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Abstract: Tunable ferroelectric capacitors, which exhibit a decrease in the dielectric permittivity
under an electric field, are widely used in electronics for RF tunable applications. Current devices
use barium strontium titanate (BST) as the tunable dielectric, but new applications call for tunable
materials with specific performance improvements. It is then of crucial importance to dispose of a
large panel of electrically characterized materials to identify the most suited compound for a given set
of device specifications. Here, we report on the dielectric tuning properties of Ba1−xCaxTi1−yZryO3

(BCTZ) thin films libraries (0 ≤ x ≤ 30% and 0 ≤ y ≤ 28.5%) synthesized by combinatorial pulsed
laser deposition (CPLD). An original CPLD approach allowing reliable and statistical ternary phase
diagrams exploration is reported. The effects of Ca and Zr content on tunability, breakdown voltage
and dielectric losses are explicated and shown to be beneficial up to a certain amount. Compounds
close to (Ba0.84Ca0.16)(Ti0.8Zr0.2)O3 exhibit the highest figures of merit, while a zone with composi-
tions around (Ba0.91Ca0.09)(Ti0.81Zr0.19)O3 show the best compromise between tuning ratio and figure
of merit. These results highlight the potential of BCTZ thin films for electrically tunable applications.

Keywords: BCTZ; thin films; dielectric; tunable capacitors; PLD; lead-free relaxor

1. Introduction

Ferroelectric (FE)-perovskite-films-based heterostructures are found in many micro-
electronic components dedicated to RF and microwave (MW) applications thanks to the
large electric field dependence of the relative dielectric permittivity εr(E) near the Curie
temperature TC [1]. FE Capacitors are thus voltage tunable to be used for tuning filters,
resonators, phase shifters [2]. In addition, dielectric losses below 1% are required. The
solid solution Ba1−xSrxTiO3 (BST) is the most used FE material in nowadays RF and MW
tunable capacitors because of its excellent tunability/losses compromise and adjustable
TC (via Sr content x) [1,2]. However, emerging technologies call for improved tunable
capacitor properties. In particular, for Near Field Communications (NFC) technology,
the operating voltage is reduced to a 0–3 V range compared to 0–24 V for actual tunable
capacitor products in mobile phone application [3], resulting in a lowered electric field
and tunability. Thus, for a given application with a defined operating window (maximum
applicable voltage, temperature range, minimum filters quality factor and Figure of Merit
from circuit design), one has to seek for the FE material with the best compromise between
various properties (tunability, dielectric losses, temperature coefficient TC). Improving
BST’s tunability and leakage current by chemical doping, e.g., by compensating donor-type
defects with acceptor-type dopants or by bringing the ferroelectric-paraelectric transition
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temperature closer to room temperature, has been largely attempted [4–6], but only a few
dopants were found actually to work [7–10].

Another possibility is to look for other BaTiO3-based systems to keep device integra-
tion close to the one already in use for BST tunable capacitors. Recently, the (Ba,Ca)(Ti,Zr)O3
system has been attracting attention due to its high tunability, low dielectric losses and
large piezoelectric coefficient [11–20]. In particular, Liu and Ren studied the system
(1−x)Ba(Ti0.8Zr0.2)O3−x(Ba0.7Ca0.3)TiO3 which shows, for x = 0.5, a piezoelectric coef-
ficient (d33) of about 620pm/V in ceramics [11], while it is reduced to about 70 and
80 pm/V for 350nm and 600nm thick films, respectively, with a tunability of 80% at about
330 kV/cm [12,16]. The large piezoelectric coefficient has been ascribed to the presence of
a morphotropic phase boundary (MPB) between ferroelectric phases with rhombohedral
and tetragonal symmetries, similarly to the PbTiO3-PbZrO3 (PZT) system and the presence
of a triple point. It was later shown that a phase with orthorhombic symmetry was present
between the rhombohedral and tetragonal symmetries, leading to a quadruple point, also
called the phase convergence region (PCR) [18,19]. Our goal is to investigate the tunability
properties of compositions in the BaTiO3-BaZrO3-CaTiO3 ternary phase diagram (BCTZ)
in thin film libraries using combinatorial pulsed laser deposition (CPLD). It is appealing
to try synthesizing an entire ternary phase diagram on a single substrate using three tar-
gets with CPLD [21]. This approach, however, requires complex masking schemes and
a uniform deposition rate across the substrate in order to control local compositions and
thicknesses [22]. This is very challenging, as the strongly forward peaked plume makes
PLD an intrinsically non-uniform deposition technique. Another severe drawback of this
approach is its non-statistical character, as one composition is only represented in a single
location. An intrinsic drawback of PLD is the generation of sub-micrometric droplets.
Although their density can be strongly reduced by working at a laser fluence close to
the ablation threshold, some of them reach nevertheless the surface and may give rise to
electrical shorts in parallel plate capacitors’ structures with electrode areas of thousands of
micron square. It is thus necessary to rely on a statistical population per composition to
spot possible outliers not reflecting the material’s properties.

