
HAL Id: hal-03391643
https://hal.science/hal-03391643v1

Submitted on 28 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clustering multivariate functional data using
unsupervised binary trees

Steven Golovkine, Nicolas Klutchnikoff, Valentin Patilea

To cite this version:
Steven Golovkine, Nicolas Klutchnikoff, Valentin Patilea. Clustering multivariate functional data
using unsupervised binary trees. Computational Statistics and Data Analysis, 2022, 168, pp.article
n°107376. �10.1016/j.csda.2021.107376�. �hal-03391643�

https://hal.science/hal-03391643v1
https://hal.archives-ouvertes.fr

Clustering multivariate functional data using
unsupervised binary trees

Steven Golovkine∗ Nicolas Klutchnikoff† Valentin Patilea‡

September 27, 2021

Abstract

We propose a model-based clustering algorithm for a general class of functional
data for which the components could be curves or images. The random functional
data realizations could be measured with error at discrete, and possibly random,
points in the definition domain. The idea is to build a set of binary trees by recursive
splitting of the observations. The number of groups are determined in a data-driven
way. The new algorithm provides easily interpretable results and fast predictions for
online data sets. Results on simulated datasets reveal good performance in various
complex settings. The methodology is applied to the analysis of vehicle trajectories
on a German roundabout.

Some key words— Gaussian mixtures; Model-based clustering; Multivariate Functional Prin-
cipal Components.

1 Introduction

Motivated by a large number of applications ranging from sports to the automotive industry and
healthcare, there is a great interest in modeling observation entities in the form of a sequence of
possibly vector-valued measurements, recorded intermittently at several discrete points in time.
Functional data analysis (FDA) considers such data as being values on the realizations of a
stochastic process, recorded with some error, at discrete random times. The purpose of FDA is
to study such trajectories, also called curves or functions. See, e.g., [37, 50, 20] for some recent
references. The amount of such data collected grows rapidly as does the cost of their labeling.
Thus, there is an increasing interest in methods that aim to identify homogeneous groups within
functional datasets.

Clustering procedures for functional data have been widely studied in the last two decades,
see, for instance, [10, 11, 12, 7, 26] and references therein. See also [6] for a recent textbook.

∗Groupe Renault & CREST - UMR 9194, Rennes, France, steven.golovkine@ensai.fr
†Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France, nicolas.klutchnikoff@univ-

rennes2.fr
‡Ensai, CREST - UMR 9194, Rennes, France, valentin.patilea@ensai.fr

1

ar
X

iv
:2

01
2.

05
97

3v
3

 [
st

at
.M

L
]

 2
4

Se
p

20
21

mailto:steven.golovkine@ensai.fr
mailto:nicolas.klutchnikoff@univ-rennes2.fr
mailto:nicolas.klutchnikoff@univ-rennes2.fr
mailto:valentin.patilea@ensai.fr

In particular, for Gaussian processes, [46] show that the cluster centers found with k-means are
linear combinations of the eigenfunctions from the functional Principal Components Analysis
(fPCA). A discriminative functional mixture model is developed by [5] for the analysis of a bike
sharing system from cities around the world.

Algorithms built to handle multivariate functional data have gained much attention in the
last few years. Some of these methods are based on k-means algorithm with a specific distance
function adapted to multivariate functional data. See e.g [47, 23]. [28] consider Self-Organizing
Maps built on the coefficients of the curves into orthonormalized Gaussian basis expansion.
[27] developed model-based clustering for multivariate functional data. In their model, they
assume a cluster-specific Gaussian distribution for the principal component scores. The eigen-
elements are estimated using an approximation of the curves into a finite dimensional functional
space and are cluster specific. [42] have recently extended the previous model by modeling all
principal components whose estimated variances are non-null. The underlying model for these
methods usually consider only amplitude variations. Unlike others, [34] present a specific model
for functional data to consider phase variations. Finally, [48] propose a mix between dimension
reduction and non-parametric approaches by deriving the envelope and the spectrum from the
curves and have applied it to nuclear safety experiments.

We propose a clustering algorithm based on the recursive construction of binary trees to
recover the groups. Our idea extends the CUBT method [16] to the functional setting, and
we therefore call it fCUBT. At each node of the tree, a model selection test is performed, after
expanding the multivariate functional data into a well chosen basis. Similarly to [36] and [8],
using the Bayesian Information Criterion (bic), we test whether there is evidence that the data
structure is a mixture model or not. A significant advantage of our procedure compared to
[27, 42], is its ability to estimate the number of groups within the data while this number have
to be pre-specified in the other methods. Moreover, the tree structure allows us to consider only
a small number of principal components at each node of the tree and not to estimate a global
number of components for the clustering. Considering tree methods designed for functional data,
[45] extend the popular Isolation Forest algorithm used for anomaly detection, to the functional
context. Our fCUBT algorithm also allows for classes defined by certain types of phase variations.

The remainder of the paper is organized as follows. In Section 2, we define a model for a
mixture of curves for multivariate functional data with the coordinates having possibly different
definition domains. Given a dataset, that is a set of, possibly noisy, intermittent measures of
an independent sample of realizations of the stochastic process, in Section 3, we explain how
compute the different quantities that are required in the clustering procedure. In Section 4, we
develop the construction of our clustering algorithm, named fCUBT. In Section 5, we study the
behavior of fCUBT and compare its performance with competing methods both on simulated and
real datasets. Our algorithm performs well to estimate the number of groups in the data as well
as grouping similar objects together. Once the tree has been grown, it can be used to predict
the labels given new observations. The prediction accuracy is compared with the ones derived
from supervised methods, and exhibits good performance. A real data application on vehicle
trajectories analysis illustrates the effectiveness of our approach. Section 6 presents an extension
of the method to images data based on the eigendecomposition of the image observations using
the FCP-TPA algorithm [1]. The proofs are relegated to the Supplementary Material.

2

2 Model and methodology

2.1 Notion of multivariate functional data

The structure of our data, referred to as multivariate functional data, is very similar to that
presented in [19]. The data consist of independent trajectories of a vector-valued stochastic
process X = (X(1), . . . , X(P))>, P ≥ 1. (Here and in the following, for any matrix A, A>

denotes its transpose.) For each 1 ≤ p ≤ P , let Tp be a rectangle in some Euclidean space Rdp

with dp ≥ 1, as for instance, Tp = [0, 1]dp . Each coordinate X(p) : Tp → R is assumed to belong
to L2 (Tp), the Hilbert space of squared-integrable real-valued functions defined on Tp, endowed
with the usual inner product that we denote by 〈·, ·〉2. Thus X is a stochastic process indexed
by t = (t1, . . . , tP) belonging to the P−fold Cartesian product T := T1 × · · · × TP and taking
values in the P−fold Cartesian product space H := L2 (T1)× · · · × L2 (TP).

We consider the function 〈〈·, ·〉〉 : H×H → R,

〈〈f, g〉〉 :=

P∑
p=1

〈
f (p), g(p)

〉
2

=

P∑
p=1

∫
Tp
f (p)(tp)g

(p)(tp)dtp, f, g ∈ H.

Then, H is a Hilbert space with respect to the inner product 〈〈·, ·〉〉 [19]. We denote by ||| · |||
the norm induced by 〈〈·, ·〉〉. Let µ : T → H denote the mean function of the process X,
µ(t) := E(X(t)), t ∈ T .

2.2 A mixture model for curves

The standard model-based clustering approaches consider that data is sampled from a mixture
of probability densities on a finite dimensional space. As pointed out by [27], this approach is
not directly applicable to functional data since the notion of probability density generally does
not exist for functional random variables. See also [9]. Consequently, in general, model-based
clustering approaches assume a mixture of parametric distributions on the coefficients of the
representation of the process X in a basis. This is also the way we proceed in the following.

Let K ≥ 1 be an integer, and let Z be a random variable taking values in {1, . . . ,K} such
that P(Z = k) = pk with pk > 0 and

∑K
k=1 pk = 1. The variable Z is a latent variable, also

called the class label, representing the cluster membership of the realizations of the process.
Although X = {X(t)}t∈T could be defined on a set of vectors and could be vector-valued,

we shall call curves its independent realizations which generate the data. We consider that the
stochastic process X follows a functional mixture model with K components:

X(t) =

K∑
k=1

µk(t)1{Z=k} +
∑
j≥1

ξjφj(t), t ∈ T , (2.1)

where

• µ1, . . . , µK ∈ H are the mean curves per cluster.

• {φj}j≥1 is an orthonormal basis of H, 〈〈φj , φj′〉〉 = 0 and |||φj |||2= 1, ∀1 ≤ j 6= j′ <∞.

3

• ξj , j ≥ 1 are real-valued random variables which are conditionally independent given
Z. For each 1 ≤ k ≤ K, the conditional distribution of ξj given Z = k is a zero-mean

Gaussian distribution with variance σ2kj ≥ 0, for all j ≥ 1. Moreover,
∑K

k=1

∑
j≥1 σ

2
kj <∞

and for any k 6= k′,
∑

j≥1 |σ2kj − σ2k′j | > 0.

The condition that {φj}j≥1 is an orthonormal basis is not really necessary; it just allows us to
write some technical conditions in a simpler way. Our assumptions imply that

∑
j≥1 Var(ξj) <∞

and thus E
(
|||X |||2

)
< ∞. The definition of the processes X (2.2) does not require us to know

the basis {φj}j≥1. However, for inference purposes, one needs to consider a representation in a
workable basis. The following result presents the relationship between the two representations.

Lemma 1 Let X be defined as in (2.2) for some orthonormal basis {φj}j≥1. Let {ψj}j≥1 be
another orthonormal basis in H and consider

cj = 〈〈X − µ, ψj〉〉, j ≥ 1 where µ(·) =
K∑
k=1

pkµk(·). (2.2)

Then

cj | Z = k ∼ N
(
mkj , τ

2
kj

)
, where mkj = 〈〈µk − µ, ψj〉〉 and τ2kj =

∑
l≥1
〈〈φl, ψj〉〉2σ2kl.

Moreover,

Cov (ci, cj | Z = k) =
∑
l≥1
〈〈φl, ψi〉〉〈〈φl, ψj〉〉σ2kl, i, j ≥ 1.

Each cj has a centered Gaussian distribution and, for any i, j ≥ 1,

Cov(ci, cj) =

K∑
k=1

pk

∑
l≥1
〈〈φl, ψi〉〉〈〈φl, ψj〉〉σ2kl + 〈〈µk − µ, ψi〉〉〈〈µk − µ, ψj〉〉

 .

Remark 1 Despite the Gaussian assumption for the ξj, the model (2.2) is quite general be-
cause there is practically no assumption concerning the basis {φj}j≥1. Lemma 1 shows that,
no matter what the user’s choice may be for the orthonormal basis {ψj}j≥1, the clusters will be
preserved after expressing the realizations of the process into this basis. However, depending on
the objective, some bases might be more suitable than another.

Remark 2 A careful look at the proof of Lemma 1 reveals that it remains true even if {φj}j≥1 is
not an orthonormal basis, which could be appealing for extending our framework. For instance,
consider the case where the clusters of curves correspond to representations in different bases.
As an illustration, let us consider the case K = 2 and let {φ1,j}j≥1 and {φ2,j}j≥1 be orthonor-
mal systems. The union of these sets is not necessarily an orthonormal system however. The
centered realizations from each cluster corresponds to the representations

∑
j≥1 η1,jφ1,j(t) and∑

j≥1 η2,jφ2,j(t), respectively. Here, η1j , η2j, j ≥ 1 are independent zero-mean Gaussian vari-

ables with variances σ21,j and σ22,j, respectively, such that
∑

j≥1{σ21,j + σ22,j} <∞. We can then
write the process X in the form (2.2) : X(t)− E[X(t)] =

∑
j≥1 ξjφj(t) with

ξ2j−1 = 1{Z=1}η1,j + 1{Z=2}δ0 and ξ2j = 1{Z=1}δ0 + 1{Z=2}η2,j , j ≥ 1,

4

and
φ2j−1(t) = φ1,j(t) and φ2j(t) = φ2,j(t), j ≥ 1, t ∈ T ,

where δ0 is the Dirac mass at the origin. Thus each ξj is a mixture between two centered normal
variables with positive and zero variance, respectively. Given any orthonormal basis {ψj}j≥1 ,
the cj = 〈〈X − µ, ψj〉〉 will still have the properties described in Lemma 1.

