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Spline-Rule Ensemble Classifiers with Structured Sparsity Regularization for 

Interpretable Customer Churn Modeling 

Abstract 

An important business domain that relies heavily on advanced statistical- and machine learning 

algorithms to support operational decision-making is customer retention management. Customer churn 

prediction is a crucial tool to support customer retention. It allows an early identification of customers 

who are at risk to abandon the company and provides the ability to gain insights into why customers are 

at risk. Hence, customer churn prediction models should complement predictive performance with 

model insights. Inspired by their ability to reconcile strong predictive performance and interpretability, 

this study introduces rule ensembles and their extension, spline-rule ensembles, as a promising family 

of classification algorithms to the customer churn prediction domain. Spline-rule ensembles combine 

the flexibility of a tree-based ensemble classifier with the simplicity of regression analysis. They do, 

however, neglect the relatedness between potentially conflicting model components which can introduce 

unnecessary complexity in the models and compromises model interpretability. To tackle this issue, a 

novel algorithmic extension, spline-rule ensembles with sparse group lasso regularization (SRE-SGL) 

is proposed to enhance interpretability through structured regularization. Experiments on fourteen real-

world customer churn data sets in different industries (i) demonstrate the superior predictive 

performance of spline-rule ensembles with sparse group lasso over a set well yet powerful benchmark 

methods in terms of AUC and top decile lift; (ii) show that spline-rule ensembles with sparse group 

lasso regularization significantly outperform conventional rule ensembles whilst  performing at least as 

well as conventional spline-rule ensembles; and (iii) illustrate the interpretable nature of a spline-rule 

ensemble model and the advantage of structured regularization in SRE-SGL by means of a case study 

on customer churn prediction for a telecommunications company.  

 

Keywords: customer churn prediction; predictive analytics; spline-rule ensemble; interpretable data 

science; sparse group lasso; regularized regression  
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1 Introduction 

An important application of data science is to drive and to support data-driven decision making. 

Many decision makers are convinced that the use of customer-data capabilities allows to gain an 

unbeatable competitive advantage [1]. Therefore, modern companies have developed the analytical and 

technological capabilities that enable collection, storage and analysis of data. An important business 

domain that relies heavily on advanced statistical - and machine learning algorithms to support 

operational decision making is customer retention management [2]. Customer churn prediction (CCP) 

is of crucial importance for managing customer retention as a tool to identify customers who are at risk 

to abandon the company and to better understand why customers are at risk [3]. In line with these 

managerial objectives of CCP models, previous research in CCP focused both on predictive performance 

(i.e. detecting who is at risk) [4,5] and interpretability (i.e. understanding why a customer is at risk) [6]. 

Accuracy in CCP is generally pursued due to its immediate impact on campaign profitability [7]. Model 

interpretability is crucial to facilitate management buy-in and organizational acceptance, to deliver 

insights into the drivers of churn and loyalty and consequently, to provide venues for formulating 

strategies to remedy customer churn and promote loyalty [8,9]. 

Algorithms that combine good predictive performance and interpretable output, such as decision 

trees (DT) or logistic regression (LR), are preferred in CCP [2,10]. Ensemble learners can achieve higher 

predictive performance, but often lack on the interpretability criterion [4]. A notable exception are rule 

ensembles (RE), a technique that is designed to combine the merits of ensemble learners with a high 

degree of interpretability [11]. Like many other ensemble learners, rule ensembles first generate a set of 

decision trees. However, unlike other ensemble learners, trees are decomposed into rules and only a 

dense set of the rules derived from these trees is retained though the application of lasso regression. The 

initial variables are also added to the lasso regression in the form of linear basis functions (i.e., variable 

transformations) to better account for linear variable effects. Rule ensembles thus combine terms rather 

than member classifiers. The simple nature of the constituent terms that form the model and their 

selection through lasso regression result in an easily interpretable model. Recently, spline-rule 

ensembles (SRE) are presented as an extension to rule ensembles that complement rules and linear terms 
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with single-term spline functions in order to better accommodate univariate, nonlinear relationships 

between the dependent variable and individual explanatory variables [12]. 

Whilst the promise of competitive predictive performance and model interpretability has attracted 

attention in several domains such as bioinformatics and computer science [e.g. 13,14], applications of 

rule ensembles in management, and more specifically, decision support in business, remain scarce to 

date. In an application of corporate bankruptcy prediction, SRE demonstrated superior performance over 

conventional RE whilst the added value of the integration of spline functions was demonstrated [12]. 

Despite their promising traits, other applications of RE and SRE in business decision-making problems 

are very scarce and to the best of our knowledge RE and SRE have not been empirically assessed for 

predicting customer churn thus far. This study’s primary objective is to evaluate and compare both 

model architectures in the domain of CCP. 

RE and SRE rely on lasso regression, which does not consider relatedness that exists between 

covariates. This is, nevertheless, very important to consider, because the building blocks of SRE (i.e. 

splines, linear base functions and rules) can share a dependence on the same variables, which can cause 

the model to become unnecessarily complex. Imagine for example the impact on a model’s ease of 

interpretation if a variable enters the model in three terms: a linear base function, a spline and a rule. In 

such a case, an analyst would face difficulties to assess the isolated effect of that variable on the churn 

probability.  These issues are aggravated when conflicting parameter estimate signs emerge. To tackle 

these issues and significantly improve the interpretability of SRE, the second objective of this study is 

to propose a new algorithm entitled spline-rule ensembles with sparse group lasso regularization (SRE-

SGL). SRE-SGL groups rule, spline and linear terms according to the variables upon which they depend 

by applying a straightforward indexing function. This term grouping is followed by sparse group lasso 

(SGL) regularization [15] that accommodates this group structure by enforcing regularization between 

as well as within term groups. As such, the co-occurrence of terms that depend on the same variable or 

variable set is discouraged and the complexity of the resulting model is reduced in comparison to a 

conventional SRE model. 
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The contributions of this paper are the following: (i) RE and SRE are evaluated and compared in the 

field of CCP and their ability to reconcile accuracy and model interpretability is assessed; and (ii) SRE-

SGL, extending spline-rule ensembles with sparse group lasso regularization, is introduced as a natural 

extension of generic RE and SRE that simplifies model interpretation. To assess and compare predictive 

performance of RE, SRE and the new SRE-SGL, as well as a set of benchmark algorithms, experiments 

are conducted on a large set of 14 data sets containing real-world customer churn data sets in various 

sectors to compare RE and its extensions with a set of benchmark algorithms in terms of predictive 

performance. The added value offered by SRE-SGL in comparison to RE and SRE in terms of model 

interpretability is illustrated using an in-depth case study.  

This paper is structured as follows. In the next section related research is discussed. This involves 

three subsections: Section 2.1 discusses the concept of interpretability in data science. Section 2.2 

discusses prior literature in customer churn prediction that focusses on the trade-off between accuracy 

and interpretability. Section 2.3 introduces rule-based ensemble classifiers and their applications. 

Section 3 presents the methodology. Section 4 handles the data and the experimental design. The results 

of our large benchmark experiment and a case study to demonstrate the interpretability of SRE-SGL are 

discussed in section 5. The study’s conclusions, limitations and areas for future research are presented 

in section 6. 

2 Related Literature 

2.1 Interpretability in Data Science 

Interpretability is an important topic in data science and various approaches have been proposed 

for explaining model predictions [16,17].  Interpretability cannot be described in a pure mathematical 

formula, and depends on human interpretation. Hence, interpretability can be defined as the degree to 

which humans can understand the cause of a decision [18,19]. As the ability to understand the cause of 

a decision depends on the observer, interpretability is a subjective topic. Nevertheless, it is an important 

dimension to consider for model evaluation to ensure that predictions are unbiased, sensitive information 
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is protected, the reliability and robustness of the model is checked and that humans can trust the model 

[20].   

Approaches to explain model predictions vary in scope and flexibility [17]. The scope indicates 

the level of explanations and can either be on the global or on the instance level. Global explanations 

give an insight in the model’s predictions over all observations and for all possible variables’ values. 