We developed an original CPLD approach with a less complex masking scheme and
a statistical character allowing us to produce continuous slices across the BCTZ ternary
phase diagram using three targets [23,24]. Eight BCTZ polycrystalline thin film libraries
were synthesized where 280 different compounds with Ca and Zr contents spreading
in the ranges 0 ≤ Ca ≤ 11% and 0 ≤ Zr ≤ 30% were statistically characterized. The
produced tunability map reveals the presence of two zones with high tunability in the
ternary phase diagram. Insights on the impact of higher Ca concentration (up to 30%) on
the tunability were obtained from three additional composition spread libraries deposited
using two additional targets (binary samples). Taking dielectric losses (tanδ) into account
via the figure of merit (FOM) allowed the identification of a zone with compositions
around (Ba0.84Ca0.16)(Ti0.8Zr0.2)O3 showing the highest figures of merit (≈ 9000), while
compositions close to (Ba0.91Ca0.09)(Ti0.81Zr0.19)O3 showed the best compromise between
tuning ratios and figures of merit.

2. Materials and Methods

CPLD BCTZ composition spread thin films, with thicknesses of about 130nm, were
synthesized on polycristalline IrO2 electrodes (140 nm) sputter deposited onto Si (100)
substrates (10 × 10 mm2). CPLD is based on the localization of a successive deposition
from 2 or 3 targets on the substrate with a shadow mask. The local composition then
depends on the precise relative amount of material coming from each target. The mixing
of the cations issued from different targets was conducted at the perovskite single layer
(psl) level with a CPLD deposition cycle corresponding to the growth of a single perovskite
layer thick film (thickness ≈ 4 Å, see Figure 1a). Repetition of this cycle then led to forming
of the film with a homogeneous composition in the thickness direction. Tight lateral control
of the local composition requires a uniform deposition rate and cationic composition over
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the whole substrate surface for each target separately. This is quite challenging with the
strong radial distribution of PLD and the composition dependence on laser fluence and
spot size [25]. A demonstration of single target PLD thin film uniformity, although essential
for CPLD samples’ credibility, is unfortunately seldom made in published work. To obtain
film uniformity, the optical image projection of a homogenized laser beam is raster scanned
across the target, staying in focus at all times. The ablation plume is thus sweeping across
the substrate surface. Laser fluence is in-situ monitored prior to each deposition. Multiple
demonstrations of PLD films’ thickness and composition uniformity have already been
published [24].
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Figure 1. (a) Schematic of the perovskite single layer (psl) CPLD cycle deposition using 3 targets. A unique deposition rate
of N laser pulses/psl is assumed and 0 < x < 1. (b) Targets’ composition (black dots) and synthesized libraries (purple lines
from 3 targets, blue dashed lines from 2 targets) represented within the BaTiO3-BaZrO3-CaTiO3 ternary phase diagram.
Inset represents a schematic of the sample’s microstructure.