Remark 3 Our framework and Lemma 1 could also capture mixtures induced by some phase
variations. This kind of modeling has received increasing attention recently. See, e.g., [31, 34].
Indeed, let hk : T → T , 1 ≤ k ≤ K, be different maps defined on T . For instance, when P = 1
and TP = [0, 1], the maps could be in the form hk(t) = {bktak + (1− bk)}ck for some ak, ck > 0
and 0 < bk ≤ 1. We can then define {φk,j}j≥1 as φk,j(t) = φ(hk(t)), t ∈ T , k = 1, . . . ,K, where
{φj}j≥1 is some reference orthonormal basis. We next consider that each cluster corresponds to
a representation in a basis {φk,j}j≥1, 1 ≤ k ≤ K. Remark 2 shows that Lemma 1 remains valid.
More generally, each representation in a basis {φk,j}j≥1, 1 ≤ k ≤ K, could be a mixture of two
or more components as in (2.2). After gathering the K representations, the result would still be
a functional mixture in the sense of (2.2).

Remarks 1 to 3 indicate that our modeling approach is quite flexible and can capture many
interesting situations. In applications, one cannot use an infinite number of terms in the repre-
sentation of X, and such a representation must be truncated. We show in Lemma A.1 in the
Supplementary Material that such a truncation could be arbitrarily accurate.

2.3 Multivariate Karhunen-Loève representation

A convenient basis for representing the realizations of X is that given by the eigenfunctions of
the covariance operator. In this section, following [19], we recall the formal definition of that
basis in the context of our model.

Let C denote the P × P matrix-valued covariance function which, for s, t ∈ T , is defined as

C(s, t) := E
(
{X(s)− E(X(s)}{X(t)− E(X(t))}>

)
, s, t ∈ T .

More precisely, for 1 ≤ p, q ≤ P , the (p, q)th entry of the matrix C(s, t) is the covariance function
between the pth and the qth components of the process X:

Cp,q(sp, tq) := E
(
{X(p)(sp)− E(X(p)(sp)}{X(q)(tq)− E(X(q)(tq))}

)
, sp ∈ Tp, tq ∈ Tq.

Following [19], it is assumed herein that

max
1≤p≤P

sup
sp∈Tp

∫
Tq
C2
p,q(sp, tq)dtq <∞,

and that, for all 1 ≤ p ≤ P , Cp,q(sp, ·) is uniformly continuous in the sense that

∀ε > 0 ∃δ > 0 : |tq − t′q| < δ ⇒ max
1≤p≤P

sup
sp∈Tp

∣∣Cp,q(sp, tq)− Cp,q(sp, t
′
q)
∣∣ < ε.

In particular, Cp,q(·, ·) belongs to L2 (Tp × Tq).

5

Let Γ : H 7→ H denote the covariance operator of X, defined as the integral operator with
kernel C. That is, for f ∈ H and t ∈ T , the qth component of Γf(t) is given by

(Γf)(q)(tq) := 〈〈C·,q(·, tq), f(·)〉〉, tq ∈ Tq.

By the results in [19], and the theory of Hilbert-Schmidt operators, e.g. [40, Chapter VI], there
exists a complete orthonormal basis {ϕj}j≥1 ⊂ H and a sequence of real numbers λ1 ≥ λ2 ≥
. . . ≥ 0 such that Γϕj = λjϕj and λj → 0 as j → ∞. The λj ’s are the eigenvalues of the
covariance operator Γ and the ϕj ’s are the associated eigenfunctions. Then, X as defined in
(2.2) allows for the Karhunen-Loève representation

X(t) = µ(t) +
∑
j≥1

cjϕj(t), t ∈ T , with cj = 〈〈X − µ, ϕj〉〉, (2.3)

and Cov(cj , cl) = λj1{j=l}. Let us call {ϕj}j≥1 the multivariate functional principal component
analysis (MFPCA) basis.

Let J ≥ 1 and assume that λ1 > λ2 . . . > λJ > λJ+1, which in particular, implies that the
first J eigenvalues are nonzero. By an easy extension of [20, Theorem 3.2], we can deduce that,
up to a sign, the elements of the MFPCA basis are characterized by the following property :

ϕ1 = arg max
ϕ
〈〈Γϕ,ϕ〉〉 such that |||ϕ |||= 1,

ϕj = arg max
ϕ
〈〈Γϕ,ϕ〉〉 such that |||ϕ |||= 1 and 〈〈ϕ,ϕl〉〉 = 0, ∀l < j ≤ J. (2.4)

The MFPCA basis is the one which will induce the most accurate truncation for a given J (see
the Lemma A.2 for a proof). Therefore, among the workable bases one could use in practice,
the MFPCA basis is likely to be a privileged one.

By Lemma 1, whenever X is defined as in (2.2), for any J ≥ 1, the distribution of the vector
c = (c1, . . . , cJ)> defined in (2.3) is a centered (multivariate) Gaussian mixture model (GMM)
distribution

g(c) =

K∑
k=1

pkfk(c|mJ,k,ΣJ,k), c ∈ RJ , (2.5)

where, for each 1 ≤ k ≤ K, fk(·|mJ,k,ΣJ,k) is the probability density function of a multivariate
Gaussian distribution of the kth given the values of its parameters mJ,k and ΣJ,k such that

mJ,k = (〈〈µk − µ, ϕ1〉〉, . . . , 〈〈µk − µ, ϕJ〉〉)>,

and the (i, j)−entry of the matrix ΣJ,k given by

Cov (ci, cj | Z = k) =
∑
l≥1
〈〈φl, ϕi〉〉〈〈φl, ϕj〉〉σ2kl, 1 ≤ i, j ≤ J.

We point out that the GMM defined in (2.3) is consistent with respect to J in the sense that, for
any J ≥ 1, (c1, . . . , cJ)> and (c1, . . . , cJ , cJ+1)

> have the same label Z, which also coincides with
the label of the curve X. In particular, in general, the label Z of a curve in the sample, could be
identified by c1. Moreover, since Var(c1) > Var(cj), ∀j > 1, it is likely that the first coefficient
in the Karhunen-Loève representation is informative for identifying the mixture structure.

6

Let

XdJe(t) = µ(t) +
J∑

j=1

cjϕj(t), t ∈ T , J ≥ 1, (2.6)

be the truncated Karhunen-Loève expansion of the process X and

X
(p)

dJ(p)e(tp) = µ(p)(tp) +
J(p)∑
j=1

c
(p)
j ρ

(p)
j (tp), t ∈ Tp, J (p) ≥ 1, 1 ≤ p ≤ P, (2.7)

be the truncated Karhunen-Loève expansion of the components of the process X. [19] derive a
direct relationship between the truncated representations (2.3) of the single elements X(p) and
the truncated representation (2.3) of the multivariate functional data X. We recall this result
in the following lemma.

Lemma 2 ([19], Proposition 5) Let XdJe be the truncation of X as in (2.3) and X
(p)

dJ(p)e be

the truncation of X(p) for each 1 ≤ p ≤ P as in (2.3).

1. Let Γ(p) be the univariate covariance operator associated with X(p). The positive eigen-

values of Γ(p), λ
(p)
1 ≥ . . . ≥ λ

(p)

J(p) > 0, J (p) < J correspond the positive eigenvalues of the

matrix A(p) ∈ RJ×J with entries

A
(p)
jj′ = (λjλj′)

1/2
〈
ϕ
(p)
j , ϕ

(p)
j′

〉
2
, j, j′ = 1, . . . , J.

The eigenfunctions of Γ(p) are given by

ρ
(p)
j (tp) =

(
λ
(p)
j

)−1/2∑J

j′=1
λ
1/2
j′ [u

(p)
j]j′ϕ

(p)
j′ (tp), tp ∈ T, j = 1, . . . , J (p),

where u
(p)
j denotes an (orthonormal) eigenvector of A(p) associated with eigenvalue λ

(p)
j

and [u
(p)
j]j′ denotes the j′-th entry of this vector. Finally, the univariates scores are

c
(p)
j =

〈
X(p), ρ

(p)
j

〉
2

=
(
λ
(p)
j

)−1/2∑J

j′=1
λ
1/2
j′ [u

(p)
j]j′

∑J

j′′=1
cj′′
〈
ϕ
(p)
j′ , ϕ

(p)
j′′

〉
2
.

2. The positive eigenvalues of Γ, λ1, . . . , λJ > 0, with J ≤ ∑P
p=1 J

(p) =: J+ are the positive

eigenvalues of the matrix Z ∈ RJ+×J+ consisting of blocks Z(pp′) ∈ RJ(p)×J(p′)
with entries

Z
(pp′)
jj′ = Cov

(
c
(p)
j , c

(p′)
j′

)
, j = 1, . . . , J (p), j′ = 1, . . . , J (p′), p, p′ = 1, . . . , P.

The eigenfunctions of Γ are given by ϕ
(p)
j (tp) =

∑J(p)

j′=1[vj]
(p)
j′ ρ

(p)
j (tp), tp ∈ Tp, j = 1, . . . , J,

where [vj]
(p) ∈ RJ(p)

denotes the p-th block of an (orthonormal) eigenvector vj of Z
associated with eigenvalue λj. The scores cj ∈ R are given by

cj =
∑P

p=1

∑J(p)

j′=1
[vj]

(p)
j′ c

(p)
j′ .

Lemma 2 allows us to compute the scores of the P -dimensional stochastic process X using
the scores of each of the P components X(p) as univariate building bloks. However, when P
grows, it might not be suitable to perform P univariate fPCA from a computational point of
view. Recently, [21] extend this result to large-dimensional processes by imposing a sparsity
assumption. This possible extension will be investigated in future work.

7

3 Learning the parameters

In real data applications, the realizations of X are usually measured with error at discrete,
and possibly random, points in the definition domain. Therefore, let us consider N curves
X1, . . . , Xn, . . . , XN generated as a random sample of the P -dimensional stochastic process X
with continuous trajectories. For each 1 ≤ n ≤ N , and given a vector of positive integers

Mn = (M
(1)
n , . . . ,M

(P)
n) ∈ RP , let Tn,m = (T

(1)
n,m1 , . . . , T

(P)
n,mP), 1 ≤ mp ≤ M

(p)
n , 1 ≤ p ≤ P ,

be the random observation times for the curve Xn. These times are obtained as independent
copies of a variable T taking values in T . The vectors M1, . . . ,MN represent an independent
sample of an integer-valued random vector M with expectation µM which increases with N .
We assume that the realizations of X, M and T are mutually independent. The observations
associated with a curve, or trajectory, Xn consist of the pairs (Yn,m, Tn,m) ∈ RP × T , where

m = (m1, . . . ,mP), 1 ≤ mp ≤M (p)
n , 1 ≤ p ≤ P , and Yn,m is defined as

Yn,m = Xn(Tn,m) + εn,m, 1 ≤ n ≤ N, (3.1)

with the εn,m being independent copies of a centered error random vector ε ∈ RP with finite
variance. We use the notation Xn(t) for the value at t of the realization Xn of X. The N -
sample of X is composed of two sub-populations: a learning set of N0 curves to estimate the
mixture components of the process X and a set of N1 curves to be classified using the previous
grouping as a classifier that we call the online set. Thus, 1 ≤ N0, N1 < N and N0 + N1 = N .
Let X1, . . . , XN0 denote the curves corresponding to the learning set. The learning sample will
be used to estimate the mean and covariance functions, as well as the eigencomponents, of the
process X. Our first objective is to construct a partition U of the space H using the learning
sample. Then, the second aim is to use the partition U as a classifier for a possibly very large
set of N1 new curves. Let X[1] = XN0+1, . . . , X[N1] = XN , denote the curves from the online set
to be classified using the partition U .

3.1 Estimation of mean and covariance

We develop estimators for the mean and the covariance functions of a component X(p), 1 ≤
p ≤ P from the process X. These estimators are used to compute estimators of eigenvalues
and eigenfunctions of X(p) for the expansion (2.3). It is worthwhile to notice that, because of
Lemma 2, we do not need to estimate the covariance between X(p) and X(q) for p 6= q.

Let X̂
(p)
n be a suitable nonparametric estimator of the curve X

(p)
n applied with the M

(p)
n

pairs (Y
(p)
n,mp , T

(p)
n,mp), n = 1, . . . , N0, as for instance a local polynomial estimator such as the one

defined in [17]. With at hand, the X̂n’s tuned for the mean estimation, let

µ̂
(p)
N0

(tp) =
1

N0

N0∑
n=1

X̂(p)
n (tp), tp ∈ Tp.

For the covariance function, following [52], we distinguish the diagonal from the non-diagonal

points. With at hand, the X̂
(p)
n ’s tuned for the covariance function estimation,

Ĉp,p(sp, tp) =
1

N0

N0∑
n=1

X̂(p)
n (sp)X̂

(p)
n (tp)− µ̂(p)N0

(sp)µ̂
(p)
N0

(tp), sp, tp ∈ Tp, sp 6= tp. (3.2)

8

The diagonal of the covariance is then estimated using two-dimensional kernel smoothing with
Ĉp,p(sp, tp), sp 6= tp as input data. See [52] for the details.

