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Abstract. Superspreading has been suggested to be a major driver of overall1

transmission in the case of SARS-CoV-2. It is therefore important to statistically2

investigate the tail features of superspreading events (SSEs) to better understand3

virus propagation and control. Our extreme value analysis of different sources of4

secondary case data indicates that SSEs associated with SARS-CoV-2 may be fat-5

tailed, although substantially less so than predicted recently in the literature, but6

also less important relative to SSEs associated with SARS-CoV. The results cau-7

tion against pooling data from both coronaviruses. This could provide policy- and8

decision-makers with a more reliable assessment of the tail exposure to SARS-CoV-29

contamination. Going further, we consider the broader problem of large community10

transmission. We study the tail behaviour of SARS-CoV-2 cluster cases documented11

both in official reports and in the media. Our results suggest that the observed clus-12

ter sizes have been fat-tailed in the vast majority of surveyed countries. We also give13

estimates and confidence intervals of the extreme potential risk for those countries.14

A key component of our methodology is up-to-date discrete Generalised Pareto mod-15

els which allow for maximum-likelihood based inference of data with a high degree16

of discreteness.17

Keywords. COVID-19, Superspreading, Cluster size, Secondary cases, Extreme18

value theory, Discrete extremes.19

Introduction20

Superspreading events (SSEs) have been recognised as a significant source of disease21

transmission for respiratory coronaviruses such as SARS-CoV and SARS-CoV-2 [1,22

2]. SSEs may be defined as outbreaks in which a given individual (the index case)23
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infects a number of people (secondary cases) well above a certain measure, such24

as the average or median number of infections. The number of secondary cases25

resulting directly from an index case can be viewed as a random variable, say Z,26

defining the so-called offspring distribution. For both coronaviruses, events having27

triggered more than 6 secondary cases have been suggested to constitute SSEs [3].28

Data on such SSEs that was curated and reported in [3] in the early stages of the29

COVID-19 pandemic is necessarily scarce: it consists mainly of 15 SSEs associated30

with SARS-CoV and 45 SSEs associated with SARS-CoV-2, each represented by a31

number of secondary cases Zi resulting from a single given index case in Europe,32

Asia or North America. The natural framework for the analysis of SSEs, and more33

generally of atypical observations far away from the mean, is extreme value theory.34

Following this framework, it was argued in [3] that SSEs are fat-tailed, although35

this was done by pooling the 60 available SSEs from SARS-CoV and SARS-CoV-36

2. A careful investigation of these SARS-CoV and SARS-CoV-2 datasets reveals37

that the two largest observations in the pooled data are SARS-CoV SSEs; given the38

small sample size, one may wonder whether the reported estimate of tail heaviness39

is representative of the tail behaviour of SARS-CoV-2 SSEs.40

This constitutes the motivation for this work, whose overarching goals are to41

show how to conduct a principled extreme value analysis of community transmission42

parameters, and to carry out such an analysis in the example of SARS-CoV-2. By43

focusing directly on the raw SARS-CoV-2 data considered in [3], we provide evidence44

of a lighter upper tail for SSEs with significantly less tail exposure than predicted in45

their study. We arrive at the same conclusion by making use of a more recent and46

much larger publicly available surveillance and contact-tracing database containing47

the number of secondary cases Zi for 88,527 index cases in the Indian states of48

Andhra Pradesh and Tamil Nadu [4]. We also analyse two other South Korean49

contact-tracing datasets, one collected in the first half of 2020 [3], the other during50

the summer of 2021 when the Delta variant of SARS-CoV-2 was responsible for the51

majority of positive cases [5]. The fat-tailedness of the secondary cases distribution52

is found to be rather clear in the 2021 sample of data, while the analysis of the53

2020 data is less conclusive. In all these samples of data we find point estimates54

of the extreme value index suggesting that the secondary cases distribution has a55

finite third moment, which stands in contrast with the earlier finding of [3] of a56

distribution with an infinite variance.57

In addition to that, we consider the broader problem of large community trans-58

mission, as it represents the other fundamental source of pandemic risk. Large59

infection clusters, along with SSEs, have been argued to play an important role in60

the transmission of SARS-CoV-2 [2]. In a similar spirit to [2], we define a cluster61

of SARS-CoV-2 cases in our analysis as a local outbreak involving a minimum of62

two cases, including confirmed close contacts with epidemiological linkage over a63

limited period of time. We consider two databases constructed from government64

reports [6, 7, 8, 9] and media sources [10], comprising 15 samples of SARS-CoV-265

cluster sizes recorded in 11 countries and 4 US states. Our results show that 1366

of these 15 countries and states have fat-tailed cluster size distributions, thus fa-67

cilitating the process of inferring their risk category in terms of large community68

transmission. This allows us to better understand the drivers of superspreading and69
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cluster formation in the ongoing COVID-19 pandemic. The recent theory of discrete70

extremes [11, 12, 13, 14] is our basic tool to address the highly discrete nature of71