We explored a part of the BCTZ phase diagram using an original 3 targets CPLD
scheme. The control of the linear variation of the composition was obtained as in classical
CPLD [8] using BaTiO3 (BTO) and BaTi0.7Zr0.3O3 (BZT) targets (see Figure 1a). The trick
is to use sub-psl deposition from these two targets and to complete the perovskite single
layer using the 3rd target Ba0.7Ca0.3TiO3 (BCT). Let us assume, for the sake of discussion,
that the deposition rates are identical for the 3 targets with N laser pulses required for
one psl. We fix, for a given sample, an x value with 0 ≤ x ≤ 1. Then, the combinato-
rial deposition cycle comprises (1 − x)N pulses on the 1st target synchronized with the
mask displacements in one direction, followed by (1 − x)N pulses on the 2nd target with
opposite mask displacements, and finally xN pulses on the 3rd target without a mask
(Figure 1a). The Ca content of such a sample is then constant (fixed by x) while the Ti/Zr
ratio is continuously varying (controlled by mask positions). Its composition gradient
is represented in the ternary phase diagram by a line parallel to the BaTiO3-BaZrO3 bor-
der with an offset toward the CaTiO3 summit. The gradient compositions are given by
Ba(1−x)+0.7xCa0.3xZr0.7(1−x)(1−y)Ti(1−x)y+xO3 with 0 ≤ y ≤ 1. We deposited 8 BCTZ libraries
with fixed Ca contents (1%, 2%, 3%, 4%, 6%, 8%, 9% and 11% at. composition) which
are represented by the purple lines in Figure 1b. Properties of the sample with 3% Ca
have been reported elsewhere [23]. In addition, two extra targets (Ba(Ti0.8Zr0.2)O3 and
(Ba0.785Ca0.215)(Ti0.715Zr0.285)O3) were used to synthesized 3 additional libraries (binary
samples), represented by the blue dashed lines in Figure 1b and dubbed route 1 to 3.
Route 1 is equivalent to the solid solution studied by Liu and Ren [11]. The KrF excimer
laser fluence was set at 2 J·cm−2, the temperature at 700 ◦C and the deposition dynamic
oxygen pressure at 0.3mbar. These deposition conditions led to epitaxial growth of well-
crystallised and smooth BCTZ film libraries on (001) SrTiO3 single crystal substrates (See
supplementary Figures S1–S3). Part of the substrate was covered during growth to allow
access to the IrO2 bottom electrode (see details in supplementary Figure S4). After deposi-
tion, a static oxygen pressure of 500mbar was introduced in the chamber. The samples were
then cooled down to 400 ◦C at 3 ◦C·min−1 and then kept for 1 h at this temperature before
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cooling down to room temperature. DC magnetron sputtering was then used to deposit
Au top electrodes (100 × 300 µm2) through a shadow mask. A matrix of 600 capacitors
(50 columns along the composition gradient with 12 repetitions per composition) was
thus defined on each library. A schematic of the sample structure is represented in the
top-right of Figure 1b. The composition gradient extends along 7 mm, edged by two
1.5 mm wide stripes with constant composition to accommodate for the mask/substrate
relative alignment resolution and allowing precise gradient localization during electrical
characterization. Thus, 35 different compositions between gradient end members were
actually electrically measured. The composition gradient along the sample libraries was
characterized either by Wavelength Dispersive Spectroscopy (WDS JEOL JXA-8230 EPMA)
or by Rutherford Backscattering Spectroscopy (RBS). The capacitance measurements were
realised using an Agilent 4294a impedance analyzer and a motorized cascade probe station.
A fast initial C(V) scan through the libraries was performed at 100kHz under an AC voltage
of 50mV and sweeping the DC voltage from −5 V to +5 V and then from +5 V to −5 V. The
automatization of these measurements allowed for the total 6600 capacitors (11 libraries)
to be characterized within 24 h. After treating the initial fast scan data, selected lines of
compositions were then destructively measured from −7 V to 30 V to determine high field
tunability and breakdown voltage versus the composition variation.

3. Results
3.1. Composition Gradient Characterization

To establish the control of both local composition and BCTZ thickness across the
libraries, WDS profiles of Ba, Ca, Zr, Ti, Ir, Si elements were measured along the gradient
(250 steps every 40 microns) and perpendicular to the gradient (250 steps every 20 microns)
on the 6% Ca library. E-beam excited elements emit specific photons that travel through
various layers before arriving to the detector. Within these layers, the photon absorption
rates depend on its energy and on the composition and thickness of the said layers. Per-
pendicular to the gradient, the constant nominal BCTZ composition and thickness should
lead to constant absorptions rates, i.e., a constant WDS signal from Si and Ir. Indeed, we
found very small relative intensity variations (σI/I) for Si (1.73%) and for Ir (1.4%)(see
supplementary Figure S5), implying a good homogeneity of both the composition and
thickness of the BCTZ layer. BCTZ homogeneous composition was further confirmed
from the relative signal variation for Ba, Ca, Ti and Zr (σI/I = 2.33%, 3.7%, 1.94%, 1.75%,
respectively, see supplementary Figure S5). Note that the higher variation for Ca was
correlated to its small signal amplitude relative to its small weight proportion within
the probed volume. Along the gradient direction, the absorption rates within the BCTZ
layer vary with the composition. However, the Zr and Ti signals showed, as expected, an
anti-correlated almost linear continuous variation, while the Ba and Ca signals showed
little variation(see supplementary Figure S6). To quantify the BCTZ composition, we
self-consistently simulated the photon absorption within each layers using a commercial
software (STRATAGEM) after acquiring the WDS signals in one location at several ac-
celeration voltages. Assuming an oxygen stoichiometric formula BaxCayTizZrtO3 and
no conditions on x, y, z and t, the extracted composition was Ba0,91Ca0,08Ti0,87Zr0,14O3,
close to the nominal Ba0,94Ca0,06Ti0,845Zr0,155O3. Note that the total self-consistently ex-
tracted atomic composition for the A and B site (A0.99B1.01O3) are very close to unity. The
composition gradient was also checked by RBS on the 3% Ca library [23].