3.2 Derivation of the MFPCA components

Following [19], using Lemma 2, we estimate the multivariate components for X by plugging the
univariate components computed from each X(p). These estimations are done as follows. First,
we perform an univariate fPCA on each of the components of X separately. For a component
X(p), the eigenfunctions and eigenvectors are computed as a matrix analysis of the estimated

covariance Ĉp,p, from (3.1). This results in a set of eigenfunctions (ρ̂
(p)
1 , . . . , ρ̂

(p)

J(p)) associated with

a set of eigenvalues (λ̂
(p)
1 , . . . , λ̂

(p)

J(p)) for a given truncation integer J (p). Then, the univariate

scores for a realization X
(p)
n of X(p) are given by ĉ

(p)
j,n = 〈X̂(p)

n , ρ̂
(p)
j 〉2, 1 ≤ j ≤ J (p). These

scores might be estimated by numerical integration. However, in some cases, e.g. for sparse
data, it may be more suitable to use the PACE method (see [52]). We then define the matrix
Z ∈ RN0×J+ , where on each row we concatenate the scores obtained for the P components of the

nth observation : (ĉ
(1)
1,n, . . . , ĉ

(1)

J(1),n
, . . . , ĉ

(P)
1,n , . . . , ĉ

(P)

J(p),n
). An estimate Ẑ ∈ RJ+×J+ of the matrix

Z, from Lemma 2, is given by Ẑ = (N0− 1)−1Z>Z. An eigenanalysis of the matrix Ẑ is done to
estimate the eigenvectors v̂j and eigenvalues λ̂j . The multivariate eigenfunctions are estimated

with ϕ̂
(p)
j (tp) =

∑J(p)

j′=1[v̂j]
(p)
j′ ρ̂

(p)
j′ (tp), tp ∈ Tp, 1 ≤ j ≤ J+, 1 ≤ p ≤ P. and the multivariate scores

with ĉj,n = Zn,·v̂j , 1 ≤ n ≤ N0, 1 ≤ j ≤ J+. The multivariate Karhunen-Loève expansion of the
process X is thus

X̂n(t) = µ̂N0(t) +
J∑

j=1

ĉj,nϕ̂j(t), t ∈ T .

where µ̂N0(·) = (µ̂
(1)
N0

(·), . . . , µ̂(P)
N0

(·)) is the vector of the estimated mean functions.

4 Multivariate functional clustering

Let S be a sample of realizations of the process X, defined in (2.2). We consider the problem
of learning a partition U such that every element U of U gathers similar elements of S. Our
clustering procedure follows the idea of clustering using unsupervised regression trees (CUBT),
considered by [16], which we adapt to functional data. In the following, we describe in detail
the Functional Clustering Using Unsupervised Binary Trees (fCUBT) algorithm.

4.1 Building the maximal tree

Let SN0 = {X1, . . . , XN0} be a training sample composed of N0 independent realizations of the
stochastic process X ∈ H defined in (2.2). In the following, a tree T is a full binary tree, meaning
every node has zero or two children, which represents a nested partition of the sample SN0 . We
will denote the depth of a tree T by D ≥ 1.

A tree T starts with the root node S0,0 to which we assign the whole space sample SN0 .
Next, every node Sd,j ⊂ SN0 is indexed by the pair (d, j) where d is the depth index of the
node, with 0 ≤ d < D, and j is the node index, with 0 ≤ j < 2d. A non-terminal node

9

(d, j) has two children, corresponding to disjoint subsets Sd+1,2j and Sd+1,2j+1 of SN0 such that
Sd,j = Sd+1,2j ∪Sd+1,2j+1. A terminal node (d, j) has no children.

A tree T is thus defined using a top-down procedure by recursively splitting. At each stage,
a node (d, j) is possibly split into two subnodes, namely the left and right child, with indices
(d + 1, 2j) and (d + 1, 2j + 1), respectively, provided it fulfills some condition. A multivariate
functional principal components analysis as presented in Section 3.2, with J components, is
then conducted on the elements of Sd,j. This results in a set of eigenvalues Λd,j = (λ1d,j, . . . , λ

J
d,j)

associated with a set of eigenfunctions Φd,j = (ϕ1
d,j, . . . , ϕ

J
d,j). The matrix of scores Cd,j is then

defined with the columns built with the projections of the elements of Sd,j onto the elements of
Φd,j. More precisely, to each Xn ∈ Sd,j, there is a corresponding column of size J defined as

cn,d,j =
(〈〈Xn − µd,j, ϕ1

d,j〉〉, . . . , 〈〈Xn − µd,j, ϕJ
d,j〉〉
)>
, (4.1)

where µd,j is the mean curve within the node Sd,j.
We can retrieve the groups (clusters) of curves considering a mixture model as in Section

2.2 for the columns of the matrix of scores. At each node Sd,j, for each K = 1, . . . ,Kmax, we
fit a GMM as in (2.3) to the columns of the matrix Cd,j. The resulting models are denoted as
{M1, . . . ,MKmax}. To fit M1, we use the standard mean and variance matrix estimation of
Gaussian distributions. To fit each of the models {M2, . . . ,MKmax}, we use an EM algorithm
[13]. In particular, the EM algorithm assigns a label to each curve in the node. We next consider
the bic, defined in [43], and determine

K̂d,j = arg max
K=1,...,Kmax

bic(MK) = arg max
K=1,...,Kmax

{2 log(LK)− κ log |Sd,j|}, (4.2)

where LK is the likelihood function of the K−components multivariate Gaussian mixture model
MK for the data at the node Sd,j, that is

LK =

|Sd,j|∏
n=1

K∑
k=1

pkfk(cn,d,j |mJ,k,ΣJ,k),

κ = K +KJ +KJ(J + 1)/2− 1 is the dimension of the modelMK and |Sd,j| is the cardinality

of the set Sd,j. If K̂d,j > 1, we split Sd,j using the modelM2, that is a mixture of two Gaussian
vectors. Otherwise, the node is considered to be a terminal node and the construction of the
tree is stopped for this node.

The recursive procedure continues downward until one of the following stopping rules are
satisfied: there are less than minsize observations in the node or the estimation K̂d,j of the
number of clusters in the mode Sd,j is equal to 1. The value of the positive integer minsize is
set by the user. When the algorithm ends, a label is assigned to each leaf (terminal node). The
resulting tree is referred to as the maximal binary tree. A quasi-formal description of Algorithm
1, closer to the high-level computer language, is provided in the Section B in the Supplementary
Material.

Our algorithm provides a partition of the sample. Each observation belongs to a leaf which
is associated with a unique label. In a perfect case, this tree will have the same number of leaves
as the number of mixture components of X. In practice, it is rarely the case, and the number
of leaves may be much larger than the number of clusters. That is why an agglomerative step,
that we call the joining step, should also be considered. Note that we do not have to pre-specify

10

the number of clusters before performing the joining step. Moreover, if the number of clusters
in the maximal tree is that wanted by the user, it is not necessary to run the joining step.

The original procedure, developed in [16], included a pruning step. For each sibling node,
this step computes a measure of dissimilarities between them and collapses them if this measure
is lower than a predefined threshold. They need this step because their splitting criteria is based
on the deviance reduction between a node and its children. The algorithm is stopped when
this deviance reduction is less than a predefined threshold. The pruning step is possibly used
therefore to revise an undesirable split. In our case, the splitting criteria is not based on how
much deviance we gain at each node of the tree but on an estimation of the number of modes
of a Gaussian mixture model. Thus, the pruning step is not useful in our case.

This method has three hyperparameters that should be set by the user. The first one is J ,
the number of components kept when an MFPCA is run. In our implementation, J =

∑P
p=1 J

(p),

and the user chooses the values J (p). According to the notation in Lemma 2, for each 1 ≤ p ≤ P ,
J (p) represents the numbers of scores for each coordinate (or variable) X(p). The default value
for each J (p) is set to explain 95% of the variance of the variable X(p) within the data. Let
us point out that the J (p) need not be large in order to detect a mixture structure. In fact,
as explained in Section B.1 in the Supplementary material, the first score could already detect
the mixture in many situations. Therefore, when the rule of percentage of explained variance
applied for each p, leads to large J , we recommend considering only one or two scores for each,
or at least some coordinates X(p). One can thus keep J reasonably low. Higher dimension J
for the vector of scores for which we consider a Gaussian mixture model could result in less
performance for detecting a mixture structure in the nodes, especially for those with few data.
The second hyperparameter is the minimum number of elements within a node to be considered
to be split (minsize). In practice, it should be larger than 2, the default value is set to 10. The
last one, Kmax, refers to the number of Gaussian mixture models to try in order to decide if
there is at least two clusters in the data. Its default value is set to 5 but, in practice, to reduce
computation, it could be set to 2. Thus, we will just compare the model with two modes against
that with one group. In some rare cases, we noticed that Kmax = 2 did not allow a mixture
structure to be detected while this was possible with slightly larger Kmax. This was the reason
for proposing a default Kmax larger than 2, even if, as pointed out by a reviewer, Kmax = 2
would be the natural default value with a binary splitting, as we propose.

4.2 Joining step

In this step, the idea is to join terminal nodes which do not necessarily share the same di-
rect ascendant. Let G = (V,E) be a graph where V = {Sd,j, 0 ≤ j < 2d, 0 ≤ d < D |
Sd,j is a terminal node} is a set of vertices and E ⊆ E is a set of edges with E the com-
plete set of unordered pairs of vertices

{
(Sd,j,Sd′,j′) |Sd,j,Sd′,j′ ∈ V and Sd,j 6= Sd′,j′

}
. Let us

clarify the definition of the set of edges E. Consider (Sd,j,Sd′,j′) ∈ E. We are interested in the
union of the nodes in the pair, Sd,j∪Sd′,j′ . After performing an MFPCA on the set Sd,j∪Sd′,j′ ,
we compute the matrix C(d,j)∪(d′,j′) using (4.1). For K = 1, . . . ,Kmax, we fit a K-component
Gaussian mixture model using an EM algorithm to C(d,j)∪(d′,j′). Then, if the estimated number

of clusters K̂(d,j)∪(d′,j′) using (4.1), is equal to 1, we add the pair to E. Finally, we have

E =
{

(Sd,j,Sd′,j′) |Sd,j,Sd′,j′ ∈ V, Sd,j 6= Sd′,j′ and K̂(d,j)∪(d′,j′) = 1
}
. (4.3)

11

We associate with each element (Sd,j,Sd′,j′) of E, the value of the bic that corresponds to

K̂(d,j)∪(d′,j′). The edge of G that corresponds to the maximum of the bic is then removed and the
associated vertices are joined. Thus, there is one cluster less. This procedure is run recursively
until no pair of nodes can be joined according to the bic or only one node in the tree remains.
Finally, unique labels are associated with each remaining element of V and the partition of S0,0,
denoted as U , is returned. A quasi-formal description of Algorithm 2, closer to a high-level
computer language, is provided in the Section B in the Supplementary Material.

Compared to other clustering algorithms, our approach inherits the interpretability of the
trees algorithm. The joining step we propose likely reduces the number of spurious clusters,
which is supposed to improve the interpretability. Moreover, when two clusters are joined, one
can still investigate them and interpret the fact that the algorithm merges the two clusters.

4.3 Classification of new observations

With at hand, a partition U of SN0 obtained from a learning set of N0 realizations of the process
X, we aim to classify N1 new trajectories of X from what we call, the online dataset. Denote
SN1 this set of new trajectories.

Let X be an element of the set SN1 . The descent of the tree T is performed as follows. Let
Sd,j, 0 ≤ j < 2d, 0 ≤ d < D be the node at hand such that Sd,j is not a terminal node. We
compute the projection X onto the eigenfunctions Φd,j. This results in the vector(

〈〈X− µd,j, ϕ1
d,j〉〉, . . . , 〈〈X− µd,j, ϕJ

d,j〉〉
)>
.

Using the 2-component GMM fitted on this node, we then compute the posterior probability of
X belonging to each of the components. At this point, we have the probability for X belonging
to each node given that it belongs to the parent node. We write Pa(S), the set of parent nodes
of the node S which includes the node itself. We denote P?(·) := P(· | X1, . . . , XN0). Then, the
probability for X to be in the node Sd,j is then given by

P?(X ∈ Sd,j) =
∏

S∈Pa(Sd,j)

P?(X ∈ S | X ∈ Pa(S)).

We have P?(X ∈ S0,0) = 1. In order to compute the probabilities of belonging to each element
of the partition U , let Sd,j and Sd′,j′ be two terminal nodes that have been joined in the joining
step into the node Sd,j ∪Sd′,j′ . Because the sets Sd,j and Sd′,j′ are disjoint,

P?(X ∈ Sd,j ∪Sd′,j′) = P?(X ∈ Sd,j) + P?(X ∈ Sd′,j′).

