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Learning the meaning of new 
stimuli increases the cross-
correlated activity of prefrontal 
neurons
Simon Nougaret & Aldo Genovesio  

The prefrontal cortex (PF) has a key role in learning rules and generating associations between stimuli 
and responses also called conditional motor learning. Previous studies in PF have examined conditional 
motor learning at the single cell level but not the correlation of discharges between neurons at the 
ensemble level. In the present study, we recorded from two rhesus monkeys in the dorsolateral and 
the mediolateral parts of the prefrontal cortex to address the role of correlated firing of simultaneously 
recorded pairs during conditional motor learning. We trained two rhesus monkeys to associate three 
stimuli with three response targets, such that each stimulus was mapped to only one response. We 
recorded the neuronal activity of the same neuron pairs during learning of new associations and with 
already learned associations. In these tasks after a period of fixation, a visual instruction stimulus 
appeared centrally and three potential response targets appeared in three positions: right, left, and 
up from center. We found a higher number of neuron pairs significantly correlated and higher cross-
correlation coefficients during stimulus presentation in the new than in the familiar mapping task. These 
results demonstrate that learning affects the PF neural correlation structure.

Local and functional populations of neurons, called “cell assemblies”, are considered to represent a diffuse struc-
ture delivering facilitation to other system and enhancing the action process1. Assemblies dynamically change 
sizes and connections to encode several types of information2–4 as it has been shown in various brain regions5–10. 
In this context, the synchronized firing rate among cells, a reflection of cell-assembly coding, should take part in 
the learning processes and the assignment of the meaning of an instruction stimulus (IS).

The prefrontal cortex (PF) is important in goal selection, maintenance and monitoring11–15 and its role in 
learning has been highlighted by several neurophysiological16–22, lesion and neuropsychological studies23–28. The 
role of learning in PF has been related also to the effect of dopamine. In fact, blocking prefrontal D129 or D2 
receptors30 affects visuomotor learning but has no effect on familiar associations. Human imaging studies suggest 
that the PF becomes less engaged as tasks become more automatic31,32. Likewise, computational studies15,33 impli-
cated the PF in the reinforcement and transfer learning models in which the PF plays has a key role when new 
rules are learned to replace previous ones34.

The present study investigates spike-count correlation associated with learning in two mapping tasks, a new 
(NovelMap) and a familiar (FamMap) mapping task from data gathered during an earlier study19. In these two 
tasks, three ISs (instruction stimuli) are mapped to three different response targets. In the NovelMap task the 
monkeys were required to learn the associations or mappings between ISs and response targets during the neural 
recording while in the FamMap task the recording took place after the mappings were already highly familiar. 
We studied the correlated activity of the same neuron pairs recorded simultaneously and in both tasks. For this 
purpose, we computed the joint perievent time histograms (JPETHs)35–38 which are two-dimensional histograms 
displaying the correlated trial-by-trial activity of two simultaneous recorded neurons aligning the activities on 
different behavioral events. The coincidence histogram, the main diagonal of a JPETH, offers the opportunity 
to evaluate the level of co-activation of both neurons and the behavioral event related to this coactivation. The 
ensemble of neurons moves through different levels of coherence and different states as the cognitive requirement 
of the task change39. Consequently, the study of these transient correlations during learning in comparison to well 
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learned associations is important to address whether learning involve broad synchrony among neurons in the PF. 
Indeed, these transient correlations could facilitate information transfer from one cortical area to another40. Such 
correlations could result from a dynamic re-organization of functional cell-assemblies and arise from changes 
in the pattern of activity of a large number of neurons5 via recurrent excitatory loops within local neural net-
works41–43 that maintain such persistent activity.

Results
Behavior. Two monkeys performed two behavioral tasks, the mapping (NovelMap) and the familiar mapping 
(FamMap) task (see Materials and Methods and Fig. 1A–C for detailed description). After the monkeys fixed a 
central fixation spot, three saccade targets appeared in three different positions on the screen. After one second 
of fixation, a visual instruction stimulus (IS) appeared for 1.0, 1.5 or 2 s and its disappearance served as a “go sig-
nal” to perform a saccade to one of the three targets. Monkeys were rewarded only if their response followed the 
mapping rule for the IS presented. In the FamMap task monkeys encountered only highly familiar ISs and already 
knew the mapping rule, otherwise they had to learn by trial and error three novel mappings in the NovelMap task.

