of Lemma 1 and Def. 2.

Lemma 3. Every collection of overlapping path class triangles has a geometric realization as a collection of overlapping 1-cycles.

Proof. Immediate from Prop. 2.

Theorem 2. Every collection of overlapping path class triangles is a collection of Alexandrov nerves with geometric realization as overlapping 1-cycles.

Proof. Immediate from Def. 5 and Lemma 3.

The result in Theorem 2 have important implications in the study of overlapping vector fields, which is a common occurrence in the formation of vortexes in trade winds [START_REF] Sutton | Understanding weather[END_REF], electromagnetic vector field shapes [START_REF] Ida | Engineering electromagnetics[END_REF] and in sequences of video frame shapes [START_REF] Pham | Computer vision: Image shape geometry and classification[END_REF][START_REF] Kokkinos | Learning an alphabet of shape and appearance for multi-class object detection[END_REF][START_REF] Peters | Foundations of computer vision. computational geometry, visual image structures and object shape detection, intelligent systems reference library[END_REF].

Definition 6. Path-Connected. A pair of 0-cells v, v ′ in a cell complex E is path-connected, provided there is a sequence of paths h 1 , . . . , h k , starting with h 1 (0) := v and ending with h k-1 (1) = h k (0) := v ′ .

Lemma 4. Every pair of vertexes in a path triangle is path-connected.

Proof. Let h E (briefly, E) be a path triangle in a triangulated cell complex and let v, v ′ be vertexes in E. We want to move from v to v ′ in this path triangle. Also let h, h ′ be paths in E Let h ∈ E with h(0) := v and h(1) := h ′ (0). If h(1) = v ′ , then h, h ′ is the desired path. Otherwise, we follow path h ′ until we reach vertex v ′ .

Free Group Presentation of Path Triangles

A finite group G is free, provided every element x ∈ G is a linear combination of its basis elements (called generators) [5, §1.4, p. 21]. We write B to denote a nonempty basis set of generators g 1 , . . . , g |B| and G(B, +) to denote the free group with binary operation +.

Definition 7. Rotman Presentation[11, p.239]

Let X = {g 1 , . . . } , = {v = kg i , v ∈ groupG, g i ∈ X}
be a set of generators of members of a nonempty set X and set of relations between members of G and the generators in X. A mapping of the form {X, } → G, a free group, is called a presentation of G.

We write G(V, +) to denote a group G on a nonvoid set V with a binary operation +. For a group G(V, +) presentable as a collection of linear combinations of members of a basis set B ⊆ V , we write G(B, +). 

k i g j of generating elements g j = h j (0) ∈ B. A free group presentation of G is a continuous map f : 2 K × → 2 K defined by f (B, ) =    v := i,j k i g j ∈ : v ∈ E, g j ∈ B, k i ∈ Z    = B × → free group G presentation of G(E, +) G( g 1 , .
. . , g |B| , +).

Lemma 5. [8]

Every path cycle in a CW space has a free group presentation.

Proof. Let E be a set of vertices in the range of the paths h : I → E in a path cycle hCycE in a CW space K, G(hCycE, +) a group on path vertexes of hCycE with move operation +, and let

B ⊂ hCycE, = v = kh i (0), v, h i (0) ∈ hCycE .
be the basis B set of members of hCycE and set of relations between members of hCycE and the generators in basis B. Then the free group presentation of G is a mapping f : 2 K × → 2 K defined by Proof. The result follows from from Prop. 6, since every path class triangle is a collection of overlapping path triangles with the same beginning vertex and the same ending vertex.

f (B, ) =    v := i,j k i h j (0) ∈ : v ∈ hCycE, h j ∈ B, k i ∈ Z    = B × → free

Theorem 3. Every path triangle has free group presentation.

Proof. This results is an immediate consequence of Lemma 5, since every path triangle contains a path cycle.

A simplified view of path triangles results is a consequence of the fact that every free group has a Betti number. A Betti number is a count of the number generators in a free group [5, §4,p. 24]. The Betti number of a free group G is also the rank of G. Proposition 5. Every path triangle has a Betti number.

Proof. Let h E be a path triangle. From Lemma 5, h E has a free group presentation G(β, +), since h E is also a path cycle. Hence, the rank of G (i.e., |β|) is the Betti number of h E.
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Definition 8. Free Group Presentation of a Cell Complex.

  Let 2 K be the collection of cell complexes in a CW space K, E ∈ 2 K containing n vertexes, G(E, +) a group on nonvoid set E with binary operation +, = {v = kg i , v ∈ E, g i ∈ E} be a set of generators of members in E, set of relations between members of E and the generators B ⊂ E, g i ∈ B, v = h imod n (0) ∈ K, k i the i th integer coeficient modn in a linear combination

	i,j

  Every free group presentation of a path cycle has a geometric realization.

	Example 3. From Prop. 3, each of the path cycles the path class triangles in
	Example 2 has a free group presentation.
	Lemma 6. Proposition 4. .
	Every path class triangle has a geometric realization.

group presentation of G(hCycE, +)

G( h 1 , . . . , h |B| , +).

Proposition 3. Every path cycle in a path triangle has a free group presentation.

Proof. Immediate from Lemma 5.
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