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Abstract. This paper proposes a 4D dynamic tomography framework that allows

a moving sample to be imaged in a tomograph as well as the associated space-

time kinematics to be measured with nothing more than a single conventional x-ray

scan. The method exploits the consistency of the projection/reconstruction operations

through a multi-scale procedure. The procedure is composed of two main parts

solved alternatively: a motion-compensated reconstruction algorithm and a projection-

based measurement procedure that estimates the displacement field directly on each

individual projection. The method is applied to two studies: a numerical simulation

of breathing from chest computed tomography (4D-CT) and a clinical cone beam CT

of a breathing patient acquired for image-guidance of radiotherapy. The reconstructed

volume, initially blurred by the motion, is cleaned from motion artifacts. It results in

an improved reconstruction quality showing sharper edges and finer details.
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Breathing motion
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1. Introduction

Being able to image faithfully and precisely a body or a specimen is of utmost importance

for medical diagnoses or for non-destructive evaluation. Among many different 3D

imaging techniques (Magnetic Resonance Imaging (MRI), Ultrasound imaging, ...), X-

ray computed tomography (CT) is frequently used, because of, e.g., its spatial resolution,

its rapidity, and its contrast between soft and hard biological tissues. The actual

limitation is essentially set by the biological damage due to x-ray radiation.

Initially developed for medical imaging [1, 2], tomography is now widely used in

a broad range of applications ranging from biology [3] to material science [4, 5, 6].

The reconstruction of the 3D volume from the sinogram (collection of all acquired

projections) is an inverse problem [7]. The technique relies on the strict satisfaction
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of conditions, in particular concerning the geometry of the set-up and the motion of the

sample as a perfectly controlled rigid rotation with prescribed axis and angles.

Displacement in tomography can be either fought to avoid motion blur in the image or

identified to feed models. If the motion happens during the imaging process, it leads to

a poor quality reconstruction with blurry edges [8]. This displacement may come from

various reasons: motion of the sample itself (e.g., due to the experiment itself, heartbeat

and breathing [9], creep, etc.), unexpected motion of the setup, uncalibrated geometry

or related to quick phase and/or texture changes [10, 11]. Different solutions have been

found to reduce the scanning motion: using smart sampling in time for periodic motions

(e.g., based on phase measurements [12, 13]), accelerating the scanning procedure (e.g.,

faster setup, brighter sources [14], multiple sources [15, 16], developing ultrafast scanning

procedure in the synchrotron [17, 18]), using, in medical imaging, sedative, beta-blocker

to reduce the heartbeat rate (especially for pediatric use [19]), requesting the patient

not to move, or to stop breathing, etc. On the contrary, if this motion is measured and

controlled, it gives access to extremely rich quantitative data that are precious pieces

of information for diagnosis [20], model identification and data assimilation (e.g., in

material science [5, 21, 22], bio-mechanics [23, 24, 25]). From volumes imaged without

motion (from static or 4D acquisitions), spatio-temporal deformable registration has

received considerable attention in the literature, in material science [26, 22] and in

medical imaging, in cardiac image analysis [27, 28], but also for respiratory-correlated

imaging of the thorax [29, 9, 30].

When the sample is imaged with motion, or with an uncalibrated tomograph, different

methods have been developed in the literature to get a satisfactory reconstruction

quality. They are often composed of two successive procedures: (1) evaluation of

the motion (or calibration parameters), based on either additional sensors, or full field

measurement methods on the acquired images and (2) correction of the reconstruction

procedure using the estimated motion.

After having measured the displacement field, the reconstruction algorithm can be

enriched with motion. Techniques using a motion-compensated Filtered Backprojection

(FBP) algorithms have been developed [31, 32, 33] as well as iterative algorithms [34, 35,

36]. Each (filtered) back-projection is warped with the measured spatial displacement

field (estimated at the corresponding acquisition time) so that the sum of all those

warped back-projections reconstructs the volume in a static configuration.

Instead of developing techniques based on measurement between multiple volumes

(e.g., in [37, 38, 39, 40, 41]), the projection-based strategy is very well fitted to the

displacement measurement as it provides a spatial displacement field for each frame [42].

Developed in the medical imaging field and called 2D/3D image registration [34, 43, 44,

45, 46, 47, 48], a similar approach has also been developed in material science and

called Projection-based Digital Volume Correlation, P-DVC [49, 50, 51, 52]. In those

approaches, an initially well reconstructed volume is warped in space and time such that

its projections match the recorded deformed projections. However, knowing a reference

static volume is not accessible in all medical acquisitions.
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It is proposed to combine both the projection-based measurement and the motion-

compensated algebraic reconstruction to achieve the desired dynamic tomography. An

initially motion-blurred reconstructed volume is used as the reference volume and leads

to an evaluation of the displacement field. The measured motion is then accounted

for in a motion-compensated ART algorithm and these two steps are performed

iteratively. In [53, 54, 55], an affine transformation model was used to calibrate

the acquisition system or to reconstruct moving samples. In [56, 57], the coupled

measurement/compensated-reconstruction framework was developed with 2D synthetic

examples of moving phantom. Those synthetic test cases resulted in high quality

reconstructions as well as the full space-time kinematics to be identified. In [34, 58],

the simultaneous motion estimation and image reconstruction (SMEIR) is developed.