From the original data of Genovesio et al.19, the monkey’s behavior was analyzed on sessions with at least 
50 completed trials which corresponded to 78 sessions in the FamMap task and to 229 in the NovelMap task. 
In the FamMap task, both monkeys performed the task accurately (98.6% of correct choices for Monkey 1, 58 
sessions; 98.9% of correct choices for Monkey 2, 20 sessions). Considering all the trials together, the monkeys 
performed the NovelMap task with a high degree of accuracy (92.8% of correct choices for Monkey 1, 126 ses-
sions; 90.8 for Monkey 2, 103 sessions). They learned the novel mappings quickly (Fig. 1E, light gray curve) and 
on average reached 80% of correct choices after about 10 trials (9th trial for Monkey 1; 10th trial for Monkey 2).  
Supplementary Fig. 1 shows the behavior of each monkey separately. The behavioral differences between both 
tasks observed in both monkeys indicates that ISs-response targets associations were already learned in the 
FamMap task in contrast to the NovelMap task that required learning.

Figure 1. Task design, localization of neuronal recordings, and behavior. (A) Upper: Sequence of task events. 
Gray rectangles represent the computer screen, white dot the fixation spot, white squares the response target 
locations (not to scale) and “A” represents the instruction stimulus (2 ASCII superimposed characters were 
presented). The dashed lines represent the gaze angle. The go signal corresponded to the disappearance of 
the instruction stimulus (1 s, 1.5 s or 2 s after its appearance) and indicated to the monkeys to report their 
decision with a saccade movement toward the chosen response target (solid arrow). After 1 s of response target 
fixation and 0.5 s of pre-reward period, the monkey received a liquid reward when appropriate. Lower: Epochs 
analyzed. From 1 s before to 1 s after, the occurrence of the instruction stimulus, the go signal, the beginning 
of the fixation of the response target and the reward occurrence. Abbreviations: IS, instruction stimulus; ITI, 
intertrial interval. (B) Examples of a set of stimuli presented during three recording days in the FamMap task. 
The sets of stimuli were the same across days and the mapping was already well known by the monkeys. (C) 
Same representation as in B but for the NovelMap task. The sets of three stimuli were different across days and 
the mapping between each stimulus and its corresponding response target had to be learned each day. (D) 
Recording sites. Explored regions are shown in gray. Abbreviations: AS, arcuate sulcus; PS, principal sulcus. 
(E) Behavioral results. Percentage of correct responses in the first 50 trials for each task averaged across the 2 
monkeys. The dark gray curve indicates the performance during the FamMap task and the light gray ones the 
performances in the NovelMap task. Background shading indicates 95% confidence limits.
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Database for cross-correlation analysis. From the 307 analyzed behavioral sessions, we selected 92 ses-
sions (46 in each task) including 224 neurons recorded from two monkeys based on the following criterion. 
We excluded the neuron pairs in which both neurons were recorded from the same electrode to avoid the pos-
sibility of contamination. We also excluded neuron pairs recorded less than 50 trials in one of the two tasks. 
Finally, we excluded neuron pairs with a neuron with a null firing rate during the fixation period in at least one 
task. The remaining neuronal sample consisted of 439 neuron pairs, 335 from monkey 1 and 104 from mon-
key 2. During the recording sessions, the action potentials from single units were isolated with quartz-insulated 
platinium-iridium electrodes (80 µm outer diameter; impedance, 0.5–1.5 MΩ at 1 KHz) driven by 16 electrode 
microdrive (Thomas Recording, Giessen, Germany) with 518 µm electrode spacing. The signal from each elec-
trode was discriminated by a Multichannel Acquisition Processor (Plexon, Dallas, TX) or offline. The Off Line 
Sorter (Plexon) was used to scrutinize every unit’s isolation. Individual spike waveforms were accepted only 
if they clustered clearly in the 3D principal-component space, lacked interspike interval inferior to 1 ms, had 
waveforms grouped tightly stably in the time domain and clearly differentiated over the course of the recordings.