SARS-CoV-2 secondary transmission data and cluster sizes. Its use constitutes our72

main statistical contribution to the study of the transmission of the SARS-CoV-273

virus. As we illustrate throughout the paper, estimating and inferring the extreme74

value index and extreme percentiles of the underlying discrete distributions with this75

methodology is much easier and accurate than with classical extreme value meth-76

ods such as the Hill and Generalised Pareto maximum likelihood estimators, which77

heavily rely on the continuous data assumption.78

The structure of the paper is as follows. We first describe the methods employed79

throughout our study, including the discrete Generalised Pareto Distribution fitted80

to exceedances over a high threshold by means of the maximum likelihood estima-81

tor. We then analyse our datasets, first on SARS-CoV-2 secondary case numbers82

and then on cluster sizes, using these methods. A Discussion section gathers and83

contrasts these findings and concludes with additional comments about the scope,84

limitations and robustness of our results, as well as ideas for further work.85

Methods86

We use several methods from extreme value theory, which constitutes the correct87

mathematical framework for the analysis of high observations from a random phe-88

nomenon [15]. We are particularly interested in methods that can describe so-called89

heavy-tailed random variables, which infrequently but regularly generate very high90

values and therefore appear to be relevant in the analysis of SARS-CoV-2 transmis-91

sion. A random variableX is heavy-tailed (or fat-tailed) if and only if its distribution92

function P(X ≤ x) can be expressed as P(X ≤ x) = 1 − x−1/ξ`(x), where ` sat-93

isfies `(tx)/`(t) → 1 as t → ∞ for any positive real number x. Informally, the94

tail behaviour of X is controlled by the extreme value index ξ > 0, which must be95

estimated to get a precise understanding of tail heaviness. A standard estimator in96

this context is the Hill estimator [16]. For a dataset Z1, . . . , Zn, the Hill estimator97

at threshold u is defined as98

ξ̂Hu =
1∑n

i=1 1{Zi>u}

n∑
i=1

log

(
Zi
u

)
1{Zi>u}.

It is of course crucial, before using the Hill estimator, to ascertain whether the99

distribution of the data points indeed has a heavy tail. A common diagnostic method100

is the mean excess plot, which estimates the values of the mean excess function101

E(u) = E [Z − u|Z > u] as function of u. A natural estimate of E(u) is given, for102

each threshold u, by its empirical counterpart103

Ê(u) =

∑n
i=1 Zi1{Zi>u}∑n
i=1 1{Zi>u}

− u.

A heavy-tailed distribution will typically have mean excess plots exhibiting a linear
upward drift for large values of u, see for example Section 1.2.2 in [17]. It has, how-
ever, been observed in the extreme value literature [18] that the mean excess function
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very often exhibits a non-linear behaviour at the right end of the mean excess plot,
due to very high variability of the estimate of E(u) when u is close to the highest
Zi. As a consequence, good statistical practice recommends to confirm a diagnostic
of a heavy tail using other extreme value tools. One such general approach, which
does not presuppose that the data is heavy-tailed, consists in using the Generalised
Pareto maximum likelihood estimator, defined as, according to Section 5.3.2 in [17]:(

ξ̂GPu , σ̂GPu

)
= arg min

(ξ,σ)∈(−1/2,∞)×(0,∞)

n∑
i=1

[
− log σ −

(
1

γ
+ 1

)
log

(
1 + ξ

Zi − u
σ

)]
1{Zi>u}.

The Generalised Pareto maximum likelihood estimators are valid even when the104

underlying distribution is not heavy-tailed, which has made them very popular in105

the natural sciences [19].106

However, both the Hill and Generalised Pareto estimators of ξ suffer from jagged107

sample paths when the data points Zi come from a distribution with a high degree108

of discreteness. This behavior makes it extremely difficult to choose an accurate109

estimate of ξ, which renders the two methods highly unsatisfactory. The essential110

reason behind this phenomenon is that both estimators are built under the – gen-111

erally incorrect – assumption that the data points come from a pure (Generalised)112

Pareto distribution, which is continuous, and as such, they cannot be expected to113

handle a substantial degree of discreteness. We exemplify this phenomenon in Fig. 1:114

notice, in the top panels, the stark difference in stability and smoothness of sam-115

ple paths between a Hill plot for continuous data Zi and its counterpart for data116

rounded to the nearest integer up. The bottom panels show that the Hill estima-117

tor for discrete data tends to be strongly biased and much more so than the Hill118

estimator for continuous data.119

A statistically principled alternative is to employ proper discrete models to con-
struct an estimator of the extreme value index. This was pursued by [13], which used
so-called D-GPD (for Discrete-Generalised Pareto Distribution) models to introduce
the maximum likelihood estimators(

ξ̂u, σ̂u

)
= arg min

(ξ,σ)∈R×(0,∞)

n∑
i=1

log

((
1 + ξ

Zi − u
σ

)−1/ξ

−
(

1 + ξ
Zi − u+ 1

σ

)−1/ξ
)
1{Zi≥u}.