After grouping the projections by phase, multiple ’approximately still’ reconstructions

of the volume (ART algorithm regularized with total variation) are used to measure and

initialize the major part of the 4D motion. This motion is then precisely updated from

projection-based approach (regularized with a 3D mesh and a bio-mechanical model

in [30, 59, 60]). In the study we propose, the (quasi-)periodic aspect of the motion was

not exploited (to potentially take into account all possible form of displacements) and

no initial ’static’ volumes could be reconstructed.

We propose in the present paper a dynamic tomography method based on the

consistency of the projection. A fully coupled projection-based measurement method

with a motion-compensated ART algorithm embedded in a multi-scale framework is

developed. The technique is applied on the numerical simulation of breathing from

static chest CT and the cone beam (CB-) CT of a breathing patient acquired for

image guidance of radiotherapy at the Léon Bérard Cancer center (Lyon, France).

The proposed method simultaneously provides, with nothing more than a standard

acquisition, the accurate reconstruction of the lungs and their 4D regularized motion

along the approximately 35 irregular respiratory cycles taking place during the

acquisition. A quality criterion based on a projection residual error allows the volume

improvement and the measured displacement field to be quantified.

2. Coupled reconstruction-measurement problem

2.1. Acquisition with motion

The collected intensity for each detector position r = [r, z] (where z is parallel to the

specimen rotation axis, and r is perpendicular to it) and rotation angle, θ, is to be

related to the relative beam intensity attenuation. The Beer-Lambert law relates the

line integral of the material absorption along the X-ray path L(r, t) from source to

detector at position r, to the recorded intensity I(r, t) at time t (and rotation angle

θ(t)). In the present work, the projection operator Π is computed using the ASTRA

toolbox as defined in [61] and, more precisely, its GPU implementation,

p(r, t) ≡ − log(I(r, t)/I0(r)) =

∫
L(r,t)

g(x, t) dx ≡ Πθ[g(x, t)] (1)
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with g(x, t) the linear attenuation coefficient, referred to as the volume in the following

and I0(r, t), the intensity recorded without sample along the beam. Possibly, typical

tomography artifacts [62, 63] (e.g., beam hardening, intensity variations, etc) can be

corrected at this stage. The collection of Nθ projections p(·, t) for each angle θ(t) is

called the sinogram.

With the acquisition noise η, the projection can now be written p(r, t) =

Πθ[g(x, t)] + η(x, t). When motion v(x, t) is considered during the experiment, the

projection of the deformed volume g(x, t), defined for every voxel x = [x, y, z] is written

p(r, t) = Πθ[g(x+ v(x, t))] + η(x, t). (2)

For given estimated reconstruction f and displacement field u, consistency of the

model [54] can be evaluated from the so-called projection residuals, ρ(r, t; f,u)

ρ(r, t; f,u) = Πθ[f(x+ u(x, t))]− p(r, t). (3)

Reconstructed volume and motion estimate are both determined from the minimization

of a functional Γ(f,u) which is chosen as the quadratic norm of these residuals (that

can be shown to be optimal for a white Gaussian noise affecting p). The mean square

error minimization is hence written

Γ(f,u) =
∑
r,t

(ρ(r, t; f,u))2 . (4)

This functional also provides a validation metric of the procedure (e.g., quality of the

reconstruction and estimated displacement field). The general coupled problem is solved

as a fixed point problem, considering two staggered steps iteratively, as sketched in

Figure 1, such that

f = Argminf̄ Γ(f̄ ,u), (5)

u = Argminū Γ(f, ū). (6)

2.2. Motion-compensated reconstruction

The first part of the two step procedure consists in reconstructing the 3D structure of

the sample from the acquired sinogram and the estimated displacement field (initialized

at 0 unless additional sensors information or initial guess can be exploited). The use of

an ART reconstruction algorithm is natural as it reduces to equation (5) in the absence

of motion u = 0.

The SART algorithm [64, 7] was chosen here. At each iteration, indexed by (n), the

volume is warped with the estimated displacement field and its projection is compared

with the recorded one, and their difference defines the projection residual field (see

equation (3)). The latter is normalized and back-projected ∆f (n)(x, t) = Bθ[ρ(n)(r, t)]

with the backprojection operator Bθ. Finally, the correction term is unwarped to the

frame of the undeformed state, so that it matches the reference configuration and it is

added to the volume, written in a reference configuration, at t = 0 with u(x, 0) = 0:

f (n)(x, 0) = f (n−1)(x, 0) + ∆f (n)(x − u(x, t), t). The volume warping with the u(x, t)
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Figure 1. Scheme of the proposed procedure that requires only a standard scan

acquisition of the moving scene. It consists of two staggered blocks: 1) motion

measurement based on the current approximation of the reconstructed volume and

2) motion-corrected reconstruction based on the current determination of the motion.

Initially, the motion may either be set to 0 or benefit from prior knowledge.

field is performed with tri-linear interpolation. A convergence criterion has to be chosen

as in the ART procedure. However, the value of the cost functional Γ cannot be used

directly in this case as the reconstruction is imperfect. A stopping criterion based on

the incremental variation of Γ (or an escape condition limiting the maximum number

of iterations) can be set. Because of the difficulty to choose a stopping criterion on the

functional evolution and because minimizing the computation time was not a target, it

was decided in this paper to limit the number of iterations. This limit NDynART was

set to be large enough to allow convergence of the reconstruction. The algorithm of the

motion-compensated reconstruction is shown in the Supplementary materials.

While several other algorithms are frequently used to improve the quality of the

reconstructed volumes (e.g., , total variation), we did not use them to observe the benefit

of our motion correction alone.