Single-pair analysis. The analysis of the main diagonal of the normalized corrected covariogram reveals 
that most of the significant pairs showed a positive correlation and very few a negative one (Fig. 2). Therefore, our 
analyses focused mainly on the positive correlations. Among the 439 studied pairs, 72 (16%) showed a significant 
positive correlation during at least one of the four studied epochs when they were recorded in the NovelMap 
task in contrast to only 49 (11%) when the same neurons were recorded in the FamMap task (χ2 test, p < 0.05, 
χ2 = 4.6). Among these pairs, 5% (22/439) showed a positive significant correlation in both cases, representing 
31% of the positive significant pairs recorded in the NovelMap task and 45% of those that were significant when 
recording the FamMap task. The distribution of the number of cross-correlated pairs during both NovelMap and 
FamMap tasks (Fig. 2) shows a higher number of positively correlated pairs across all the four task epochs during 
the NovelMap task. However, the number of pairs with positive significant correlation in the NovelMap task was 
significantly higher than in the FamMap task (χ2 test, 43/439 vs 20/439, χ2 = 8.28, p < 0.01) only for the IS epoch, 
whereas the difference was not significant during the other epochs (χ2 test, χ2 < 0.88, p > 0.05).

In the IS epoch, 8 neuron pairs exhibited a positive significant correlation during the performance of both 
tasks, while the 35 remaining pairs with a significant correlation during the NovelMap task were not significant 
in the FamMap task. Figure 3 shows an example of a pair of neurons significantly correlated in the IS epoch in the 
NovelMap task (Fig. 3A) but not in the FamMap task (Fig. 3C). For each plot, the activity of the two individual 
cells is shown as PETH along the abscissa and ordinate axis aligned on the IS onset and the color map indicates 
the correlated activity. On the right part of the plot, the coincidence histogram is shown for the main diagonal in 
the interval illustrated by the brackets on the up-right part of the color map. The corrected cross-correlogram is 
perpendicular to this diagonal. The corrected cross-correlogram is the mean of 1000 “shuffled cross-correlogram” 
obtained by permutations of the trials, subtracted from the raw cross-correlogram. Both coincidence histograms 
revealed that there is an increase of the correlated firing of these neurons after the IS onset. However, this increase 
was significant only during learning in the NovelMap task (Fig. 3B), but not in the FamMap task (Fig. 3D). The 
cross-correlogram of the same pair of neurons, illustrated in Fig. 3A,C on the top right part of the figure, shows a 
higher, narrower and more centered on zero peak in the NovelMap task. The cross-correlogram of the same pair 
using a shorter window of 100 ms of maximal lag and 1 ms bins (Supplementary Fig. 2F,L) shows the existence 
of a small peak centered on 0 only in the NovelMap task. It provides additional evidence of stronger synchrony 
in the IS epoch, when the monkey had to map the ISs with the response targets generating and reinforcing the 
association. Because the normalization that we performed does not entirely rule out the possibility of an influence 
of the firing rate44 we controlled for the firing rate of neurons that make up the pairs. We compared the firing rate 

Figure 2. Number of significant correlated pairs of neurons during the 4 task epochs analyzed. Task epochs 
are from −1 s to 1 s from the occurrence of the IS, the go signal, the beginning of the response target fixation 
and the reward/no reward occurrence. For each period the left striped bar represents the number of significant 
correlated neuron pairs during the FamMap task and the right solid bar the number of significant correlated 
neuron pairs during the NovelMap task. The dark gray part of each bar represents the significantly positive 
correlated neuron pairs and the light gray part the significantly negative ones (χ2 test, *p < 0.05).
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of neurons between tasks, during the fixation period and the first second of the presentation of the IS, both when 
they were part of correlated or uncorrelated pair of neurons (Supplementary Fig. 3). We did not observe any 
significant difference in the firing rate of the neurons between tasks both during the fixation period (two-sample 
t-test, t = 0.21, p = 0.83) and during the first second of IS occurrence (two-sample t-test, t = 0.43, p = 0.66) ruling 
out that differences in firing rate could account for our results. In total, 34 neurons made up the 20 positively cor-
related pairs of the FamMap task and 65 neurons made up the 43 positively correlated pairs in the NovelMap task. 
All the neurons that were part of the positively correlated pairs in the FamMap task (34/34) were also included in 
the uncorrelated pairs and most of the cells part of the positively correlated pairs in the NovelMap task (61/65) 
were part of the uncorrelated pairs. We compared the firing rate of the neurons that made up correlated and 
uncorrelated pairs during the first second after IS onset both in the FamMap task and the NovelMap task and 
did not observe any significant difference (FamMap task: two-sample t-test, t = −0.58, p = 0.56; NovelMap task: 
two-sample t-test, t = −1.24, p = 0.22).

