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Abstract

A framework is proposed to investigate the behavior of LES flame surface den-

sity models for simple academic cases, here the development of a statistically

one-dimensional flame in an homogenous and isotropic turbulence, by com-

parison with a prescribed reference solution. First, a set of zero-dimensional

equations is derived to reproduce a fractal flame surface evolving from an

initially planar shape up to equilibrium. Then, a balance equation including

a sub-grid scale contribution is solved to mimic the evolution of the overall

resolved flame surface in an actual large eddy simulation.

Non-dynamic and dynamic versions of an algebraic sub-grid scale flame

surface wrinkling factor model are investigated. The non-dynamic model

overestimates the total flame surface in early stages of the flame develop-

ment while under (respectively over) estimation of unresolved surfaces are

partly compensated by larger (respectively lower) resolved surfaces. More-

over, model parameters strongly affect flame response times possibly com-

promising the prediction of combustion instabilities. Results are improved

using a dynamic flame surface wrinkling factor model.
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The generality of conclusions are limited by the enforcement of the refer-

ence solution but the proposed approach is well-suited to qualitative investi-

gations of sub-grid scale models at negligible computational costs, to support

direct numerical simulation studies or to help in analyzing LES results. It

also suggests new possible closures for future developments.

Keywords: Turbulent premixed combustion, Flame surface density

modeling, Large eddy simulation, Sub-grid scale models, Theoretical

analysis

1. Introduction

The pioneering work of Kenneth Bray and coworkers [1–8] who intro-

duced progress variable and assumed infinitely thin flame fronts to inves-

tigate the physics, evidencing counter-gradient transport, and model tur-

bulent premixed combustion, i.e. developing the so-called BML formalism

(Bray-Moss-Libby, or the Bi-Modal Limit following to the authors’ modesty),

was the foundation of numerous contributions regarding flamelet modeling.

Among them, a class of models quantifies the flame surface, identified to

a given level c∗ of the progress variable. This approach splits the reaction

rate into two contributions, the reaction rate per unit of flame area, modeled

from laminar flame characteristics, and the flame surface density measuring

the flame surface per unit volume, Σ∗, describing the flame / turbulence in-

teraction and estimated from an algebraic expression or solving a balance
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equation [8–16].1

Initially devised for Reynolds averaged Navier-Stokes (RANS) equations,

the flame surface density concept was easily extended to large eddy simula-

tion (LES), either using an algebraic expression or solving a balance equation

[18–27].2 Boger et al. [18] introduced a “generalized” flame surface density Σ

integrating Σ∗ over all the c-surfaces (see also [24]) and extended to LES the

flame surface density algebraic expression devised by Bray et al. [8]. Some

of the above models measure the flame surface in terms of wrinkling factor,

Ξ, i.e. the ratio of the flame surface to its projection on a plane normal to

the propagating direction, instead of flame surface density. Large eddy sim-

ulation gives the opportunity to take advantage of the known resolved flame

wrinkles to infer the behavior of the unresolved ones, through similarity as-

sumptions [28–30] or dynamically adjusting model parameters [29–42].

Numerous contributions have investigated flame surface density models

and revisited closures for Reynolds averaged and large eddy simulations using

direct numerical simulations (DNS) [see, for example, among many others,

15, 18, 23, 37, 43–53]. We propose here an alternative academical framework

to investigate the behavior of flame surface density models in large eddy

simulations. The idea is to prescribe exact and known solutions to the set

1The idea of solving a flame surface density balance equation was first proposed by

Marble and Broadwell [17] for non-premixed combustion.
2Strictly speaking, Colin et al. [21] and Charlette et al. [23] works are related to the

thickened flame model [TFLES, see also 27] but unresolved contributions to reaction rates

are modeled using a flame surface wrinkling factor estimated from an equilibrium assump-

tion in the flame surface density balance equation.
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of equations for total, resolved and unresolved flame surfaces. Then, the

influence of sub-grid scale models on resolved and total flame surfaces can

be analyzed. Obviously, the generality of conclusions will be limited by the

relevance of the exact solutions retained and the corresponding closures of

the balance equations but (i) we feel this approach will contribute to draw

some general trends and help to identify potential model drawbacks; (ii) some

new closure schemes could emerge; (iii) many points can be investigated at

negligible computational costs. In the case studied below, equations reduce

to ordinary differential equations where quantities of interest evolve only with

time.

In the following, we assume that the flame behaves as a fractal surface

at all stages of its development, as suggested by various models and analysis

[23, 28, 49, 54–65]. Once derived the balance equations describing the evolu-

tion of a statistically one-dimensional flame evolving in an homogenous and

isotropic frozen turbulence (Section 2), exact closures are proposed to fit this

requirement (Section 3) while the influence of two sub-grid scale models, a

simple algebraic model and its dynamic version, on resolved and total flame

surfaces, and then on the overall turbulent flame speed, as well as the un-

steady flame response, are discussed in Section 4, including model parameter

uncertainties. Conclusions and perpectives are drawn in Section 5.