As additional metrics to evaluate the sharpness improvement of the reconstructed

volumes, we computed (1) the L2 norm of the gradients: 1/Nx ·
∑

Ω

|∇f(x)|2 and (2)

the 10%-90% rise response of the image edges [65] (distance between 10% and 90% of

the edge intensity).

2.3. Space-time measurements

Constrained kinematics: The second part of the two-step procedure is the projection-

based displacement field measurement following a P-DVC strategy. This procedure

uses as the reference volume the previously reconstructed volume and minimizes, now
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with respect to the displacement field, the same cost function Γ, i.e., the RMS of the

projection residuals. DVC algorithms are known to be ill-posed [21], consequently the

displacement field has to be regularized. Among many possible choices to regularize the

displacement field, our choice is to write the displacement field on a reduced kinematic

basis composed of a limited number of degrees of freedom

u(x, t) =
∑
ij

aijφi(x)σj(t) (7)

with aij unknown amplitudes associated with φi(x) and σj(t) respectively space and

time functions that characterize the space-time evolution. The displacement space can

be expressed as the collection of independent subsets (called local DVC [66]), or from a

global approach [67], such as using a finite-element mesh [59] or b-spline interpolations,

etc.

The time parameter t used in the σj function can be, for example, substituted

with the signal of additional sensors measuring a force (as used in most mechanical

experiments) or a phase signal (accessible in four-dimensional cardiac and thoracic

imaging). Finally, both space and time variations can be coupled using a model-based

kinematics (called “Integrated Digital Image Correlation” [68]) or using knowledge from

prior similar experiments then reduced with singular value decomposition [69]. In [70],

the authors show that the identification of a regularized breathing motion from different

3D dynamic volumes leads to better results allowing to work with partial data.

The choice of both space and time functions φi(x) and σj(t) and their numbers

are very important. Too many degrees of freedom leads to ill-conditioning and too few

introduces model errors.

Relaxed kinematics: Because the imposed time evolutions (5) may not be

perfect, it can be updated without constraints. The discrete time is written tk where

k labels the different instants where a radiograph is acquired. The updated discrete

temporal evolution n is hence written as

σn(tk) = bnk (8)

with bnk time unknowns identified with the space unknowns from a fixed point procedure

and initialized with the breathing signal. It is noteworthy that this displacement mode

should converge to the one that maximizes the residual field correction (although it is

highly influenced by the signal initialization). After having identified a first space-time

couple, the breathing time signal is re-identified from the estimated breathing space

motion, time-wise, at the next iteration. This allows slight amplitude corrections in the

time evolution.

Resolution: The non-linear problem is solved using a Gauss-Newton’s algorithm,

i.e., successive linearizations around the current solution (detailed equations are

presented in the Supplementary material), until a stopping criterion is reached. In the

following application, a single linearization was performed before updating the volume.

All components of the gradient of the cost function with respect to all degrees of freedom

are computed using first order centered finite differences. Because of a small number
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of degrees of freedom, each linearized problem can be easily inverted (this is to be

contrasted with other convergence procedures based on multiple search directions on

separated spaces [71]).

The residual field of this procedure ρ, as defined previously, informs on the quality

of the procedure and chosen model. From this residual field, both model and procedure

can be (un)validated and, if required, the model can be enriched with additional degrees

of freedom.

Details of the P-DVC algorithm are given in the Supplementary information.

2.4. Multi-scale procedure

The key to be able to solve the previous two step framework, even with large

displacements, is to apply a multi-scale pyramidal coarse-to-fine procedure. To improve

numerical stability and local minima, a pyramidal approach starting with the coarse

scale is introduced. After the displacement field has been estimated at a coarse level

(tolerant to displacements of large magnitude but inaccurate), the finer details of the

next pyramidal level are considered and the displacement field is corrected (with better

precision, and lower tolerance to large magnitude). The P-DVC problem is convex

only when the displacement is small as compared to the characteristic length of the

projected texture (e.g., the auto-correlation length). This multi-scale analysis provides

an “adaptive convexity” in the neighborhood of the solution. To generate the coarse

description, projections are convoluted with a Gaussian kernel whose characteristic

length can be adapted to the displacement amplitude. Thereby, high frequency patterns

of the projection and reconstruction are erased and the P-DVC functional is driven by

the global shape motion. The projections can also be down-sampled, in space and time

to accelerate the procedure as the resulting images carry about the same information

as the filtered one. For each scale, the procedure is computed until stagnation of the

residual fields and displacement variation.

The space kinematics is modeled as that of a finite element mesh on the pulmonary

pleurae, meshed from the reconstructed volume intensity (obtained by thresholding and

a closing morphological operation). Because the initial volume is corrupted by motion

blur, the position of the envelop nodes is updated while the volume edges are more

accurately reconstructed with the procedure iterations.

3. Experimental studies

3.1. Breathing simulations from multiple static chest reconstructions

The above proposed method is applied to a test case that has been constructed to be

realistic and to provide a known ground truth. It is based on 10 real reconstructions

of a patient’s chest with phase-triggered 4D CT-scans [9, 12] of the respiratory motion

acquired at the CREATIS laboratory, Léon Bérard cancer center and available online‡.