Figure 3. Dynamic modulation of correlated firing in a pair of neurons in both tasks. (A) JPETH constructed 
from 102 trials performed during the NovelMap task. The abscissa and ordinates show the peri-stimulus 
time histograms for 2 simultaneously recorded neurons. Each pixel of the color-based matrix exhibits the 
normalized correlation coefficient at a precise time and lag delay relative to the IS onset from blue (negative) 
to red (positive). The coincidence histogram is plotted to the right of the JPETH. It represents the correlation 
coefficients along the main diagonal (see the small bracket on the upper right corner of the diagram). The 
corrected cross-correlogram is presented on the upper right corner of the figure (bin width, 50 ms). (B) The 
coincidence histogram, same representation as in A with the 95% confidence interval corrected by the number 
of bins for multiple comparison (*, value above the inferior corrected 95% interval). (C,D) Same neural pair as 
in A, B recorded in the FamMap Task for 80 trials.
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In addition, for the IS epoch, we evaluated whether the number of significantly correlated pairs was higher 
than chance level for both NovelMap and FamMap. We randomly selected pairs to create 5 control populations 
of 439 neuron pairs each. Thus, we generated 5 sets of 439 “constructed” pairs to repeat the test five times for 
the FamMap task and five times for the NovelMap task. For the FamMap task, we found an average of 7.4 pairs 
showing a positive significant correlation (10, 10, 5, 6 and 6 pairs) among the 5 random sets. For the NovelMap 
task, an average of 6.2 pairs (8, 3, 10, 7 and 3 pairs) showed positive significant correlation. The proportion of neu-
rons showing a positive significant correlation was significantly higher than that found by chance not only in the 
NovelMap task (43/439, 1-sample χ2 test, χ2 = 215.6, p < 0.001) but also in the FamMap task (20/439, 1-sample 
χ2 test, χ2 = 20.124, p < 0.001). There was no significant difference among the number of pairs found by chance 
between both tasks (paired t test, t = 0.60, p > 0.05).

Population Analysis. After showing that more pairs showed a positive significant correlation in the 
NovelMap task in the IS epoch we examined the correlation between neuron pairs at the population level. We 
computed a population average of the coincidence histograms of the significant pairs in at least one of the two 
tasks to analyze the time course of the correlation and the power of the correlation at the population level. 
Figure 4 shows the average JPETH of the significant neurons in at least one task during the IS epoch (n = 55) in 
the NovelMap (Fig. 4A) and the FamMap tasks (Fig. 4B) and the coincidence histograms of these average JPETH 
(Fig. 4C). We observed two main results with the analysis of these cross-correlated activity before and after the 
appearance of the IS in both tasks. First, the average correlation coefficients were significantly higher after, rather 
than before, the IS onset for both tasks (Wilcoxon rank sum test, V < 117, p < 0.05), indicating that in both tasks 
the increase in cross-correlated activity followed the IS onset. Second, the average correlation coefficient was 
higher in the NovelMap task than in the FamMap task both before (paired t-test, t = 2.46, p < 0.05) and after 
(paired t-test, t = 4.25, p < 0.001) IS onset. Therefore, the population analysis and the temporal profile of the 
cross-correlated activity revealed that the average correlation coefficient was higher in the NovelMap than in the 
FamMap task, not only after, but also before, IS onset. This difference was enhanced by the IS presentation.

Discussion
The aim of our study was to test whether the learning of novel stimulus-response (S-R) mappings involved 
changes in the trial-by-trial spike-count correlation of the neuronal activity in the PFC in comparison to the 
retrieval of well learned associations. For this purpose, we compared the number of significantly correlated pairs 
of neurons recorded during two tasks, one in which the S-R mapping was already familiar and the other in which 
learning was required. We showed that the learning of the S-R mapping involved higher synchronized activity in 
a larger population of PF pairs of neurons during stimulus presentation. We also observed a tendency of a higher 
correlated activity across all the other task epochs.