2. Mathematical framework

2.1. Progress variable and flame surface density balance equations

Following Bray and Libby [1], a progress variable c, corresponding to a

reduced mass fraction or temperature and increasing from c = 0 in pure fresh
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gases to c = 1 in fully burnt products, is introduced under the assumptions of

a single-step irreversible chemical reaction, adiabatic and isobaric combustion

and unity species Lewis numbers. Its balance equation reads:

∂c

∂t
+ u · ∇c =

1

ρ
[∇ · (ρD∇c) + ω̇c] = Sd |∇c| (1)

where t is the time, ρ the density, u the velocity vector and ω̇c the progress

variable reaction rate while the molecular diffusion flux is modeled follow-

ing a Fick law with a diffusivity D. Sd is the c-surface displacement speed

relatively to the flow and can be expressed in terms of a speed corrected of

thermal expansion, S0
d , according to Sd = (ρ0/ρ)S0

d where ρ0 is the fresh gas

density. For a one-dimensional unstrained laminar flame, S0
d corresponds to

the laminar flame speed SL. A balance equation for |∇c| is easily derived:

∂ |∇c|
∂t

+∇ · [u |∇c|] = (∇ · u− nn : ∇u) |∇c| −∇ · [Sdn |∇c|] + Sd∇ ·n |∇c|

(2)

where n = −∇c/ |∇c| is the unit vector normal the local c surface pointing

towards fresh gases. RHS terms correspond to the strain rate induced by

the flow field on the c-surface, the normal propagation term and a combined

propagation / curvature term, respectively.

Applying an LES filter to Eq. (1) gives:

∂ρc̃

∂t
+∇ · (ρuc) = ∇ ·

(
ρD∇c

)
+ ω̇c = ρSd |∇c| = 〈ρSd〉sΣgen (3)

where Q and Q̃ denote the filtered Q quantity and the mass-weighted filtered

quantity Q̃ = ρQ/ρ, respectively, while Σgen = |∇c| is the generalized flame

surface density and 〈Q〉s = Q |∇c|/Σgen defines surface averaging [18, 24].

Filtering Eq. (2) provides a balance equation for the generalized flame surface
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density Σgen[9, 12, 15, 18, 22, 24]:

∂Σgen

∂t
+∇·[〈u〉sΣgen] = 〈∇·u−nn : ∇u〉sΣgen−∇·[〈Sdn〉sΣgen]+〈Sd∇·n〉sΣgen

(4)

Equations (2) and (4) are now integrated over a volume V containing all

the flame surface, leading to:

dStot
dt

= 〈∇ · u− nn : ∇u〉totStot + 〈Sd∇ · n〉totStot (5)

where, remembering that an LES filter is conservative,

Stot =

∫
V

Σgen dV =

∫
V
|∇c| dV (6)

measures the total flame surface and

〈Q〉totStot =

∫
V
〈Q〉sΣgen dV =

∫
V
Q |∇c| dV (7)

defines 〈Q〉tot the averaging of Q over all the flame surface. Note that Eq. (5)

also holds for a planar flame in a periodic box, the configuration investigated

in Section 4 below, but the divergence term does not vanish in general if the

flame touches a boundary of the integration volume V .

2.2. Resolved flame surface

To go further, we now assume that the resolved flame surface behaves

relatively to resolved flow motions as the actual flame in the turbulent flow,

replacing the laminar flame speed, SL and thickness δL by a sub-grid scale

turbulent flame speed S0
T and a thickness of the order of the filter size ∆. This

assumption is usual to close thickened flame [21, 23, 27, 66] or F-TACLES
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[67] models where the lost unresolved flame wrinkling is replaced by an in-

creased resolved flame propagation speed. Equation (3) is then recast in the

propagation form:

∂c̃

∂t
+ ũ · ∇c̃ =

1

ρ

[
∇ ·
(
ρD∇c

)
+ ω̇c −∇ · (ρuc− ρũc̃)

]
= ST |∇c̃| (8)

defining the displacement speed ST of the resolved c̃-surface relatively to the

resolved flow, with ρ0S
0
T = ρST . As this equation is formally similar to Eq.

(1), one easily deduces from Eq. (2) that:

∂ |∇c̃|
∂t

+∇· [ũ |∇c̃|] = (∇ · ũ− ññ : ∇ũ) |∇c̃| −∇ · [ST ñ |∇c̃|] +ST∇· ñ |∇c̃|

(9)

where ñ = −∇c̃/ |∇c̃| is the normal vector to the resolved c̃-surface pointing

towards fresh gases. Then,

dSres
dt

= 〈∇ · ũ− ññ : ∇ũ〉resSres + 〈ST∇ · ñ〉resSres (10)

where resolved flame surface and surface average are defined as:

Sres =

∫
V
|∇c̃| dV and 〈Q〉resSres =

∫
V
Q |∇c̃| dV (11)

2.3. Mean flame surface wrinkling factors

Considering a statistically one-dimensional flame evolving in a turbulent

flow field and assuming flame periodicity in directions normal to the mean

propagation, equations (5) and (10) can be recast in terms of mean total,

Ξtot, and resolved, Ξres, flame wrinkling factors:

Ξtot =
Stot
S0

; Ξres =
Sres
S0

(12)

where S0 is the flame surface projected on a plane normal to the propagation

direction (i.e. the surface of this plane). As S0 is constant in this case, Ξtot
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and Ξres balance equations are formally similar to Stot and Sres equations,

respectively, and can be written:

1

Ξtot

dΞtot

dt
= 〈a〉tot + 〈Sd∇ · n〉tot (13)

1

Ξres

dΞres

dt
= 〈a〉res + 〈ST∇ · ñ〉res (14)

where strain rate terms are noted 〈a〉tot and 〈a〉res for compactness. The

mean wrinkling factor of the sub-grid scale surface, Ξsgs, is defined as:

Ξsgs =
Stot
Sres

or Ξtot = ΞsgsΞres (15)

A balance equation for Ξsgs is then obtained subtracting Eq. (14) from Eq.