Instance-level explanations, on the other hand, are specific for a single prediction and help to understand 

why a certain instance received a specific prediction. Flexibility indicates whether the approach is 

specific to the model or model-agnostic. Flexibility is linked to the way interpretability is achieved. 

Intrinsic interpretable models achieve interpretability by restricting the complexity of the machine 

learning algorithm and their interpretability is thus often model-specific. The model can also be analyzed 

after training using so called post-hoc methods, which are often model-agnostic approaches. 

Our approach focuses on global, model-specific interpretability. The output of SRE-SGL is 

intrinsically interpretable, which allow to interpret the model’s output directly as demonstrated in the 

case study in section 5.2. 

2.2 Interpretable Customer Churn Prediction 

CCP models serve a dual purpose to decision makers; detecting customers who are at risk of 

churning and helping to understand why customers are at risk of churning [3]. Therefore, CCP models 

require not only high predictive performance but also interpretable output. In this section, we review 

literature in the CCP domain that focuses on churn prediction modeling as tool for better decision 

making. 

The predictive performance of CCP models is a well-researched topic because of its importance for 

decision makers to detect which customers are at risk of churning. There are many strategies to improve 

the predictive performance of CCP models such as intelligent data preprocessing [21], data 

augmentation [22] or by the choice of algorithm [2]. Given the motivation of the focal study, we focus 

on the latter. Researchers have experimented with a wide range of algorithms in extensive benchmarking 

studies [4]. Such studies focused on the algorithms’ ability to discriminate between churning – and non-
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churning customers. Logistic regression is the standard benchmark algorithm in CCP because of its 

ability to produce decent and robust results [21,23]. More complex algorithms, however, frequently 

perform significantly better in terms of predictive performance [2,4,22,24]. The results in large 

benchmarking studies demonstrate that especially ensembles, such as random forests, perform well [4]. 

Despite the beneficial traits in terms of predictive performance, interpretability of ensembles remains an 

issue which causes that they are not always the preferred option.  

CCP models should be interpretable in order to assist decision makers in managing customer 

retention. Recent studies in CCP explicitly acknowledge the importance of interpretability of predictive 

models. Martens et al. [10] propose a complete framework to assess the overall performance of 

classification models from a user perspective in terms of accuracy, interpretability and justifiability. In 

their analysis, interpretability is based on the output type and output size. They state that some output 

types, such as rules or linear ones, and smaller output sizes are intuitively easier to understand for 

humans. 

A first strategy to obtain interpretable models in CCP is by making non-interpretable output of so 

called “black-box models” more interpretable through additional analyses. On the one hand, several 

model-agnostic interpretation techniques exist that to reveal the magnitude and nature of the effect that 

variables exert on a model’s predictions. Notable examples are permutation-based feature importance 

scores, and partial dependence functions and plots. Both techniques have witnessed widespread adoption 

in CCP literature. On the other hand, transparent surrogate classifiers can be created to complement, or 

replace, opaque models. An example of this approach is rule extraction. For example, Verbeke et al. 

[25] experimented with new rule induction techniques, which induce accurate as well as interpretable 

classification rule-sets. Farquad et al. [26] propose a hybrid approach to render interpretable rule-based 

output for a support vector machine model. A drawback of such methods is that they only approximate 

the original model. The development of interpretable models is a second strategy. Miguéis et al. [27] 

introduce multivariate adaptive regression splines (MARS [28]) to customer churn prediction and 

highlight its ability to uncover nonlinear effects. Coussement et al. [29] introduced Generalized Additive 

Models (GAM) as a highly interpretable model in CCP. Several extensions of GAM have been presented  
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that improved the predictive performance while maintaining its interpretability [30–32]. Other 

interpretable models depend at least partly on a tree-based structure. Qi et al. [33] introduce 

ADTreesLogit, a model that integrates the advantage of ADTrees in the logistic regression model, to 

improve the predictive accuracy and interpretability of existing churn prediction models. De Caigny et 

al. [2] introduce the logit leaf model, a highly interpretable hybrid model based on decision trees and 

logistic regression that delivers actionable insights.  

A final strategy involves imposing the interpretability criterion in the feature engineering. Backiel 

et al. [34] demonstrate how interpretable features can be extracted out of call records by using social 

network analysis. The use of these network features can improve the performance over local features 

while remaining highly interpretable. Verbraken et al. [35] stress the importance of compact networks 

derived from a Bayesian network classifier for the model interpretability. In the telecommunication 

industry, Lima et al. [36] show how domain knowledge can be incorporated in the data mining process 

for churn prediction. 

The proposed SRE-SGL fits perfectly in the interpretable customer churn prediction literature, 

because SRE-SGL combines excellent predictive performance, associated with ensemble learning, and 

interpretability. The SRE-SGL algorithm has two main strategies to ensure interpretability. First, it 

returns inherently comprehensible output that can be directly analyzed by decision makers. Second, the 

model automatically introduces new, potentially insightful features through the combination of splines, 

linear base functions and rules. Such features can shed new light in the understanding of what is driving 

customer churn. To the best of our knowledge, RE and its extensions have never been used in CCP. 

2.3 Rule-Based Ensemble Classifiers and Applications 

Ensemble classification prescribes the training of multiple base learners, or member classifiers into 

one model and the use of a fusion rule to aggregate their individual outputs into an overall prediction 

[37]. The most well-known methods differ in the strategy deployed to transform the training data set 

into member training data for each base learner. Examples include iterative weighing of instances in 

adaboost [38], bootstrap sampling in bagging [39] , combining bagging and random feature selection at 

the node level in random forests [40], and  feature extraction in rotation forests [41]. While the subject 
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of the algorithm choice for generating an ensemble’s base learners is widely investigated, decision trees 

are still the most popular and the default option in the aforementioned ensemble strategies.  

This study builds on previous work that has investigated the merits of deploying decision rules as 

base learners in ensemble classifiers. Decision rules can be interpreted as simple classifiers that take the 

form of logical expressions: if [conditions] then [decision]. The earliest surfacing of rule-based ensemble 

learning is, to the best of our knowledge, the SLIPPER algorithm [42] that uses boosting to create an 

ensemble of decision rules. Subsequently, Rule ensembles were proposed by Friedman and Popescu [43] 

to denote a class of ensemble learners for classification and regression that derive rules from decision 

trees and use them as base learners in a combination scheme based on regularized regression. A related 

approach was presented by Błaszczyński et al. [44] and Dembczyński, Kotłowski and Słowiński [45] 

who generate rules directly and use a different loss criterion. Since then, several variations, extensions 

and applications of rule ensembles have been presented, for example in cancer classification [46], sensor 

fault classification [47], analysis of start-up performance [48] and streetscape satisfaction [49]. The 

proposed SRE-SGL in this study extends the approach described in [12], in which rule ensembles were 

applied in the field of bankruptcy prediction and an extension, spline-rule ensembles, demonstrated a 

significant improvement in predictive performance over conventional rule ensembles. 