Others have shown that the magnitude of neuronal correlations during execution of behavioral tasks can 
vary dynamically during cognitive operations45,46 and that patterns of firing correlation between single cortical 
neurons in behaving monkeys can be modified in relation to sensory stimuli and behavioral events, even in the 
absence of neuronal firing rate modulation5. The functional connection between two neurons can be potentiated 
or depressed based on the behavioral context47. Spiking activity synchronization is an established neural correlate 
of working memory and decision making processes and it may be responsible for performance improvement 
during working memory tasks48,49. Our study revealed an increase in the number of significantly correlated pairs 
and their correlation strength after stimulus presentations during learning in the NovelMap task compared to 
the FamMap task. Consistent with previous studies, our results showed that cognitive operations, in our case the 
learning of new S-R associations, are associated with concomitant higher spike-count correlations.

Figure 4. Population analysis aligned on the IS onset. (A,B) Average JPETHs of the neuron pairs significantly 
positively correlated in at least one task in the IS epoch. The average maps include 55 neuron pairs. As in Fig. 3, 
the bracket on the upper right corner represents the main diagonal. (C) Upper panel. Average coincidence 
histograms representing the correlation coefficients of the main diagonal of the average JPETHs for the studied 
epoch. Bottom panel. Average of the correlation coefficient before and after the onset of the IS in both tasks 
(between tasks, paired t-test; same task between epochs, Wilcoxon test, *p < 0.05, **p < 0.01, ***p < 0.001).
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Qi and Constantidinis10 showed that learning and performance of a cognitive task alters the correlation struc-
ture in the PF. They compared the spike-count correlations of different population of pairs of PF neurons before 
and after the training of a working memory task and observed that the overall spike-count correlation declined 
after training. This correlation decrease occurred even when controlled for a potential confound represented by 
differenced in firing rate and was more pronounced during the two stimuli presentation. A similar decrease of 
spike-count correlation was observed for an attended versus an unattended stimulus by Cohen and Maunsell50,51. 
In our study, we did not directly compare the spike-count correlations of all recorded pairs but we restricted the 
analyses to the number of pairs showing a significant correlation during the stimulus presentation. Nevertheless, 
our results showed less correlated pairs during the stimulus presentation for familiar S-R mappings. In line with 
the previous studies, this number of correlated neuron pairs could reflect the monkey’s familiarity with the stim-
uli. The knowledge of the meaning of the stimuli in the context of the S-R mappings could be represented by a 
reduction of the neuron pairs with correlated activity and, in contrast, the learning process might be associated 
with more pairs with correlated activity.

The relationship between correlations and the amount of information in a population code is a current topic 
of interest. However, the most widespread hypothesis suggests that correlated neuronal responses decrease infor-
mation encoded by a population of neurons52,53. According to this theory, the covariation in firing rate could 
reduce the signal reliability obtained by pooling different information by the downstream neurons54. Indeed, the 
covariation in firing rate and the sharing of common noise can limit the fidelity of signal transmission55. In their 
studies, Constantinis and colleagues10,56–58 observed that the training of an animal and the improved representa-
tion of stimuli in PFC neurons was obtained through mechanisms independent from single neuron firing rate and 
that it was mainly the correlation structure of neuronal firing which explained the improved representation. Our 
results extend the knowledge on the functional connectivity of PFC to the learning of novel associations in the 
context of a well-defined task structure. Indeed, as in the study of Qi and Constantidinis10, in which the decrease 
in neuronal correlation has been interpreted as been useful to improve and refine the stimulus representation, we 
can hypothesize that in our experiment a lower number of correlated pairs with lower correlation in the FamMap 
task could refine the S-R associations previously learned. On the other hand, the larger number of correlated pairs 
found in the NovelMap task might reflect the homogeneity of the neuronal activity when facing the learning of 
novel mappings and limit the representation of the novel stimulus by downstream neurons.