Finally, each cluster is associated with a probability of the observation X such that
∑

U∈U P?(X ∈
U) = 1. We assign X to the cluster with the largest probability.

This procedure is run for each observation within SN1 and results in a partition V of SN1 .
A quasi-formal description of Algorithm 3, closer to a high-level computer language, is provided
in the Section B in the Supplementary Material.

5 Empirical analysis

Using simulated data, in this section, we illustrate the behavior of our clustering algorithm and
compare it with some competitors. A real data application on a vehicle trajectory dataset is

12

also carried out.
Our fCUBT procedure is compared to diverse competitors in the literature that are both

designed for univariate and multivariate functional data: FunHDDC ([4, 42] and [41] for the R
implementation) and Funclust ([25, 27] and [44] for the R implementation). We use the model
[akjbkQkDk] for FunHDDC. We also considered the model [abkQkDk], which yields similar results.
Moreover, our approach competes with the methodology described in [23], which corresponds to
the k-means algorithm with a suitable distance for functional data. In particular, the method-
ology in [23] uses the following distances:

d1(X,Y) =

 P∑
p=1

∫
Tp

(
X(p)(tp)− Y (p)(tp)

)2
dtp

1/2

and

d2(X,Y) =

 P∑
p=1

∫
Tp

(
dX(p)(tp)

dtp
− dY (p)(tp)

dtp

)2

dtp

1/2

,

where dX(p)(tp)/dtp is the first derivative of X(p)(tp). These two methods are denoted as
k-means-d1 and k-means-d2 in the following. We use the implementation developed in a 2019
Madrid university report by A. Hernando Bernabé for both univariate and multivariate func-
tional data. We also compare our algorithm with a Gaussian Mixture Model, fitted using an EM
algorithm, on the coefficients of a functional principal components analysis on the dataset with
a fixed number of components, quoted as FPCA+GMM in the following. Finally, we consider only
the first step of the fCUBT algorithm, which is the growth of the tree, to point out the usefulness
of the joining step. The method will be referred as Growing in the following.

We are greatly interested in the ability of the algorithms to retrieve the true number of
clusters K. When the true labels are available, the estimated partitions are compared with the
true partition using the Adjusted Rand Index (ari) ([22], see Section C in the Supplementary
Material for a definition).

5.1 Simulation experiments

We consider three simulations scenarios with varying degrees of difficulty. Each experiment is
repeated 500 times.

Scenario 1. In our first scenario, we consider that the random curves are observed without
noise. The number of clusters is fixed at K = 5, P = 1, T1 = [0, 1]. An independent sample of
N = 1000 univariate curves is simulated according to the following model: for t ∈ [0, 1]:

Cluster 1: X(t) = µ1(t) + c11φ1(t) + c12φ2(t) + c13φ3(t),
Cluster 2: X(t) = µ1(t) + c21φ1(t) + c22φ2(t) + c23φ3(t),
Cluster 3: X(t) = µ2(t) + c11φ1(t) + c12φ2(t) + c13φ3(t),
Cluster 4: X(t) = µ2(t) + c21φ1(t) + c22φ2(t) + c23φ3(t),
Cluster 5: X(t) = µ2(t) + c21φ1(t) + c22φ2(t) + c23φ3(t)− 15t,

where φk’s are the eigenfunctions of the Wiener process which are defined by φk(t) =
√

2 sin{(k−
0.5)πt}, k = 1, 2, 3, and the mean functions by µ1(t) = 20/{1 + exp(−t)} and µ2(t) = −25/{1 +

13

0.0 0.2 0.4 0.6 0.8 1.0

t

−40

−30

−20

−10

0

10

20

30

X
(t
)

Figure 1: Simulated data for Scenario 1.

exp(−t)}. The cij ’s are random normal variables defined by

c11 ∼ N (0, 16), c12 ∼ N (0, 64/9) , c13 ∼ N (0, 16/9) , (5.1)

c21 ∼ N (0, 1), c22 ∼ N (0, 4/9) , c23 ∼ N (0, 1/9) .

The mixing proportions are equal, and the curves are observed on 101 equidistant points. As
shown in Figure 1, the five clusters cannot be retrieved using only the mean curve per cluster:
cluster 1 (blue) and 2 (orange) share the same mean function µ1 and similarly cluster 3 (green)
and 4 (pink) share the same mean function µ2. As a consequence, clustering algorithms based
on distances to the mean of the clusters, such as k-means, are not expected to perform well in
this case. For FunHDDC and Funclust, the functional form of the data is reconstructed using a
cubic B-spline basis, smoothing with 25 basis functions.

Scenario 2. The second simulation is a modification of the data simulation process
of [42, scenario C]. Here, we consider that the measurements of the random curves are noisy.
Thus, for this scenario, the number of clusters is fixed at K = 5, P = 2, T1 = T2 = [0, 1]. An
independent sample of N = 1000 bivariate curves is simulated according to the following model :
for t1, t2 ∈ [0, 1],

Cluster 1: X(1)(t1) = h1(t1) + b0.9(t1), X(2)(t2) = h3(t2) + 1.5× b0.8(t2),
Cluster 2: X(1)(t1) = h2(t1) + b0.9(t1), X(2)(t2) = h3(t2) + 0.8× b0.8(t2),
Cluster 3: X(1)(t1) = h1(t1) + b0.9(t1), X(2)(t2) = h3(t2) + 0.2× b0.8(t2),
Cluster 4: X(1)(t1) = h2(t1) + 0.1× b0.9(t1), X(2)(t2) = h2(t2) + 0.2× b0.8(t2),
Cluster 5: X(1)(t1) = h3(t1) + b0.9(t1), X(2)(t2) = h1(t2) + 0.2× b0.8(t2).

The functions h are defined, by h1(t) = (6− |20t− 6|)+ /4, h2(t) = (6− |20t− 14|)+ /4 and
h3(t) = (6− |20t− 10|)+ /4, for t ∈ [0, 1]. (Here, (·)+ denotes the positive part of the expression
between the brackets.) The functions bH are defined, for t ∈ [0, 1], by bH(t) = (1+t)−HBH(1+t)
where BH(·) is a fractional Brownian motion with Hurst parameter H. The mixing proportions
are set to be equal.

The data to which we apply the clustering are obtained as in (3). Each component curve
is observed at 101 equidistant points over [0, 1]. The bivariate error vectors have zero-mean
Gaussian independent components with variance 1/2. Figure 2 presents the smoothed curves

14

0.0 0.2 0.4 0.6 0.8 1.0

t

−3

−2

−1

0

1

2

3

X
1
(t
)

0.0 0.2 0.4 0.6 0.8 1.0

t

−3

−2

−1

0

1

2

3

4

X
2
(t
)

Figure 2: Simulated data for Scenario 2.

0.0 0.2 0.4 0.6 0.8 1.0

t

−3

−2

−1

0

1

2

3

4

X
1
(t
)

0.0 0.2 0.4 0.6 0.8 1.0

t

−3

−2

−1

0

1

2

3

4

X
2
(t
)

Figure 3: Simulated data for Scenario 3.

from the simulated data. Smoothing was done using the methodology of [17]. As pointed out
by [42], the different clusters cannot be identified using only one variable: cluster 1 (blue) is
similar to cluster 3 (green) for variable X(1)(t) and in like manner, cluster 1 (blue) is like cluster
2 (orange) and cluster 3 (green) for variable X(2)(t). The brown and pink groups might be
considered as “noise” clusters that aim to make discrimination between the other groups harder.
Hence, clustering methods that are specialized for univariate data, should fail to retrieve true
membership using only X(1)(t) or X(2)(t). For FunHDDC and Funclust, the functional form of
the data is reconstructed using a cubic B-spline basis, smoothing with 25 basis functions.

Scenario 3. The last simulation is the same as the second one, except we add some
correlation between the components. So, for each n ∈ {1, . . . , N}, we observe a realization of

the vector X =
(
X(1) + αX(2), X(2)

)>
, where α = 0.4. Figure 3 presents the smoothed version,

using the methodology of [17], of the simulated data. For FunHDDC and Funclust, the functional
form of the data is reconstructed using a cubic B-spline basis, smoothing with 25 basis functions.

5.1.1 Model selection

We investigate the selection of the number of clusters for each of methods on each of the simu-
lations. The way to return the number of clusters in a dataset depends on the algorithm. Thus,

15

0.0 0.2 0.4 0.6 0.8 1.0

ARI

fCUBT

Growing

FPCA+GMM

FunHDDC

Funclust

k-means-d1

k-means-d2

(a) Scenario 1

0.0 0.2 0.4 0.6 0.8 1.0

ARI

(b) Scenario 2

0.0 0.2 0.4 0.6 0.8 1.0

ARI

(c) Scenario 3

Figure 4: Estimation of ari for all tested models on 500 simulations.

the selection for the model fCUBT and Growing is based on the BIC. Similarly, the BIC is also
used for the FunHDDC algorithm. For all the other methods, we test all the models between
K = 1 and K = 8, and return the model that maximizes the ARI criteria as the selected model.
The simulation settings have been repeated 500 times and the model [akjbkQkDk] is used for
the FunHDDC algorithm.

Table 1 summarizes the results of the 500 simulations for each scenario. We remark that
the fCUBT algorithm performs well in retrieving the right number of clusters in all the scenarios,
being the first or second method in terms of retrieving percentage. Quite surprisingly, the
k-means-d2 algorithm performs very well for the second and third scenarios. It indicates that
the distances between the derivatives of the curves are much more informative than the distance
between the original ones. The accuracy of the selection of the number of clusters in competitors,
designed for functional data, FunHDDC and Funclust, is very poor. This result has also been
pointed out in [53] where the simulated data are much simpler. Finally, the results on Growing

show the usefulness of the joining step. Thus, at the end of the growing step, we may have a
large number clusters (even greater than 10) but with very few data in some of them, and so
the joining step allows us to get rid of them, and thus have more relevant clusters.

5.1.2 Benchmark with existing methods

Our algorithm is compared to competitors in the literature with respect to the ari criterion on
the three scenario settings. All the competitors are applied for K = 1 to K = 8 groups for each
of the scenarios and we return the best ari found regardless of the number of clusters.

Figure 4 presents clustering results for all the tested models for the ari criterion. We see that
our algorithm performs well in all the scenarios. On the contrary, the FunHDDC and Funclust

competitors do not perform well on this simulated data. Both k-means-d1 and k-means-d2
demonstrate acceptable ari although not as good as fCUBT. The FPCA+GMM algorithm has similar
results as fCUBT in terms of ari because ari is not penalized when the number of clusters is
not the true one. So, as long as the clusters are not mixed, the ari will be good, even if a large
cluster is split into multiple small ones. The same phenomenon appears in the case of Growing
compare to fCUBT.

16

Method Number of clusters K
1 2 3 4 5 6 7 8 9 10+

fCUBT - - - - 98 2 - - - -
Growing - - - - 59 23 8 3 3 4

FPCA+GMM - - - 1 53 32 11 3 - -
Scenario 1 FunHDDC - 35 46 16 2 1 - - - -

Funclust - 44 44 11 1 - - - - -
k-means-d1 - - 15 15 60 2 7 7 - -
k-means-d2 - - - - 5 29 36 30 - -

fCUBT - - - - 70 18 10 2 - -
Growing - - - - 52 18 12 9 3 6

FPCA+GMM - - - - 27 45 25 3 - -
Scenario 2 FunHDDC - 1 1 - 2 4 5 4 25 59

Funclust - 28 17 15 16 14 7 3 - -
k-means-d1 - - - 2 5 8 18 67 - -
k-means-d2 - - 5 12 82 1 - - - -

fCUBT - - - - 67 24 7 2 - -
Growing - - - - 60 18 8 6 3 5

FPCA+GMM - - - - 41 40 16 3 - -
Scenario 3 FunHDDC - 1 - 3 7 11 11 15 20 32

Funclust - 7 18 19 20 20 13 3 - -
k-means-d1 - - - - 3 14 21 62 - -
k-means-d2 - 1 1 9 87 1 - 1 - -

Table 1: Number of clusters selected for each model, expressed as a percentage over 500
simulations

17

N0 = 200 N0 = 500 N0 = 1000
0.0

0.2

0.4

0.6

0.8

1.0

A
R
I

(a) Scenario 1

N0 = 200 N0 = 500 N0 = 1000
0.0

0.2

0.4

0.6

0.8

1.0

A
R
I

(b) Scenario 2

N0 = 200 N0 = 500 N0 = 1000
0.0

0.2

0.4

0.6

0.8

1.0

A
R
I

(c) Scenario 3

Figure 5: Estimation of ari with respect to the size of the learning dataset when the tree
is used as a supervised classifier.

