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Abstract. Superspreading has been suggested to be a major driver of overall trans-
mission in the case of SARS-CoV-2. It is therefore important to investigate statistically
the tail features of superspreading events (SSEs) in order to have a better understanding of
virus propagation and control. Our extreme value analysis of different sources of secondary
cases data, including a very recent and large database, indicates that SSEs associated with
SARS-CoV-2 have a fat-tailed nature substantially less severe than predicted recently in
the literature, but also less important relative to SSEs associated with SARS-CoV. This
may provide policy- and decision-makers with a more reliable assessment of the real tail
exposure to SARS-CoV-2 contamination. Going further, we consider the broader problem
of large community transmission. We study the tail behavior of SARS-CoV-2 cluster cases
documented both in official reports and the media. Our results suggest that the observed
cluster sizes have been fat-tailed in the vast majority of surveyed countries. We also give
estimates and confidence intervals of the extreme potential risk for those countries. A
key component of our methodology is up-to-date discrete generalized Pareto approxima-
tions which allow for maximum-likelihood based inference of data having a high degree of
discreteness.

Keywords. COVID-19, Superspreading, Cluster size, Secondary cases, Extreme value
theory, Discrete extremes.

Superspreading events (SSEs) have been recognized as a significant source of disease
transmission, including for respiratory coronaviruses such as SARS-CoV and SARS-CoV-
2 [1, 2]. SSEs are generally defined as outbreaks in which a small number of cases infect a
number of secondary cases well above the expected average [3]. The number of secondary
cases resulting directly from an index case of SARS-CoV or SARS-CoV-2 can be viewed
as a random variable, say Z. For both coronaviruses, with a basic reproductive number
(R0) estimated to be 3 to 6 [1, 4], events having triggered more than 6 secondary cases
have been suggested to constitute SSEs [5]. Data on such SSEs that was reported in [5] is
necessarily scarce, as it was documented in scientific studies during the period February-
April 2003 for SARS-CoV and January-June for SARS-CoV-2. It consists only of 15 SSEs
associated with SARS-CoV and 45 SSEs associated with SARS-CoV-2. Each of these data
points Zi corresponds to the number of secondary cases resulting from a single given index
case in Europe, Asia or North America. The particularity of these datasets is that all the
observations Zi are rather high exceeding the aforementioned threshold of 6 secondary
cases.

The natural framework for the analysis of SSEs, and more generally of atypical obser-
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vations far away from the mean, is extreme value theory. Doing so, it was argued in [5] that
SSEs are fat-tailed, although this was done by incorrectly pooling the 60 available SSEs
from SARS-CoV and SARS-CoV-2. Instead, by focusing directly on the raw SARS-CoV-2
data considered in [5], we provide evidence of a lighter upper tail for SSEs with signifi-
cantly less tail exposure than predicted in their study. We arrive at the same conclusion
by making use of a more recent and much larger publicly available dataset containing the
number of secondary cases Zi for n = 88,527 index cases in the Indian states of Andhra
Pradesh and Tamil Nadu.

We also consider the broader problem of large community transmission, being the other
fundamental source of pandemic risk. Large infection clusters, along with SSEs, have been
argued to play an important role in the transmission of SARS-CoV-2 [2]. We define a
cluster of SARS-CoV-2 cases in our analysis as a local outbreak involving a minimum of
two cases, including confirmed close contacts with epidemiological linkage over a limited
period of time. We consider two databases constructed from government reports [6, 7, 8, 9]
and media sources [10], comprising 15 samples of SARS-CoV-2 cluster sizes recorded in 11
countries and 4 US states. Our results show that 13 out of these 15 countries and states
have fat-tailed cluster size distributions, and allow to infer their risk category in terms of
large community transmission. The recent theory of discrete extremes [11, 12, 13, 14] is
our basic tool to address the highly discrete nature of SARS-CoV-2 secondary transmission
data and cluster sizes, and to estimate and infer more accurately the tail index and extreme
percentiles of the underlying fat-tailed distributions. This allows us to better understand
the drivers of superspreading and cluster formation in the ongoing COVID-19 pandemic.