The link between functional connectivity and processes such as learning and memory is a key component 
to be investigated to understand how neurons preserve stable changes across time. Baeg et al.59 showed that in 
behaving rats the correlated firing of PFC neurons changed significantly during the early phase of a training and 
that the altered functional connectivity remained constant over time when the learning reached an asymptote. 
Our results revealed that fewer neural pairs of PFC showed a significantly correlated firing rate when the stimuli 
were already well associated with a corresponding behavior leading to the outcome. The need to process a large 
number of trials for each stimulus did not allow us to separate the recording session into separate phases. Thus, 
we were unable to study the time course of learning in the NovelMap task. Our results suggest that the number of 
correlated pairs might decrease during learning. This hypothesis is consistent with the cell assemblies’ theory of 
Hebb1 which postulates that the patterns of connectivity in a group of frequently coactivated neurons is altered 
by learning1.

Material and Methods
Subjects and behavioral task. Two adult male rhesus monkeys (Macaca mulatta), 8.8 kg and 7.7 kg, were 
studied. Each monkey sat in a primate chair, with its head stabilized and faced a video monitor 32 cm away. All 
procedures conformed with the guide for the care and use of laboratory animals (1996, ISBN 0-309-05377-3) 
and were approved by the appropriate animal care and use committee. A fluid control was used to motivate the 
monkeys to perform the task.

Figure 1A–C illustrate the tasks, first used by Genovesio et al.19. In both tasks, the mapping task (NovelMap 
task) and the familiar mapping task (FamMap task), a trial began after 2.5 s intertrial interval, when a white circle 
(0.7° visual angle), called the fixation spot, appeared at the center of the video screen. Once the monkeys fixated 
this location, three potential saccade targets (2.2° unfilled white squares) appeared 14° from the fixation point. 
After the monkeys had maintained fixation on the fixation spot (±7.5°) for 1.0 s, the fixation spot disappeared and 
a symbolic visual instruction stimulus (IS) appeared in place of the fixation spot for a pseudorandomly selected 
period of 1.0, 1.5 or 2.0 s. Each IS was composed of two colored ASCII characters superimposed. The offset of 
the IS also served as a “go” signal, after which the monkeys had to make a saccade to one of the three potentials 
goals (±7.5°). The monkeys had to fixate the chosen goal for 1.0 s, then all 3 response targets filled in white and a 
0.1 ml drop of fluid reward occurred 0.5 s later if the response matched the mapping rule. Regardless of rewarded 
or unrewarded trials, the response targets disappeared from the screen at that time and a 2.5 s intertrial interval 
began. During the FamMap task (Fig. 1B), the monkeys had to respond to highly familiar ISs. Those ISs were 
already known according to three well-learned stimulus-response mappings that monkeys encountered during 
the strategy task (see Genovesio et al.19). During the NovelMap task (Fig. 1C), the monkeys learned three novel 
mappings of the same nature as in the FamMap task. The difference between the two tasks lies in the fact that all 
three mappings were unknown at the start of a NovelMap task. A correct response was followed by the delivery of 
reward and an error by an absence of reward as a feedback. After each incorrect choice, the same IS was presented 
again until the monkey chose correctly.

Surgery. A 27 × 36 mm recording chamber was implanted over the exposed dura mater of the right frontal 
lobe using aseptic techniques and isoflurane anesthesia (1–3%). We implanted titanium bone screws in the sur-
rounding bone and used methacrylate cement to affix the chamber and the head restraint device to these screws. 
After the operation, analgesia was given for 3–5 days.
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Histological Analysis. Near the end of data collection, we made electrolytic lesions (15 µA for 10 s, anodal 
current) at two depths per penetration. After approximatively 10 days, the animal was deeply anesthetized, 5 
localization pins were inserted at known chamber coordinates, and then the animal was perfused with buffered 
formaldehyde (3% by weight). The brain was cut coronally in 40 µm sections on a freezing microtome, then Nissl 
stained. The surface projections of the recording sites were plotted by reference to the electrolytic lesions and the 
pins. Figure 1D shows the location of the recordings in the dorsolateral prefrontal cortex (dlPFC) and the dorso-
medial prefrontal cortex (dmPFC).