3 Methodology 

3.1 Rule and Spline-Rule Ensembles 

In contrast to many well-known ensemble learners that combine decision trees, RE [43] initiates by 

deriving rules from decision trees and use them as base learners in a supervised, linear combination 

scheme. Consider a data set D with an input vector X summarizing n instances on p features 𝑥𝑘; 𝑘 =

1 to 𝑝 and an outcome vector Y. Specifically, RE derive rules 𝑟𝑗(x); j=1 to q from a set of decision trees 

trained on X and Y for all internal and terminal nodes within every tree (interior and terminal). A rule 

𝑟𝑗(x) is the product of the indicator functions that define whether input vector x meets certain criteria 

defined on one or more variables: 

 𝑟𝑗(𝑥) =  ∏ 𝐼(𝑥𝑘 ∈ 𝑠𝑗𝑘𝑠𝑗𝑘≠𝑆𝑘 ) (1) 
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where 𝑠𝑗𝑘 represents a range or subset of values of variable 𝑥𝑘 and 𝑆𝑘 denotes the full range or set of 

values of this variable. Variables upon which a rule 𝑟𝑗(x) depends (i.e., for which  𝑠𝑗𝑘  ≠ 𝑆𝑘) are called 

defining variables. The rules are complemented by linear basis functions 𝑙(𝑥𝑘) ; 𝑘 = 1,… , 𝑝  which 

denote variables 𝑥𝑘 subsequently subjected to winsorization and normalization as defined by: 

 𝑙(𝑥𝑘) =
0.4∗ 𝑤𝑖𝑛(𝑥𝑘)

𝑠𝑑(𝑤𝑖𝑛(𝑥𝑘))
 (2) 

with 𝑤𝑖𝑛(𝑥𝑘) =  min (𝛿𝑘
+,max (𝛿𝑘

−, 𝑥𝑘)) denoting the winsorized version of variable 𝑥𝑘 and where 𝛿𝑘
− 

and 𝛿𝑘
+ specify the βth and (1-β)th percentiles of 𝑥𝑘

1.  

The final model takes the form of a linear regularized lasso-regression [50] applied to outcome 

vector Y and an intermediate term matrix T that contains values for p+q terms 𝑡(𝑥): p variable 

transformations and q binary rule outcomes for all instances in a training data set.  

 
𝑎𝑟𝑔𝑚𝑖𝑛

𝛽
1

2
‖𝑦 − 𝑋𝛽‖

2
2
+ 𝜆‖𝛽‖

1
 (3) 

Where shrinkage parameter λ controls sparsity: increasing values decrease the proportion of non-zero 

parameter estimates. ‖. ‖
2
  and ‖. ‖

1
 are the ℓ2 and ℓ1 vector norms, respectively. 

Several metrics allow an identification of the relative importance and nature of relationships of the 

terms selected in a rule ensemble model. The first are term coefficients, i.e. the regression parameter 

estimates that indicate the influence a term has upon the logit transformation of the probability to churn. 

These deliver insight into whether a term influences churn positively or negatively, and to which extent. 

Furthermore, rule support figures are specific to rule terms and indicate for which percentage of 

instances in the training data set a rule applies. Finally, term importance measures reflect the relative 

importance of the terms in the model and are obtained through 

                                                      
1
 The constant of 0.4 is chosen so that linear terms in a subsequent regularized lasso-regression (equation (3)) receive the same a priori influence 

as a typical rule. Specifically, this constant reflects the average standard deviation that characterizes a population of rules characterized by a 

support that follows a uniform distribution; supp (rj(x))~𝑈(0,1). We kindly refer the reader to Friedman & Popescu [11] for more details. 
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𝑇𝐼(𝑡) =

{
 
 

 
 |𝛽𝑡|√𝑠𝑢𝑝𝑝 (𝑟𝑗(𝑥)) (1 − 𝑠𝑢𝑝𝑝 (𝑟𝑗(𝑥))) if 𝑡 is a rule term; 𝑡 = 𝑟𝑗(𝑥)

|𝛽𝑡|. 𝑠𝑑(𝑙(𝑥𝑘)) if 𝑡 is a linear term; 𝑡 = 𝑙(𝑥𝑘)

|𝛽𝑡|. 𝑠𝑑 (𝑠𝑔(𝑥𝑔)) if 𝑡 is a spline term; 𝑡 = 𝑠𝑔(𝑥𝑔)

(4) 

where 𝑠upp (𝑟𝑗(𝑥)) represents the rule support for rule 𝑟𝑗(𝑥) [11]. Hence,  𝑇𝐼(𝑡) represents the 

absolute value of the regression coefficient of a standardized term 𝑡.  

Due to their nature, rule ensembles balance model flexibility and interpretability, which are classifier 

qualities that often conflict. Model interpretability in rule ensembles stems from the process of creating 

simplified, easily understandable base learners, while the regularization enforces model sparsity as many 

terms receive a parameter estimate equal to 0. Besides linear variable effects, variable interactions are 

naturally accommodated through the inclusion of rules. Moreover, these rules allow an identification of 

non-linear effects of individual variables on an outcome variable. However, this is only possible in an 

indirect manner when multiple rules, defined on the same variable are selected simultaneously.  

Spline-rule ensembles aim for a more direct support of non-linear effects. To this end, a third term 

class was introduced in [12]: smooth functions, and in particular penalized cubic regression splines [51] 

of individual continuous variable. Penalized cubic regression splines determine a set of v knots 

ξ1, ξ2, … , ξ𝑣 over a variable’s range and estimate a function that is built up of cubic polynomials between 

every pair of adjacent knots. As such, they allow to model a non-linear relation between a variable and 

the customer churn probability. Specifically, 𝑠(𝑥) (the cubic regression spline function) takes the form 

𝑠(𝑥) = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + 𝛽3𝑥

3 + 𝛽4ℎ(𝑥, 𝜉1) + ⋯+ 𝛽𝑣+3ℎ(𝑥, 𝜉𝑣) 

with ℎ(𝑥, 𝜉) = {
(𝑥 − 𝜉)3 if 𝑥 >  𝜉
0 otherwise

. (5) 

Minimizing 

 ∑ (𝑦𝑖 −  𝑠(𝑥𝑖))
2𝑛

𝑖=1 − 𝜌∫(𝑠"(𝑥))2𝑑𝑥 (6) 

allows a determination of values for β1, β2, … , β𝑣+3, ξ1, ξ2, … , ξ𝑣 as well as ρ which represents a 

smoothing parameter, i.e. a penalty term that is required to penalize excessive curvature in the function.  
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The inclusion of penalized cubic regression spline functions 𝑠(𝑥) for all continuous variables 

𝑥1, … , 𝑥𝑢 (𝑢 ≤ 𝑝) in term matrix T in equation (3) updates the lasso regularization that estimates the 

final model. Note that in [12] experiments compared lasso regularization to ridge regression and elastic 

net regularization by generalizing equation (3). Results of a model variant comparison in the field of 

bankruptcy prediction [12] demonstrated no significant differences. Hence, in the current study these 

variants are not investigated further. 

3.2 Sparse-Group Lasso (SGL) Regularized Regression 

Rule and spline-rule ensembles rely on lasso regression to perform ensemble selection and improve 

interpretability through shrinkage. A limitation of lasso regression is that it does not take into account 

relatedness (a group structure) that exists between covariates. Variations of lasso regression enable 

structured regularization. Specifically, the group lasso [52] and sparse-group lasso (SGL) [15] allow 

variable grouping. In the case of the former, sparsity is enforced on the group level so that all variables 

within a selected group receive non-zero parameter estimates when their group is selected and 0 

otherwise. In the case of SGL, a dual goal of sparsity is pursued: both at the between-group as the within-

group level. In other words, the regression attempts to shrink the model to as few group as possible, and 

to as few variables within selected groups as possible. The SGL takes the following form: 

 
𝑎𝑟𝑔𝑚𝑖𝑛

𝛽
1

2𝑛
‖𝑦 − ∑ 𝑇(𝑜)𝛽(𝑜)𝑚

𝑜=1 ‖
2
2
+ (1 − 𝛼)𝜆∑ √𝑝𝑜‖𝛽

(𝑜)‖
2
+ 𝛼𝜆‖𝛽‖

1
𝑚
𝑜=1  (7) 

In which m is the number of variable groups, 𝑇(𝑜) is the partial term matrix reduced to variables that 

belong to group o, 𝑝𝑜 is the number of variables in group o; and shrinkage is controlled by parameters 

λ (the shrinkage parameter) and α (0≤α≤1), the mixing parameter that controls the trade-off between 

between- and within-group level regularization.  