3.2. Fast Intitial C(V) Screening

Figure 2 shows a map of the tunability of the 280 compounds tested on the eight ternary
libraries as a function of the nominal Zr and Ca content. For comparison purposes, the tun-
ability of the capacitors was extracted from the C(V) curves within the same voltage range
taking into account the offsets associated with composition dependent hysteretic behavior
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(see top-left Figure 2). The maximum capacitance (Cmax) and its associated voltage (VCmax)
were extracted, and the tunability was calculated between VCmax and VCmax + 5V as:

tunability(%) =
Cmax − C(VCmax + 5V)

Cmax
∗ 100, (1)
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A statistical analysis among the 12 representative capacitors per composition then
gave the represented tunability value in Figure 2.

From this figure, two zones dubbed zone 1 and 2 with local tunability maxima are
revealed: zone 1 peaking at 69% for low Ca content (2–3%) and a Zr content of about
12% and zone 2 peaking at 66% for about 10% of Ca and 21% of Zr (see blue dashed
ellipses in Figure 2). We established that for the 3% Ca library, the maximum tunability was
obtained for the composition that has its paraelectric to ferroelectric transition temperature
(Tc) at room temperature [23]. It is then safe to assume, at least for the smaller amount
of Ca (<5%), that the maximum tunability is due to the temperature dependence of the
capacitance. Considering the zone 2, a decrease in Tc towards room temperature with
increased Zr content could explain the higher tunabilities too. However, the much higher
Zr content than in zone 1 should induce a more drastic drop in Tc; as Ca doping in BST
is known to have little effect on Tc, it is not anticipated that higher Ca content in zone 2
would counteract the Zr effect. Instead, it could be an indication that we are approaching a
morphotropic phase boundary.

Even though the zone at lower Ca content seems to display higher tunabilities than
the zone around 10% Ca, the global device performances do not depend solely on the
tunability but also on dielectric losses and on accessible voltage range. To characterize
overall properties further, we selected the 2%, 4%, 6% and 9% Ca content libraries and
destructively measured the C(V) curves from −7 V to 30 V along the composition gradient
for a single line of capacitors to study their tunabilities and losses up to the breakdown
voltage. The reason for selecting capacitors on the same lines is to ensure a fair comparison
of the dielectric losses vs. composition. Indeed, dielectric losses do not depend solely on
the dielectric material but also on the device connections in general, and on the bottom
electrode access resistance in particular. In our sample geometry, only capacitors on a same
raw (line) are at the same distance from the bottom electrode contact pad, i.e., have the
same access resistance. The tuning ratio (TM = Cmax/C(V)), dielectric losses Tan δ and the
figure of merit (FOM = tunability(%)/Tan δ) of the devices were then compared. Figure 3
shows the tuning ratio (a)(b)(c)(d), the FOM (e)(f)(g)(h) and Tan δ (i)(j)(k)(l) for different Ca
content (2%, 4%, 6% and 9%) as a function of applied voltage and increasing the Zr amount
for the ternary systems.
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Based on Figure 3a–d, a tuning ratio of 5/1, corresponding to a tunability of 80%,
could be reached in most of the compositions which is already promising for applications.
Tuning ratios up to 7/1 were even attained for some compositions. It can also be seen
that the breakdown voltage (Vbd), corresponding to the sharp increase in the tuning ratio
as C(Vbd) goes to zero, increased with increasing Zr content for all the Ca content, as
reported previously for 3% Ca23. From Figure 3e–h, the maximum reachable value for the
FOM increased with Ca content, from about 2000 for 2% Ca, up to about 6000 for some
compositions from the 6% and 9% libraries. However, the FOM decreased continuously
down to 0 after a certain voltage, while the tuning ratio kept increasing so that a compromise
between FOM and tuning ratio needs to be met for the best performance. This decrease in
the FOM is directly related to the non-monotonic behavior of Tan δ, as shown in Figure 2i–l.
The dielectric losses first decrease with the bias field, as expected for ferroelectrics, before
shooting up very rapidly at an upturn voltage Vup ranging from 3 to 10 V depending on the
composition. The peak in FOM occurs for the same upturn bias. Comparing curves from
top and bottom panels, it can be seen that the breakdown voltage Vbd is several volts higher
than Vup. The addition of Ca to BTO (i.e., Zr content = 0, black curves) has a moderate and
non-monotonic effect on the Tan δ upturn voltage (Vup = 3.1 V for 2%, 3.25 V for 4%, 1.8 V
for 6% and 4.5 V for 9%). Oppositely, the addition of Zr at a constant Ca content strongly
and systematically increases Vup in the Tan δ. As a consequence, a continuous offsetting of
the increasing branch of the losses is observed, up to 7.5 V for the Zr maximum content
of 28% (Figure 3i). This is correlated with the improvement in breakdown voltage upon
the Zr addition, as seen in the top panel of Figure 3. Another feature is the decrease in the
dielectric loss at 0 V with the increase in Ca content (about one order of magnitude from
2% Ca to 9% Ca), whatever the Zr content.