5.1.3 Comments on the classification of new set of curves

We now analyze the performance of the algorithm for the classification of a new set of curves.
For each of the simulated scenarios, we apply the following process. We learn a tree T as well
as the partition U from the learning set SN0 . Different sizes of learning sets are considered,
N0 = 200, 500 or 1000. We generate a new set of data, SN1 , referred to as the online dataset,
of size N1 = 1000. As the data are simulated, we know the true labels of each observations
within SN1 . We denote the true partition of SN1 by V. We then classify new observations from
the online set SN1 and denote the obtained partition by V ′. Partitions are compared using
ari(V,V ′).

The simulations are performed 500 times, and the results are plotted in Figure 5. The three
scenarios present similar patterns. Thus, when N0 = 200, the partition U obtained using the
fCUBT algorithm is not able to capture all elements within each cluster. In this case, the ari
is less than 0.8. When N0 = 500, the partition U is now sufficiently accurate to represents
the clusters (ari > 0.8). However, the stability of the clusters is not guaranteed, given the
large variance in the estimation of the ari. Finally, when N0 = 1000, we have both accurate
partitioning U (ari > 0.8) and stable clusters (low variance).

5.1.4 A comparison with supervised methods

We also compare our functional clustering procedure with two supervised approaches available
in [35], that are a Gaussian Process Classifier (GPC) and a Random Forest Classifier (Random
Forest). See, for instance, [39] for the description of GPC. We first perform an MFPCA to
extract features that explain 99% of the variance for each component X(p) within the data. We
then fit GPC and Random Forest to the extracted features.

For each scenario, we generate samples of N = 1000 curves. We then randomly sample 2/3
of the N curves to build the training subset and the remaining ones are gathered in the test
subset. The supervised models are trained on the training subset, using the true value of K, and
we predict the outcome on the test subset. The ari is finally computed using the true labels
and the prediction. For the fCUBT method, we consider the training subset to learn the clusters.
We next predict the outcome on the test subset considering it as a set of new observations,

18

fCUBT GPC Random Forest
0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
R
I

(a) Scenario 1 (491/500)

fCUBT GPC Random Forest
0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
R
I

(b) Scenario 2 (436/500)

fCUBT GPC Random Forest
0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
R
I

(c) Scenario 3 (431/500)

Figure 6: Estimation of ari for the comparison with supervised models using 500 replica-
tions. The number of replications among the 500 experiments where fCUBT recovers the
correct number of clusters K, is given between parenthesis

and using the procedure proposed in Section 4.3. For comparison purposes, the ari for fCUBT

is computed using only the replications where our approach detected the correct number of
clusters K. We repeated the experiments 500 times, and the results are plotted in Figure 6. We
remark that our unsupervised method is as good as the supervised ones when the true number
of clusters is correctly estimated. The good performance of fCUBT compared to Random Forest

could be explained by the model-based construction of our approach, while the random forest
is nonparametric. The good performance of fCUBT compared to GPC, especially in Scenario 1,
is somehow more surprising. An additional simulation experiment where fCUBT is used directly
on the test subset, is reported in the Supplementary Material. Our approach performs well in
that case also.

5.2 Real data analysis: the rounD dataset

In this section, our method is applied to a part of the rounD dataset [29], which are “naturalistic
road user trajectories recorded at German roundabouts”. For our illustration, we consider a
subset of the rounD dataset, that corresponds to one particular roundabout with four exits.
Details are provided in the Supplementary Material.

The dataset we use contains 18 minutes of trajectories for road users at 7a.m. To describe
the motion of the vehicles, we use six coordinates X(p) given by the position, the speed and the
acceleration, each of them decomposed into a two-dimensional coordinate. The speed limit is
50km/h. In total, the dataset contains trajectories, velocities and accelerations for N0 = 348
individual road users that passed through this roundabout during this period, recorded every
0.04s. The number of measurements for each curve varies from 131 to 1265. We rescale the
measurement times for each of the 348 curves such that the first measurement corresponds
to t = 0 and the last one to t = 1. Figure 7 presents a random sample of five observations
extracted from the data. In order to have comparable results, we remove the pedestrians and
the bicycles from the data. Moreover, curves with less than 200 or more than 800 measurements
are also removed. The curves with less than 200 points are probably the road users that are
present when the recording starts (or ends), and thus, their trajectory will not be complete.
The curves with more than 800 are likely to be trajectories with inconsistency. Finally, there

19

are 311 remaining observations in the dataset. We aim to provide a clustering and give some
physical interpretation of the clusters. Thus, our clustering procedure fCUBT is run on the
cleaned data. We chose J (p) = 1 for both the growing and joining step, and we set Kmax = 3
and minsize = 20. It returns 23 groups. Figure 8 presents an example of a clusters we obtain.
The trajectories with different entries and exits in the roundabout are well split into different
clusters. Several clusters correspond to the same entries and exists and they are distinguished
by different velocity and acceleration profiles. In particular, the algorithm differentiates the
vehicles which stopped before entering the roundabout from those which did not (see Figure
9). Vehicles with atypical trajectories, such as those making a complete additional loop before
taking the exit are also weel separated. The Gaussian assumption used in our model-based
clustering seems reasonable in this application, according to the results from several normality
tests we performed following [18]. The details are given in the Supplementary Material.

6 Extension to images

The fCUBT algorithm was introduced above for multivariate functional data which could be
defined on different domains, possibly of different dimensions. In this section, we present the
results of a simulation experiment with a process X with two components, one defined over a
compact interval on the real line, the other one defined over a square in the plane. In such situ-
ations, the univariate fPCA, performed for each component for the computation of the MFPCA
basis, is replaced by a suitable basis expansion for higher dimensional functions. In particu-
lar, the eigendecomposition of image data can be performed using the FCP-TPA algorithm for
regularized tensor decomposition [1]. See also [19] and [49].

Scenario 4. As in the previous scenarios, the number of clusters is fixed at K = 5.
Moreover, P = 2, T1 = [0, 1] and T2 = [0, 1] × [0, 1]. A sample of N = 500 curves is simulated
according to the following model, for s, t ∈ [0, 1]:

X(1)(t) = aφ1(t) + bφ2(t) + cφ3(t),

X(2)(s, t) = dφ1(s)φ1(t) + eφ1(s)φ2(t) + fφ2(s)φ1(t) + gφ2(s)φ2(t),

where φk’s are the eigenfunctions of the Wiener process. The coefficients a, b, c, d, e, f, g are
random normal variables with parameters defined in Table 2. The mixing proportions are taken
to be equal. The noisy curves are observed over 100 equidistant points and the noisy images are
observed over a 2-D grid of 100× 100 points. The measurement errors are introduced as in (3).
The errors for X(1) are independent, zero-mean, Gaussian variables of variance σ2 = 0.05, while
the errors for X(2) are bivariate, zero-mean, Gaussian vectors with independent components of
variance σ2 = 0.05. The experiment was repeated 500 times.

By construction, the clusters cannot be retrieved only using only the noisy curves or the
noisy images. Thus, the clustering algorithm has to considered these features for the grouping.
Examples of realizations from this simulation experiment are shown in Figure 10.

The results of the fCUBT procedure are given in the Table 3a and 3b for both the estimated
number of clusters and the ari. We remark that in more than half of the cases, our algorithm
estimates the number of clusters correctly. However, as cluster 4 and 5 are hard to discriminate,
it returns four estimated clusters. This phenomenon is also reflected in the ari results. In
fact, the ari presents a bimodal distribution where one mode is centered around 0.98 and the

20

0.0 0.5 1.0

Normalized time

60

80

100

120

140

X
(m

)
Longitudinal Position

0.0 0.5 1.0

Normalized time

−140

−120

−100

−80

−60

−40

−20

0

Y
(m

)

Lateral Position

0.0 0.5 1.0

Normalized time

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

V
el
o
ci
ty

(m
/
s)

Longitudinal Velocity

0.0 0.5 1.0

Normalized time

−15

−10

−5

0

5

10

V
el
o
ci
ty

(m
/
s)

Lateral Velocity

0.0 0.5 1.0

Normalized time

−3

−2

−1

0

1

2

A
cc
el
er
a
ti
o
n
(m

/
s2
)

Longitudinal Acceleration

0.0 0.5 1.0

Normalized time

−3

−2

−1

0

1

2

3

A
cc
el
er
a
ti
o
n
(m

/
s2
)

Lateral Acceleration

(a)

(b) (c)

Figure 7: rounD dataset illustration – a sample of five trajectories (a). The trajectories in
the roundabout reference frame where the arrows represent the magnitude and direction
of the velocity (b) and acceleration (c).

Coefficients (mean / std)
a b c d e f g

Cluster 1 3, 0.5 2, 1.66 1, 1.33 4, 1 0, 0.5 0, 0.1 −2, 0.05
Cluster 2 1, 0.5 −2, 1 0, 1 4, 0.8 0, 0.7 0, 0.08 −2, 0.07
Cluster 3 1, 0.4 −2, 0.8 0, 0.8 −3, 1 −4, 0.5 0, 0.1 0, 0.05
Cluster 4 −2, 1 0, 2 −1, 2 0, 0.1 2, 0.1 0, 0.05 0, 0.025
Cluster 5 −2, 0.2 0, 0.5 −1, 0.5 0, 2 2, 1 0, 0.2 1, 0.1

Table 2: Scenario 4 – Coefficient for X(1)(t) and X(2)(s, t).

21

(a) (b)

Figure 8: rounD dataset: An example of a cluster found using the fCUBT method. The
trajectories are plotted in the roundabout reference frame. Each red curve represents a
trajectory of an observation and the red arrows represent the magnitude and direction of
the velocity (a) and acceleration (b).

Acceleration norm

1

2

3

(a)

Acceleration norm

1

2

3

(b)

Figure 9: rounD dataset: Two different clusters with similar trajectory shape but with
different velocity and acceleration profiles: (a) Stop when arriving at the roundabout. (b)
Do not stop when arriving at the roundabout.

22

0.0 0.2 0.4 0.6 0.8 1.0

t

−15

−10

−5

0

5

10

15

X
1
(t
)

(a)

0.0 0.2 0.4 0.6 0.8

t

0.0

0.2

0.4

0.6

0.8

t

−4

−2

0

2

4

6

8

10

12

(b)

0.0 0.2 0.4 0.6 0.8

t

0.0

0.2

0.4

0.6

0.8

t

−4

−2

0

2

4

6

8

10

(c)

0.0 0.2 0.4 0.6 0.8

t

0.0

0.2

0.4

0.6

0.8

t

−12

−10

−8

−6

−4

−2

0

2

4

(d)

0.0 0.2 0.4 0.6 0.8

t

0.0

0.2

0.4

0.6

0.8

t

−6.0

−4.5

−3.0

−1.5

0.0

1.5

3.0

4.5

6.0

(e)

0.0 0.2 0.4 0.6 0.8

t

0.0

0.2

0.4

0.6

0.8

t

−7.5

−6.0

−4.5

−3.0

−1.5

0.0

1.5

3.0

4.5

(f)

Figure 10: Examples of simulated data for Scenario 4 : (a) 500 realizations of the process
X(1). (b)–(f) One realization of each of the clusters from the process X(2).

other one around 0.77. It appears that when the ari is around 0.98, the number of clusters
is well estimated, while when the ari is close to 0.77, it is not. Nevertheless, even if in some
replications, the number of clusters is wrongly estimated, overall the results are good. This
simulation experiment provides strong evidence that our algorithm could also be used in such
complex situations to which, apparently, the existing clustering algorithms have not yet been
extended.

Number of clusters K 4 5 6 9

fCUBT 43 52 4 1

(a) Scenario 4 – Number of clusters selected for fCUBT for 500 simulations as a percentage.

Quantile 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

fCUBT 0.70 0.76 0.77 0.77 0.78 0.78 0.96 0.98 0.99 0.99 1.0

(b) Scenario 4 – Quantile of the ARI for 500 simulations.

Table 3: Results for the Scenario 4.

23

7 Conclusion

The fCUBT algorithm has been proposed which is a model-based clustering method for functional
data based on unsupervised binary trees. It works both on univariate and multivariate functional
data defined in possibly different, multidimensional domains. The method is particularly suitable
for finding the correct number of clusters within the data with respect to the model assumption.
When the complete tree has been grown, fCUBT can be used for supervised classification. The
open-source implementation can be accessed at https://github.com/StevenGolovkine/FDApy
while scripts to reproduce the simulation and real-data analysis are at https://github.com/

StevenGolovkine/fcubt.
A Reviewer asked about whether the Gaussian assumption imposed in model (2.2) is strict.