3.3 Spline-Rule Ensembles with SGL Regularization (SRE-SGL) 

A notable disadvantage of lasso regression is that it enforces shrinkage through a loss function that 

does not necessarily avoid a simultaneous selection of multiple terms that rely on the same underlying 

variable(s). Model interpretability becomes more challenging when a variable 𝑥𝑘 enters a model 

simultaneously as a linear basis function 𝑙(𝑥𝑘), a spline 𝑠𝑘(𝑥𝑘) and a (univariate) rule 𝑟𝑙(𝑥𝑘). Likewise, 
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the occurrence of similar multivariate rules that share identical defining variables complicates 

interpretation. These issues are aggravated when conflicting parameter estimate signs emerge. To tackle 

these issues and significantly improve the interpretability of spline-rule ensembles we define SRE-SGL 

as spline-rule ensembles with term grouping and structured regularization using SGL. SRE-SGL allows 

a decision maker to obtain a more interpretable model by leveraging relatedness between splines, linear 

basis functions and rules in term matrix T that share a dependence on the same variables. 

Figure 1 graphically depicts the core mechanisms of SRE-SGL. The training process comprises of 

three stages. The first stage is identical to regular spline-rule ensembles and involves the derivation of 

linear basis functions, tree rules and penalized cubic regression splines that will serve as candidate 

ensemble members. The second stage, proper to SRE-SGL, involves term grouping. This involves the 

grouping of terms in term matrix T according to the variables upon which they depend. Specifically, we 

propose the following indexing function: 

 𝑡𝑔(𝑡(x𝑠)) ∶= 𝑤: 𝑥 𝑠 = 𝑠𝑤 ∈ 𝑆   (8) 

Where t is a term in term matrix T, x𝑠 is the set of variables upon which t depends; S is the indexed 

set of unique defining term variable sets that identifies |𝑆| = 𝑚 groups and s𝑤 is the wth element of S. 

For example, a multivariate term such as a rule 𝑟𝑣(𝑥1, 𝑥3) that contains conditions on variables 𝑥1 and 

𝑥3 would contribute the set {𝑥1, 𝑥3} to S while univariate terms such as smoothing spline 𝑠2(𝑥2) and 

linear basis function 𝑙(𝑥2) contributes singleton {𝑥2} to S. 𝑡𝑔(𝑡(x𝑠)) assigns a unique grouping index to 

every unique set of defining variables that emerges in the terms of matrix T. This encourages the term 

selection to choose between alternative terms that are defined on identical variables or variable sets. In 

the case of univariate terms, shrinkage involves selection within term sets (such as 𝑇(1) and 𝑇(𝑝) in 

Figure 1) consisting of univariate rules, linear basis functions, splines or any subset of these, each 

dependent on the same variable. In the case of multivariate terms (i.e., rules with multiple conditions) 

this involves shrinkage within term sets (such as 𝑇(𝑝+1) and 𝑇(𝑚) in Figure 1) consisting of rules that 

share the same sets of defining variables. 
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Figure 1: Visual representation of SRE-SGL model training stages 
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The final component is a logistic regression with SGL regularization applied to the grouped term 

matrix  T′ = (𝑇(1), 𝑇(2), … , 𝑇(𝑚)) and outcome vector Y as identified by equation (7).  

4 Experimental Validation 

4.1 Data Sets 

The experimental validation of SRE-SGL involves two dimensions: predictive accuracy and 

interpretability. For the former, the performance of SRE-SGL is compared to a set of benchmark 

algorithms over fourteen real-world customer churn data sets. Table 1 presents the most important 

characteristics of these data sets such as the industry, number of observations, number of attributes and 

churn incidence. Most of the data sets are proprietary and were obtained through exclusive company 

collaborations which limits the level of detail that can be disclosed. Therefore, the dimension of 

interpretability is assessed by means of a case study on publicly available data set ds9 in Section 5.2.  

Data 

set 

Industry # observations # attributes % churn Source 

Ds1 Financial Services 631,627 >100 2.53% European Financial Services provider 

Ds2 Financial Services 602,575 >100 3.16% European Financial Services provider 

Ds3 Financial Services 573,895 >100 2.57% European Financial Services provider 

Ds4 Newspaper 427,833 >100 11.14% European newspaper company 

Ds5 Financial Services 398,087 >100 4.50% European Financial Services provider 

Ds6 Financial Services 316,578 >100 6.45% European Financial Services provider 

Ds7 Financial services 117,808 >100 3.55% European Financial Services provider 

Ds8 Financial Services 102,279 >100 5.99% European Financial Services provider 

Ds9 Telecom 71,047 87 29.00% Duke1 

Ds10 Telecom 50,000 >100 7.34% European telecom operator 

Ds11 Telecom 47,761 43 3.69% European telecom operator 

Ds12 Retail 32,371 47 25.15% European supermarket retailer 

Ds13 Energy 20,000 33 10.00% European energy company 

Ds14 Retail 3,827 16 28.14% European DIY retailer 
1 Center for Customer Relationship Management Duke University, February 2014. URL: 

http://www.fuqua.duke.edu/centers/ccrm 

Table 1: Data set characteristics: data set identifier, industry, number of observations, number of attributes, customer 

churn percentage and source 

4.2 Experimental Set-Up 

First, to assess the predictive performance of SRE-SGL, a comparison is made to a set of seven 

benchmark algorithms: two closely related algorithms upon which it builds: conventional RE and SRE; 

and five algorithms that are characterized by a widespread adoption by practitioners, due to both high 

interpretability and strong predictive performance, on the one hand, and frequent adoption as benchmark 

algorithms in prior churn prediction literature on the other: regularized logistic regression, a CART 



16 

 

decision tree [53], random forest [40] a generalized additive logistic regression model (GAM) [54], and, 

finally, a multivariate adaptive regression splines (MARS) model [28]. The regularized logistic 

regression models are implemented with elastic net regularization. The GAM takes the form of a semi-

parametric logistic regression: a binary outcome variable is predicted using a combination of splines 

(for continuous variables) and linear terms (for dummy variables).  

Data pre-processing can have an important impact on the predictive performance of classifiers in 

customer churn prediction [21]. In this study, however, the impact of different data pre-processing 

techniques on the predictive performance of the classifiers is not one of the research objectives. 

Therefore, all preprocessing steps related to handling missing values, categorical variables, outliers, 

class imbalance and variable selection are equal for all algorithms and chosen in line with previous 

benchmark studies in CCP [2,4], which help to keep the study and presentation of results lean. First, 

missing values are imputed with the median and dummy variables are created to flag instances that are 

imputed for a certain variable [21]. Next, categorical variables are dummy-encoded into a number (the 

number of categories minus one) of binary variables that indicate the presence or absence of a particular 

characteristic. Since high cardinality does not pose an issue in our datasets, we did not rely on strategies 

to reduce the number of categories to a manageable size, such as coarse classification using hierarchical 

agglomerative clustering with Euclidian distance [4,55]. Then, outliers, defined as unusual values that 

are more than three standard deviations from the variable’s mean, are transformed using winsorization. 

Class imbalance, a result of the number of churners being much lower than the number of non-churners, 

is handled by undersampling the majority class, i.e. non-churning customers, to the same level as the 

churners [22]. Finally, Fisher score selection is applied as an input selection procedure to reduce the 

dimensionality of the initial feature space to twenty [4]. This is justified because a classifier often yields 

equal, or even better, predictive performance on a small set of highly predictive variables than on an 

exhaustive set of mainly redundant variables.  

A fair comparison of classifier performance requires a strategy to tune hyperparameters whilst 

reducing the variability in results due to sampling. To these ends, a 5x3 cross-validation experimental 

design, nowadays common in CCP literature [2,22,56], is deployed. This procedure involves a stratified 
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split of the data set in three equal parts. In each fold, one of these data parts serves as test data sample 

used to determine a classifier’s predictive accuracy. The other two parts serve as training and validation 

data samples for training and evaluating a number of alternative classifier configurations by varying 

their hyperparameters. The configuration that corresponds to the best performance on the validation 

sample is chosen to train a final model on a stacked data sample obtained by combining the training and 

validation samples. Three estimates of predictive performance are thus obtained per fold, and this 

procedure is repeated five times. All classifiers are thus trained, validated and tested on exactly the same 

data samples. 