When ξ = 0, the convention we adopt is that (1 + ξz)−1/ξ = exp(−z), for any120

z ∈ R. These maximum likelihood estimators of the extreme value index ξ and scale121

parameter σ of the D-GPD model are readily obtained through the R maximisa-122

tion routine optim. Using the classical theory of maximum likelihood estimators,123

confidence intervals for ξ may be derived from ξ̂u by estimating the total Fisher124

information matrix I(ξ, σ) using a finite difference method and then deducing the125

following 100α%-confidence interval for ξ:126 [
ξ̂u +

√(
Î(ξ, σ)−1

)
1,1

Φ−1

(
1− α

2

)
, ξ̂u +

√(
Î(ξ, σ)−1

)
1,1

Φ−1

(
1 + α

2

)]
,
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Figure 1: Top panels: Hill plots as functions of the threshold value u, for n = 10,000
simulated data points Zi from the Burr distribution with probability density function
f(x) = ξ−1x−ρ/ξ−1(1 + x−ρ/ξ)1/ρ−1 (for x > 0) with ξ = 1/2 and ρ = −1 in the left
panel, and for the data dZie (i.e. the smallest integer larger than or equal to Zi)
in the right panel. Bottom panels: Averaged Hill plots when this experiment is
repeated N = 1,000 times.
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where Φ denotes the standard normal distribution function and Φ−1 its inverse127

(quantile function). Modelling Z−u conditional on Z ≥ u by a D-GPD distribution128

with parameter estimates (ξ̂u, σ̂u) suggests the following estimate of the 100αth129

percentile of Z adapted from [12, Formula (5) p.41]:130

q̂α =

⌈
σ̂u

ξ̂u

((
n(1− α)∑n
i=1 1{Zi≥u}

)−ξ̂u
− 1

)
+ u− 1

⌉
,

for α large enough. Here, d·e denotes the ceiling function, that is, dxe denotes the131

smallest integer larger than or equal to x. Estimating this quantile by plugging in132

the aforementioned estimates of ξ and σ makes it possible to infer extreme quantile133

levels and therefore get precise information on the tail behaviour of a distribution134

with a large degree of discreteness.135

For comparison purposes, we will contrast the resulting extreme quantile estimates136

with those provided by the (conditioned) negative binomial distribution. Recall that137

the probability mass function of the negative binomial distribution (with parameters138

r > 0 and p ∈ (0, 1)) conditional on Z > u, is given by139

Pp,r,u(Z = k) =

Γ(k+r)
k! Γ(r)

pr(1− p)k

1−
∑u

i=0

Γ(i+ r)

i! Γ(r)
pr(1− p)i, for all k > u.

Here Γ denotes Euler’s Gamma function. With a dataset z1, . . . , zn, the parameter140

estimators are therefore obtained as the maximum log-likelihood solution141

arg max
(p,r)∈(0,1)×(0,∞)

n∑
i=1

logPp,r,u(Z = zi).

Ever since the seminal work of [1], the negative binomial distribution has been widely142

used to describe the number of secondary cases resulting from an index case of SARS-143

CoV. As suggested in [3, 21], this model has exponentially decreasing probability144

mass functions and thus cannot be expected to accurately represent tail heaviness in145

SARS-CoV-2 transmission data. We provide below further evidence for this claim,146

and for the suitability of D-GPD maximum likelihood estimates in the context of147

discrete data, through several datasets gathering numbers of SARS-CoV-2 secondary148

cases and cluster sizes in different settings.149

Data and results150

Analysis of secondary case data. Our first two datasets were reported in [3].151

They consist of 15 SSEs associated with SARS-CoV (Dataset S1) and 45 SSEs152

associated with SARS-CoV-2 (Dataset S2), each resulting in more than 6 secondary153

cases, along with month of occurrence and location of the superspreading event,154

and its setting. We refer to [3] for further details about the construction of these155

datasets. Pooling the 15 SSEs associated with SARS-CoV and 45 SSEs associated156

with SARS-CoV-2 into a single sample and making use of a Generalised Pareto157

approximation, [3] has suggested that the distribution of the number of secondary158
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cases Z belongs to the Fréchet maximum domain of attraction [20], that is, the159

set of Pareto-type distributions, with tail index ξ between 0.5 and 1 (the estimate160

provided in [3, Fig. 1 E] is ξ̂ ≈ 0.6). The index ξ tunes the tail heaviness of the161

distribution, with higher positive values indicating a heavier upper tail: moments of162

order higher than or equal to 1/ξ do not exist. An estimate of ξ around 0.6 means163

that the second moment of Z does not exist, reflecting the outsized contribution164

of SSEs to overall transmission. Most importantly perhaps, these findings on the165

tail heaviness of Z invalidate the conventional assumption that Z follows a negative166

binomial distribution for either coronavirus, whereas this assumption was widely167

adopted in the literature on disease transmission ever since the influential work [1]168

on SARS-CoV, and it is still widely employed for SARS-CoV-2, see e.g. [5, 22, 23].169