First, one can use, for instance, the tests proposed in [18] to check this assumption using the
terminal nodes of the tree, before or after the joining step. Some evidence of the effectiveness of
these tests is provided in the Supplement. On the other hand, we also provide in the Supplement
some simulation-based evidence on the robustness of our algorithm to departures from the
Gaussian assumption. The conclusion of our simulation experiments is that, in general, the
performance of our algorithm diminishes when the Gaussianity condition is not met, but remains
good and comparable to that of the competitors, at least for some types of departures.

Acknowledgment

The authors wish to thank Groupe Renault and the ANRT (French National Association for
Research and Technology) for their financial support via the CIFRE convention no. 2017/1116.
Valentin Patilea gratefully acknowledges support from the Joint Research Initiative “Models and
mathematical processing of very large data” under the aegis of Risk Foundation, in partnership
with MEDIAMETRIE and GENES, France.

A Lemmas and Proofs

Proof of the Lemma 1. Using the linearity of the inner product, we may rewrite for each
j ≥ 1, cj as

cj = 〈〈X − µ, ψj〉〉 =
K∑
k=1

〈〈µk, ψj〉〉1{Z=k} − 〈〈µ, ψj〉〉+
∑
l≥1

ξl〈〈φl, ψj〉〉.

Since a linear combination of independant Gaussian distributions is still Gaussian, the condi-
tional distribution cj |Z = k has a Gaussian distribution for all k ∈ {1, . . . ,K}, j ≥ 1. Moreover,
by the definition of X and the linearity of the inner product, for any i, j ≥ 1 and k ∈ {1, . . . ,K},

E (cj | Z = k) =
K∑

k′=1

〈〈µk′ , ψj〉〉E
(
1{Z=k′} | Z = k

)
− 〈〈µ, ψj〉〉+

∑
l≥1

E (ξl | Z = k) 〈〈φl, ψj〉〉

= 〈〈µk − µ, ψj〉〉.

24

https://github.com/StevenGolovkine/FDApy
https://github.com/StevenGolovkine/fcubt
https://github.com/StevenGolovkine/fcubt

Next, for any i, j ≥ 1 and k ∈ {1, . . . ,K},

Cov (ci, cj | Z = k) = E (cicj | Z = k)− E (ci | Z = k)E (cj | Z = k)

=
P∑

p=1

P∑
q=1

∫
[0,1]

∫
[0,1]

E
(

(X − µ)(p)(sp)(X − µ)(q)(tq) | Z = k
)
ψ
(p)
i (sp)ψ

(q)
j (tq)dspdtq

− 〈〈µk − µ, ψi〉〉〈〈µk − µ, ψj〉〉.

By definition, for any 1 ≤ p, q ≤ P ,

E
(

(X − µ)(p)(sp)(X − µ)(q)(tq) | Z = k
)

=
K∑

k′=1

K∑
k′′=1

µ
(p)
k′ (sp)µ

(q)
k′′ (tq)E

(
1{Z=k′} | Z = k

)
E
(
1{Z=k′′} | Z = k

)
+

K∑
k′=1

µ
(p)
k′ (sp)

∑
j≥1

φ
(q)
j (tq)E

(
ξj1{Z=k′} | Z = k

)
+

K∑
k′′=1

µ
(q)
k′′ (tq)

∑
l≥1

φ
(p)
l (sp)E

(
ξl1{Z=k′′} | Z = k

)
+
∑
j≥1

∑
l≥1

φ
(p)
j (sp)φ

(q)
l (tq)E (ξjξl | Z = k)

− µ(q)(tq)
K∑

k′=1

µ
(p)
k′ (sp)E

(
1{Z=k′} | Z = k

)
− µ(p)(sp)

K∑
k′′=1

µ
(q)
k′′ (tq)E

(
1{Z=k′′} | Z = k

)
− µ(p)(sp)

∑
l≥1

φ
(q)
l (tq)E (ξl | Z = k)

− µ(q)(tq)
∑
l≥1

φ
(p)
l (sp)E (ξl | Z = k)

+ µ(p)(sp)µ
(q)(tq)

= µ(p)(sp)µ
(q)(tq) + µ

(p)
k (sp)µ

(q)
k (tq)− µ(p)(sp)µ(q)k (tq)− µ(p)k (sp)µ

(q)(tq)

+
∑
l≥1

σ2klφ
(p)
l (sp)φ

(q)
l (tq)

=
(
µ
(p)
k (sp)− µ(p)(sp)

)(
µ
(q)
k (tq)− µ(q)(tq)

)
+
∑
l≥1

σ2klφ
(p)
l (sp)φ

(q)
l (tq).

Thus,

Cov (ci, cj | Z = k) = 〈〈µk − µ, ψi〉〉〈〈µk − µ, ψj〉〉+
∑
l≥1

σ2kl〈〈φl, ψi〉〉〈〈φl, ψj〉〉

25

− 〈〈µk − µ, ψi〉〉〈〈µk − µ, ψj〉〉

=
∑
l≥1

σ2kl〈〈φl, ψi〉〉〈〈φl, ψj〉〉.

Taking i = j in the conditional covariance, we deduce

τ2kj = Var (cj | Z = k) =
∑
l≥1

σ2kl〈〈φl, ψj〉〉2.

For the marginal distribution of the cj , the zero-mean is obtained as follows:

E(cj) =

K∑
k=1

P(Z = k)E (cj | Z = k) =

K∑
k=1

pk〈〈µk − µ, ψj〉〉 = 0.

For the marginal covariance, we can write

Cov(ci, cj) = E(cicj)

=
K∑
k=1

pkE (cicj | Z = k)

=

K∑
k=1

pk (Cov (ci, cj | Z = k) + E (ci | Z = k)E (cj | Z = k))

=
K∑
k=1

pk

∑
l≥1
〈〈φl, ψi〉〉〈〈φl, ψj〉〉σ2kl + 〈〈µk − µ, ψi〉〉〈〈µk − µ, ψj〉〉

 .

This concludes the proof.
In applications, one cannot use an infinite number of terms in the representation of the

process X, and has to truncate such a representation. The following lemma shows that such a
truncation could be arbitrarily accurate.

Lemma A.1 Let X be defined as in (2.2) for some orthonormal basis {φj}j≥1. Let {ψj}j≥1 be
another orthonormal basis in H with to which X has the decomposition

X(t) =
∑
j≥1

cjψj(t), t ∈ T .

Then

lim
J→∞

E
(
|||X −XdJe |||2

)
= 0, where XdJe(t) =

J∑
j=1

cjψj(t), t ∈ T .

Proof of Lemma A.1. Given {ψj}j≥1 an orthonormal basis of H, X can be written in the

26

form X(t) =
∑

j≥1 cjψj(t), t ∈ T , with random variables cj = 〈〈X − µ, ψj〉〉. Then

|||X −XdJe |||2 =|||
∞∑

j=J+1

cjψj |||2

=
P∑

p=1

∫
Tp

 ∞∑
j=J+1

cjψ
p
j (t)

 ∞∑
j′=J+1

cj′ψ
p
j′(t)

 dt

=
∞∑

j=J+1

∞∑
j′=J+1

cjcj′〈〈ψj , ψj′〉〉

=
∞∑

j=J+1

c2j .

Moreover,

E

∑
j≥1

c2j

 = E

∑
j≥1
〈〈X − µ, ψj〉〉2

 = E
(
〈〈X − µ〉〉2

)
<∞.

From this, and the fact that the remainder of a convergent series tends to zero, we have

E
(
|||X −XdJe |||2

)
= E

 ∞∑
j=J+1

c2j

 −−−→
J→∞

0.

This conclude the proof.

The following lemma shows that the MFPCA basis is the one which will induce the most
accurate truncation for a given truncation number J . Therefore, among the workable bases one
could use in practice, the MFPCA basis is likely to be a privileged one.

Lemma A.2 Let X be defined as in (2.2). Let {ψj}j≥1 be some orthonormal basis in H and
{ϕj}j≥1 be the MFPCA basis. Let µ be the mean curve as defined in (1). Then, for any J ≥ 1
such that λ1 > λ2 . . . > λJ > λJ+1,

E

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣X − µ−

J∑
j=1

〈〈X − µ, ψj〉〉ψj

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2 ≥ E

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣X − µ−

J∑
j=1

cjϕj

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2 .

Proof of Lemma A.2. First, let us note that, since the bases are orthogonal, the minimization
of the truncation error for a given J is equivalent to the maximization of the sum of the variances

27

〈〈Γψj , ψj〉〉, 1 ≤ j ≤ J . Moreover, for each j ≥ 1, we have

E
[
〈〈X − µ, ϕj〉〉2

]
= E

 P∑
p=1

〈
(X − µ)(p), ϕ

(p)
j

〉
2

 P∑
q=1

〈
(X − µ)(q), ϕ

(q)
j

〉
2


= E

 P∑
p=1

∫
[0,1]

(X − µ)(p)(sp)ϕ
(p)
j (sp)dsp

 P∑
q=1

∫
[0,1]

(X − µ)(q)(tq)ϕ
(q)
j (tq)dtq


=

P∑
p=1

∫
[0,1]

P∑
q=1

∫
[0,1]

E
[
(X − µ)(p)(sp)(X − µ)(q)(tq)

]
ϕ
(p)
j (sp)ϕ

(q)
j (tq)dspdtq

=
P∑

p=1

∫
[0,1]

P∑
q=1

∫
[0,1]

Cp,q(sp, tq)ϕ
(p)
j (sp)ϕ

(q)
j (tq)dspdtq

=

P∑
q=1

∫
[0,1]

P∑
p=1

〈
Cp,q(·, tq), ϕ(p)(·)

j

〉
2
ϕ
(q)
j (tq)dtq

=

P∑
q=1

∫
[0,1]
〈〈C·,q(·, tq), ϕj(·)〉〉ϕ(q)

j dtq

=

P∑
q=1

∫
[0,1]

(Γϕj)
(q) (tj)ϕ

(q)
j (tq)dtq

=
P∑

q=1

〈
(Γϕj)

(q) (tj), ϕ
(q)
j (tq)

〉
2

= 〈〈Γϕj , ϕj〉〉

Since the MfPCA basis is characterized by the property (2.3), for any orthonormal basis {ψj}j≥1,
we necessarily have

J∑
j=1

Var(〈〈X − µ, ϕj〉〉) =
J∑

j=1

〈〈Γϕj , ϕj〉〉 ≥
J∑

j=1

〈〈Γψj , ψj〉〉.

This concludes the proof.

B Algorithms

An example of a maximal tree is given in Figure 11. It corresponds to a simulated dataset
defined in Section 5, Scenario 1, where J (p) is set to explain 95% of the variance at each node
of the tree, Kmax = 5 and minsize = 10. This tree has six leaves, whereas Scenario 1 contains
only five clusters. In this illustration, the joining step will be helpful to join the group with only
4 curves, corresponding to the node S3,2, with another group, hopefully the node S3,1.

28

Algorithm 1: Construction of a tree T

Input: A training sample SN0 = {X1, . . . , XN0} ⊂ H, J (p), Kmax and minsize.
Initialization: Set (d, j) = (0, 0) and S0,0 = SN0 .
Computation of the MFPCA components: Perform a MFPCA with J
components on the data in the node Sd,j and get the set of eigenvalues Λd,j

associated with a set of eigenfunctions Φd,j. Build the matrix Cd,j defined in (4.1).
Estimation of the number of clusters: For each K = 1, . . . , Kmax, fit
K−components GMM using an EM algorithm on the columns of the matrix Cd,j.
The models are denoted by {M1, . . . ,MKmax}. The number of mixture

components is estimated by K̂d,j defined in (4.1) using the bic.
Stopping criterion: Test if the node indexed by (d, j) is a terminal node, that is

if K̂d,j = 1 or if there are less than minsize elements in Sd,j. If the node is
terminal, then stop the construction of the tree for this node, otherwise go to the
next step.
Children nodes construction: A non-terminal node indexed by (d, j) is split
into two subnodes as follows:

1. Fit a 2−component GMM using an EM algorithm.

2. For each element of Sd,j, compute the posterior probability to belong to the first
component.

3. Form the children nodes as
Sd+1,2j = {elements of Sd,j with posterior probability ≥ 1/2} and
Sd+1,2j+1 = Sd,j \Sd+1,2j.

Recursion: Continue the procedure by applying the Computation of the
MFPCA components step to the nodes (d + 1, 2j) and (d + 1, 2j + 1).
Output: A set of nodes {Sd,j, 0 ≤ j < 2d, 0 ≤ d < D}.

29

0 1

−40

−20

0

20

(0, 0)

0 1

−40

−30

−20

−10

0

(1, 0)

0 1

0

10

20

30

(1, 1)

0 1

−30

−20

−10

0

(2, 0)

0 1

−35

−30

−25

−20

−15

(2, 1)

0 1
8

10

12

14

16

18

(2, 2)

0 1

0

10

20

30

(2, 3)

0 1

−20

−18

−16

−14

−12

(3, 0)

0 1

−30

−20

−10

0

(3, 1)

0 1

−35

−30

−25

−20

−15

(3, 2)

0 1

−35

−30

−25

−20

−15

(3, 3)

Figure 11: Illustration of maximal tree for Scenario 1 simulated data (different scale for
each graph).