Hyperparameter settings of the algorithms are optimized from broad ranges of values, similar as in 

previous CCP studies [2,4,21]. Appendix B provides an overview of the optimized hyperparameters and 

their candidate values for all considered algorithms. Following the approach in [12], SRE and SRE-SGL 

deploy penalized cubic regression splines to estimate spline terms2. The GAM benchmark model is 

configured with penalized cubic regression splines with shrinkage. Note that cubic regression splines in 

SRE, SRE-SGL and GAM depend on smoothness parameter ρ which is internally optimized using the 

generalized cross-validation (GCV) criterion [57,58] during spline estimation. 

To assess the predictive performance of SRE-SGL relative to the benchmark algorithms, a statistical 

framework based on the non-parametric Friedman test is used as described by Demšar [59]. As 6 

algorithms and 14 data sets are considered in the focal experiment, the Friedman statistic is defined as: 

 χF
2 =

12∗14

6(6+1]
[∑ ARa

2
a −

6(6+1)2

4
] (9) 

where ARa  denotes the average rank of the performance measures of an algorithm a= 1,2,…,6 over 

our 14 data sets. The Friedman test is assumed to be distributed according to χ𝐹
2  with k-1 degrees of 

freedom under the null hypothesis that states that the results of all algorithms do not differ and thus the 

ranks ARa
2 should be equal. Only if the null-hypothesis is rejected, SRE-SGL is pairwise compared with 

the benchmark algorithms using the Holm post-hoc test [60]. Predictive performance is measured in 

                                                      
2Experiments with alternative spline estimation methods in SRE and SRE-SGL did not reveal significant differences with respect to 

predictive performance. In particular, we compared penalized cubic regression splines to penalized cubic regression splines with shrinkage, 

penalized thin plate regression splines, P-splines and penalized thin plate regression splines with shrinkage. Detailed results of these 
experiments and statistical tests are available in Appendix C. 
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terms of area under the receiver operating characteristic curve (AUC) and top decile lift (TDL), both 

commonly reported in churn prediction literature.  

The second part of the experimental validation of SRE-SGL involves the dimension of 

interpretability, assessed through an in-depth case study on one specific data set (ds9 in Table 1).  Note 

that for reasons of consistency, the data set is preprocessed and variables are selected as described above. 

However, deviating from the 5x3-fold cross-validation deployed for comparing classifiers’ predictive 

performance, all models and derived insights reported in this section are based on a unique fold, i.e. a 

single data split of the Cell2cell data set. 

Interpretability of RE, SRE and SRE-SGL models is in first instance assessed by understanding 

selected model terms, as well as the metrics that allow an identification of the relative importance and 

nature of relationships of the terms selected in a rule ensemble model presented in Section 3.1: 

coefficient estimates, term importance measures and rule support values for rule terms.  Since model 

terms and regularization procedures vary between RE, SRE and SRE-SGL, substantial differences 

amongst resulting models can be reasonably expected. Therefore, our comparison of SRE-SGL to RE 

and SRE models involves two additional analyses that enable a comparison of aggregated variable 

importance and effects. Our aim is to verify to what extent the introduction of a more stringent SGL-

regularization in SRE-SGL alters model effects in comparison to RE and SRE. First, since variables 

might emerge in multiple terms in (spline-) rule ensemble models and regularization does not prevent 

their simultaneous selection, the models’ term importance measures are insufficient First, variable 

importance measures VI(𝑥𝑘)  allow to assess the relative importance of individual variables 𝑥𝑘  in a 

model. This is usually of great importance to decision makers. They are obtained through:  

 𝑉𝐼(𝑥𝑘) = ∑
𝑇𝐼(𝑡𝑗(x𝑗))

|x𝑗|
𝑥𝑘∈x𝑗   (10) 

which expresses the sum of term importances in which variable 𝑥𝑘 occurs, each term divided by the 

cardinality of xj, the set of variables on which it depends. Hence, higher values are awarded to variables 

appearing (i) more frequently and (ii) in more influential terms than others. Second, we deploy partial 

dependence functions to identify the aggregated effects that variables or variable pairs exert in RE, SRE 
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and SRE-SGL models. Partial dependence functions identify the isolated effect of one or more variables 

in a predictive model 𝐹(x)  by taking into account an averaged effect taken over the other variables [61]: 

 �̂�𝑠(x𝑠) =  
1

𝑛
∑ 𝐹(x𝑠, x𝑖\𝑠)
𝑛
𝑖=1   (11) 

where x𝑠 is the set of variables of interest, n is, in this context, the number of customers in the data 

set while x𝑖\𝑠 represents the values of customer i for all variables not occurring in variable set x𝑠.  When  

x𝑠 consists of one variable, the nature of the relationship between a single variable and the log odds of 

customer churn is revealed. Hence, partial dependence functions constitute a popular instrument to 

reveal variable effects in predictive customer scoring [e.g. 62]. Our analysis reports the corresponding 

partial dependence plots. Moreover, when  x𝑠 consists of multiple variables, equation (12) provides the 

basis for a quantity to analyze the presence and strength of interaction effects. Specifically, the strength 

of the interaction effect between variables 𝑥𝑗 and 𝑥𝑘  [61] can be expressed as  

 𝐻𝑗𝑘
2 = ∑ [�̂�𝑗𝑘(𝑥𝑖𝑗, 𝑥𝑖𝑘) − �̂�𝑗(𝑥𝑖𝑗) − �̂�𝑘(𝑥𝑖𝑘)]

2
/∑ �̂�𝑗𝑘

2 (𝑥𝑖𝑗, 𝑥𝑖𝑘)
𝑛
𝑖=1

𝑛
𝑖=1 .  (12) 

5 Results 

5.1 Predictive Performance Benchmark 

This section presents the results of our experiment in which the predictive performance of SRE-SGL 

is compared with 7 benchmark algorithms over 14 CCP data sets originating from different industries.  

Appendix D presents the average cross-validated results, in terms of AUC and TDL respectively, for 

these fourteen data sets. The standard deviations over the different runs are indicated between brackets 

and the best performing algorithm is underlined for every data set. 

These results serve as input to determine the average ranks of the classifiers, required for the 

Friedman test. Table 2 displays the average ranks for the different algorithms over the 14 data sets for 

both AUC and TDL. A lower average rank indicates better performance. The Friedman statistic is 

approximately chi-squared distributed with 7 degrees of freedom and equals 55.22 (p-value = 0.00) 

based on AUC ranks and 58.84 (p-value= 0.00) based on TDL ranks, which indicates that there are 

significant differences in terms of ranks. In the post-hoc analysis, SRE-SGL serves as our control 
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algorithm. The adjusted p-values, based on the Holm post-hoc test, are given between brackets in Table 

2. SRE-SGL has the lowest rank (i.e. best predictive performance) evaluated with TDL and second-best 

performance based on AUC. The results indicate that SRE-SGL performs always at least as well as the 

best performing algorithm in our benchmark. Compared with conventional RE and SRE, the results 

indicate that SRE-SGL performs significantly better than RE for both performance measures. There are 

no significant differences between SRE-SGL and SRE, indicating that reduction in model complexity 

of the compact SRE-SGL model over the extensive SRE model does not negatively impact the predictive 

performance. In comparison to traditional benchmark algorithms in CCP (i.e. DT, LR, RF, MARS and 

GAM), the SRE-SGL model demonstrates superior predictive performance in our benchmark study.  

  Metric 

Algorithm role Algorithm AUC TDL 

Control Spline-rule ensemble with sparse group lasso 

(SRE-SGL) 

2.143 1.857 

Benchmarks Decision tree (DT) 7.357*** (0.000) 7.857*** (0.000) 

 Regularized logistic regression (LR) 5.500*** (0.002) 4.500** (0.013) 

 Random forest (RF) 3.714 (0.179) 3.607 (0.118) 

 Rule ensembles (RE) 4.321* (0.056) 4.643** (0.011) 

 Spline-rule ensemble (SRE) 2.036 (0.908) 2.500 (0.489) 

 Generalized additive model (GAM) 5.500*** (0.002) 5.697*** (0.000) 

 Multivariate additive regression splines (MARS) 5.429*** (0.002) 5.357*** (0.001) 

             Lower average ranks indicate better performance. The best performing algorithm is indicated in bold. 
***,**,*   Indicates significance on 99%, 95%, 90% level respectively. Significant differences are indicated in italic. 
             The adjusted p-value for Holm post-hoc test is shown between brackets. 

