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Abstract. The paper is devoted to a compartmental epidemiological model of infection
progression in a heterogeneous population which consists of two groups with high disease
transmission (HT) and low disease transmission (LT) potentials. Final size and duration
of epidemic, the total and current maximal number of infected individuals are estimated
depending on the structure of the population. It is shown that with the same basic repro-
duction number R0 in the beginning of epidemic, its further progression depends on the
ratio between the two groups. Therefore, fitting the data in the beginning of epidemic and
the determination of R0 are not sufficient to predict its long time behaviour. Available
data on the Covid-19 epidemic allows the estimation of the proportion of the HT and LT
groups. Estimated structure of the population is used for the investigation of the influence
of vaccination on further epidemic development. The result of vaccination strongly depends
on the proportion of vaccinated individuals between the two groups. Vaccination of the
HT group acts to stop the epidemic and essentially decreases the total number of infected
individuals at the end of epidemic and the current maximal number of infected individuals
while vaccination of the LT group only acts to protect vaccinated individuals from further
infection.

Key words: Covid-19, heterogeneous population, final size, duration of epidemic, vaccina-
tion

1 Introduction

Covid-19 epidemic has stimulated an unprecedented interest to the epidemiological models,
mostly, compartmental ODE models. There are numerous recent works devoted to fitting the
available data, calculating the basic reproduction number, and making predictions about the
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further epidemic progression (see [1, 2, 4, 16, 23, 24, 27] and the references therein). These
models give a good description of the evolution of the number of infected individuals and the
sizes of other classes involved with the epidemiological models in the beginning of epidemic,
and they take into account the influence of the measures of social distancing and some
other measures to prevent the rapid epidemic spread. The situation is more complex with
the prediction of the future epidemic progression because the parameters of the models are
influenced by the measures of social distancing and other behavioral changes, and hence it
is impossible to predict various scenario in advance.

At the end of the first year of the epidemic and during its second wave, sufficient amount
of data are available to model the long time epidemic progression, including the development
of collective immunity, the final size of epidemic, and the influence of vaccination on further
epidemic growth profile. An important assumption here is that recovered and vaccinated
individuals do not become susceptible any more. Though it is one of the most important
open questions of the coronavirus disease, and immunological studies show that the quantity
of antibodies in recovered individuals can be highly variable [25], we will adopt here this
hypothesis.

The influence of heterogeneity of the population with respect to its role in the epidemic
progression is largely discussed in the existing literature [3, 9, 17, 20, 22]. Different age
and social groups can have different frequency of interactions and implementation of the
measures of social distancing. Furthermore, the so-called superspreaders, a relatively small
group of people with a large number of social interactions, play an important role in the
coronavirus epidemic [13]. Consideration of two types of individuals, one having frequent
social interaction and the other having restricted/cautious social interaction, together in a
single group with an average infectivity can lead to erroneous predictions.

In this work we will study how the heterogeneity of the population influences its long time
progression including the final size and duration of epidemic. In order to simplify the model
and the interpretation of the results, we will consider only two groups in the population, one
of them with high disease transmission (HT) and another one with low disease transmission
(LT) potentials. If the total size of the population is N , the initial size of the first group
(HT) is N1 and the second group (LT) is N2 such that N = N1 + N2, then we introduce
the coefficient k = N1/N characterizing the structure of the population. If k = 1, then the
whole population belongs to the first group, if k = 0, to the second group. In general, k
adopts the values between 0 and 1. Two extreme values of k correspond to a single group
epidemic.