Based on our statistical analysis of these datasets, summarised in Fig. 2, one170

may however argue that the method of [3] is inappropriate for examining the tail171

behaviour of their particular 60 SSEs. The sparsity of data on SSEs is addressed by172

combining the 15 and 45 observations associated with SARS-CoV and SARS-CoV-2173

into a single sample, whereas the two datasets correspond to completely different174

distributions (Fig. 2 (a)) and should not be pooled accordingly. This is apparent175

from either a Kolmogorov-Smirnov test, with p−value 0.015, or the more common176

approach making the questionable assumption that Z follows a negative binomial177

distribution. The conditional (given Z > 6) negative binomial fit of the probability178

mass function to the Zi (by construction larger than 6), calculated as described179

in the last paragraph of the Methods section (Fig. 2 (b)), already suggests that180

the upper tail of Z for SARS-CoV appreciably dominates that for SARS-CoV-2.181

In other words, even a naive analysis of the SSE distributions, using the classical182

negative binomial distribution and not accounting for the heavy tail in the data,183

indicates that the SSEs for SARS-CoV and those for SARS-CoV-2 exhibit different184

statistical behaviour. This is confirmed by a proper extreme value analysis of the185

data (Fig. 2 (c)): the ξ estimates obtained from the Hill estimator in the special186

case of SARS-CoV-2 vary between 0.35 and 0.45, and as such differ substantially187

from the various competing estimates found to vary between 0.5 and 1 in [3]. Even188

the 90% confidence intervals of ξ for SARS-CoV-2 (dashed red lines in Fig. 2 (c))189

only partially contain the estimated tail index plot for SARS-CoV (solid blue line),190

reflecting a net difference between the two heavy-tailed distributions of secondary191

cases associated with SARS-CoV and SARS-CoV-2. This conclusion is corroborated192

by the mean excess function estimates (Fig. 2 (d)), which similarly indicate the193

relevance of separating the analysis for each coronavirus. This suggests that although194

SARS-CoV and SARS-CoV-2 belong to the same family of respiratory diseases,195

superspreading events are larger in scale for SARS-CoV in comparison to SARS-196

CoV-2. For all these reasons, pooling the data before applying extreme value tools197

can lead to misleading conclusions on the propagation of the SARS-CoV-2 virus.198

Yet, the low sample size of this SSE dataset puts a question mark over the quality199

of the statistical analysis. Trustworthy extreme value inference may require a larger200

sample size, of the order of at least several thousands. This is why we also analysed201

a much larger Indian secondary case dataset of size n = 88,527 (Database S3). This202

comprehensive surveillance and contact-tracing database was collected in 2020 by203

the public health authorities of the two Indian states of Andhra Pradesh and Tamil204
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Figure 2: Secondary case data from [3] (Datasets S1 and S2). (a) Histogram of the
number of secondary cases for SARS-CoV (blue, n = 15) and SARS-CoV-2 (red,
n = 45) SSEs. (b) Fitted probability mass function, conditional on Z > 6, of the
negative binomial distribution for SARS-CoV (blue) and SARS-CoV-2 (red) SSEs.
(c) Hill estimates of ξ for SSEs associated with SARS-CoV (solid blue), SARS-CoV-
2 (solid red), and the pooled data (solid black), obtained from the exceedance values
Zi − u given Zi ≥ u, as function of the threshold u, along with the resulting 90%
confidence intervals for SARS-CoV (dashed blue) and SARS-CoV-2 (dashed red)
SSEs. (d) Mean excess plots of SARS-CoV (blue) and SARS-CoV-2 (red) SSEs,
quantified by the average of the exceedances Zi − u given Zi ≥ u, as function of u.
(e) Discrete GPD maximum likelihood estimates of ξ for SARS-CoV (solid blue) and
SARS-CoV-2 (solid red) SSEs, calculated from the exceedances Zi−u given Zi ≥ u,
as function of u, along with their corresponding 90% confidence intervals (dashed
lines), and the Hill plot produced by combining SARS-CoV and SARS-CoV-2 SSEs.
(f) Logarithm of the probability mass functions Pσ,ξ(X = x) of the D-GPD fits to
the exceedance values Zi − u given Zi ≥ u, for the thresholds u = 6 (dotted lines)
and u = 10 (solid lines), for SARS-CoV (blue) and SARS-CoV-2 (red).
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Nadu, whose residents total about 10% of India’s population. It was studied for205

instance in [4] and [21], and we refer to the latter for more information about the206

database’s construction and contents. Results are reported in Fig. 3. Although the207

barplot of this data (Fig. 3 (a)) gives evidence of a considerable right skewness and208

its summary extreme value analysis (Fig. 3 (b)) suggests a heavy right tail, it should209

be noted that since the Zi range from 0 to 39 with a sample size of 88,527, the data210

is necessarily highly discrete with a large number of tied observations (see Table 1).211

Z 0 1 2 3 4 5 6 7 8 9 10 11
Count 62,540 17,493 4,885 1,730 802 444 267 149 67 44 29 22
Z 12 13 14 15 16 17 18 19 21 22 23 25 28 31 37 39

Count 14 16 3 3 4 4 1 1 2 1 1 1 1 1 1 1

Table 1: Secondary case data (Database S3) for SARS-CoV-2 from Andhra Pradesh
and Tamil Nadu (India).