Table 2: Average classifier ranks across data sets for different performance measures 

 
 

(a) AUC (b) TDL 
Figure 2: Critical difference plots for AUC (subplot (a)) and TDL (subplot (b)) 

Results show that SRE-SGL achieves significantly better predictive performance than LR,DT, 

MARS and GAM in terms of AUC, and it significantly outperforms DT, LR, MARS and GAM in terms 
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of TDL. Figure 2 summarizes the post-hoc test results visually by means of critical difference plots [63] 

for AUC and TDL. 

5.2 Model Interpretability: A Case Study 

In this section, the SRE-SGL model is assessed in terms of its ability to deliver model 

interpretability. To this end, a case study focusing on customer churn prediction in a telecom setting 

using the Cell2cell data set (ds9 in Table 1) is presented. This public data set is well documented and 

has been used in previous customer churn studies [4]. The three objectives of this case study are the 

following: (i) to illustrate how the spline-rule ensemble model with SGL regularization results in an 

interpretable model, (ii) to demonstrate how SRE-SGL offers a higher degree of interpretability in 

comparison to rule ensemble and spline-rule ensemble models with lasso regularization and (iii), to 

analyze whether the introduction of structured regularization in SRE-SGL substantially changes the role 

of variables in the model in contrast to conventional rule and spline-rule ensembles by investigating 

variable importance and isolated model variable effects. Table 3 provides an overview of the 20 selected 

variables through applying Fisher-score selection. 

Variable 

label 

Definition Mean SD 

callwait Mean number of waiting calls -0.0210 0.9759 

changem % change in minutes of use -0.0168 0.9992 

changem_M Dummy that indicates whether changem (% 

change in minutes of use) is imputed 

0.0071 0.0842 

creditde Low credit rating –de 0.1190 0.3238 

custcare Mean number of customer care calls -0.0304 0.9684 

directas Mean number of director-assisted calls -0.0089 0.9888 

eqpdays Number of days of the current equipment 0.0461 1.0045 

incalls Mean number of inbound voice calls -0.0264 0.9842 

models Number of models issued -0.0187 0.9849 

mou Mean monthly minutes of use -0.0306 0.9838 

mou_M Dummy that indicates whether mou is imputed 0.0029 0.0539 

opeakvce Mean number of in and out off-peak voice call -0.0244 0.9859 

outcalls Mean number of outbound voice calls -0.0261 0.9844 

phones Number of handsets issued -0.0198 0.9869 

recchrge Mean total recurring charge -0.0335 0.9914 

retcalls Number of calls previously made to the retention 

team 

0.0252 1.0596 

revenue Mean monthly revenue -0.0151 0.9882 

revenue_M Dummy that indicates whether revenue is 

imputed 

0.0029 0.0539 

setprcm Missing data on handset price 0.5742 0.4945 

webcap Handset is web-capable 0.8908 0.3119 

Table 3: Overview of selected variables in Cell2cell data set (ds9). Descriptive statistics (mean and standard deviation) 

are provided for preprocessed training data. 
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5.2.1 SRE-SGL Model Interpretation 

The most direct way of gaining insights into a classifier’s functioning is an interpretation of the 

model itself. In contrast to alternative homogenous ensemble methods, rule ensembles and spline-rule 

ensembles deliver a facilitated model interpretability thanks to three elements: (i) the nature of candidate 

ensemble members (i.e., rules, linear terms and splines), (ii) their simple linear combination and (iii) the 

shrinkage resulting from the selection procedure to which they are submitted. SRE-SGL delivers 

shrinkage through sparse group lasso regularization and thus enables a more intelligent selection of 

competing terms through structured sparsity regularization.  

Term 

index 

Type Term or rule specification Coefficient Rule 

support 

Term importance 

1 Linear term retcalls 0.2828 - 100 

2 Linear term revenue 0.1982 - 65.3561 

3 Spline s(changem) 0.5164 - 40.7220 

4 Spline s(eqpdays) 0.2917 - 32.0586 

5 Rule eqpdays ≥ -0.2954 

recchrge < 1.3767 

0.1295 0.5529 21.4745 

6 Rule retcalls < 2.3026  

eqpdays < -0.2996 

-0.1242 0.3901 20.2173 

7 Linear term creditde -0.1805 - 19.5004 

8 Linear term  recchrge -0.0581 - 19.2098 

9 Rule retcalls < 2.3026  

eqpdays < -0.2954 

-0.1033 0.3918 16.8194 

10 Spline s(mou) 0.2993 - 13.7562 

11 Rule eqpdays ≥ -0.2954 

recchrge < 1.6328  

0.0768 0.5640 12.7105 

12 Rule eqpdays ≥ -0.2954 

recchrge < 1.1742  

0.0565 0.5483 9.3771 

13 Linear term setprcm -0.0445 - 7.3422 

14 Spline s(incalls) 0.1465 - 4.5656 

15 Linear term changem_M 0.1578 - 4.4317 

16 Spline s(recchrge) 0.0588 - 1.2510 

17 Spline s(directas) 0.0634 - 0.9684 

18 Spline s(callwait) 0.0470 - 0.3502 

19 Linear term webcap -0.0029 - 0.3051 

20 Spline s(custcare) 0.0219 - 0.2444 

21 Rule retcalls < 2.3026  

eqpdays < -0.2913 

-0.0005 0.3947 0.0868 

Table 4: The Cell2cell SRE-SGL model: terms, term types, rule conditions, coefficients, rule support and term 

importance. Terms are sorted on the basis of their importance. 

Table 4 shows the selected terms of the SRE-SGL model while Figure 3 visualizes the penalized 

cubic regression splines selected by the model. Table 4 also provides coefficient estimates, term 
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importance measures and rule support values for rule terms. Values of term importance measures 𝑇𝐼(𝑡) 

are rescaled so that the most important term receives a value of 100. 
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Figure 3: Visual representation of the eight penalized cubic regression spline terms in the Cell2cell SRE-SGL model 

The following observations emerge from Table 4. First, the model contains 21 terms: 6 rules, 7 linear 

terms and 8 splines. Hence, the model illustrates well how SRE-SGL is capable of revealing linear 

effects, nonlinear effects as well as interaction effects. Second, investigating the nature of the impact of 

terms on customer churn is straightforward. The 4 most important terms are univariate: linear basis 

functions for retcalls and revenue, and splines for changem and eqpdays. Positive linear effects exist for 

retcalls, revenue and changem_M; negative ones for creditde, recchrge and webcap (in order of 

importance). Splines, visualized in Figure 3, reveal varying non-linear relationships to the probability 

to churn. Second, the rules reveal the existence of interaction effects. Closer inspection reveals that 

eqpdays interacts with two variables: recchrge and retcalls. Both are represented by three rules each, 

that are consistent in terms of coefficient sign and rule conditions. 
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5.2.2 SRE-SGL Comparison to Rule and Spline-Rule Ensembles 

Next, we wish to compare the SRE-SGL model to a conventional RE and SRE model fit to the same 

data set (Tables A.1 and A.2 in Appendix A, respectively). This comparison illustrates the beneficial 

impact of SGL regularization with regards to interpretability on multiple accounts. This comparison 

involves three dimensions: (i) model structure and interpretation, (ii) variable importance and (iii) 

isolated variable effects.In terms of model structure and interpretation, substantial differences emerge 

that favor SRE-SGL in terms of interpretability. First, in terms of model size, the SGL led to a more 

compact model for SRE-SGL in comparison to rule and spline-rule ensemble models. Both benchmark 

models contain more terms: 31 and 38, respectively, versus 21 for the SRE-SGL model. Despite this 

large difference in model size, the predictive performance of SRE-SGL is better than RE and similar to 

SRE (as shown in Table 2). Second, the absence of structured regularization in conventional lasso 

regularization in rule and spline-rule ensembles compromises interpretability due to the presence of 

conflicting rules. For example, consider the interaction effect between eqpdays and retcalls. Both the 

rule and spline-rule ensemble model also recognize their interaction by selection rules defined on both. 