(13):

1

Ξsgs

dΞsgs

dt
= 〈a〉tot − 〈a〉res︸ ︷︷ ︸

〈a〉sgs

+ 〈Sd∇ · n〉tot − 〈ST∇ · ñ〉res︸ ︷︷ ︸
〈Sd∇·n〉sgs

(16)

Equations (13), (14) and (16) are exact for a statistically one-dimensional

turbulent premixed flame but unclosed. In practical large eddy simulations,

a model is required for Ξsgs, either an algebraic expression [21, 23, 68, 69]

or solving a balance equation [19, 22, 25], while Ξres corresponds to resolved

flame wrinkling and Ξtot = ΞsgsΞres. In the following, Eq. (14), combined

with adapted closures and a sub-grid scale model for Ξsgs, will be solved to

mimic an actual LES, Eq. (13) providing the reference solution.

3. Closure schemes

3.1. Definition of a model problem

Equations (13 - 14) are now closed requiring solutions given by known

expressions. We assume that the flame behave as a fractal surface at all
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stages of its development [23, 28, 49, 54–65]:

Ξtot =

(
lt
δc

)β
; Ξres =

(
lt
δ∆

)β
; Ξsgs =

(
δ∆

δc

)β
(17)

where lt is the turbulence integral length scale, identified to the outer cut-off

scale of the fractal surface, δc and δ∆ the inner cut-off scales of the total

and resolved surfaces, respectively, and D = 2 + β, the fractal dimension

evolving with time. The inner cut-off scales of the flame surface, δc, and of

the resolved flame surface, δ∆, are expected to be of the order of the laminar

flame thickness δL and the filter size ∆, respectively, but could differ. Gulder

and Smallwood [70] suggested a dependence of δc with the Karlovitz number

Ka (δc ∝ δLKa
−1/3), while Colin et al. [21] noted that resolved flow motions

smaller than five times the thickness of the resolved flame have a reduced

contribution to its wrinkling. However, these points are not addressed here

and left for further investigations.

Equations (13) and (14) become:

ln

(
lt
δc

)
dβtot
dt

= 〈a〉tot + 〈Sd∇ · n〉tot (18)

ln

(
lt
δ∆

)
dβres
dt

= 〈a〉res + 〈ST∇ · ñ〉res (19)

and are expected to provide the same solution β = βtot = βres. We now look

for closures of strain rate and curvature terms achieving this goal.

3.2. Strain rate term closure

Assuming that strain rate terms 〈a〉tot and 〈a〉res can be modeled inde-

pendently of propagation / curvature terms 〈Sd∇·n〉tot and 〈ST∇· ñ〉res and

comparing equations (18) and (19) suggest the rather unusual scaling:

〈a〉tot
ln (lt/δc)

=
〈a〉res

ln (lt/δ∆)
(20)
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Following the procedure proposed by Charlette et al. [23], the strain rate

due to turbulent motions in the range of the flame inner cut-off scale δc and

the integral length scale lt is given by (see Eq. (A.4) and its derivation in

AppendixA):

〈a〉tot =
3√
55
Ka

SL
δL

[
exp

(
−3

2
Ck
π4/3

Ret

)
− exp

(
−3

2
Ck
π4/3

Ret

(
lt
δc

)4/3
)]1/2

(21)

where the turbulence Reynolds number and the Karlovitz number are Ret =

u′lt/ν and Ka = (u′/SL)3/2(lt/δL)−1/2, respectively, u′ being the velocity

fluctuation related to integral length scale lt, SL the laminar flame speed

and ν the kinematic viscosity [27]. Ck ≈ 1.5 is the universal Kolmogorov

constant.

Comparing Eqs. (20) and (21) suggests to model the strain rate acting

on the resolved flame surface, 〈a〉res as:

〈a〉res,1 =
3√
55
Ka

SL
δL

[
exp

(
−3

2
Ck
π4/3

Ret

)
− exp

(
−3

2
Ck
π4/3

Ret

(
lt
δc

)4/3
)]1/2

× ln (lt/δ∆)

ln (lt/δc)
(22)

while applying Eq. (21) to the cut-off scale δ∆ gives:

〈a〉res,2 =
3√
55
Ka

SL
δL

[
exp

(
−3

2
Ck
π4/3

Ret

)
− exp

(
−3

2
Ck
π4/3

Ret

(
lt
δ∆

)4/3
)]1/2

(23)

Figure 1 compares 〈a〉res,1 and 〈a〉res,2 as predicted by Eqs. (22) and (23),

respectively, for Ret = 34 and lt/δc = 20, retained for tests below (see Table

2), as function of δ∆/lt. Values are identical for δ∆ = δc and δ∆ = lt by

construction, but slightly differ elsewhere. However, the scaling in Eq. (20)
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is acceptable, especially considering the strong assumptions underlying the

derivation of Eq. (21) [see AppendixA and Refs 21, 23, 43]. Note that the

discrepancies between 〈a〉res,1 and 〈a〉res,2 decrease when increasing Reynolds

number Ret (or u′/SL) for a constant ratio lt/δc (not shown for brevity).

In the following, we will retain the simplified expressions, sufficient for our

objectives:

〈a〉tot = αKa
SL
δL

ln

(
lt
δc

)
and 〈a〉res = αKa

SL
δL

ln

(
lt
δ∆

)
(24)

where α is a model parameter. According to Eq. (16), 〈a〉sgs is modeled as:

〈a〉sgs = 〈a〉tot − 〈a〉res = αKa
SL
δL

ln

(
δ∆

δc

)
(25)
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Figure 1: Comparison of strain rates 〈a〉res,1 (present model, Eq. 22, continuous line) and

〈a〉res,2 (Charlette et al. [23] model, Eq. 23, dashed line) plotted as a function of the ratio

δ∆/lt for Ret = 34 and lt/δc = 20 (see Table 2). Displayed values are divided by the

coefficient (3/
√

55)Ka(SL/δL).
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3.3. Combined propagation / curvature term closure

3.3.1. Total flame surface wrinkling factor equation (〈Sd∇ · n〉tot)

Following Peters [59, 71] the displacement speed Sd defined by Eq. (1) is

decomposed into three components:

Sd =
ω̇c

ρ |∇c|︸ ︷︷ ︸
Sr

+
n · ∇ (ρDn · ∇c)

ρ |∇c|︸ ︷︷ ︸
Sn

−D∇ · n︸ ︷︷ ︸
St

(26)

due to reaction rate, normal diffusion and tangential diffusion, respectively.