‡ https://github.com/open-vv/popi-model, with data from [12]

https://github.com/open-vv/popi-model
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These volumes were obtained from a time sampling based on the acquisition of a

respiratory surrogate signal (Pneumo Chest pressure belt). Each one consists of

256 × 256 × 141 voxels. From this set of tomographic images, a synthetic moving

CT-scan is assembled as follows:

• A respiratory phase (rounded to the closest of the 10 available phases) as a function

of acquisition time (or equivalently projection angle) is first constructed as shown

in Fig. 2(a). The same breathing state is used for 8 successive projections in order

to have a realistic number of breaths in the entire experiment. This choice has

almost no effect on the following developments.

• The synthetic sinogram is constructed by projecting at each angle (chosen to be

uniformly sampled at 1 degree interval, over one full rotation, resulting in 360

radiographs) the volume corresponding to the respiratory phase.

While those volumes where acquired using an helical CT scan, the simulated moving

patient is generated with a beam covering most of the patient’s chest (i.e., CBCT

conditions). For simplicity, faster computations and to avoid removing the top and

bottom part of the volume due to the cone beam geometry, a parallel beam geometry

is chosen here. The difference between parallel and cone projections only lies in the

projection operator Πθ but has no further consequence on the current procedure.

To illustrate the motion, Figure 2(b) shows a composite image, where one such projection

(90°) at respiratory phase # 1 is built with green color, and, for the same angle, the

projection of the respiratory phase # 7 is attributed the complementary magenta color.

Hence, all regions not affected by the motion appear as gray shades, but moving parts

appear either in magenta or green. This shows that the displacement is essentially

vertical and localized at the diaphragm. The obtained sinogram is used as an input of

our procedure.

Because the bottom part of the scan moves with the breathing, the mean intensity

of the image, κ(t) computed over a region that contains mostly the bottom part of the

image, varies and is assumed, at first order, to be related to the phase of motion. This

measured signal κ(t) is hence used to regularize the time evolution. In addition, the

absolute |κ(t)| and squared κ(t)2 values of this signal and two periodic functions of the

rotation angle, sine and cosine, (that could be related in real cases to scan rotation

issues) are added to the time function library.

For the present case study, the space kinematic model is embedded into a multi-scale

framework: at first, a simple C8 element (i.e., 8 noded-cube element with tri-linear

interpolations) composed of 24 degrees of freedom (i.e., a total of 96 dofs for aij for the

4 time steps) is considered. Then, when a coarse reconstruction has been obtained, a

finer mesh composed of 579 nodes with T4 elements (i.e., 4 noded-tetrahedra elements

with tri-linear interpolation) is used resulting in 6,948 degrees of freedom.

The root mean square (RMS) of the projected residuals reaches a plateau after 4

iterations (an iteration being both the reconstruction with compensated motion and

the projection-based measurement).
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(a) (b)

(c)

Figure 2. Synthetic test case generated from 10 real CT-scans. (a) Chosen sequence

of the respiratory phase as a function of acquisition angle. The entire test is composed

of 4.5 respiratory cycles. (b-c) Composite image formed by two projections for the

same angle 90°, and two different respiratory phases, where each projection is given

a complementary color (green and magenta). (The two states correspond to the red

dots in figure (a).) (c) Composite image from a 3D slice generated from the same

respiratory phases.

The volume was reconstructed with NDynART = 10 at each scale.

3.2. Clinical CBCT with motion

The method is applied to a patient cone-beam CT (CBCT) scan acquired for 3D

image-guided radiotherapy at the Léon Bérard cancer center. The CBCT scanner is

integrated with the linear accelerator (Elekta Synergy; Elekta Oncology Systems Ltd.,

Crawley, West Sussex, UK). The flat panel recorded radiographs with 512× 512 pixels

of 0.8×0.8 mm2 at a frame rate of 5.5 fps over a full revolution. The distance ”source to

isocenter” is 1000 mm, the distance ”source to detector” is 1536 mm. Image acquisition

was performed at 120 kV, 25 mA and 1 mAs/projection.

The sinogram is composed of 676 projections equally spaced over a 360° revolution.

The flat panel detector of size 41 cm×41 cm is offset with respect to the line defined

by the source and the center of rotation and images only a part of the entire chest (a

projection is displayed in figure 9 showing the missing area). A partial reconstruction
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procedure is hence required. The different geometrical parameters required for the cone

beam reconstruction are given by the tomograph (position of the source and detector

for each radiograph).

During the acquisition, the phase of approximately 35 irregular breaths of the

patient are extracted from the projections. Because of the corresponding large

magnitude (10-20 mm at the diaphragm) of breathing motion, standard reconstruction

procedures lead to a blurry reconstruction around the diaphragm area.

The sought space-time kinematics is expressed in a reduced basis composed of

selected space and time functions. A scheme of the regularization is shown in figure 3.

(a) (b)

Figure 3. Space-time regularization of the motion composed of (a) a 192-nodded mesh

with tetrahedral elements and (b) 4 simple time evolutions and one fully identified

temporal function initialized with the breathing signal.

The unstructured mesh is composed of 192 nodes with 532 T4 elements. In addition,

the lungs may slip on the rib cage [29, 72, 30] and hence a discontinuity of the tangential

velocity may appear. Reciprocally, non-zero normal displacements of the mesh envelop

are removed by projecting the full displacement on axes normal to the mesh.

The time kinematics could be modeled with 5 simple time functions, including (1-2)

a sine and cosine of the rotation angle, (3-4) constant and linear evolution and (5)

a breathing signal obtained from an independent intensity tracking measurement on

projections. This latter time evolution is expected to be the one containing most of

the breathing motion. As such, it was chosen to update this breathing signal (5) with

the relaxation procedure. With a normalization for the amplitude (by convention), 675

degrees of freedom (dofs) are hence added in the identification procedure.