Thus, both the addition of Ca and Zr are beneficial to the overall performance of
the devices, although in different ways: Ca improves the 0 V dielectric losses, while Zr
improves both the losses’ upturn voltage and the dielectric breakdown voltage.

To select the optimum composition for a given application, multiple device speci-
fications have to be taken into account: the minimum required tuning ratio and FOM,
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and the maximum driving voltage available. These parameters are inter-related and have
to be considered as a set. In Figure 4a–c, we represented maps of the maximum FOM
(FOMmax), tuning ratio (TR) obtained at FOMmax and applied voltage (Vdc) at FOMmax for
the four lines of capacitors from the 2%, 4%, 6% and 9% Ca libraries as a function of Ca
and Zr contents. We summarized theses data in Figure 4d where the interconnection of the
operational parameters FOMmax, TR at FOMmax and Vdc at FOMmax is explicitly shown.
Figure 4d allows us to assess quickly if some compounds fulfill all specifications of a given
application. One can see from these maps that the highest Vdc value (11 V) obtained for
4% of Ca and about 26% of Zr leads to the highest TR but not necessarily to the highest
FOMmax. The best set of (TR, FOMmax) is obtained for higher Ca content (9%) and high Zr
content (about 19%).
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To access rapidly to the part of the phase diagram containing, at the same time, a high
content of Ca an Zr and to reproduce the solid solution from [11], we used two extra targets,
respectively, Ba0.785Ca0.215Ti0.715Zr0.285O3 (BCTZ) and BaTi0.8Zr0.2O3 (BZT), to produce
three binary samples dubbed route 1, 2 and 3 (see dotted blue lines Figure 1). The same
analysis was then conducted on the binary sample. Figure 5a–f shows the FOM and tuning
ratio for the three lines.
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The highest reachable FOM values among all the samples were displayed by the
BTO-BCTZ system (route 2 Figure 5d). However, as both the amount of Zr and Ca were
increasing up to 0.285 and 0.215, respectively, it can be seen that the voltage required to
reach a tuning ratio, e.g., a tuning ratio of 5, increased (Figure 5a). Thus, while adding Zr
and Ca is beneficial for the FOM, increasing their amount above a certain limit led to the
decrease in the tuning ratio at a given voltage. From Figure 5b,e, along route 1 from BCT
to BZT, i.e., decreasing Ca and increasing Zr amounts, the tuning ratio at a given voltage
increased, while the FOM improved before deteriorating at a low amount of Ca, consistent
with our previous observations for the ternary systems. In Figure 5c,f (route 3 from BCT
to BCTZ), where the amount of Ca decreased from 0.3 to 0.215, while the Zr amount was
increasing from 0 to 0.285, it can be seen that the FOM and especially the tuning ratio
are overall the worst of those three samples. This may be related to the solid solution
limit of Ca found in the BTO structure, which is at about 22% Ca for ceramics prepared
by conventional solid-state reaction [26] up to about 34% Ca for ceramics prepared by the
zone-melt method [27].

