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Spiral rupture of thin sheet with a blunt object.
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Résumé :
Nous montrons que la rupture de films mince accompagnée de grand déplacement hors plan donne lieu à des découpe
extrèmement robustes, par exemple lorsque la découpe est provoquée par un objet non affûté. Ici on insère un cylindre
dans une encoche ouverte au milieu d’un film plastique dont les bords sont fixés, puis le cylindre est constamment
poussé latéralement contre la même lèvre. Le résultat est une propagation de la fissure en spirale extrèmement régulière,
indépendament des détails du déplacement du cylindre. Nous cherchons à expliquer ce phénomène, qui permet de mesurer
les propriétés d’anisotropie de rupture pour le matériau considéré.

Abstract :
Thin layers are commonly used in a wide kind of industrial products (from everyday packaging to airplanes) and are also
frequently found in biological systems. The mechanics of thin sheets is rich and complex, with strong geometrical non-
linearities leading for example to the intricate folds and singularities that we can observe in a crumpled sheet of paper.
But here we show that fracture in thin sheets can follow remarkably regular geometrical path. We have observed crack
path that evolved from an initial notch a few millimeter wide into a logarithmic spiral that reached a meter in diameter.
We present a model that explains the impressive regularity of this crack propagation.

Mots clefs : Fracture, Crack, Thin Sheet, Spiral

1 Introduction
Thin sheets and slender bodies are ubiquitous in industrial applications which often try to reduce material
weight. The study of their strength and rupture mechanism is therefore very important, and involves the cou-
pling of out-of-plane bending (strong geometrical non-linearities) with crack propagation. Ductile materials
are often chosen when thin plates constitute part of the mechanical strength of the structure. The rupture of
such plates by a blunt tool has been studied in the case of ship grounding and leads to interesting diverging
crack path morphologies (concertina tears) [1].
Here we focus on the case of brittle materials which are commonly used for packaging because the opening
process has to be easy. Using such material, we show that when a blunt object is pushed continuously against
the same fracture lip, the crack propagates in a very robust and reproducible spiral path. Indeed the shape is
independent of the object shape, speed, or precise movement, as long as it always pushes on the same lip. We
note that other spiral path have been observed in drying-induced fracture [2, 3, 4] but with a very different
underlying physics. In this article, we characterize the spiral and show how a model developed in [5] for the
case of a rectilinear displacement of the blunt object (leading to oscillatory crack path) explains this surprising
behavior and predicts the spiral shape.

2 The experiment
In our experiments, a brittle thin sheet (Bi-Oriented PolyproPylene, thickness t from 30 to 90µm) is clamped at
its edges and a small (5mm) straight incision is made far from its boundaries. A blunt object, our tool, is placed
inside the incision perpendicular to the sheet. With this object, we start to push on one edge of the incision AB
(see fig. 1-a) and as the loading increases, the crack eventually starts to propagate. We then displace the tool
with the single following rule : the tool always pushes on the same lip (see fig.1-b). A curved path progressively
develops. In figure 1-c is presented a picture of the final crack path obtained : a spiral that reached up to a meter
in diameter in only about 2.5 turns. We stress the fact that in the experiment we do not specify the exact object
displacement, as long it is continuously pushed against the same edge (see fig. 1a and b). Despite this loose
control procedure, the final spiral crack is impressively smooth and reproducible. What sets the final shape ?
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FIGURE 1 – Diagrams of the experiment in initial (a) and intermediate (b) stage. (c) Picture of the final spiral
crack path (30µm thickness BOPP sheet). The edge is painted in black for contrast reasons, and a green line is
superposed in order to present the path of the crack in the picture. (d) Zoom of the initial part of the spiral, the
red line represents the initial notch.

3 Model
We follow here the approach developed in the study of a oscillatory crack path made by a blunt object [5,
6]. Although it is based on classical fracture mechanics theory and thin sheet elasticity, it surprisingly gives
geometrical rules for the prediction of the crack propagation.
Elastic energy in thin sheet is dominated by in-plane stretching energy (scaling as the thickness t) since the
bending elastic energy only scales as t3 and will not contribute to crack propagation. We then define a soft
region as the convex hull of the crack path (white area in fig. 2). This area is allowed to bend out of plane
without generating stretching : when placed there, the tool will only produce out of plane deformation with
negligible elastic energy. However if the tool moves out of this region, in-plane strain appears. For example in
fig 2 the edge segment defined by the point A and the crack tip T is being stretched by the tool lying outside
of the white soft zone.
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FIGURE 2 – Geometry of the fracture process. The white zone in the right is free to bend out-of plane and does
not contribute to stretching elastic energy in the system.