Direct numerical simulation data suggest that, for statistically planar flames,

Sr + Sn, which is of the order of (ρ0/ρ)SL, where ρ0 is the fresh gas density,

is only weakly correlated to the curvature ∇·n [see, for example, 47, 59, 71],

at least for unity Lewis number flames, while the mean curvature is close to

0 [see, among many others, 47, 72]. Then:

〈Sd∇ · n〉tot ≈ −〈D (∇ · n)2〉tot (27)

The variance of the curvature is expected to scale with the square of

the inverse of the flame surface wrinkling length scale Ly. Bray et al. [8]

correlated Ly to the turbulence integral length scale lt and the ratio of the

turbulent intensity u′ and the laminar flame speed SL:

Ly = Cllt

(
SL
u′

)n
(28)

where Cl and n are model parameters, while Colin et al. [21] and Charlette

et al. [23] proposed:3

Ly = Cl
lt

Ξtot − 1
(29)

3Written for the unresolved contribution, in terms of filter size ∆ and sub-grid scale

wrinkling factor Ξsgs, in references [21, 23].
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These expressions are close as 1 + (u′/SL)n, with n of order unity, is a good

estimate of the wrinkling factor Ξtot in the flamelet regime. However, they

are not adapted to recover a fractal solution (17) for Eq. (13). In this view,

considering two limiting cases:

• For a planar laminar flame: Ξtot = 1, βtot = 1 and Ly = +∞ (unwrin-

kled flame surface).

• When the flame occupies all the available volume (space-filling limit

with a fractal dimension D = 3), Ξtot = lt/δc, βtot = 1 and Ly ≈ δc.

suggests the simple scaling Ly ∝ δc/β
n
tot, where exponent n is a model pa-

rameter. Assuming D ≈ SLδL, δc ≈ δL and keeping the factor ln(lt/δc)

found in the LHS of Eq. (18) and introduced in the modeling of 〈a〉tot (Eq.

24), the curvature term is then modeled as:

〈Sd∇ · n〉tot ≈ −γD
(
βntot
δc

)2

ln

(
lt
δc

)
≈ −γSL

δL
β2n
tot ln

(
lt
δL

)
(30)

where γ is a model parameter. Setting n = 1/2 introduces the logarithm of

the flame wrinkling factor Ξtot = (lt/δL)βtot :

〈Sd∇ · n〉tot ≈ −γ
SL
δL
βtot ln

(
lt
δL

)
= −γSL

δL
ln (Ξtot) (31)

This expression scales Ly as Ly ∝ δc[ln(Ξtot)]
−1/2, referring to the inner cut-off

scale δc, while Eqs (28-29) correspond to Ly ∝ lt(Ξtot− 1)−1, using the outer

cut-off scale lt. To analyse these discrepancies is left for future investigations.

3.3.2. Resolved flame surface wrinkling factor equation (〈ST∇ · ñ〉res)

Assuming that the resolved flame surface behaves as a laminar flame of

thickness ∆ ≈ δ∆ propagating at the flame speed ΞsgsSL, Eq. (31) suggests:

〈ST∇ · ñ〉res ≈ −γ
ΞsgsSL

∆
ln (Ξres) (32)
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scaling the resolved flame wrinkling length scale as L∆
y ∝ ∆[ln(Ξres)]

−1/2.

However, combining this expression with Eqs (24) and (31) would close Eqs

(18-19) as:

dβtot
dt+

= αKa− γβtot ;
dβres
dt+

= αKa− γ Ξsgs

∆/δL
βres (33)

giving different βtot and βres values excepted when Ξsgs = ∆/δL, i.e. βsgs = 1,

missing the objective of a fractal solution in the range [δc, lt], with βtot =

βres = βsgs. Keeping the idea of a resolved flame speed equals to ΞsgsSL and

a similar form of the closure scheme suggest to modify the modeling of the

resolved flame surface wrinkling length scale, L∆
y :

• L∆
y ∝ Ξsgsδc[ln(Ξres)]

−1/2 ≈ ΞsgsδL[ln(Ξres)]
−1/2 (i.e. replacing ∆ by

ΞsgsδL in Eq. 32) would fit the goal but fully decouples Eqs (33), that is

not physical: increasing the sub-grid scale wrinkling factor and the sub-

grid scale turbulent flame speed is expected to reduce the sensitivity of

the resolved flame to resolved turbulent motions.

• L∆
y ∝ δc(δ∆/δc)

βres [ln(Ξres)]
−1/2 ≈ δL(∆/δL)βres [ln(Ξres)]

−1/2 (i.e. re-

placing ∆ by δL(∆/δL)βres in Eq. 32) also fits the goal as the fractal

solution corresponds to βsgs = βres and Ξsgs = (δ∆/δc)
βsgs ≈ (∆/δL)βres .