Results and Discussion

Analysis of secondary individual cases. Pooling the 15 SSEs associated with SARS-
CoV (Dataset S1) and 45 SSEs associated with SARS-CoV-2 (Dataset S2), that were
reported in [5], into a single sample and making use of a Generalized Pareto approximation,
[5] has suggested that the distribution of the number of secondary cases Z belongs to
the Fréchet maximum domain of attraction MDAξ [15], that is, the set of Pareto-type
distributions, with tail index ξ between 0.5 and 1 (the estimate provided in [5, Fig. 1 (E)]
is ξ̂ ≈ 0.6). The index ξ tunes the tail heaviness of the distribution, with higher positive
values indicating a heavier upper tail: moments of order higher than or equal to 1/ξ do
not exist. An estimate of ξ around 0.6 means that the second moment of Z does not exist,
reflecting the outsized contribution of SSEs to overall transmission. Most importantly
perhaps, these findings on the tail heaviness of Z make the conventional assumption that
Z follows a negative binomial distribution no longer valid for either coronavirus, whereas
this assumption was adopted in the literature on disease transmission since the influential
work [1] on SARS-CoV, and it is still employed for SARS-CoV-2, see e.g. [16].

One may argue, however that the method of [5] is inappropriate for examining the
tail behavior of their particular 60 SSEs. The sparsity of data on SSEs is addressed by
combining the 15 and 45 observations associated with SARS-CoV and SARS-CoV-2 into
a single sample, whereas the two datasets correspond to completely different distribu-
tions (Fig. 1 (a)) and should not be pooled accordingly. This is apparent from either a
Kolmogorov-Smirnov test, with p−value 0.015, or the usual data analysis making the sub-
jective assumption that Z follows a negative binomial distribution. The negative binomial
fit of the probability mass function (Fig. 1 (b)) clearly suggests that the upper tail of Z for
SARS-CoV appreciably dominates that for SARS-CoV-2. This is confirmed by a proper
extreme value analysis of the data (Fig. 1 (c)): the ξ estimates obtained between 0.35
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and 0.45 from the Hill estimator, in the special case of SARS-CoV-2, differ substantially
from the various competing estimates found to vary between 0.5 and 1 in [5]. Even the 90%
confidence intervals of ξ for SARS-CoV-2 (dashed red lines in Fig. 1 (c)) seem to contain
only partially the estimated tail index plot for SARS-CoV (solid blue line), reflecting a net
difference between the two heavy-tailed distributions of secondary cases associated with
SARS-CoV and SARS-COV-2. This conclusion is corroborated by the mean excess value
estimates (Fig. 1 (d)), which similarly indicate the relevance of separating the analysis
for each coronavirus, pointing in particular towards a smaller effect of the superspreading
phenomenon on the current COVID-19 pandemic relative to the SARS-CoV epidemic.
The interpretation of this result is that, although SARS-CoV and SARS-CoV-2 belong to
the same family of respiratory diseases, the two coronaviruses do not produce the same
kind of large SSEs that are relevant for accurately quantifying superspreading risk. For all
these reasons, pooling the data before applying extreme value tools can lead to misleading
conclusions on the propagation of the SARS-CoV-2 virus.