Ignoring the discrete nature of the Zi by modelling their tail behaviour with the212

(Generalised) Pareto distribution is inappropriate as this typically results in unreli-213

able tail index estimates and confidence intervals [13]. This becomes obvious here by214

superimposing both the classical Hill and continuous Generalised Pareto maximum215

likelihood estimators of the extreme value index, as functions of a varying thresh-216

old u in Fig. 3 (c). Clearly, both plots are so volatile and jagged that it is hard217

to identify any stable region and therefore a reasonable point estimate of ξ cannot218

easily be determined. We address this limitation by applying the recent theory of219

discrete extremes developed in [11, 13] and based on the discrete Generalised Pareto220

distribution (D-GPD). The D-GPD, first employed by [12] to model road accidents221

and more recently in [14] to model hospital congestion, has been shown to outper-222

form the continuous GPD when there are a large number of tied observations: see223

the simulated Poisson and discrete Inverse-Gamma examples in Section 3.1 of [13],224

which respectively show that the GPD provides poor fits and poor tail estimates225

when the data is highly discrete, while the D-GPD distribution performs well. Its226

closed-form survival and probability mass functions allow for an exact likelihood-227

based inference. Using the D-GPD distribution to fit exceedances Zi − u above the228

threshold u (rather than trying to fit the whole of the distribution, as [21] did using229

a discrete Pareto distribution) results in a much smoother and stable fit (Fig. 3 (c)),230

and leads to an estimate of ξ around 0.24 with the 90% confidence intervals over-231

whelmingly suggesting an estimate greater than 0, thus confirming the heavy-tailed232

nature of SARS-CoV-2 SSEs (Fig. 3 (d)) in this sample. Interestingly, revisiting the233

small SARS-CoV-2 SSE dataset (Dataset S2) of size 45 using the D-GPD maximum234

likelihood estimation method (Fig. 2 (e)) results in an estimate of around 0.25, in235

agreement with the results from the Indian secondary case data. This suggests that236

the distribution of SARS-CoV-2 SSEs has a finite third moment and possibly even237

a fourth moment. These results are different from those obtained for the SARS-238

CoV SSEs. The latter rather point towards a distribution with infinite variance and239

thus a much heavier right tail. This is confirmed by considering the fitted D-GPD240

probability mass functions for secondary cases (Fig. 2 (f)) that decrease much more241

rapidly for SARS-CoV-2 than for SARS-CoV.242
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(c) Three tail index estimates − India data
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(d) Tail index plot D−GPD − India data

Figure 3: Secondary case data (Database S3) for SARS-CoV-2 from Andhra Pradesh
and Tamil Nadu (India). (a) Bar plot of the log(Zi+1) (n = 88,527). (b) Mean excess
plots of secondary cases. (c) Hill (solid black), continuous GPD maximum likelihood
(solid blue) and discrete GPD maximum likelihood (solid bold red) estimates of ξ.
(d) Discrete GPD maximum likelihood estimates of ξ (solid red) and their associated
90% confidence intervals (dashed red). In panels (c) and (d), the averaged discrete
GPD estimate ξ̂ = 0.239 over the stable region u ∈ [0, 10] is indicated with the
horizontal red line.
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To examine the extreme value behaviour of the SARS-CoV-2 offspring distribu-243

tion in different conditions, we turn to the analysis of two contact-tracing datasets in244

South Korea, a country which has a similar population density to the Indian state of245

Tamil Nadu, but did not resort to any full lockdown and has one of the largest and246

best-organised epidemic control programmes in the world. The first dataset was col-247

lected in the first half of 2020 (Database S4), while the second was collected during248

the fourth community epidemic in the summer of 2021 (Database S5) in the context249

of the assessment of transmission dynamics for the Delta variant of SARS-CoV-2.250

The first dataset, which consists of n = 5,165 numbers of SARS-CoV-2 secondary251

cases Zi, was analysed in [3]. See Table 2.252

Z 0 1 2 3 4 5 6 7 8 9
Count 4,558 364 114 62 27 7 7 4 4 1
Z 10 11 12 15 17 18 21 24 27 51

Count 2 3 1 2 2 1 2 2 1 1

Table 2: Secondary case data (Database S4) for SARS-CoV-2 collected in South
Korea in the first half of 2020.