Equations (33) then predict as expected βtot = βres. Note that, when

flame wrinkles are fully resolved (DNS limit), δ∆/δc → 1, Ξres → Ξtot

and L∆
y → Ly, as expected. In the following, we then adopt the simple

ad hoc closure:

〈ST∇ · ñ〉res ≈ −γ
ΞsgsSL

(δ∆/δc)
βres δL

ln (Ξres) ≈ −γ
ΞsgsSL

(∆/δL)βres δL
ln (Ξres)

(34)
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Equation (34) is a first step and undoubtedly the weakest point of the pro-

posed derivation, requiring future investigations.

3.4. Summary and comments

The closed balance equations are then:

1

Ξtot

dΞtot

dt+
= αKa ln

(
lt
δc

)
− γ ln (Ξtot) (35)

1

Ξres

dΞres

dt+
= αKa ln

(
lt
δ∆

)
− γ Ξsgs

(δ∆/δc)
βres

ln (Ξres) (36)

or, in term of fractal dimension:

dβtot
dt+

= αKa− γβtot (37)

dβres
dt+

= αKa− γ Ξsgs

(δ∆/δc)
βres

βres (38)

introducing the reduced time t+ = t/τf , where τf = δL/SL is a flame time

scale. The balance equation (16) for the sub-grid scale flame wrinkling factor

Ξsgs is then implicitly closed as:

1

Ξsgs

dΞsgs

dt+
= αKa ln

(
δ∆

δc

)
− γ ln (Ξsgs)

+ γ

[
Ξsgs

(δ∆/δc)
βres
− 1

]
ln (Ξres) (39)

where the last term models the influence of resolved scales on sub-grid scale

wrinkles.

Considering an initially planar one-dimensional flame (i.e. Ξtot(t
+ = 0) =

1 and βtot(t
+ = 0) = 0) evolving in a frozen homogeneous and isotropic

turbulence, the analytical solution of Eq. (37) is:

βtot =
α

γ
Ka

[
1− exp

(
−γt+

)]
(40)
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corresponding to a fractal dimension D = 2 + βtot = 2 + αKa/γ when the

turbulence / flame surface wrinkling equilibrium is reached (t+ → +∞).

This value is compared to others found in the literature in Table 1 and Fig.

2. Excepted the pioneering work by Gouldin [54] who proposed a value of

D in the range 2.32 - 2.4, we limit this comparison to expressions written in

terms of Karlovitz numbers. Lindstedt and Vaos [73] among others retained

D = 7/3 while North and Santavicca [57] introduced a dependence of the

velocity ratio u′/SL and Giacomazzi et al. [60] a function of the turbulence

Reynolds number. Expression D = 2 + β = 2 + αKa/γ does not predict

the expected saturation of the fractal dimension with increasing Karlovitz

numbers but is sufficient as a first step in the flamelet regime. To predict this

bending requires to modify strain rate and/or curvature terms in the flame

surface wrinkling balance equation, left for future works. However, according

to Fig. 2, α/γ = 3/4 seems acceptable, corresponding to a line very close

to the slope of the Chakraborty and Klein [45] expression in Ka = 0 (slope

4/(3
√
π) ≈ 0.752).

A last comment concerns the realizability of Eqs (36) and (38): a steady

state regime can be reached only when βres and Ξres = (lt/δ∆)βres can increase

up to values making the second RHS term of the equations larger than or,

at least, equal to the first one. In the particular case of a constant modeled

wrinkling factor Ξsgs, this term increases with βres up to reach (δ∆/δc)
βres =

exp(1) and then decreases. Accordingly, the realizability condition is:

γΞsgs ≥ αKa exp(1) ln

(
δ∆

δc

)
(41)
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Table 1: Fractal dimension as a function of the Karlovitz number Ka.

Model Fractal dimension D

Gouldin [54] 2.32 - 2.4

Chakraborty and Klein [45] 2 +
1

3
erf (2Ka)

Keppeler et al. [65]
8/3Ka+ 2CD
Ka+ CD

; CD = 0.03

Present 2 +
α

γ
Ka

4. Investigation of a statistically one-dimensional turbulent pre-

mixed flame

4.1. Introduction

We now consider a statistically one-dimensional premixed flame evolving

in an homogeneous and isotropic frozen turbulence from an initially planar

configuration (Ξtot = Ξres = Ξsgs = 1). Periodic boundary conditions are

assumed in the directions normal to the mean propagation. The flame sur-

face is progressively wrinkled by turbulent motions until an equilibrium state

according to the exact reference solution given by Eq. (40). This simplified

ideal case can be viewed as the development of a flame element from is an-

choring location or following ignition. For example, a jet or swirling flame

can be considered as laminar in the vicinity of the injector lips and is progres-
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Figure 2: Model parameter β = D− 2 where D is the surface fractal dimension plotted as

a function of the Karlovitz number Ka according to the expressions summarized in Table

1: dotted-dashed lines: range proposed by Gouldin [54]; dashed line: Keppeler et al. [65];

dotted line: Chakraborty and Klein [45]; line: present model with α/γ = 3/4.

sively wrinkled by turbulent motions when convected downstream [see, for

example, 37, 38]. A flame kernel developing in a turbulent field is laminar at

early stages following ignition and is progressively wrinkled by ambiant tur-

bulent motions [35, 74]. In these transient situations, turbulence and flame

wrinkles have not reached equilibrium yet, an assumption underlying the

derivation of algebraic models, motivating Richard et al. [25] to implement

a flame surface density balance equation to predict combustion in internal

combustion engines.4

In large eddy simulations, a model is set for the unresolved flame surface

wrinkling, Ξsgs, while resolved scales are predicted by simulations. The cor-

4Note that the approach proposed here is close to the 0D formalism developed by

Richard and Veynante [75] for internal combustion engines, considering an initially spher-

ical flame surface progressively wrinkled by turbulent motions.
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responding flame surface wrinkling factor Ξres is found here solving Eq. (36)

with a simple explicit scheme implemented in Igor Pro software by Wave-

Metrics, running on a laptop. The objective is now to evaluate the impact

of the Ξsgs model on the resolved (Ξres) and total (Ξtot = ΞsgsΞres) flame

surface wrinkling factors.