Yet, the low sample size of this SSE dataset puts a question mark over the quality of
the statistical analysis. This is why we also analyzed a very recent and much larger Indian
secondary cases dataset of size n = 88,527, studied for instance in [17] and [18] (Database
S3). Although the barplot of this data (Fig. 2 (a)) gives evidence of a considerable right
skewness and its summary extreme value analysis (Fig. 2 (b)) suggests a heavy right tail,
it should be noted that since the Zi range from 0 to 39 with a sample size of 88,527, the
data is necessarily highly discrete with a large number of tied observations. Ignoring this
discrete nature of the Zi by modeling their tail behavior with the (Generalized) Pareto
distribution is inappropriate as this typically results in unreliable tail index estimates
and confidence intervals [11]. We address this limitation by applying the recent theory
of discrete extremes developed in [11, 12] and based on the discrete generalized Pareto
distribution (D-GPD). The D-GPD, first employed by [13] to model road accidents and
more recently in [14] to model hospital congestion, has been shown to outperform the
continuous GPD when there are a large number of tied observations [11]. Its closed-form
survival and probability mass functions allow for an exact likelihood-based inference. Using
the D-GPD distribution to fit exceedances Zi−u above a varying threshold u (rather than
trying to fit the whole of the distribution, as [17] did using a discrete Pareto distribution),
we found an estimate of ξ around 0.239 with the 90% confidence intervals overwhelmingly
suggesting an estimate greater than 0, thus confirming the heavy-tailed character of SARS-
CoV-2 SSEs (Fig. 2 (c)). Interestingly, revisiting the small SSE dataset (Dataset S2) of
size 60 using the D-GPD maximum likelihood estimation method (Fig. 1 (e)) results in
an estimate of around 0.25, in agreement with what is found on the Indian SSE data.
This suggests that the distribution of SARS-CoV-2 SSEs has a finite third moment and
possibly even a fourth moment. These results are different from those obtained for the
SARS-CoV SSEs. The latter rather point towards a distribution with infinite variance
and thus a much heavier right tail. This is confirmed by considering the fitted D-GPD
probability mass functions for secondary cases (Fig. 1 (f)) that decrease much more rapidly
for SARS-CoV-2 than for SARS-CoV. As such, compared to [5], our findings could have
significantly different implications when integrated to models of disease transmission that
can be relied upon for making policy decisions.

Analysis of cluster cases. We broaden our analysis by examining whether SARS-CoV-
2 cluster sizes are fat-tailed too. We consider a database of 15 samples of cluster sizes
recorded in 11 countries and 4 US states. The number of reported clusters per country or
state varies from 29 (France) to 4,769 (Colorado, USA). The database is constructed from
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Figure 1: Secondary cases data from [5]. (a) Histogram of the number of secondary cases
for SARS-CoV (blue, n = 15) and SARS-CoV-2 (red, n = 45) SSEs. (b) Fitted probability
mass function, conditional on Z > 6, of the negative binomial distribution for SARS-CoV
(blue) and SARS-CoV-2 (red) SSEs. (c) Hill estimates of ξ for SSEs associated with SARS-
CoV (solid blue), SARS-CoV-2 (solid red), and the pooled data (solid black), obtained
from the exceedance values Zi − u given Zi ≥ u, as function of the threshold u, along
with the resulting 90% confidence intervals for SARS-CoV (dashed blue) and SARS-CoV-
2 (dashed red) SSEs. (d) Mean excess plots of SARS-CoV (blue) and SARS-CoV-2 (red)
SSEs, quantified by the average of the exceedances Zi − u given Zi ≥ u, as function of
u. (e) Discrete GPD maximum likelihood estimates of ξ for SARS-CoV (solid blue) and
SARS-CoV-2 (solid red) SSEs, calculated from the exceedances Zi − u given Zi ≥ u, as
function of u, along with their corresponding 90% confidence intervals (dashed lines), and
the Hill plot produced by combining SARS-CoV and SARS-CoV-2 SSEs. (f) Logarithm
of the probability mass functions of the D-GPD fits to the exceedance values Zi − u given
Zi ≥ u, for the thresholds u = 6 (dotted lines) and u = 10 (solid lines), for SARS-CoV
(blue) and SARS-CoV-2 (red).
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Figure 2: Secondary cases data for SARS-CoV-2 from Andhra Pradesh and Tamil Nadu
(India). (a) Bar plot of the log(Zi + 1) (n = 88,527). (b) Mean excess plots of secondary
cases. (c) Discrete GPD maximum likelihood estimates of ξ (solid red) and their associated
90% confidence intervals (dashed red), with the averaged estimate ξ̂ = 0.239 over the stable
region u ∈ [0, 10] being indicated in dotted horizontal line.
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government reports [6, 7, 8, 9] (Database S4) and media sources [10] (Database S5). The
median cluster sizes were 5 (Database S4) and 33 (Database S5), and the largest clusters
had size 1,761 (Database S4, in a Colorado prison) and 7,000 (Database S5, in an Italian
football stadium). Here we denote by Yi the number of SARS-CoV-2 cases in cluster i.
The ξ estimates from each sample of cluster sizes allow to infer the risk category of the
corresponding country/state in terms of local community transmission.