30

Algorithm 2: Joining step

Input: A set of nodes {Sd,j, 0 ≤ j < 2d, 0 ≤ d < D}, J (p), and Kmax.
Initialization: Build the set of terminal nodes

V = {Sd,j, 0 ≤ j < 2d, 0 ≤ d < D |Sd,j is a terminal node}.

Creation of the graph: Build the set E defined in (4.2) and denote by G the
graph (V,E). Associate with each edge (Sd,j,Sd′,j′) the value of the bic that

corresponds to K̂(d,j)∪(d′,j′).
Stopping criterion: If E is empty or V is reduced to a unique element, stop the
algorithm.
Aggregation of two nodes: Let (Sd,j,Sd′,j′) be the edge with the maximum
bic value. Then, remove this edge and replace the asssociated vertice by
Sd,j ∪Sd′,j′ .
Recursion: Continue the procedure by applying the Creation of the graph
step with {V \ {Sd,j,Sd′,j′}} ∪ {Sd,j ∪Sd′,j′}.
Output: A partition U of S0,0 and labels associated to each element of SN0 .

Algorithm 3: Classify one observation

Input: A new realization X of the process X, the complete tree T and the
partition U .
for Sd,j ∈ {Sd,j, 0 ≤ j < 2d, 0 ≤ d < D} do

1. Compute the vector (
〈〈X− µd,j, ϕ

1
d,j〉〉, . . . , 〈〈X− µd,j, ϕ

J
d,j〉〉
)>

;

2. Compute the posterior probability to belong to each component of the
2-components GMM fitted on Sd,j;

3. Compute the probability to be in Sd,j as

P?(X ∈ Sd,j) =
∏

S∈Pa(Sd,j)

P?(X ∈ S | X ∈ Pa(S)).

end
for U ∈ U do

Compute P?(X ∈ U).
end
Output: A label for X which is defined as arg maxU∈U P?(X ∈ U).

31

B.1 On the number of scores J (p) and J

In many situations, considering one score for each coordinate X(p) (i.e., taking J (p) = 1) suffices
to detect a mixture structure. This allows J to be kept small when P is large. We provide
here some details on why one score could be sufficient for revealing a mixture structure. For
simplicity, let P = 1 and K = 2. Let

X(t) =

K∑
k=1

µk(t)1{Z=k} +
∑
j≥1

ξjφj(t), t ∈ T ,

with some basis {φj}j≥1, and k ∈ {1, 2} Let {ϕj}j≥1 be the FPCA basis. By Lemma 1, consid-
ering only ϕ1, we have

c1 = 〈〈X − µ, ϕj〉〉, where µ(·) = p1µ1(·) + (1− p1)µ2(·), and p1 = P(Z = 1) ∈ (0, 1).

Then, for k ∈ {1, 2},

c1 | Z = k ∼ N
(
mk1, τ

2
k1

)
, where mk1 = 〈〈µk − µ, ϕ1〉〉 and τ2k1 =

∑
l≥1
〈〈φl, ϕ1〉〉2σ2kl.

Let us list the cases where the mixture structure can be detected by the first score.
Case 1. We have m11 6= m21, that is 〈〈µ1−µ2, ϕ1〉〉 6= 0. In particular, this requires µ1 6= µ2.
Case 2. We have m11 = m21, but τ211 6= τ221, that is∑

l≥1
〈〈φl, ϕ1〉〉2{σ21l − σ22l} 6= 0.

In particular, if 〈〈φl, ϕ1〉〉 = 0 when l > 1, we need σ211 6= σ222.

C Numerical illustrations

We use the Adjusted Rand Index to compare the different clustering algorithms. In the following,
we provide a description of this criterion. When the true labels are available, the estimated
partitions are compared with the true partition using the Adjusted Rand Index (ARI) [22],
which is an “adjusted for chance” version of the Rand Index [38]. Let U = {U1, . . . , Ur} and
V = {V1, . . . , Vs} be two different partitions of SN , i.e

Ui ⊂ SN , 1 ≤ i ≤ r, Vj ⊂ SN , 1 ≤ j ≤ s,

SN =
r⋃

i=1

Ui =
s⋃

j=1

Vj ,

and Ui ∩ Ui′ = ∅, 1 ≤ i, i′ ≤ r, Vj ∩ Vj′ = ∅, 1 ≤ j, j′ ≤ s.
We denote by nij := |Ui ∩ Vj |, 1 ≤ i ≤ r, 1 ≤ j ≤ s, the number of elements of SN that are
common to the sets Ui and Vj . ni· := |Ui| (or n·j := |Vj |) then corresponds to the number of
elements in Ui (or Vi). With these notations, the ARI is defined as

ARI(U ,V) =

∑r
i=1

∑s
j=1

(nij

2

)
−
[∑r

i=1

(
ni·
2

)∑s
j=1

(n·j
2

)]
/
(
N
2

)
1
2

[∑s
j=1

(n·j
2

)
+
∑s

j=1

(n·j
2

)]
−
[∑r

i=1

(
ni·
2

)∑s
j=1

(n·j
2

)]
/
(
N
2

) .
32

0 50 100 150 200 250 300 350 400

Computation time (in seconds)

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Figure 12: Computation times for all the scenarios from 100 experiments with N = 1000
for the Scenarios 1, 2 and 3 and N = 500 for the Scenario 4.

C.1 Computation times

In Figure 12 we report the computation times for R = 100 replications of each of the scenarios.
For the Scenarios 1, 2 and 3, we consider N = 1000 and the curves are observed over 101
equidistant points. The J (p) parameter is set to represent 95% of the variance in the data,
and Kmax and minsize are also set to their default values. For Scenario 4, where P = 2, we
consider N = 500 and the curves are observed over 100 equidistant points and the images are
observed over a 2-D grid of 100×100 points. We choose J (1) that represents 95% of the variance
for the curves, and J (2) = 2 for the images. We keep Kmax and minsize as default. In all
situations considered, the computation time is inferior to one minute most of the time. All the
computations were performed on a MacBook Pro mid-2014 with 2.6GHz Inter Core i5 with 8Go
RAM.

C.2 Influence of J (p)

The results in this section correspond to 500 experiments with N = 1000, for all Scenarios. In
Figure 13 we present a comparison of the performance of the algorithm for different values of
J (p). For Scenario 1, the performance does not improve as J (p) increases. For Scenario 2 and 3,
larger J (p) leads to slightly larger ari.

Table 4 presents the estimation of the number of clusters and ari when J (p), and thus J ,
varies between the nodes. We use J (p) = 4 for the first split and we then reduce to J (p) = 2 the
rest of the construction of the tree. We remark that the number of clusters is well estimated.
The ari does not really change compared to the case where we do not change J (p) through the
tree. The investigation of an alternative data-driven choice of J (p) is left for future work.

C.3 On the Gaussian assumption

A Reviewer asked whether the multivariate Gaussian distribution is a strict assumption. Our
Lemma 1 crucially uses the Gaussian assumption. If the ξj in (2.1) are not Gaussian, in general
the change of basis does not preserve the distributions. If one assumes that the basis {φj}j≥1 is

33

J (p) = 3 J (p) = 5 J (p) = 7
0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
R
I

(a) Scenario 1

J (p) = 3 J (p) = 5 J (p) = 7
0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
R
I

(b) Scenario 2

J (p) = 3 J (p) = 5 J (p) = 7
0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
R
I

(c) Scenario 3

Figure 13: Estimation of ari for the influence of J (p)

Number of clusters 5 6 7 8

fCUBT 95 3 1 1

(a) Scenario 2 – Number of clusters selected for fCUBT for 500 simulations as a percentage.

Quantile 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

fCUBT 0.59 0.87 0.89 0.90 0.90 0.90 0.91 0.91 0.92 0.92 0.94

(b) Scenario 2 – Quantile of the ARI for 500 simulations.

Table 4: Results for Scenario 2 with different J (p) per nodes

34

0.0 0.2 0.4 0.6 0.8 1.0

p-values

MJB

Royston

Henze-Zirkler

Energy

Doornik-Hansen

Lobato-Velasco

(a) Scenario 1

0.0 0.2 0.4 0.6 0.8 1.0

p-values

(b) Scenario 2

0.0 0.2 0.4 0.6 0.8 1.0

p-values

(c) Scenario 3

0.0 0.2 0.4 0.6 0.8 1.0

p-values

(d) Scenario 4

Figure 14: p-values for the different normality tests for different Scenarios. The red dashed
line represents the 5% level.

given, it could be possible to consider mixture models with other distributions for the ξj . This
would be a different modeling approach, which will be considered elsewhere.

The Gaussian assumption could be tested using, for instance, the tests proposed in [18].
We investigated the effectiveness of such tests in our simulation framework. We consider six
multivariate normality tests: Mardia’s (MJB), Royston’s, Henze-Zirkler’s, Energy, Doornik-
Hansen’s and Lobato-Velasco’s normality tests. The tests are run on the leaves of the grown
trees for 100 replications of each of the four Scenarios considered above. As the number of
leaves can be different for each tree, we test each leaf independently, and gather the results.
Figure 14 reports the p-values of the different tests under the null hypothesis for our different
scenarios, with N = 1000. For Scenario 1, only the Royston’s multivariate normality test
performs satisfactory, that is in most of the replications it does not reject the Gaussian scores
hypothesis at the 5% level. For Scenarios 2, 3 and 4, all the tests perform well and indicate the
data are likely to our Gaussian assumption.

Finally, in reply to one Reviewer’s inquiry, we also investigate the robustness of our approach
to departures from the Gaussian assumption. For this purpose, we reconsider Scenario 1 where
the coefficients c11, c12, . . . , c23 are generated according to a double exponential distribution with
densities f(x) = exp(−|x/β|)/(2β), x ∈ R, where the different values of the β parameter are
fixed in a such way as to preserve the variances considered in (1). The results obtained from
500 replications are reported in Table 5.

We notice that our algorithm has a lesser performance for detecting the correct number
of clusters, though it is able to do it in a majority of cases (53%). The quantiles of ari are
also worse than with the Gaussian coefficients c11, c12, . . . , c23. However, the performance of the
algorithm remains good and comparable to the performance of the competing approaches as we
reported in Table 1, in the Gaussian coefficients setup. In conclusion, our approach seems to be
robust with respect to some departures from the Gaussian assumption.

C.4 Another comparison with supervised methods

This part is similar to Section 5.1.4, except that, here, we only learn the clusters on the test
subset for the fCUBT algorithm. We performed the simulations 500 times, and the results are
plotted in Figure 15. Between parenthesis, we have written the number of times fCUBT gets the
right number of clusters over the 500 simulations, and so the number of simulations we examine

35

Number of clusters 5 6 7 8 9

fCUBT 53 35 8 3 1

(a) Scenario 1 – Number of clusters selected for fCUBT for 500 simulations as a percentage.

Quantile 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

fCUBT 0.49 0.65 0.68 0.69 0.71 0.72 0.73 0.74 0.75 0.77 0.82

(b) Scenario 1 – Quantile of the ari for 500 simulations.

Table 5: Results for Scenario 1 with double exponential coefficients

fCUBT GPC Random Forest
0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
R
I

(a) Scenario 1 (257/500)

fCUBT GPC Random Forest
0.4

0.5

0.6

0.7

0.8

0.9

1.0
A
R
I

(b) Scenario 2 (172/500)

fCUBT GPC Random Forest
0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
R
I

(c) Scenario 3 (188/500)

Figure 15: Estimation of ari for the comparison with supervised models. The number
of replications among the 500 where fCUBT recovers the correct number of clusters K is
given between parenthesis

for the computation of the ari. We point out that this retrieval percentage is much smaller
than that in Section 5.1.4 but it is due to the fact that here, we only considers a dataset of size
N1 = 330 for applying our algorithms. We remark that our unsupervised method is as good as
supervised ones when the true number of classes is found.

D Real data analysis: the rounD dataset

In this section, we provided details on the rounD dataset. The aerial view of the roundabout
is presented in Figure 16. This dataset is part of a set of vehicle trajectory data provided by
the Institute for Automotive Engineering (ika) in RWTH Aachen University. One may cite the
highD dataset (about highways) [30] and the inD dataset (about intersections) [3], such others
produced by ika. These datasets are particularly useful for studying the behavior of road users in
some specific situations. They start to replace the Next Generation Simulation (NGSIM) study
[15], widely used in traffic flow studies, as a benchmark for models about trajectory prediction
or classification, because they provide more accurate data (see e.g. [24, 33, 32, 14, 2, 51] for
some references).