There is no point to map the evolution of FOMmax, Vdc and TR at FOMmax vs. the
composition for the binary samples, the lines being too far away in the ternary phase
diagram. It is, however, possible to display those parameters vs. the Ca content in a
continuous way, taking advantage of the common end members’ composition that are the
BCTZ and BCT targets for routes 2–3 and 3–1, respectively (Figure 6a–i). As pointed out
earlier, in these set of capacitors measured destructively, one composition has only one
representative, so no statistical analysis could be applied per composition. Instead, we
have taken advantage of the continuous spread of composition by smoothing the data in
Figure 6a–i using three adjacent points averaging. Error bars in the FOM data are estimated
to about 300 from the noise present in the loss signal close to its minimum. A sort of plateau
can be seen in the tuning ratio at FOMmax (TR≈3.6) for the BTO-BCTZ system (Figure 6a) for
8% ≤ Ca content (at.) ≤ 12%, but interestingly both FOMmax and Vdc increase by 50% over
this range. A similar trend was reported on BCTZ thin film obtained by co-sputtering along
the line Ba1−xCaxTi1−xZrxO3, with a maximum of tunability recorded for x = 0.12. [28].
Although the TR starts to decrease for Ca > 12%, the FOMmax still increases and reaches
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about 8900, i.e., the highest value of this study, for 16.5% ≤ Ca ≤ 19%. In route 3, adding
some Ca while removing some Zr from BTCZ towards BCT helps neither the TR nor the
FOMmax (Figure 6b,e respectively), and route 3 is clearly not the way to go for tunable
capacitors. Finally, along the BCT-BZT route analogous to [11], no local enhancement of
TR, FOMmax or Vdc was observed around a Ca content (at.) of 15% corresponding to the
MPB [11–18] (Figure 6c,f,i). Instead, a steady increase in TR, FOMmax and Vdc is observed
as Ca content decreases below 15%, with a peak at Ca (at.) = 3.33% corresponding to
FOMmax ≈ 6740, TR ≈ 4 and Vdc ≈ 5.7 V at FOMmax, i.e., close to the best values reported
in the ternary libraries.
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Again, we summarized these data in Figure 6j where FOMmax vs. TR and Vdc at
FOMmax is mapped for the binary libraries together with the ternary libraries.

4. Discussion

The original CPLD approach described here in exploring ternary phase diagrams in a
reliable and statistical way by taking multiple slices across the diagram is a major upgrade
of the combinatorial exploration in thin film developed so far. There are multiple improve-
ments of this approach with respect to published work on combinatorial exploration of
ternary phase diagrams using a single sample. First, the simple masking scheme used here
to localize the deposition on the substrate allows a tight control of the local composition
and thickness. In previous published work using shadow masks, the masking scheme
was quite complex [21,22], implying a very difficult control of both the composition and
the thickness over the library. Hence, the reported local composition in ref [21] was off
nominal, with no mention of the thickness uniformity, while in most studies, a comparison
between actual and nominal local compositions is not even addressed [29]. Other groups
produced ternary phase diagrams by PLD without shadow masks, relying on rotated
and off-centred substrates to produce lateral thickness variations in different directions
for each target. Prediction of thickness variation and local composition were then made
using simple models and simulations, which correlate at least semi-quantitatively with the
measured compositions and thicknesses for binary oxides [30]. A demonstration has not
been made for multi-cationic targets, and by nature this deposition scheme cannot produce
uniform thickness libraries. Another improvement over previous work is the statistical
population per composition given here by the slicing approach, which gives confidence
and credibility in the determined properties. Outliers are easily spotted and dismissed with
a statistical analysis. Furthermore, in previous work on tunable material with a complete
ternary phase diagram on a single sample, there was no room for an access to bottom
electrodes. Tunability and losses were evaluated by a scanned microwave microscope [29]
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at GHz frequencies with no electrodes; thus, it did not encompass any electrode/dielectric
interface effect.