We revisit the estimation of, and inference about, the underlying extreme value253

index by comparing the D-GPD estimates with the classical GPD and Hill estimates.254

Results are displayed in Fig. 4. A least squares fit to the first part of the mean excess255

plot (Fig. 4 (b)) suggests a linearly increasing fit to the mean excess function with256

a slope of around 0.85, but this ignores the flat or even slightly linearly decreasing257

right-hand part of the data cloud. This throws the assumption that the offspring258

distribution is heavy-tailed in doubt, although the barplot of the data (Fig. 4 (a))259

would tentatively back the heavy tail assumption. The Hill estimator, which pre-260

supposes that the data is heavy-tailed and graphed as a black line in Fig. 4 (c), does261

not exhibit any stable region which would allow to produce a reasonable point esti-262

mate. In such scenarios, best practice in extreme value theory requires calculating263

alternative extreme value estimators whose consistency does not rest upon the heavy264

tail assumption (unlike the Hill estimator), such as the general GPD and D-GPD265

estimators. These are also represented in Fig. 4 (c). Clearly, the paths of these two266

estimates follow a similar trajectory which is very different from that of the Hill267

plot. They point towards substantially lower estimates of ξ, and even though the268

estimates are overall larger than 0, the validity of the heavy tail assumption ξ > 0269

is not obvious for this dataset. Fig. 4 (d) further supports this observation: in the270

(somewhat) stable region around the threshold u = 10, the 90% confidence interval271

produced through maximum likelihood theory contains the value 0. Our conclusion272

from the analysis of this dataset is that the distribution of the number of secondary273

cases is either fat-tailed but with a low tail index, or perhaps even light-tailed. As274

a consequence, our finding is qualitatively different from that of [3], since we do not275

obtain ξ estimates similar to those found by merging Datasets S1 and S2.276

The second South Korean contact-tracing dataset comprises n = 33,903 SARS-277

CoV-2 numbers of secondary cases Zi (Database S5) detected between 25th July278

2021 and 15th August 2021. It was initially explored in [5], where it was highlighted279

that the Delta variant accounted for the majority of those cases. We therefore inves-280
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(d) Tail index plot D−GPD − Korea data

Figure 4: Secondary case data (Database S4) for SARS-CoV-2 from South Korea
(first half of 2020). (a) Bar plot of the log(Zi + 1) (n = 5,165). (b) Mean excess
plots of secondary cases. (c) Hill (solid black), continuous GPD maximum likelihood
(solid blue) and discrete GPD maximum likelihood (solid bold red) estimates of ξ.
(d) Discrete GPD maximum likelihood estimates of ξ (solid red) and their associated
90% confidence intervals (dashed red).
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tigate this dataset to ascertain whether the tail behaviour of SSEs is substantially281

different for the Delta variant. The data is presented in Table 3 below. The re-282

sults we obtain for this dataset are displayed in Fig. 5. The barplot of the data in283

Fig. 5 (a) again backs the assumption of a heavy tail, but here, the mean excess plot284

in Fig. 5 (b) suggests a more convincing linearly increasing fit to the mean excess285

function with a slope of around 0.3. The Hill estimator and both continuous and286

discrete GPD maximum likelihood estimators, represented in Fig. 5 (c), appear to287

support the fat tail assumption of the offspring distribution which is mainly dom-288

inated here by the Delta variant. Once again, the D-GPD estimate has a much289

smoother and more stable sample path, with a stable zone over u ∈ [1, 10] indicat-290

ing a point estimate of around 0.21. The 90% confidence interval of the D-GPD291

estimate over that region, provided in Fig. 5 (d), does not contain 0 and offers fur-292

ther justification of the assumption that the offspring distribution is heavy-tailed293

in this dataset, in contrast to the 2020 South Korea data where the validity of this294

conclusion is much less clear.295

Z 0 1 2 3 4 5 6 7 8 9 10
Count 29,193 2,154 1,121 594 332 207 113 53 53 21 21
Z 11 12 13 14 15 16 17 18 19 21 22 24 32

Count 6 8 5 3 3 2 2 3 3 1 2 2 1

Table 3: Secondary case data (Database S5) for SARS-CoV-2 collected in South
Korea from 25th July 2021 to 15th August 2021.

Analysis of cluster size data. We broaden our analysis by examining whether296

SARS-CoV-2 cluster sizes are fat-tailed. We consider a database of 15 samples of297

cluster sizes recorded in 11 countries and 4 US states. We define a cluster as a298

local outbreak involving a minimum of two cases, including confirmed close contacts299

with epidemiological linkage over a limited period of time. The number of reported300

clusters per country or state varies from 29 (France) to 4,769 (Colorado, USA). The301

database is constructed from government reports [6, 7, 8, 9] (Database S6) and media302

sources [10] (Database S7). The median cluster sizes were 5 (Database S6) and 33303