The 4D motion is finally composed of 192 nodes thus 576 spatial dofs, 4 time functions

and 675 temporal dofs from the time relaxation generating a total of 2979 space-time

dofs. The space mesh and time evolutions are shown in figure 3.
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4. Results

The measurement part was performed on CPU: 20 cores @ 2.20 GHz while all projection

operations are done on GPU: Nvidia Tesla K80 (with ASTRA toolbox). What

is computationally demanding is volume warping at each projection/back-projection

when performing the motion-compensated SART procedure and the generation of the

projected sensitivity fields (e.g., image variation with respect to a parameter change).

4.1. Results on the numerical simulation

Slices of the reconstructed volume before and after are shown in figure 4. After the

displacement field correction, the diaphragm is visible while the reconstruction without

motion correction was more fuzzy. The 10%-90% rise response of the diaphragm edge

decreased from 11.2 voxels (22.4 mm) to 2.9 voxels (5.8 mm).

Figure 4. Sagittal and coronal slices of the reconstructed chest without (left column)

and with (right column) motion correction (the vertical red lines indicates the slice

positions). It can be observed (especially in the zoomed area) that the diaphragm

is better reconstructed and sharper (as pointed out by the two white arrows). On

the sagittal view, a horizontal plane that polluted the reconstruction disappeared

(white arrow). The bottom plot shows 2 intensity curves (in arbitrary units) extracted

from the left and right volume on the zoomed area (yellow lines). The dashed curve,

corresponding to the non-corrected volume, is smooth. The solid curve is sharper

thanks to the motion correction.
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The mesh and estimated displacements are shown in figure 5(a) and 5(b) respectively.

The vertical motion is large around the diaphragm and vanishes towards the top part of

the chest. A maximum vertical displacement amplitude is estimated to be approximately

7 voxels or 14 mm. The validation of our procedure is based on the projection error

(a) Space meshes (b) Estimated vertical displacements

Figure 5. (a) Scale 1 mesh with 579 nodes is plotted highlighting the lungs (in red);

(b) Color-coded vertical displacement field is shown for the acquisition at angle 48°.
The displacement is expressed in voxels (Note that voxels are slightly anisotropic, of

size [1.95, 1.95, 2.0] mm along [x, y, z]).

(i.e., the part of the initial data that is not explained by the reconstruction approach),

and this is precisely captured in the projection residual (see figure 6 before and after

correction).

Figure 6. Projection residual fields (difference between the acquired sinogram and

the set of projections computed from the reconstructed volume at the corresponding

deformation stage) before (left) and after (right) correction by the estimated

displacement field. The oscillating positive and negative patterns are the signature

of the 4 respiratory motion periods. After correction by the estimated displacement

field, a large part of the error has been corrected.

The projection residual field consists of noise and artifacts affecting the acquisition but

includes also all model errors (approximate kinematic model, inaccurate interpolations,

etc). It can be seen that the residual values are very high in the beginning. On the
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bottom part, large positive and negative values are visible resulting from the oscillating

respiratory motion. At the end of the procedure, most of the oscillating motion has

been erased meaning that the estimated displacement field was trustworthy. The RMS

was 2.9 times smaller after correction.

Displacement field The reconstruction quality can be evaluated by comparison with

respect to the reference 3D volume at the same respiratory phase. The estimated

displacement field can be compared with “standard” DVC procedures (because we

have access to the reference 3D volumes). Let us underline that both of these quality

evaluations are generally not accessible, but they motivated the construction of the

present test case.

(a) Standard DVC measurements

(b) Dynamic tomography measurements

Figure 7. Estimated vertical displacement field (in voxels) for angle 48° using (a) a

standard DVC procedure and (b) the dynamic approach using the same color scale.

The red parts correspond to the motion of the diaphragm .

The estimated 4D displacement field can be compared with full 3D DVC procedures

using the 3D reference volumes. Using the Correli-3.0 software [73] that follows a
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similar intensity based measurement in 2D, the displacement field was obtained with

the same 579-node mesh but independent time states. The comparison of the vertical

displacement field using the dynamic procedure and DVC is presented in figure 7 and

shows very similar results. The mean and standard deviation of the difference of the

vertical fields is respectively -0.21 and 0.92 voxels. This comparison has however to be

considered as informative and not as a validation because (i) the cost functions of the

two methods are different and (ii) some nodes have a low sensitivity because of the poor

contrast and hence they are susceptible to noise, although this poor determination of

the displacement has no perceptible consequence on the reconstruction quality precisely

because of the low contrast of these zones.

Figure 8. Norm of the differences between the reference volumes and (a) the corrected

volume using the dynamic reconstruction procedure and (b) using a standard static

ART reconstruction.

Reconstructed volume The quality of the reconstructed volumes, for the 10 respiratory

phases, can be evaluated from their comparison with the initial reference volumes used

to generate this test-case. The norm of the difference is mostly controlled by a region

containing the diaphragm (see figure 8). In order to quantify the error, these norms

are normalized by the noise variance on the same domain. This noise is estimated from

the residual obtained after a fine 3D registration between two arbitrary 3D references

(two different respiratory phases). This value corresponds to the best residual that can

be obtained considering an extremely fine full 3D kinematic correction, and hence the

normalized residual norm for a perfect correction should approach unity.