The elastic energy E can then be estimated from linear elasticity with E ∝ Eε2S t, where E is Young’s modulus
of the sheet, ε is a typical strain, S is the area of the stretched zone (roughly the dark gray area in fig. 2). A
typical strain ε can be computed from the change in the length of the segment AT and goes like ε ∼ α2 for
α � 1 (see fig.2). Finally, the elastic energy reads E ∼ EtL2α5, since S ∼ L2α. If we push more, both the
angle α and the energy will increase, up to the point when it is more energetically favorable to propagate the
crack tip T (Griffith criterion). Considering a crack advance by dl in the direction given by the angle β, (see
fig. 2) the soft zone advances, α decreases by dα = cos2 α(tanα cosβ − sinβ)dl/L. Propagation takes place
if the elastic energy release dE ∼ EL2tα4dα compensates the crack energy Γtdl, i.e. when α reaches a critical
value αc. A second equation comes from the maximum energy release rate criterion, which specify that the
crack propagates in the direction defined by ∂

∂β
dα
dl = tanα+ 1/ tanβ = 0.
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Finally, propagation takes place when

α = αc, αc ∼ [Γ/(E L)]1/4 (1)

in direction β = α+
π

2
. (2)

This set of equation is remarkable since it would predict crack propagation using only geometric quantities (the
angles α, β), although it is based on fracture mechanics. Since the elastic energies are localized (grey area in
figure 1-a), the shape of boundary conditions plays no role. A second surprise is that equation (2) establishes
that crack propagates in a well defined direction β with respect to the unstressed edgeAT , independently of the
shape or movement of the pushing tool. In fact, the critical angle αc depends on L (eq.1) but with such a low
exponent that we consider here the value αc to be constant. We now show that this constant-angle condition
explains the final spiral shape.
To understand the crack path we can identify three stages of the cutting process, where the geometry of the
soft-zone are different. (i) In a first initial stage (fig.3-a and b) the soft zone ends on a line containing a fixed
point A. The crack tip T then propagates with a constant direction with respect to the radius AT . In polar
coordinates centered in A, the radius r = r0 exp− cot(β)θ. This is a logarithmic spiral with center A. (ii) After
half a turn, the soft zone changes morphology (fig.3-c) and the crack now propagates around another fixed
point B , the other end of the initial notch. The model thus predicts another logarithmic spiral, with the same
pitch but another center. (iii) Finally after another half turn (see 3-d), the edge of the soft zone now does not
stop on fixed point, but constantly has a tangent contact with previous part of the curve. Then, the crack path
develops around itself in a complex way.
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FIGURE 3 – Different stages in the evolutions of the spiral. (a) and (b) : First stage where the fracture is growing
around a center point A. (c) Second stage defined by the path growing around another single point, B . (d) Third
stage defined by the path growing around a point that develops onto itself.

4 Experimental results
We now turn to experimental test of the predictions. The first two stages are predicted to be logarithmic spirals,
but they do not span a large radius difference and the prediction is not easy to test. We focus on the last stage
(which governs most of the spiral) and show that this scale-less process leads to another logarithmic spiral with
a different pitch.
The spiral shape were digitalized and a center point was defined by the following procedure. If two points of a
logarithmic spiral have parallel tangents, then the center must lie on the line that joins them. If we repeat this
procedure again and find two other points, then the center is in the intersection of the two lines. This procedure
is sketched in figure 4-a). In the semi-log plot in fig.4 we show the distance to the “center” as a function of
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FIGURE 4 – logarithm of distance of points to the center as a function of angle for three different spirals (�
and © : same experimental conditions ; 4 : initial notch in a perpendicular direction). Inset : geometrical
construction used to find the center of the spirals
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the angle θ for all points of three different spirals. Two of them are initiated with a notch in the same direction
(with respect to the plastic sheet) in order to show reproducibility of the process, and the third one is initiated
with a notch in the perpendicular direction. The crack path is highly reproducible as we can see from the two
spirals initiated with the same conditions. In all spirals, after a little more than one turn the distance grows
exponentially with the angle : the spiral starts to behave as a logarithmic spiral. In fact it makes sense that the
beginning of the plot is not an exponential, because these points are from the firsts stages of the process, which
are spirals centered on different points. Although the behavior is very close to a logarithmic spiral (represented
as a line in the semi-log plot fig.4), we can observe some oscillations around a global linear behavior. To better
understand this feature, we study the fracture direction β at each point of the spiral in figure 5.
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FIGURE 5 – Fracture angle, β measured on the three spiral path as a function of the orientation in the sheet.
Same symbols as in figure 4.

From the model, one expects a value of β = αc + π/2 larger than π/2, but the measurement show that the
actual value fluctuates around π/2. The value of β have a π-periodicity with respect to the angle θ. We also
note that the two spirals initiated in the same direction are out of phase by π/2 with the other one. This is
coherent with the condition used to initiated this third spiral, a notch in a perpendicular direction.
In order to interpret this oscillatory behavior of the fracture angle, we stress that the material used to do this
experiment is made by a process where the sheet is stretched in two directions when it its warm until a desired
thickness is reached, and then cooled down very fast. It is natural to think that some anisotropy remains in the
material either in elasticity or in fracture properties. We conclude that the variations in β are related with the
anisotropy of the fracture properties of the material. As a result, the study of the shape of the spiral obtained
gives a measurement of the anisotropy in fracture properties. These effects are not included in our model, ho-
wever it is possible to include them at least as a perturbative technique. The set of equations (1-2) will have
to be modified, by including a dependency in the orientation in the fracture energy, or in the Young’s modulus
(we recall that the strain are mainly extensional and along direction of the crack lip AT ). We intend to study
this extension of the model and try to deduce quantitative measurement of anisotropy in material properties
from geometric measurement of the spiral .

5 Conclusions
In this paper we have presented a highly reproducible spiral crack path that we interpret using fracture theory
arguments. We found that the propagation of cracks in thin brittle thin sheets can be predicted using geometrical
rules. In addition, a very interesting result from this work is that the regularity in the observed oscillation for
the fracture angle allows us to test with a single experiment the anisotropy of the material.
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