Figs. 3 and 4 display the D-GPD maximum likelihood estimates of ξ as functions of
the cluster size u. A common practice for selecting a suitable pointwise estimate of ξ is to
pick out a sufficiently high threshold u corresponding to a stable region of the plot [19],
as indicated by the vertical dashed lines in Figs. 3 and 4. The final selected estimates are
reported in Table 1, where 13 out of the 15 countries or states appear to have fat-tailed
cluster size distributions (confirmed at the 90% confidence level except for China). The
analysis for California and UK & Ireland was inconclusive. For the California dataset,
this is possibly due to a strong degree of heterogeneity (see the histogram in the bottom
left panel of Fig. 4). A stratified study of the Californian data might be more conclusive.
For the UK & Ireland dataset, the fact that the sample is so small (30 clusters) in two
countries with highly developed healthcare and contact tracing systems is suspicious and
may suggest reporting issues.

Using the D-GPD model, one can gain further insight into large cluster sizes by pro-
viding extrapolated estimates of extreme percentiles qα potentially beyond the sample
maximum [13, Formula (5) p.41]. Estimated 95th and 99th percentiles are given in Ta-
ble 1. One may also match the estimated percentiles with actual observations to get a
sense of what would be a conducive environment for the formation of large SARS-CoV-2
clusters. For example, the estimated 95th percentile of 120 cases in Kerala is close to two
clusters of 113 cases (nursing home) and 132 cases (local transmission) already observed
in Kerala. Likewise, the estimate q̂0.95 = 272 cases in Canada is fairly close to a clus-
ter of 324 cases in Canadian nursing homes. In Oregon, the estimated 99th percentile
q̂0.99 = 124 cases is in the vicinity of a cluster of 134 cases in a care home setting. In
Colorado, the estimate q̂0.99 = 140 cases is close to a cluster of 134 cases in a nursing
home. All of these clusters bar one (the local transmission cluster in Kerala) correspond
to indoor environments where social distancing is difficult to practice.

In summary, we have provided evidence that SSEs and cluster sizes for SARS-CoV-2
were fat-tailed, albeit (for SSEs) less so than for SARS-CoV, and less so than argued
in [5]. We have not discussed quality checks for our likelihood-based confidence intervals
in Table 1 as the D-GPD confidence intervals have already been established to be quite
accurate [11]. A limitation of our study lies in the quality of the data, as it is not obvious
whether all SSEs or clusters over a given time period were available. To check robustness
against such reporting issues, we have reproduced part of our analysis of cluster data
by removing at random 10% of observations in each sample containing at least 100 data
points, and replicating this experiment 10,000 times. There is indeed some variation in the
resulting estimates of ξ (Fig. 5) but this does not affect our conclusion on the fat-tailed
behavior of the data, except in rare situations when almost all the large values in the data
go missing. This highlights the importance of accurate data reporting as a prerequisite to
such analyses.
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Figure 4: Analysis of cluster cases. As in Figure 3 with the results obtained from the
data whose sources were the media. The top 9 plots refer to those countries and states
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Database S4

Location n ξ̂ [95%CI] u (nu) q̂0.95 q̂0.99 Max. Yi (Setting)
Colorado, USA 4,769 0.53 [0.41, 0.64] 27 (474) 48 140 1,761 (Prison)
Hong Kong 54 0.55 [0.16, 0.93] 17 (34) 119 310 732 (Dancing)
Kerala, India 113 0.36 [0.11, 0.62] 22 (60) 120 255 580 (Unknown)
Oregon, USA 795 0.21 [0.10, 0.31] 15 (254) 64 124 639 (Prison)