Chosen parameters are summarized in Table 2. As a flamelet regime

is assumed, the Karlovitz number should be lower than unity. Arbitrarily

setting this Karlovitz number to Ka = 0.5, as well as α = 3, γ = 4 and

lt/δL = 20, leads to the fractal dimension D = 2.375, in the range proposed

by Gouldin [54], u′/Sl ≈ 1.7, Ret = (u′lt)/(SLδL) ≈ 34 and Damköhler

number Da ≈ 12. The exact equilibrium value of the total wrinkling factor

is then Ξeq
tot = (lt/δL)D−2 ≈ 3.1, identifying δc to the flame thickness δL.

Simulations are displayed for δ∆/δL = 4 (lt/δL = 5).

Table 2: Simulation parameters

Ka D lt/δL u′/SL Ret Da α γ δ∆/δL

0.5 2.375 20. 1.7 34 12 3. 4. 4.

4.2. Constant sub-grid scale wrinkling factor

The sub-grid scale wrinkling factor Ξsgs is modeled as:

Ξsgs =

(
δ∆

δc,m

)βm
(42)

where the inner cut-off scale δc,m and the fractal dimension D = 2 + βm are

prescribed by the user while the outer cut-off scale, δ∆, identified to the filter
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size, is implicitly assumed to be known. Equation (42) corresponds to the

“saturated form” of the Charlette et al. [23] expression, often observed in

practice [37].

3.5

3.0

2.5

2.0

1.5

1.0

W
ri
n
k
lin

g
 f

a
c
to

rs

2.52.01.51.00.50.0
Reduced time

Figure 3: Evolution of the total (Ξtot, continuous line), resolved (Ξres, dotted-dashed line)

and sub-grid scale (Ξsgs, dashed line) surface wrinkling factors as a function of the reduced

time t+ = t/τf . Without markers: exact fractal reference solution; with markers: solution

given by Eq. (36) combined with model (42) where βm = 0.375 and δc,m = δc. See Table

2 for simulation parameters.

Figure 3 displays the evolution of exact and predicted total, resolved

and sub-grid scale wrinkling factors with time when setting the inner cut-off

scale to its exact value (δc,m = δc = δL) and the model parameter to its exact

equilibrium value (βm = 0.375) with δ∆ = 4δL. The overestimation of the

sub-grid scale flame surface wrinkling induces on overestimation of the total

flame surface at early stages of the flame development, as already observed

when comparing non-dynamic and dynamic flame wrinkling models [35, 37,
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38]. This overestimation is partly compensated by a slight underestimation

of the resolved flame surface. The response time of the flame is also affected

and the equilibrium state is reached later. However, as the model parameters

are set to their exact equilibrium values, this final stage is exactly recovered.

When βm is set to βm = 0.5, larger than the expected equilibrium value

but corresponding to the value recommended by Charlette et al. [23], keeping

the correct inner cut-off scale δc, the resolved flame surface is underestimated

but cannot compensate the overestimation of the sub-grid scale wrinkling

factor, leading to an slight overestimation of the total flame surface and then

of the turbulent flame speed ST = ΞtotSL (about 1 %) when equilibrium is

reached (Fig. 4). Of course, this overestimation increases with the length

scale ratio δ∆/δL (about 5.4 % for δ∆/δL = 6). On the other hand, a too

small βm = 0.26 value leads to an overestimation of the resolved flame surface

overcompensating the decreased unresolved flame surface (Fig. 5). The total

flame surface is still larger than expected by about 23 % at the equilibrium,

while the flame response is slower. Note that βm = 0.26 is close of the

minimum value imposed by the realizability condition (41) giving here βm ≥

0.25. Similar results are found when varying δc,m but not detailed here for

brevity.

Figure 6 displays equilibrium values of total, resolved and unresolved

wrinkling factors reduced by their exact values varying model parameters βm

(left) and δc,m (right). In both cases, the value of the equilibrium turbulent

flame speed (or Ξtot) is overestimated when the modeled sub-grid scale wrin-

kling factor Ξsgs is lower than the exact equilibrium value (i.e. βm < 0.375

or δc,m > δc). Low values of Ξsgs are overcompensated by large resolved
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Figure 4: Evolution of the total (Ξtot, continuous line), resolved (Ξres, dotted-dashed line)

and sub-grid scale (Ξsgs, dashed line) surface wrinkling factors as a function of the reduced

time t+ = t/τf . Without markers: exact fractal reference solution; with markers: solution

given by Eq. (36) combined with model (42) where βm = 0.5 and δc,m = δc. See Table 2

for simulation parameters.

flame surfaces (see Fig. 5). On the other hand, large modeled Ξsgs values

(βm > 0.375 or δc,m < δc) are rather well compensated by low resolved flame

surfaces. However, the error on the turbulent flame speed remains acceptable

(below 10 %) in a large range of parameters (0.29 ≤ βm ≤ 0.5 when δc,m = δc

and 0.5δc ≤ δc,m ≤ 1.4δc with βm = 0.375, the realizability condition (41)

prescribing δc,m ≤ 1.59δc in this last case). As expected, this error increases

(decreases) with the ratio δ∆/δL (not shown).