(Database S7), and the largest clusters had sizes 1,761 (Database S6, in a Colorado304

prison) and 7,000 (Database S7, in an Italian football stadium). We denote by Yi305

the number of SARS-CoV-2 cases in cluster i. The ξ estimates from each sample of306

cluster sizes allow to infer the risk category of the corresponding country/state in307

terms of local community transmission.308

Figs. 6 and 7 display the D-GPD maximum likelihood estimates of ξ as functions309

of the cluster size u. A common practice for selecting a suitable pointwise estimate of310

ξ is to pick out a sufficiently high threshold u corresponding to a stable region of the311

plot [15], as indicated by the vertical dashed lines in Figs. 6 and 7. The final selected312

estimates are reported in Table 4, where 13 out of the 15 countries or states appear313

to have fat-tailed cluster size distributions (confirmed at the 90% confidence level314

except for China). The analysis for California and UK & Ireland was inconclusive.315

For the California dataset, this is possibly due to a strong degree of heterogeneity316

(see the histogram in the bottom left panel of Fig. 7). A stratified study of the317
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(d) Tail index plot D−GPD − Delta data

Figure 5: Secondary case data (Database S5) for SARS-CoV-2 from South Korea
(July-August 2021). (a) Bar plot of the log(Zi + 1) (n = 33,903). (b) Mean excess
plots of secondary cases. (c) Hill (solid black), continuous GPD maximum likelihood
(solid blue) and discrete GPD maximum likelihood (solid bold red) estimates of ξ.
(d) Discrete GPD maximum likelihood estimates of ξ (solid red) and their associated
90% confidence intervals (dashed red). In panels (c) and (d), the averaged discrete
GPD estimate ξ̂ = 0.209 over the stable region u ∈ [1, 10] is indicated with the
horizontal red line.
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Californian data might be more conclusive. For the UK & Ireland dataset, the fact318

that the sample is so small (30 clusters) in two countries with highly developed319

healthcare and contact tracing systems is suspicious and may suggest reporting320

issues.321

Using the D-GPD model, one can gain further insight into large cluster sizes322

by providing extrapolated estimates of extreme percentiles qα potentially beyond323

the sample maximum, through the estimate q̂α described in the Methods section.324

Estimated 95th and 99th percentiles are given in Table 4. One may also match325

the estimated percentiles with actual observations to get a sense of what would326

constitute a conducive environment for the formation of large SARS-CoV-2 clusters.327

For example, the estimated 95th percentile of 120 cases in Kerala is close to two328

clusters of 113 cases (nursing home) and 132 cases (local transmission) already329

observed in Kerala. Likewise, the estimate q̂0.95 = 272 cases in Canada is fairly330

close to a cluster of 324 cases in Canadian nursing homes. In Oregon, the estimated331

99th percentile q̂0.99 = 124 cases is in the vicinity of a cluster of 134 cases in a care332

home setting. In Colorado, the estimate q̂0.99 = 140 cases is close to a cluster of 134333

cases in a nursing home. All of these clusters bar one (the local transmission cluster334

in Kerala) correspond to indoor environments where social distancing is difficult to335

practice.336
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those countries and states for which the extreme value analysis was conclusive. The
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Discussion337

In summary, we have investigated four datasets of secondary case numbers Zi for338

SARS-CoV-2 as a way to estimate and infer the extreme value index of the related339

underlying offspring distribution. Motivated by the highly discrete nature of such340

data, we used the Discrete GPD (D-GPD) maximum likelihood estimation method341

which produces smoother and more stable plots of the associated D-GPD estimator342

than the classical continuous GPD and Hill estimators. We first provided evidence343

that the small SSE dataset (Dataset S2) compiled by [3] during the early phase of344

the COVID-19 pandemic was fat-tailed, thus confirming their findings, although we345

show in various ways that this dataset should not be pooled with their 15 SSEs346

associated with SARS-CoV (Dataset S1), since they correspond to substantially347

different distributions. On the other hand, as accurate extreme value inference348

requires a large sample size in general, we also analysed an Indian secondary case349

dataset of size 88,527 collected in 2020 (Database S3), which contains a very large350

number of tied observations. The D-GPD estimate of the tail index is around 0.24,351

which is in full agreement with the estimate of around 0.25 found by revisiting352

the small SSE dataset of size 45 from [3]. The distribution of SARS-CoV-2 SSEs353

therefore appears to have at least a finite third moment, whereas that of SARS-354

CoV SSEs is found to have a much heavier upper tail with infinite variance and355

therefore stronger superspreading effect. In an effort to account for the quality of356

implemented control programmes as well as the nature of the variant under study,357

we used two extra South Korean contact-tracing datasets. For the first dataset358

(Database S4), collected in the first half of 2020 and used in [3], we cannot disprove359

that the distribution of the number of secondary cases is light-tailed. By contrast,360

for the second South Korean dataset (Database S5) collected during the summer of361

2021, in which the majority of cases correspond to the Delta variant of SARS-CoV-362