It can be seen that the corrected dynamic procedure produces a residual error much

lower than the standard static reconstruction. The oscillating signature of the red curve

due to the periodic motion has been, for the most part, cancelled. The error level

flattens to about 1.5 and is no more than 50% higher than a perfect correction (with a

much finer mesh). This result is to be compared to the error obtained with no motion

correction which can reach values higher than 3.
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4.2. Application to clinical CBCT data

Figure 9 shows the re-projection of the volume at angle θ(tk) = 15° and the projected

mesh envelop that defines the region of interest at this angle. Although the missing

part of the detector now appears (as the full volume was reconstructed from all angles),

the residual field of this area cannot be computed as the projections are not defined.

However, thanks to the time regularization, the sensitivity of the motion on those masked

areas is obtained from the other angles where the information becomes visible.

(a) (b)

Figure 9. (a) Acquired projection p(r, tk), with θ(tk) =15° and (b) simulated

projection from the volume reconstruction. The rotation axis is highlighted in red.

The blue line is the envelop of the projected mesh. The projection is incomplete and

involves an insensitive area. The top and bottom part of (b) are subjected to the

projected volume due to missing data in areas outside the field-of-view.

The projected residual field and displacement field increment become stationary in

10 iterations at scale 3 and 4 iterations at scale 1. NDynART = 10 and NDynART = 30

were chosen as stopping criterion for the reconstruction respectively at scale 3 and 1. At

each iteration, the nodes of the mesh are re-positioned onto the lung external boundary.

The procedure takes approximately 6 hours to reach stationarity at scale 3 (projections

reduced by a factor 1/3 in each dimension) and 24 hours at scale 1.

The estimated 4D displacement field is shown figure 10. As expected, the vertical

displacement is very large along the diaphragm (18 voxels at scale 1 corresponding

to approximately 15 mm) and follows essentially the breathing motion. The normal

displacement has been erased allowing sliding of the pleural cavity [59]. The refined

breathing signal is in phase with the original one, estimated from projections and used

for initialization, however, amplitudes are observed to be markedly different. The reason

may be that the initialization was performed with a tracking of the diaphragm in the

projections, thus submitted to perspective effect due to the cone beam while rotating.

Reconstruction improvement The correction naturally focuses on the large displace-

ment areas, i.e., the bottom of the chest around the diaphragm. It can be noted that

the diaphragm is reconstructed much more accurately after the displacement correction.
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(a) (b)

Figure 10. (a) Vertical displacement field of the mesh envelop at the first maximal

exhale position (projection 7), expressed in voxels (1 voxel↔ 800 µm) and (b) measured

(black) vs estimated (dashed blue) shape of breathing signal. The amplitude of this

motion is on the corresponding spatial field.

Initially smooth and blurry, the edges get much sharper, as expected. Some details of the

bronchus become visible. The comparison of the two reconstructions is shown figure 11

and highlights the quality improvement.

The plot in figure 11 shows the intensity profiles at the bottom of the lungs (visible

in the slices above), before (dashed curve) and after (plain curve) which highlights the

correction of the motion blur. Initially spread over 12 voxels (from z = 152 to z = 164

voxels), also measured by the ± 6 voxel displacements of the diaphragm figure 11, the

diaphragm transition is reconstructed sharper. The 10%-90% rise response decreased

from 13.2 voxels (10.6 mm) to 1.4 voxels (1.2 mm). Segmenting the lungs for example

would be much easier and reliable after correction.

The metric based on the gradient norms gave 2.8·10−7 and 3.4·10−7 for respectively

the standard and corrected image. As an order of magnitude, when filtered by an

averaged squared kernel of size (3x3), the the L2 norm of the gradients from the corrected

filtered image is 2.7 · 10−7 which is the value for the standard unfiltered image. This

improvement highlights the sharpness evolution of the reconstruction.

The true metric to validate our procedure is the projected residual field that

corresponds to the reconstruction model error. This residual sinogram can be shown in

3D in figure 12 before and after the dynamic tomography procedure. The reconstruction

inconsistency due to motion is clearly visible in the left image with the positive and

negative patterns. Those error parts are mostly corrected when taking the kinematics

into account and the RMS decreases by a factor of 2.31 in the region of interest described

by the mesh volume (expressed in % of the gray level amplitude of the projections).

What remains in the left corner part of the final residual field is an error located

at the intersection between the diaphragm and the bottom rib (the acute lung corner

in the bottom left of the coronal slice in figure 11). The kinematics at this position

is complex (slip and recovery) and was not perfectly captured. Moreover, this part of
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Figure 11. (a) Comparison of two slices of the reconstruction, using (left) a

standard ART procedure and (b) the proposed dynamic reconstruction method with

the identified displacement field. It is to be noted that the diaphragm area is much

sharper in the right corrected slices and bronchus (highly subjected to motion artefacts)

are more visible. The red lines indicate the slice locations and the white segment

corresponds to the place where intensity profiles are extracted. On the bottom plot,

the intensity profiles (in arbitrary units) on the diaphragm area, (dashed) before and

(plain) after the dynamic reconstruction procedure. The diaphragm interface is much

sharper for the corrected procedure.
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Figure 12. Sinograms of the projected residuals before (left) and after (right) the

kinematics identification and correction. The plot is focused on the diaphragm part.

The color amplitudes and transparencies are identical for the two plots. The high

positive and negative patterns (signature of the 35 breaths) visible in the left image

have been mostly erased.

the diaphragm is not always visible depending on the breathing and rotation angle.