However, the nature of the interaction effect is much harder to disentangle due to (i) the number of rules 

that capture the interaction effect (7 for RE and SRE, versus 3 in SRE-SGL), and (ii) the presence of 

seemingly conflicting rules. For example, consider rules that depend on the variables retcalls and 

eqpdays. terms 7 and 25 in the rule ensemble model: (retcalls < 2.3026 * eqpdays < -0.2996; coefficient 

-0.0681) versus (retcalls ≥ 2.3026 * eqpdays < -0.2913; coefficient 0.0414). Such problems also emerge 

in the SRE model, and for the interaction between recchrge and retcalls. While in the SRE-SGL model, 

the sparse group lasso did not prevent a selection of multiple rules defined on both pairs of variables, 

within-group level shrinkage resulted in a more stringent selection of consistent rules. Third, the SRE 

model shows how in the absence of structured regularization, univariate terms can also cause conflicts 

and jeopardize model interpretability. For example: changem and recchrge occur both as a linear term 

and as a spline in the model. Eqpdays occurs as a spline, and in 8 univarate rules with varying coefficient 

signs. These problems are lifted in the SRE-SGL model. The exception is the double occurrence of 

recchrge, which shows that the introduction of within-group shrinkage in SGL is not absolute.  
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Figure 4: Cell2cell SRE-SGL, SRE and RE model variable importances 

A second comparison analyses the importance of individual variables in the models. Figure 4 

presents variable importance measures for all variables in the SRE-SGL, SRE and RE models, rescaled 

so that the most important variable receives a score of 100. These results show consistency between 

SRE-SGL, SRE and RE models, despite their differing model structures. In total, 14 variables appear in 

the SRE-SGL and SRE models, while there are 10 in the RE model. SRE-SGL, SRE and RE agree on 

the five most important variables (with an importance level above 20) are retcalls, eqpdays, revenue, 

changem and recchrge. These are the variables that dominate both as univariate terms, and in multiple 

multivariate rules in the model. 

A third dimension on which SRE-SGL is compared to SRE and RE is the analysis of isolated 

variables effects. Our intention is to analyze whether the introduction of structured regularization in 

SRE-SGL substantially alters the nature of the effects found in regular SRE and RE models. To this end, 

the isolated variable effects are visualized in Figure 5 that shows the corresponding partial dependence 

plots for the variables in the model, ordered by importance (defined in Figure 4) for SRE-SGL, SRE and 

RE models.  
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Figure 5: Partial dependence plots for selected variables: a comparison of the SRE-SGL, SRE and RE Cell2cell 

models 

A comparison of these dependence plots leads to the following observations. First, effects in the 

SRE-SGL and SRE models are highly similar. This provides evidence that the altered model structure 

due to the introduction of structured regularization does in fact not substantially alter the isolated effects 

of individual variables. The enforcing of a grouping structure on model terms in SGL leads to a model 
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that is easier to understand, yet is similar in its functioning. Second, these plots highlight the added value 

of adding spline functions to rules and linear basis functions for churn prediction. Non-linear effects that 

revealed in SRE and SRE-SGL models are either not incorporated (e.g. mou, directas), or substituted 

by a linear effect (e.g. changem, incalls) or a piecewise linear effect (eqpdays) in the RE model. Note 

that such a piecewise linear function requires multiple rules to be simultaneously present in the model 

(as demonstrated by the many rules defined on eqpdays in the RE model in Table A.1). Third, it is useful 

to compare these partial dependence visualizations with the SRE-SGL model described earlier. The 

selected linear and spline terms can be easily recognized, the partial dependence function for the variable 

eqpdays is a composite of the spline term and the rules that feature the variable while the piecewise 

linear plots for retcalls and recchrge summarize the linear effects and rules in which they emerge. 

An alternative use of partial dependence functions is the analysis of variable interactions. An analysis 

of the interaction effects in the SRE-SGL model is available in Appendix E. 

6 Conclusions, limitations and directions for future research 

Customer churn prediction is an important instrument in companies’ retention management 

strategies. Such models ought to be as accurate as possible albeit not at the expense of decreased 

interpretability. Ensemble methods have been gaining critical acclaim since many years, mostly due to 

their association to strong predictive accuracy. However, in contexts where decision makers attribute 

high value to interpretability, their black-box nature compromises their potential deployment. RE and 

SRE constitute a family of classifiers tailored to reconcile these seemingly conflicting objectives. Based 

on rules extracted from decision trees, spline terms and simple linear terms, they offer increased 

flexibility over other established methods that are easy to understand, such as decision trees or logistic 

regression. Yet, this increased model complexity, that could be seen as the cost of this increased 

flexibility, is very limited thanks to regularization, i.e. the shrinkage of the full set of candidate model 

terms.  

Since rules, splines and linear terms are essentially based on the same set of variables, interpretation 

of a rule- or a spline-rule ensemble model could become less straightforward when regularization 
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shrinkage does not prevent such terms from being selected simultaneously. To remedy this, we propose 

SRE-SGL, spline-rule ensembles with structure regularization through sparse group lasso regularization. 

We define a straightforward indexing function to group terms when they share the same set of defining 

variables. Through sparse group lasso regularization, term selection is driven by shrinkage at two levels: 

the between-group level and the within-group level. SRE-SGL aims for accurate models that consist of 

as few terms of as few variable groups as possible. Extensive experiments on a large set of churn 

prediction data sets confirm the highly competitive nature of SRE-SGL in terms of two dimensions it 

aims to reconcile: predictive accuracy and interpretability. Specifically, results demonstrate how SRE-

SGL outperforms a decision tree, logistic regression, GAM, MARS and a random forest model on most 

datasets. It also consistently outperforms conventional RE models, and the introduction of structured 

regularization does not result in a disadvantage over standard SRE. Model interpretability of SRE-SGL 

was assessed in detail and compared to RE and SRE by means of a case study, investigating churn 

prediction in the setting of a telecommunications company. An analysis by means of variable importance 

measures and partial dependence functions demonstrates that the effects captured by SRE-SGL are 

highly similar to those found in the RE and SRE models. However, the SRE-SGL model is simpler in 

nature and its interpretability, unlike conventional RE and SRE models, is not compromised by 

inconsistent or conflicting model terms or term effects based on the same variables.  

The contributions of this study are thus the following: (i) we introduce spline-rule ensembles to the 

field of customer churn prediction and demonstrate their ability to deliver insightful yet accurate models; 

(ii) we propose SRE-SGL as an extension to spline-rule ensembles that retains the qualities of spline-

rule ensembles yet avoids the pitfall of reduced model interpretability due to conflicting model term 

selection, (iii) an extensive benchmark study is conducted to determine how SRE-SGL performs in 

comparison to well-established competing algorithms balancing accuracy and interpretability, and (iv) 

a case study is conducted to illustrate how SRE-SGL avoids the issues described above and achieves a 

higher degree of interpretability in comparison to conventional rule and spline-rule ensembles.  

Note that a number of limitations of this study could be identified. First, our experimental 

comparison evaluated two well-known metrics for assessing classifier performance in the domain of 
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CCP with a widespread adoption and recognition in practice: top-decile lift and AUC. Recently, 

promising metrics that integrate cost and profit considerations in their evaluation gained popularity in 

the domain, such as the expected maximum profit criterion [64]. Future research should evaluate SRE-

SGL on the basis of such metrics, and we intend to extend SRE-SGL so that these metrics guide decision 

tree training as well as regularization. Second, this study is exclusively focused on customer churn 

prediction which is one of the most established applications in the broader field of marketing analytics. 