The response time of the flame wrinkling, τw, is evaluated by fitting a

function A + B exp(−t/τw) on the time evolution of the total flame surface

wrinkling factor Ξtot. This time is reduced by the response time of the exact
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Figure 5: Evolution of the total (Ξtot, continuous line), resolved (Ξres, dotted-dashed line)

and sub-grid scale (Ξsgs, dashed line) surface wrinkling factors as a function of the reduced

time t+ = t/τf . Without markers: exact fractal reference solution; with markers: solution

given by Eq. (36) combined with model (42) where βm = 0.26 and δc,m = δc. See Table 2

for simulation parameters.

reference solution and displayed in Fig. 7 when varying βm or δc,m. Model

parameters affect clearly the response time that increases when reducing

the sub-grid scale wrinkling factor (i.e. decreasing βm or increasing δc,m),

up to a factor larger than three when δc,m ≥ 1.45δc or βm ≤ 0.27, close

to the realizability limits given by Eq. (41). Even setting the exact inner

cut-off scale (δc,m = δc) and equilibrium fractal dimension (βm = 0.375)

affects the flame response time by a factor about 1.5. This finding is not

surprising as the constant wrinkling factor model cannot reproduce the exact

flame development but suggests that the prediction of possible combustion

instabilities could be significantly affected, as the flame response time to flow

23



perturbations in a key ingredient in their mechanisms.
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Figure 6: Evolution of equilibrium values of the total (Ξtot, continuous line), resolved

(Ξres, dotted-dashed line) and sub-grid scale (Ξsgs, dashed line) surface wrinkling factors

reduced by their exact values as a function of the model parameter βm (left, δc,m = δc)

and the flame cut-off length scale δc,m/δc (right, βm = 0.375).
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Figure 7: Evolution of the flame response time τw reduced by its exact value as a function

of the model parameter βm (left, δc,m = δc) and the flame cut-off length scale δc,m/δc

(right, βm = 0.375).

4.3. Dynamic sub-grid scale wrinkling factor

A dynamic sub-grid scale wrinkling factor model [34–42] where Ξres =

(δ∆/δc)
βres using the model parameter βres extracted from resolved scales
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(assuming that the actual LES test filtering operating provides the correct

βres value), would give by construction the exact solution as long as the

inner cut-off length scale δc is correctly set because Eqs (37) and (38) become

identical. Moreover, when Ξsgs = (δ∆/δc,m)βres , Eq. (36) becomes:

1

Ξres

dΞres

dt+
= αKa ln

(
lt
δ∆

)
− γ

(
δc
δc,m

)βres
ln (Ξres) (43)
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Figure 8: Evolution of the total (Ξtot, continuous line), resolved (Ξres, dotted-dashed line)

and sub-grid scale (Ξsgs, dashed line) surface wrinkling factors as a function of the reduced

time t+ = t/τf . Without markers: exact fractal reference solution; with markers: solution

given by Eq. (36) combined with the dynamic model setting δc,m = 1.5δc.

Figure 8 displays the time evolution of the various flame surfaces for

δc,m = 1.5δc. As expected, the strong overestimation of the sub-grid scale

flame surface at early stages when using a constant value of Ξsgs is no longer

observed, in agreement with practical implementation of the dynamic model

[37, 38]: by construction, Ξsgs(t
+ = 0) = 1. The underestimation of the
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sub-grid scale surface due to the overestimated flame cut-off length scale is

largely compensated by the larger resolved flame surface (overestimation of

the total flame surface at equilibrium of about 4 %, to be compared to 20 %

in Fig. 6).
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Figure 9: Evolution as a function of the flame cut-off length scale δc,m/δc of equilibrium

values of total (Ξtot, continuous line), resolved (Ξres, dotted-dashed line) and sub-grid

scale (Ξsgs, dashed line) surface wrinkling factors reduced by their exact values (left)

and of the flame response time τw reduced by its exact value (right) using the dynamic

formalism.

Figure 9 shows that the over- or under-estimation of the sub-grid scale

surface when varying the prescribed inner cut-off scale δc,m is almost perfectly

compensated by the under- or over-estimation of the resolved flame surface,

respectively, significantly reducing errors on the overall flame surface and

turbulent flame speed at the equilibrium. The temporal evolution of the

flame is also affected by the set inner cut-off scale value but to a far lesser

extent than when using the constant wrinkling factor model (compare Figs

7 and 9) while the correct flame response is recovered with the exact inner

cut-off scale. This finding might explain why Volpiani et al. [41] correctly

predicted an unstable mode of a turbulent swirling flame with a dynamic
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model while a non-dynamic formulation failed.

5. Conclusion

A framework is proposed to investigate the behavior of LES flame surface

density models for simple academic cases, here the development of a statisti-

cally one-dimensional flame in an homogenous and isotropic turbulence, by

comparison with a prescribed reference solution. The first step is to derive

the corresponding set of balance equations, here to reproduce a fractal flame

surface with a fractal dimension evolving with time from a initially planar

flame up to equilibrium. Then, a balance equation is solved to mimic the

evolution of the resolved flame surface in an actual large eddy simulation.

Non-dynamic and dynamic versions of an unresolved surface wrinkling fac-

tor model are investigated including the influence of model parameters, the

fractal dimension of the unresolved surface for the non-dynamic model, es-

timated from resolved scale in the dynamic approach, and the inner cut-off

flame length scale for both formalisms. The non-dynamic formulation over-

estimates the total flame surface in early stage of the flame development,

as already observed in the literature [35, 37, 38], while an overestimation of

the sub-grid scale flame surface is partly compensated by a lower resolved

flame surface and vice-versa. As expected, the dynamic formulation is found

to better reproduce the reference solution. However, models and parameters

are found to influence the flame response time, but in a lower extent with

the dynamic formulation, possibly affecting the prediction of combustion in-

stabilities [41].