Database S5

Location n ξ̂ [95%CI] u (nu) q̂0.95 q̂0.99 Max. Yi (Setting)
Australia 355 0.28 [0.09, 0.48] 25 (145) 157 326 662 (Cruise ship)
Brazil 42 0.58 [0.00, 1.16] 15 (22) 82 220 191 (Hospital)
Canada 100 0.42 [0.15, 0.69] 25 (74) 272 624 1,500 (Meat processing plant)
China 34 0.84 [-0.12, 1.80] 16 (10) 99 401 368 (Market)
France 29 1.08 [0.32, 1.83] 26 (17) 443 2,530 2,500 (Religious gathering)
Italy 41 1.02 [0.25, 1.79] 34 (15) 378 2,013 7,000 (Stadium)
New Jersey, USA 183 0.20 [0.08, 0.33] 75 (157) 299 496 1,042 (Prison)
Singapore 45 0.90 [0.19, 1.61] 20 (21) 156 661 797 (Worker housing)
South Korea 45 0.98 [0.37, 1.59] 22 (24) 324 1,616 5,016 (Religious gathering)

Table 1: Final results for SARS-CoV-2 cluster sizes by country (first column), the cor-
responding sample size n (second column), D-GPD maximum likelihood ξ estimate and
90% confidence interval (third column), selected cluster size threshold u and associated
number nu of exceedance values Yi − u given Yi ≥ u upon which the ξ estimate is calcu-
lated (fourth column), D-GPD maximum likelihood 95% and 99% percentile estimates of
cluster size (fifth and sixth columns), and the sample maximum (last column). The top
table corresponds to data from official sources, and the bottom table to data from media
sources. The results reported in the latter table only concern the 9 countries and states
for which the extreme value analysis was conclusive.
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Figure 5: Robustness check for the analysis of cluster cases. Histograms of the 10,000
estimates of ξ obtained by omitting at random 10% of the data. This was done only for
the six samples containing at least 100 data points.
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Methods

Hill estimator For a dataset Z1, . . . , Zn, the Hill estimator at threshold u is defined as

ξ̂Hu =
1∑n

i=1 1{Zi≥u}

n∑
i=1

log

(
Zi

u

)
1{Zi≥u}.

D-GPD maximum likelihood estimators The D-GPD maximum likelihood estimators
of the shape and scale parameters are obtained by maximizing (with the R function optim)
the D-GPD log-likelihood function introduced in [11]:

(
ξ̂u, σ̂u

)
= argmin

(ξ,σ)∈R×(0,∞)

n∑
i=1

log

((
1 + ξ

Zi − u

σ

)−1/ξ

−
(
1 + ξ

Zi − u+ 1

σ

)−1/ξ
)
1{Zi≥u}.

Using the classical theory of maximum likelihood estimators, confidence intervals for ξ
may be derived from ξ̂u. Indeed, we first estimate the total Fisher information matrix
I(ξ, σ) using a finite difference method (with a step h = 0.001), and then deduce the
following α%-confidence intervals for ξ:[

ξ̂u +

√(
Î(ξ, σ)−1

)
1,1

Φ−1

(
1− α

2

)
, ξ̂u +

√(
Î(ξ, σ)−1

)
1,1

Φ−1

(
1 + α

2

)]
,

where Φ denotes the standard normal distribution function.

Finally, the 100αth percentile of the D-GPD distribution having location parameter u,
scale parameter σ and shape parameter ξ, adapted from [13], is given by

qα =

⌈
σ

ξ

((
1− α

P(Z ≥ u)

)−ξ

− 1

)
+ u− 1

⌉
.

Mean excess plot The mean excess plots represent the values E(u) = E [Z − u|Z ≥ u]
as function of u. Using a dataset Z1, . . . , Zn, the estimate of E(u) is given, for each
threshold u, by its empirical counterpart

Ê(u) =

n∑
i=1

Zi1{Zi≥u}

n∑
i=1

1{Zi≥u}

− u

Conditioned negative binomial distribution The probability mass function of the
negative binomial distribution (with parameters r > 0 and p ∈ [0, 1]) conditional on
Z > u, is given by

P(Z = k) =

Γ(k+r)
k!Γ(r) p

r(1− p)k

1−
u∑

i=1

Γ(i+r)
i!Γ(r) p

r(1− p)i
, for all k > u.

With a dataset z1, . . . , zn, the parameter estimators are therefore obtained as the maximum
log-likelihood solution

argmax
(p,r)∈[0,1]×(0,∞)

n∑
i=1

logP(Z = zi).
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Code and data availability

The R code for the numerical analysis and datasets are available at GitHub, https:

//github.com/AntoineUC.
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