This residual field study gives indications on where and how to improve the kinematic

model. The model could be further enriched as suggested by the interpretation of the

final residual, adding space or time dofs.

5. Discussion and Conclusions

The present work follows the trend that has been outlined in the literature review of

the introduction on motion corrected tomography. An iterative algorithm is proposed

to determine both morphology and kinematics with no additional acquisition cost

as compared to a classical scan. The procedure consists of two staggered parts

within a pyramidal coarse-to-fine multi-scale framework [74]: (i) a motion compensated

procedure extended from a SART algorithm and (ii) a displacement field measurement

from the reconstructed volume and the initial sinogram.

The procedure is tested on (1) a numerical simulation of breathing from static chest

CT and (2) a CBCT of a breathing patient during radiotherapy at different phases of

the respiratory motion whose reconstruction leads to large motion blur artifacts. The

multi-scale procedure, performed for the volume reconstruction, allows large motions to
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be captured. Finally, a large part of the motion blur artifacts was removed from the

reconstruction, leading to small root mean squared errors computed on the projection

residual fields. The reconstructed volume and measured displacement field of the

numerical application were compared to ground truth, thereby validating the procedure.

The originality of the present work lies in a very accurate description of the

kinematics, using a finite element mesh that offers many degrees of freedom. This

progress leads to two main difficulties:

• First, the mesh is to be suited to the anatomy, however, initially the chest

morphology is unknown, so that not only the 3D image and its motion are to be

determined simultaneously, but also the high discretization of the motion and suited

boundary conditions. In our specific application, the thoracic cage is mostly static,

and hence the velocity field at the boundary of the meshed lungs is constrained

to be parallel to lung boundary, allowing for a possible slip. This calls for several

iteration steps along which the morphology is progressively described with a better

fidelity, the motion discretization is rendered more and more accurately, ending with

a fine mesh. The simultaneous determination of these three items — morphology,

mesh and motion — is an original problem.

• Second, with the above spatial description of the displacement field, involving many

degrees of freedom, each of which being susceptible to vary in time all along the

scan, makes the problem severely ill-posed. This difficulty is circumvented by

a model reduction technique whereby “modes” are considered. Each mode is a

separated form being the product of one spatial motion (supported by the mesh

description) and a temporal part that describes the amplitude evolution of this

mode. Several types of modes are introduced, some where the temporal shape

function is prescribed (such as sine or cosine of the rotation angle, or a low order

polynomial in time), and some more complicated ones, where the time evolution is

that of breathing. The latter can be inferred initially by the apparent motion of the

diaphragm, and — through iterations — space and time parts are progressively fine-

tuned to match the observation. By the suited selection of these modes, the number

of degrees of freedom is severely reduced, and makes the problem tractable. In some

way, one may thus add a fourth category of unknowns, in addition to morphology,

mesh and motion, that are the considered modes.

It is interesting to control the procedure by studying the projected residual fields

that contains all features not explained by the projection model (e.g., detector noise,

non-linear absorption, unsuited kinematic model e.g., due to the chosen discretization,

etc.). This residual field allows for (un)validating the kinematic model. This feedback

is essential when encountering an unexpected kinematics. Regularization should be

considered as evolutionary and any feature that can be understood from the residuals

should help to enrich the model up to the stage where the remaining residual is deemed

acceptable. Additional degrees of freedom allowing to model and correct the heartbeat

motion is an interesting perspective.



20

The proposed method is totally non-intrusive as it does not require more than

a standard acquisition (i.e., a single revolution, and a standard acquisition protocol).

Therefore, this method can be applied to any type of scanner. Of course, all additional

information (from sensors, from other modalities, from experts, etc.) would help the

analysis and accelerate the optimization of the process, making the problem better

posed. From an hardware side, using faster scans would allow reducing the motion blur

that may happen in the projections and would improve the identify temporal motion

model.

In the proposed approach, it is not required to initiate the computation with a

subset of radiographs that could be considered as (approximately) still, (because they

would originate from a similar respiratory cycle phase). This is not a small difference

with respect to existing approaches such as SMEIR, because for instance, the mesh that

is used for describing the motion, has to align perfectly the organs in order to allow for

free slip at boundaries in [59, 30]. But when no decent 3D volume has been reconstructed

yet, it is not possible to proceed with a fine adjustment of the mesh. The volume, mesh,

and displacements are all three very intricated and need to be progressively improved

better and better defined. As a result, the proposed method does not require a (quasi-

)periodic motion nor extraneous information such as the measurement of the phase.

Without this initialized motion, its measurement from truncated partial projections

became impossible without the introduction of time regularization.

One current limitation for clinical practice is the substantial important computation

time that includes the computation of all the sensitivity fields. In addition to

hardware improvement (faster computational resources, GPU, parallel computation,

etc.), the lightening of the computation operations (development of reduced breathing

models, minimization of the projected gradients updates, etc.) will highly decrease the

computation time. During the iterative process, improving the reconstruction quality

and segmenting the moving organs with image processing (spatial smoothness, total

variation) or Deep-Learning techniques would also allow to better mesh and model the

breathing motion leading to faster convergences.