Recording methods. The position of each monkey’s gaze was recorded with an infrared oculometer (Bouis 
Instrument, Karlsruhe, Germany). Single-unit potentials were isolated using a 16-electrode microdrive with 
independent control of each electrode (Thomas recording, Giessen, Germany) through a custom, concentric 
recording head with 518 µm electrode spacing. The signal from each quartz-insulated platinum-iridium electrode 
(impedance, 0.5–1.5 MΩ at 1 kHz) was amplified and discriminated using a Multispike Detector (Alpha-Omega 
Engineering, Nazareth, Israel) or a Multichannel Acquisition Processor (Plexon, Dallas, TX). For the latter, we 
resorted neuronal waveforms with Offline Sorter (Plexon). NIMH CORTEX software (https://www.nimh.nih.gov/
labs-at-nimh/research-areas/clinics-and-labs/ln/shn/software-projects.shtml) controlled behavior and collect data.

Data Analysis. We used the Matlab (http://www.mathworks.com) and the Fieldtrip Matlab toolbox60 (http://
www.ru.nl/neuroimaging/fieldtrip) to analyze the data. For subsequent analysis, we selected neurons that were 
recorded in both tasks for at least 50 trials in each task. We applied the Joint Peri Event Time Histogram (JPETH) 
analysis to the pairs of simultaneously recorded neurons (Aertsen et al.36). The JPETH analysis was performed on 
each selected neuron pairs by building the two-dimensional cross-correlograms with time versus lag on both 
abscissa and ordinate axis and the correlation strength on the color axis. The activity from a neuron i is repre-
sented as S t( )i

r  for the rth trial61. The averaging over r trials is represented by 〈〉 and Pi(t) is defined as S t( )i
r and is 

the averaged response or PETH of a neuron i. For each pair, we calculated the raw JPETH and, also, the shuffle 
predictor. This predictor was calculated by averaging the JPETH across 1000 possible permutations of the trials. 
We then computed shuffle-corrected covariance matrices, known as covariogram which were defined as:

J t t S t S t P t P t( , ) ( ) ( ) ( ) ( )i j i
r

j
r

i j, 1 2 1 2 1 2= −

To compute the covariogram, the shuffle predictor was substracted from the raw JPETH to correct for corre-
lations originating from covariations originating from direct stimulus effects on firing rates35. Next, to normalize 
the covariogram and obtain a matrix of correlations coefficients bounded between −1 and 1, the above equation 
was divided by the cross product of the time-dependent standard deviation (SDs) of the neurons i and j as follows:

J t t
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( , )
( ) ( )Ni j
i j

i j
, 1 2

, 1 2

1 2σ σ
=

Most of the temporal range of correlation is encompassed in a strip of bin near the main diagonal5. 
Consequently, we plotted the correlations in these bins using the average of the main diagonal and the two sur-
rounding diagonals to have the equivalent of 150 ms along the main diagonal with 50 ms window bins38. These 
histograms of the main diagonal coincidence were then used to select the significant neuron pairs based on sta-
tistical analysis described below. For each neuron pair, the correlation coefficient of each 150 ms bin of the main 
diagonal was transformed into z value using the Fisher’s transformation:

=
+
−

z ln r
r

1
2

(1 )
(1 )

1

where z1 has a standard deviation of SDz n
1

3
1 =

−
 and where n is the number of trials. From these values we 

defined 95% confidence interval as = ± αCI tanh z z SD( )z
1

/2 1  to perform our statistical analyses. Because this 
analysis was performed on 40 bins during each analyzed epoch described below, we divided the significance level 
with Bonferroni correction at 0.025/40 = 0.000625. The corresponding value of the corrected 95% confidence 
interval limits z /2α  (initially 1.96) was then 3.23. We performed this analysis during 4 epochs, from 1 s before to 
1 s after, the “IS”, the “go signal” (disappearance of the IS), the “target fixation” and the “reward”. The reward 
occured in the correct trials and the absence of reward provided error feedback. All correct and error trials were 
included in the analysis. Some artifacts could arise from covariations in the neuronal excitability or variability in 
task events and such artifacts are sensitive to bin size61. Consequently, we performed the same analysis on the 
significant-correlated neuron pair using small-size bins of 20 ms (Supplementary Fig. 2A–F, G–L shows the exam-
ple of the neuron pair presented in the Fig. 3 using these 2.5 time smaller bins).

Data availability. The datasets generated and/or analyzed during the current study are available from the 
corresponding author on reasonable request.
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