Regarding the exploration of the BCTZ phase diagram presented here, we charac-
terized 35 different compounds on each of the 11 synthesized libraries, i.e., a total of
385 different compositions. A fast initial low voltage C(V) screening allowed us to identify
two regions with high tunabilities. Higher voltage characterizations, up to the breakdown
voltage, were made to investigate the relative roles of Ca and Zr further with respect to
tunability, losses, voltage at loss upturn (Vup) and breakdown voltages (Vbd). It has been
shown that Ca and Zr substitutions are beneficial up to a certain point with different bene-
fits. Ca substitution for Ba reduces the losses at zero biasing voltage, while Zr substitution
for Ti improves both the losses’ upturn voltage and the dielectric breakdown voltage. As
a higher dc field and tuning ratio are accessible when increasing Vup, Zr substitution is
also beneficial for the FOM. In general, for a given composition, the best performances
with minimal losses were obtained at Vup where the FOM reached its maximum. The
representation in a single map of the maximum FOM vs. Vdc and TR at FOMmax (Figure 6j)
for the 385 tested compounds allows us to identify quickly whether compositions exist
that fulfill all specifications associated with a given applications. Indeed, no composition
maximizes all the operational parameters, and the overall maximum FOM found here
(about 9000 for Ba0.84Ca0.16Ti0.8Zr0.2TiO3) did not correspond with the maximum overall
tuning ratio (4.4 for Ba0.91Ca0.09Ti0.81Zr0.19TiO3 with FOMmax = 6600 and Vdc = 8.5 V). For
comparison purposes, let us consider state-of-the-art tunable BST-doped material found in
commercial STMicroelectronics RF tunable capacitors for antenna impedance matching in
4G mobile phones. In the capacitor specifications [31] are reported a tuning ratio of 5/1
from 1 V to 24 V (i.e., Vdc = 24 V, tunability = 80%) and a quality factor Q = 55 (at 2 V and
700 MHz, Q = 1/Tanδ) giving a FOM of 4400. Comparing with Ba0.91Ca0.09Ti0.81Zr0.19TiO3,
we have a slightly smaller tuning ratio (4.4 vs. 5), a higher FOM (6600 vs. 4400) and a much
lower driving voltage (8.5 V vs. 24 V). This compound might be better suited than doped
BST for near field communications (NFC) applications where the driving field does not
exceed 3 V. Finally, the large range of properties described here illustrates the flexibility of
the BCTZ system depending on the needs.

5. Conclusions

We deposited polycrystalline BCTZ thin films libraries on IrO2/Si(100) substrates
using a refined combinatorial pulsed laser deposition (CPLD) scheme. We showed that
CPLD is a powerful technique to study continuous lines reliably through the BaTiO3-
CaTiO3-BaZrO3 phase diagram (or any other phase diagram) in thin film form, which
is crucial for their integration into devices, and allows a comparison with their bulk
counterpart. By investigating the tunabilities and the figures of merit of the devices at
room temperature, we were able to determine regions of the phase diagram with either
the highest tunability or the highest FOM. Thus, we were able to determine a composition
depending on the needs: low operation voltage (if high tunability is not required), high
tuning ratio (up to 4.4) and high FOM (up to 9000). Finally, these results showed that BCTZ
is a good candidate for tunable application and can potentially be used as a starting block
for further improvements in their functionality.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/coatings11091082/s1. Figure S1. (a) Diffractogram of a Ba0.785Ca0.215Ti0.715Zr0.285O3 film;
(b) AFM surface topography im-age of the same Ba0.785Ca0.215Ti0.715Zr0.285O3 film. Figure S2.
RSMs around the (103) node measured at various X position along the gradient of the BaTiO3-
Ba0.785Ca0.215Ti0.715Zr0.285O3 library grown on (La,Sr)MnO3/STO. Figure S3. BCTZ in-plane and
out-of plane lattice parameters, and c/a tetragonality, versus posi-tion. Figure S4. (a) Schematics
of the shadow-mask deposition process and of the obtained CPLD li-braries; (b) Schematic (top)
and top view picture (bottom) of a finalized library. Figure S5. (a) WDS signals coming from Zr, Ca
and Ir along the white arrow (left) where a con-stant composition and thickness of BCTZ is targeted.
Figure S6. Schematic (top left) of the 6% Ca library with the WDS scanning line (white arrow) and

https://www.mdpi.com/article/10.3390/coatings11091082/s1
https://www.mdpi.com/article/10.3390/coatings11091082/s1
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the location for quantitative measurement (yellow spot) together with the WDS signals com-ing from
Ir, Ca, Ba, Ti, and Zr along the scan.
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