This procedure opens up new avenues in dynamic tomography enabling to image

moving patients, even if the displacement is large and with no additional data acquisition

compared to a standard CT-scan protocol. The clinical development proposed in [75]

with an a-priori motion model could be extended without the need of the prior 4D-

CT scan. Moreover, any additional sensors and detectors (e.g., force or displacement

measurements) could be used transparently in the above method to constrain further the

analysis. Using dual source scanners is also a promising perspective, especially when the

sources are orthogonal [15, 16] so that displacement fields could be completely estimated

for each acquisition time (i.e., providing a better conditioning of the problem). Finally,

any additional regularization, either for the volume reconstruction (e.g., assumptions

on discrete phases [76, 77], total variation (TV) regularization [78], dictionary of

commonly encountered tissue morphology, etc.) or for the kinematic model can be

easily included within the proposed algorithm. Such developments are very relevant
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for practical applications. Nevertheless, they were not included in the presented test

case, in order to focus on the key ingredients for the success of the reconstruction.

However, additional acquired or prior information is expected to be beneficial for faster

convergence, more accurate results, or for further reducing the radiation dose (e.g.,

acquiring fewer projections for an equivalent result).
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INSA de Lyon, 2013.

[73] H Leclerc, J Neggers, F Mathieu, F Hild, and S Roux. Correli 3.0, 2015.

IDDN.FR.001.520008.000.S.P.2015.000.31500.

[74] Edward H Adelson, Charles H Anderson, James R Bergen, Peter J Burt, and Joan M Ogden.

Pyramid methods in image processing. RCA engineer, 29(6):33–41, 1984.

[75] Simon Rit, Jochem WH Wolthaus, Marcel van Herk, and Jan-Jakob Sonke. On-the-fly motion-

compensated cone-beam ct using an a priori model of the respiratory motion. Medical physics,

36(6Part1):2283–2296, 2009.

[76] K.J. Batenburg and J. Sijbers. DART: a practical reconstruction algorithm for discrete

tomography. IEEE Transactions on Image Processing, 20(9):2542–2553, 2011.

[77] S. Roux, H. Leclerc, and F. Hild. Efficient binary tomographic reconstruction. Journal of

Mathematical Imaging and Vision, 49(2):335–351, 2014.

[78] Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact

signal reconstruction from highly incomplete frequency information. IEEE Transactions on

information theory, 52(2):489–509, 2006.



26

Supplementary material

I. Projection-based measurements

The P-DVC measurement consists of solving, with a Newton-Raphson algorithm, the

following equation

u = Argmin
µ

Γ(f,µ) (9)

with µ ∈ U = P×S, P and S being respectively the space generated by the φ(x) space

functions and time evolution σ(t)

Γ(f,u) =
∑
r,t

(ρ(r, t; f,u))2 . (10)

The projected error field,

ρ(r, t; f,u) = Πθ[f(x+ u(x, t))]− p(r, t) , (11)

with p(r, t) the acquired projections, is linearized, with f̃(x, t) = f(x+ u(x, t))

ρlin(r, t; f,u+ ∂u) = Πθ[f̃(x, t)] + Πθ[∇f̃(x, t)∂u(x, t)]− p(r, t) (12)

Then, with u(x, t) =
∑
ij

aijφi(x)σj(t), the minimization with respect to a leads to the

solution of the linear system

a =

[∑
r,t

S ⊗ S

]−1 ∑
r,t

ρS (13)

with S the projected sensitivity fields (signature in the detector space of the dof

sensitivity fields)

Sij(r, t) = σj(t)Πθ(t)[φi(x)∇f̃(x, t)] (14)
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II. Dynamic reconstruction algorithm

The global dynamic reconstruction algorithm consists of two main steps, detailed

hereafter, which are run alternately, up to stationarity.

Algorithm 1 Proposed motion-compensated reconstruction

Initialization n← 1

Initialization f (1) ← 0

Choose a permutation, π, over Nt acquisition times

for i← 1 to NDynART do

for t← 1 to Nt do

τ ← π(t)

f̃ (n)(x, τ) = f (n)(x+ u(x, τ)) . warp

ρ(r, τ)← p(r, θ(τ))− Πθ(τ)[f̃
(n)(x, τ)]

∆f̃ (n+1)(x) = Bθ(τ)[ρ(r, τ)]

∆̂f
(n+1)

(x) = ∆f̃ (n+1)(x− u(x, τ)) . unwarp

f (n+1)(x) = f (n)(x) + ∆̂f
(n+1)

(x)

Implement additional constraints on f (n+1) (e.g., positivity)

n← n+ 1

end for

end for
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Algorithm 2 Projection-based kinematic measurement

u(x, t)← u0(x, t) . Displacement initialization

for Measurement iteration ← 1 to Niteration do

p← p̆λ . Gaussian filtering

fλ(x)← Motion-compensated reconstruction(p,u) . Algo. 1

Compute ρl(r, t) . Projection residual

for i← 1 to Ns do

for j ← 1 to Nt do

f̃(x, t)← fλ(x+ u(x, t)) . Volume advection

χi(x, t)← Πθ(t)[φi(x)∇f̃(x, t)]

Sij(r, t)← χi(x, t)σj(t) . Projected sensitivities

end for

end for

ã←

[∑
r,t

S ⊗ S

]−1 ∑
r,t

ρS . Motion identification

a← ã . Erasing normal displacements

for i← 1 to Ns do

S̄(x)← Πθ(t)[ai1φi(x)∇f̃(x, t)] . Sensitivity of the first mode

end for

b̃←

[∑
r

S̄ ⊗ S̄

]−1 ∑
r

ρS̄ . Time identification

end for
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