2 [5], we obtained a D-GPD estimate, ξ̂ ≈ 0.21 clearly suggesting a heavier upper363

tail for the Delta variant and therefore more pronounced superspreading potential364

in South Korea relative to the first half of 2020.365

We broaden our analysis by providing evidence that SARS-CoV-2 cluster sizes366

are typically fat-tailed, based on 15 samples from 11 countries and 4 US states.367

We infer the risk exposure and risk category of each country and state by making368

use of D-GPD maximum likelihood estimates of both the extreme value index and369

extreme percentiles, along with their associated confidence intervals. For the sake370

of simplicity, we used a straightforward threshold selection rule, which is to spot a371

stability region in the estimates (as a function of the threshold value) and choose an372

estimate whose value is representative of those reached in this region. This practice,373

colloquially known as “eyeballing”, is standard in applied extreme value analysis:374

see for example the discussion in p.77 of Chapter 4 in [24]. It applies reasonably375

well to the D-GPD sample paths, because they are overall much smoother and more376

stable than the standard Hill and GPD maximum likelihood sample paths, which377

are not designed to handle the discreteness of the data. The development of more378

elaborate statistical techniques for the choice of threshold in discrete GPD maximum379

likelihood estimation, such as methods based on asymptotic MSE minimisation or380

the bootstrap in the spirit of the approaches outlined in Section 5.4 of [25] for Hill381
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estimation, is an open question which is beyond the scope of this paper.382

A limitation of our study lies in the quality of the data, as it is not obvious383

whether all SSEs or clusters over a given time period were available, or whether384

cluster sizes were correctly recorded. To check robustness against missing data, we385

have reproduced part of our analysis of cluster data by removing 10% of observa-386

tions at random in each sample containing at least 100 data points, and replicating387

this experiment 10,000 times. Robustness against poor recording was checked by388

multiplying each observation Yi by an independent normal variate Wi having mean389

µ = 1 and standard deviation σ = 0.05, and then reproducing our analysis of cluster390

data on the Y ′i = WiYi, this experiment being again replicated 10,000 times. There391

is indeed some variation in the resulting estimates of ξ (Figs. 8 and 9), but this392

does not affect our conclusion on the fat-tailed behaviour of the data, except in rare393

situations when almost all the large values in the data go missing. This highlights394

the importance of accurate data reporting as a prerequisite to such analyses.395

It should be noted that, in classical epidemiological models, accurate estimation396

of the basic reproduction number R0 is of crucial importance as it informs the397

extent of restrictions on social interactions and other control measures that should398

be imposed to terminate the spread of an epidemic. The range of R0 for SARS-CoV-399

2 has been revised in [26] to 4.7-11.4, which is considerably higher than most early400

estimates. This might explain why moderate restrictions that were implemented in401

some nations, e.g. France, Italy, Spain, the UK, Australia and New Zealand, turned402

out to be insufficient and replaced by nationwide or statewide lockdowns and/or403

border closures. It should be clear that our results are, by construction, robust404

to misspecified estimates of the expected number of secondary cases R0 since they405

solely rely on extreme values of numbers of secondary cases.406

Our approach can be viewed as a proof of concept that transmission data from407

a respiratory disease should not be pooled with data from a similar disease, since408

similar R0 numbers or parameters of average transmission do not, in general, induce409

similar parameters of large community transmission. As such, preparing proactive410

control measures actually requires a fine assessment of how unequal the distributions411

of SSEs associated with different SARS-CoV-2 variants are. [27] conclude that the412

reproductive number of the Delta variant is far higher than that of the historical413

SARS-CoV-2 virus. Similarly, [28] estimate that the effective reproduction number414

of the Omicron variant is more than 3 times that of the Delta variant in Denmark.415

Our analysis of secondary case data did not, strictly speaking, allow one to conclude416

statistically that SSEs linked to the Delta variant had a different extreme value index417

from those linked to the original strains of SARS-CoV-2. However, in the contact-418

tracing data recorded in South Korea, we did find a heavy tail in the offspring419

distribution when the Delta variant made the majority of cases, as opposed to when420

it did not. This tentative finding of a heavier tail in the data linked to the Delta421

variant is coherent with the higher reproductive number of the Delta variant found422

in [27]. The question of estimating parameters of large community transmission for423

the Omicron variant remains open, as we could not find a dataset whose sample size424

would enable us to draw statistically principled conclusions about the tail behaviour425

of Omicron-related SSEs.426
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Figure 8: Robustness check (with respect to data omission) for the analysis of cluster
cases (Databases S6 and S7). Histograms of the 10,000 estimates of ξ obtained
by omitting at random 10% of the data. This was done only for the six samples
containing at least 100 data points.
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Figure 9: Robustness check (with respect to poor recording of the data) for the
analysis of cluster cases (Databases S6 and S7). Histograms of the 10,000 estimates
of ξ obtained by multiplying each data point by a random draw from the normal
distribution with mean µ = 1 and standard deviation σ = 0.05. This was done only
for the six samples containing at least 100 data points.
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