Future research should explore the viability of SRE-SGL for other tasks. Third, regularized regression 

is one strategy for reducing a large set of terms and combining them. Other strategies that are common 

for the practice of ensemble selection of ensemble pruning such as optimization, could also be deployed 

for term selection as well as integrating variable group selectivity. Fourth, SRE-SGL, like RE and SRE, 

involves the initial creation of a large set of rules and terms and sometimes overly complex rules can 

still be retained in the final model. Follow-up research should explore strategies for the definition of 

preliminary term filters that enforce a priori selection. This could be a viable option to further constrain 

models in pursuit of enhanced model interpretability. Finally, data preprocessing practices such as 

feature selection, class imbalance and outlier treatment are known to impact results. While this study 

based its experimental set-up on prior literature, future research could revisit the impact of such practices 

on the novel algorithms presented in this study.  
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Appendices 

Appendix A: Cell2cell Rule Ensemble and Spline-Rule Ensemble Models 

Term Type Term or rule specification Coefficient Rule 

support 

Term 

importance 

1 Linear term retcalls 0.1666 - 100 

2 Linear term changem -0.1095 - 61.9698 

3 Linear term revenue 0.0920 - 51.4809 

4 Linear term recchrge -0.0544 - 30.5365 

5 Rule recchrge < 1.3767 

eqpdays ≥ -0.2954 

0.0726 0.5529 20.4608 

6 Rule recchrge < 1.1742 

eqpdays ≥ -0.2954 

0.0679 0.5483 19.1421 

7 Rule retcalls < 2.3026 

eqpdays < -0.2996 

-0.0681 0.3901 18.8075 

8 Linear term creditde -0.1001 - 18.3641 

9 Rule retcalls < 2.3026 

eqpdays < -0.2954 

-0.0664 0.3918 18.3578 

10 Rule recchrge < 1.6328 

eqpdays ≥ -0.2954 

0.0652 0.5640 18.3211 

11 Rule retcalls < 2.3026 

eqpdays < -0.2913 

-0.0552 0.3947 15.2900 

12 Linear term webcap -0.0765 - 13.5115 

13 Rule retcalls < 2.3026 

eqpdays < -0.3615 

-0.0386 0.3654 10.5356 

14 Rule eqpdays ≥ -0.2996 0.0351 0.5920 9.7650 

15 Rule eqpdays < -0.2996 -0.0349 0.4080 9.7185 

16 Rule eqpdays ≥ -0.2954 0.0339 0.5903 9.4440 

17 Rule eqpdays < -0.2954 -0.0339 0.4097 9.4374 

18 Linear term incalls -0.0135 - 7.5088 

19 Rule eqpdays < -0.3161 -0.0238 0.4017 6.6227 

20 Linear term setprcm -0.0234 - 6.5475 

21 Rule eqpdays ≥ -0.3160 0.0233 0.5983 6.4581 

22 Rule eqpdays ≥ -0.2913 0.0215 0.5873 5.9955 

23 Rule eqpdays < -0.2913 -0.0214 0.4127 5.9731 

24 Linear term changem_M 0.0770 - 3.6709 

25 Rule retcalls ≥ 2.3026 

eqpdays < -0.2913 

0.0414 0.0180 3.1160 

26 Rule retcalls ≥ 2.3026 

eqpdays < -0.3615 

0.0415 0.0173 3.0616 

27 Rule retcalls ≥ 2.3026 

eqpdays < -0.296 

0.0288 0.0179 2.1605 

28 Rule retcalls ≥ 2.3026 

eqpdays < -0.2954 

0.0280 0.0179 2.1015 

29 Rule eqpdays < -0.3615 -0.0049 0.3827 1.3619 

30 Rule eqpdays ≥ -0.3615 0.0049 0.6173 1.3523 

31 Rule recchrge ≥ 1.3767 

eqpdays ≥ -0.2954 

-0.0113 0.0374 1.2163 

Table A.1: The Cell2cell rule ensemble model: terms, term types, rule conditions, rule support and term importance. 

Terms are sorted by their importance. 
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Term Type Term or rule specification Coefficient Rule 

support 

Term 

importance 

1 Linear term retcalls 0.2107 - 100 

2 Linear term revenue 0.1523 - 67.4154 

3 Spline s(changem) 0.3692 - 39.0854 

4 Linear term recchrge -0.0505 - 22.4276 

5 Linear term creditde -0.1467 - 21.2720 

6 Linear term changem -0.0438 - 19.6160 

7 Spline s(eqpdays) 0.1242 - 18.3232 

8 Rule recchrge < 1.3767 

eqpdays ≥ -0.29547 

0.0785 0.5529 17.4713 

9 Linear term setprcm -0.0769 - 17.0326 

10 Rule recchrge < 1.6328 

eqpdays ≥ -0.2954 

0.0705 0.5640 15.6602 

11 Rule recchrge < 1.1742 

eqpdays ≥ -0.2954 

0.0693 0.5483 15.4544 

12 Rule retcalls < 2.3026 

eqpdays < -0.2996 

-0.0697 0.3901 15.2346 

13 Rule retcalls < 2.3026 

eqpdays < -0.2954 

-0.0665 0.3918 14.5401 

14 Linear term webcap -0.0987 - 13.7891 

15 Spline s(mou) 0.1646 - 10.1537 

16 Rule retcalls < 2.3026 

eqpdays < -0.2913 

-0.0462 0.3947 10.1205 

17 Rule eqpdays ≥ -0.2996 0.0369 0.5920 8.1317 

18 Rule eqpdays < -0.2996 -0.0366 0.4080 8.0486 

19 Rule eqpdays ≥ -0.2954 0.0343 0.5903 7.5649 

20 Rule eqpdays < -0.2954 -0.0342 0.4097 7.5306 

21 Spline s(incalls) 0.1299 - 5.4361 

22 Rule retcalls < 2.3026 

eqpdays < -0.3614 

-0.0226 0.3654 4.8747 

23 Linear term changem_M 0.1264 - 4.7648 

24 Rule eqpdays < -0.3160 -0.0166 0.4017 3.6533 

25 Rule eqpdays ≥ -0.3161 0.0160 0.5983 3.5121 

26 Rule retcalls ≥ 2.3026 

eqpdays < -0.3615 

0.0562 0.0173 3.2754 

27 Rule recchrge ≥ 1.3767 

eqpdays ≥ -0.2954 

-0.0369 0.0374 3.1351 

28 Rule eqpdays < -0.2913 -0.0142 0.4127 3.1247 

29 Rule eqpdays ≥ -0.2913 0.0136 0.5873 2.9880 

30 Rule retcalls ≥ 2.3026 

eqpdays < -0.2913 

0.0469 0.0180 2.7890 

31 Rule recchrge ≥ 1.6328 

eqpdays ≥ -0.2954 

-0.0348 0.0264 2.4933 

32 Linear term mou -0.0054 - 2.3950 

33 Spline s(recchrge) 0.0520 - 1.4844 

34 Rule retcalls ≥ 2.3026 

eqpdays < -0.2996 

0.0248 0.0179 1.4729 

35 Rule retcalls ≥ 2.3026 

eqpdays < -0.2954 

0.0231 0.0179 1.3708 

36 Spline s(directas) 0.0605 - 1.2405 

37 Spline s(custcare) 0.0354 - 0.5295 

38 Spline s(callwait) 0.0373 - 0.3732 

Table A.2: The Cell2cell spline-rule ensemble model: terms, term types, rule conditions, coefficients, rule support and 

term importance. Terms are sorted by their importance. 

Appendices B - E 

Appendices B-E are available as online supplementary materials available for download at 

https://github.com/koendebock/SRE-SGL/blob/master/SRE-SGL_supplementary_materials.pdf.  

https://github.com/koendebock/SRE-SGL/blob/master/SRE-SGL_supplementary_materials.pdf