Figure 17 presents the first eigenfunction for each coordinate X(p) in the first MFPCA at

36

Figure 16: rounD dataset – the considered roundabout. Source: Google Maps

0.0 0.5 1.0

Normalized time

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

ϕ
1

Longitudinal Position

0.0 0.5 1.0

Normalized time

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

ϕ
1

Lateral Position

0.0 0.5 1.0

Normalized time

−0.16

−0.14

−0.12

−0.10

−0.08

−0.06

ϕ
1

Longitudinal Velocity

0.0 0.5 1.0

Normalized time

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

ϕ
1

Lateral Velocity

0.0 0.5 1.0

Normalized time

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

0.000

0.005

ϕ
1

Longitudinal Acceleration

0.0 0.5 1.0

Normalized time

−0.012

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

0.002

ϕ
1

Lateral Acceleration

Figure 17: The first eigenfunction for each coordinate X(p) of the first node of the tree.

the beginning of the tree.
Figure 18 presents the first three levels of the tree, starting from the root, obtained using a

small subsample (that represents 311 multivariate curves) of the rounD dataset. This sub-tree
helps to understand how the clusters are built. The two colors represents the binary splitting at
this node. We see that the different entry/exit combinations are already separated in the three
steps. The split inside an entry/exit scenario is produced in the subsequent binary splits of the
tree.

We tested whether the Gaussian assumption used for our model-based clustering is rea-
sonable on the rounD dataset. We consider six multivariate normality tests: Mardia’s (MJB),
Royston’s, Henze-Zirkler’s, Energy, Doornik-Hansen’s and Lobato- Velasco’s normality tests.
The tests are performed on the leaves of the tree with more than 10 observations. Figure 19
presents the p-values computed for each test. In a majority of the cases, we do not reject the
null hypothesis. The data are thus likely to have a mixed Gaussian distribution.

37

References

[1] G. I. Allen. Multi-way functional principal components analysis. In 2013 5th IEEE Interna-
tional Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAM-
SAP), pages 220–223, Dec. 2013.

[2] A. Bhattacharyya, M. Hanselmann, M. Fritz, B. Schiele, and C.-N. Straehle. Conditional
Flow Variational Autoencoders for Structured Sequence Prediction. arXiv:1908.09008 [cs,
stat], Aug. 2020.

[3] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein. The inD
Dataset: A Drone Dataset of Naturalistic Road User Trajectories at German Intersections.
arXiv:1911.07602 [cs, eess], Nov. 2019.

[4] C. Bouveyron and J. Jacques. Model-based Clustering of Time Series in Group-specific
Functional Subspaces. Advances in Data Analysis and Classification, 5(4):281–300, 2011.

[5] C. Bouveyron, E. Côme, and J. Jacques. The discriminative functional mixture model for
a comparative analysis of bike sharing systems. The Annals of Applied Statistics, 9(4):
1726–1760, Dec. 2015.

[6] C. Bouveyron, G. Celeux, T. B. Murphy, and A. E. Raftery. Model-Based Clustering and
Classification for Data Science: With Applications in R. Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press, 2019.

[7] R. J. Carroll, A. Delaigle, and P. Hall. Unexpected properties of bandwidth choice when
smoothing discrete data for constructing a functional data classifier. Annals of Statistics,
41(6):2739–2767, Dec. 2013.

[8] S.-S. Cheng, H.-M. Wang, and H.-C. Fu. A model-selection-based self-splitting Gaussian
mixture learning with application to speaker identification. EURASIP Journal on Advances
in Signal Processing, 2004:2626–2639, Jan. 2004.

[9] A. Delaigle and P. Hall. Defining probability density for a distribution of random functions.
The Annals of Statistics, 38(2):1171–1193, Apr. 2010.

[10] A. Delaigle and P. Hall. Achieving near perfect classification for functional data. Journal
of the Royal Statistical Society. Series B (Statistical Methodology), 74(2):267–286, 2012.

[11] A. Delaigle and P. Hall. Classification using censored functional data. Journal of the
American Statistical Association, 108(504):1269–1283, 2013.

[12] A. Delaigle, P. Hall, and T. Pham. Clustering functional data into groups by using pro-
jections. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 81(2):
271–304, 2019.

[13] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data
via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
39(1):1–38, 1977.

38

[14] F. Diehl, T. Brunner, M. T. Le, and A. Knoll. Graph Neural Networks for Modelling Traffic
Participant Interaction. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 695–701,
June 2019.

[15] FHWA, U.S. Department of Transportation. NGSIM–Next Generation SIMulation, 2006.

[16] R. Fraiman, B. Ghattas, and M. Svarc. Interpretable clustering using unsupervised binary
trees. Advances in Data Analysis and Classification, 7(2), June 2013.

[17] S. Golovkine, N. Klutchnikoff, and V. Patilea. Learning the smoothness of noisy curves
with application to online curve estimation. arXiv:2009.03652 [math, stat], Sept. 2020.

[18] T. Górecki, L. Horvàth, and P. Kokoszka. Tests of normality of functional data. Interna-
tional Statistical Review, 88(3):677–697, 2020.

[19] C. Happ and S. Greven. Multivariate Functional Principal Component Analysis for Data
Observed on Different (Dimensional) Domains. Journal of the American Statistical Asso-
ciation, 113(522):649–659, Apr. 2018.

[20] L. Horvàth and P. Kokoszka. Inference for Functional Data with Applications. Springer
Series in Statistics. Springer-Verlag, New York, 2012.

[21] X. Hu and F. Yao. Sparse Functional Principal Component Analysis in High Dimensions.
arXiv:2011.00959 [stat], Nov. 2020.

[22] L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):193–218,
Dec. 1985.

[23] F. Ieva, A. M. Paganoni, D. Pigoli, and V. Vitelli. Multivariate functional clustering for
the morphological analysis of electrocardiograph curves. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 62(3):401–418, 2013.

[24] R. Izquierdo, A. Quintanar, I. Parra, D. Fernandez-Llorca, and M. A. Sotelo. Vehicle
Trajectory Prediction in Crowded Highway Scenarios Using Bird Eye View Representations
and CNNs. arXiv:2008.11493 [cs], Aug. 2020.

[25] J. Jacques and C. Preda. Funclust: A curves clustering method using functional random
variables density approximation. Neurocomputing, 112:164–171, July 2013.

[26] J. Jacques and C. Preda. Functional data clustering: a survey. Advances in Data Analysis
and Classification, 8(3):24, Jan. 2014.

[27] J. Jacques and C. Preda. Model-based clustering for multivariate functional data. Compu-
tational Statistics and Data Analysis, 71:92–106, June 2014.

[28] M. Kayano, K. Dozono, and S. Konishi. Functional Cluster Analysis via Orthonormalized
Gaussian Basis Expansions and Its Application. Journal of Classification, 27(2):211–230,
Sept. 2010.

39

[29] R. Krajewski, T. Moers, J. Bock, L. Vater, and L. Eckstein. The rounD Dataset: A Drone
Dataset of Road User Trajectories at Roundabouts in Germany. submitted.

[30] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein. The highD Dataset: A Drone Dataset of
Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated
Driving Systems. arXiv:1810.05642 [cs, stat], Oct. 2018.

[31] J. S. Marron, J. O. Ramsay, L. M. Sangalli, and A. Srivastava. Functional data analysis of
amplitude and phase variation. Statist. Sci., 30(4):468–484, 11 2015.

[32] K. Messaoud, I. Yahiaoui, A. Verroust-Blondet, and F. Nashashibi. Non-local Social Pooling
for Vehicle Trajectory Prediction. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages
975–980, June 2019.

[33] K. Messaoud, I. Yahiaoui, A. Verroust, and F. Nashashibi. Attention Based Vehicle Tra-
jectory Prediction. IEEE Transactions on Intelligent Vehicles, 2020.

[34] J. Park and J. Ahn. Clustering multivariate functional data with phase variation. Biomet-
rics, 73(1):324–333, 2017.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[36] D. Pelleg and A. Moore. X-means: Extending K-means with Efficient Estimation of the
Number of Clusters. In In Proceedings of the 17th International Conf. on Machine Learning,
pages 727–734. Morgan Kaufmann, 2000.

[37] J. Ramsay and B. W. Silverman. Functional Data Analysis. Springer Series in Statistics.
Springer-Verlag, New York, 2 edition, 2005.

[38] W. M. Rand. Objective Criteria for the Evaluation of Clustering Methods. Journal of the
American Statistical Association, 66(336):846–850, 1971.

[39] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning. MIT Press, Cambridge, MA, USA, Jan. 2006.

[40] M. Reed and B. Simon. Methods of Modern Mathematical Physics: Functional analysis.
Academic Press, 1980.

[41] A. Schmutz, J. Jacques, and C. Bouveyron. funHDDC: Univariate and Multivariate Model-
Based Clustering in Group-Specific Functional Subspaces, 2019. R package version 2.3.0.

[42] A. Schmutz, J. Jacques, C. Bouveyron, L. Cheze, and P. Martin. Clustering multivariate
functional data in group-specific functional subspaces. Computational Statistics, 2020.

[43] G. Schwarz. Estimating the Dimension of a Model. The Annals of Statistics, 6(2):461–464,
1978.

40

[44] M. Soueidatt, C. Preda, J. Jacques, and V. Kubicki. Funclustering: A package for functional
data clustering., 2014. R package version 1.0.1.

[45] G. Staerman, P. Mozharovskyi, S. Clémençon, and F. d’Alché Buc. Functional Isolation
Forest. In Asian Conference on Machine Learning, pages 332–347. PMLR, Oct. 2019.

[46] T. Tarpey and K. K. J. Kinateder. Clustering Functional Data. Journal of Classification,
20(1):093–114, May 2003.

[47] S. Tokushige, H. Yadohisa, and K. Inada. Crisp and fuzzy k-means clustering algorithms
for multivariate functional data. Computational Statistics, 22(1):1–16, Apr. 2007.

[48] O. I. Traore, P. Cristini, N. Favretto-Cristini, L. Pantera, P. Vieu, and S. Viguier-Pla.
Clustering acoustic emission signals by mixing two stages dimension reduction and non-
parametric approaches. Computational Statistics, 34(2):631–652, June 2019.

[49] J. Wang, R. K. W. Wong, and X. Zhang. Low-rank covariance function estimation for
multidimensional functional data. Journal of the American Statistical Association, 0(0):
1–14, 2020.

[50] J.-L. Wang, J.-M. Chiou, and H.-G. Müller. Functional Data Analysis. Annual Review of
Statistics and Its Application, 3(1):257–295, 2016.

[51] Y. Wu, J. Hou, G. Chen, and A. Knoll. Trajectory Prediction Based on Planning Method
Considering Collision Risk. In 2020 5th International Conference on Advanced Robotics
and Mechatronics (ICARM), pages 466–470, Dec. 2020.

[52] F. Yao, H.-G. Müller, and J.-L. Wang. Functional Data Analysis for Sparse Longitudinal
Data. Journal of the American Statistical Association, 100(470):577–590, June 2005.

[53] A. Z. Zambom, J. A. Collazos, and R. Dias. Selection of the Number of Clusters in Func-
tional Data Analysis. arXiv:1905.00977 [stat], May 2019.

41

F
ig

u
re

18
:

B
eg

in
n
in

g
of

th
e

tr
ee

fo
r

th
e

ro
u
n
D

d
at

as
et

.

42

0.0 0.2 0.4 0.6 0.8 1.0

p-values

MJB

Royston

Henze-Zirkler

Energy

Doornik-Hansen

Lobato-Velasco

Figure 19: p-values for the different normality tests for the rounD dataset. Each point
represents one leaf of the tree with more than 10 observations. The red dashed line
represents the 5% level.

43

	1 Introduction
	2 Model and methodology
	2.1 Notion of multivariate functional data
	2.2 A mixture model for curves
	2.3 Multivariate Karhunen-Loève representation

	3 Learning the parameters
	3.1 Estimation of mean and covariance
	3.2 Derivation of the MFPCA components

	4 Multivariate functional clustering
	4.1 Building the maximal tree
	4.2 Joining step
	4.3 Classification of new observations

	5 Empirical analysis
	5.1 Simulation experiments
	5.1.1 Model selection
	5.1.2 Benchmark with existing methods
	5.1.3 Comments on the classification of new set of curves
	5.1.4 A comparison with supervised methods

	5.2 Real data analysis: the rounD dataset

	6 Extension to images
	7 Conclusion
	A Lemmas and Proofs
	B Algorithms
	B.1 On the number of scores J(p) and J

	C Numerical illustrations
	C.1 Computation times
	C.2 Influence of J(p)
	C.3 On the Gaussian assumption
	C.4 Another comparison with supervised methods

	D Real data analysis: the rounD dataset