Of course, the generality of conclusions are clearly limited by the choice
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of the enforced reference solution and the corresponding balance equation

closures but we feel this approach is well-suited to quickly exploring with neg-

ligible computational costs the qualitative behavior of sub-grid scale models,

to support the design of direct numerical simulations, as well as to help in an-

alyzing large eddy simulations results or perform uncertainty quantifications.

Moreover, this analysis suggests unusual scalings for strain rate (Eq. 20) or

curvature (Eqs 31 and 34) terms, written as logarithm of the length scale and

the flame surface wrinkling factor, respectively, or relating the mean flame

surface wrinkling length scale to the flame inner cut-off scale. The derivation

also identifies a contribution of resolved length scales to the sub-grid flame

surface wrinkling factor (Eq. 39). The relevance of these formulations has

now to be investigated.

The formulation proposed here is a first step to be refined. First, some

closures have to be revisited. The assumption of a fractal structure of the

flame surface at each stage of its development (i.e. the flame is wrinkled

simultaneously at all scales ranging from the inner cut-off to the turbulence

integral length scales) as well as the rather ad hoc closure for the resolved

surface curvature (Eq. 34) are questionable. The expected bending of the

fractal dimension when increasing the Karlovitz number Ka is also not pre-

dicted. We identified the inner cut-off scales of the total (δc) and resolved

(δ∆) flame surfaces to the laminar flame thickness δL and the filter size ∆,

respectively but they could differ (Colin et al. [21] suggested a reduced ability

of turbulent motions smaller that 5∆ to wrinkle the resolved flame surface).

In the dynamic formalism, the model exponent β is estimated here from

the overall resolved flame surface without mimicking the actual test-filtering
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operation, with a test filter width only slightly larger than the filter size ∆.

Another configuration of interest regarding combustion instabilities would be

to study the flame response predicted by models, in terms of amplification

or damping and phase shift, to periodic flow perturbations. All these points

will be investigated in a near future.
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AppendixA. Strain rate modeling according to Charlette et al.

Considering homogeneous and isotropic turbulence, Charlette et al. [23]

modeled the strain rate acting on the flame surface and due to turbulent

motions up to the integral length scale lt as:

〈a〉2tot =

∫ +∞

π/lt

[C (k)]2 k2E11 (k) dk (A.1)

where E11(k) is the one-dimensional (longitudinal) energy spectrum in the

direction of the wavenumber k and C(k) an efficiency function taking into

account the ability of the turbulent eddy at scale π/k to stretch the flame.

Using the standard longitudinal Kolmogorov spectrum including the Pao
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correction for viscous cut-off:

E11 (k) =
18

55
Ckε

2/3k−5/3 exp

(
−3

2
Ck (kη)4/3

)
(A.2)

where ε is the turbulence dissipation rate, η the Kolmogorov length scale and

Ck ≈ 1.5 the universal Kolmogov constant, and assuming the flame behaves

as a low pass filter in the wavenumber space k:

C(k) = 1 when k ≤ π

δc
; C(k) = 0 elsewhere (A.3)

i.e. only turbulent motions larger than the flame inner cut-off scale δc effec-

tively stretch the flame front, Eq. (A.1) gives the analytical expression:

〈a〉tot =
3√
55
Ka

SL
δL

[
exp

(
−3

2
Ck
π4/3

Ret

)
− exp

(
−3

2
Ck
π4/3

Ret

(
lt
δc

)4/3
)]1/2

(A.4)

using usual relations for homogenous and isotropic turbulence (ε = u′3/lt, η =

(ν3/ε)1/4, where u′ is the velocity fluctuation related to integral length scale

lt and ν the kinematic viscosity) and premixed flame (SLδL/ν ≈ 1). Ret =

u′lt/ν is the turbulence Reynolds number and Ka = (u′/SL)3/2(lt/δL)−1/2

the Karlovitz number [27]. Note that (1/Ret)(lt/δc)
4/3 = 1/Rec where Rec

is the Reynolds number corresponding to the cut-off scale δc. In the limit

δc → 0 and large turbulence Reynolds numbers, Eq. (A.4) reduces to:

〈a〉tot =
3√
55
Ka

SL
δL

=
3√
55

√
ε

ν
(A.5)

proportional to the inverse of a Kolmogorov time scale, as suggested by Cant

et al. [12].

Equation (A.1) provides an order of magnitude only. It assumes a cumula-

tive effect of independent turbulent motions, neglecting possible interactions
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and their effects on flame surface and, as based on energy, cannot recover

the expected relation 〈a〉tot = 〈a〉sgs + 〈a〉res with 〈a〉sgs and 〈a〉res computed

within the range of turbulent scales [δc, δ∆] and [δ∆, lt], respectively, pre-

dicting instead 〈a〉2tot = 〈a〉2sgs + 〈a〉2res. Kolla et al. [2014, 2016] evidenced

that the turbulent kinetic energy spectrum for turbulent premixed flames

could differ from that of constant density non-reacting flows (here, Eq. A.2).

However, these differences induced by heat release are observed for scales of

the order or smaller than the laminar flame thickness, having low efficiency

values and ruled out here by the Heaviside function (A.3). Despite of these

strong assumptions, the ITNFS model [43] for RANS as well as the LES

efficiency functions derived following this approach [21, 23, 78] were widely

and successfully used in practical simulations.
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