The proportion between these two groups strongly influences the final size of epidemic
(final number of susceptible individuals Sf ) (cf. [6]) and the maximal current number of
infected individuals Im. This second parameter (Im) is particularly important for the es-
timation of the necessary number of hospital beds to handle the worst case scenario. It
appears that for the same basic reproduction number R0, the values Sf and Im can differ
several times depending on the parameter k. It is important to stress here that fitting the
same data in the beginning of epidemic can be done for any value of k but further epidemic
progression will crucially depend on it. Thus, the initial growth rate does not allow the
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prediction of long time epidemic progression in a heterogeneous population.
We suggest a method to estimate the structure of the population in each given country

during the Covid-19 epidemic on the basis of the available data before, during and after
the first lockdown. Since there were no measures of social distancing (obligation of wearing
masks, restriction on social gathering, etc.) before the lockdown, we assume that the whole
population belonged to the first group (HT), and k = 1. On the other hand, during the lock-
down, we assume that the whole population respected strict measures of social distancing
and other restrictions, and N2 = N , that is k = 0. In both cases, we fit the data and deter-
mine the parameters of the epidemiological model. After the lockdown when the restrictions
are gradually lifted, the population splits into two groups, HT and LT, in certain proportion.
We assign the first group the same parameters as before lockdown, and the second group
the same parameters as during lockdown. Hence, we have all parameters characterizing each
group, and one free parameter k which determines the proportion between the groups. The
data after lockdown allow us to determine the value of this parameter and to characterize
the heterogeneity of the population. Carrying out this analysis for several countries, we
obtain k ≈ 0.1 during the summer period and k ≈ 0.2 in September-November 2020 [22].
This increase of the parameter k corresponds to the second wave of the epidemic. The rate
of epidemic growth and the size of the second wave are determined by the value of k.

Clearly, suggested approach does not take into account the heterogeneity inside each
group, possible exchange between the groups, and some other factors. However, it gives a
single efficient parameter characterizing the structure of the population and the epidemic
progression. We will call this parameter the coefficient of social interaction since k = 0
corresponds to low interaction during the lockdown and k = 1 to high interaction before the
lockdown. Once the lockdown is relaxed, it is expected that people continue to follow some
restrictions, either imposed by public authorities or self-imposed. However, different social
and professional groups can have different levels of implementation of these restrictions and
of the intensity of social contacts. As a result, the population splits into two groups, and
the parameter k adopts some intermediate value between 0 and 1.

Having determined the structure of the heterogeneous population, we can study the
influence of vaccination on the further epidemic progression. The results of the vaccination
strongly depend on whether it is applied to HT group or to LT group. In particular, with
only 5% of vaccinated individuals (of the whole population) for k = 0.2, the total number of
infected individuals at the end of epidemic is almost 3 times less than without vaccination, if
vaccination is applied to the HT group. If vaccination is applied to the LT group, the effect
of vaccination is weak. Hence, vaccination of the first group acts to stop the epidemic while
vaccination of the second group only protects vaccinated individuals. Though this result can
be expected, the difference in the results of vaccination is quite striking.

The contents of the paper are as follows. In the next section, we introduce and study a
model problem of a heterogeneous population. We determine various parameters of epidemic
progression and show that with the same initial growth rate, its outcome can strongly differ
depending on the structure of the population. In Section 3 we introduce a more complete
epidemiological model of heterogeneous population. We apply it to Covid-19 in Section 4 in
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order to determine the structure of the heterogeneous populations and to model the influence
of vaccination on the epidemic progression. Finally, discussion of the model and of the result
is presented in Section 5.

2 Model problem

We begin the study of epidemic progression in a heterogeneous population with the model
problem consisting of susceptible and infected individuals with two sub-populations:

dS1

dt
= −β11

S1

N
I1 − β12

S1

N
I2, (2.1)

dS2

dt
= −β21

S2

N
I1 − β22

S2

N
I2, (2.2)

dI1
dt

= β11
S1

N
I1 + β12

S1

N
I2 − σ1I1, (2.3)

dI2
dt

= β21
S2

N
I1 + β22

S2

N
I2 − σ2I2, (2.4)

where βij are the rates of disease transmissions, σj are the clearance rates, and N is the total
population. This model is similar to the model recently considered in [6]. We will present
a more detailed analysis compared to the previous one. Along with basic reproduction
number and the final size of epidemic, we will determine the maximal number of infected
and will show that for the same value of basic reproduction number, the populations can
strongly differ by their final size and the maximum of infected individuals. This effect occurs
because of the heterogeneity of the population. Furthermore, we will study the influence of
vaccination on the heterogeneous population.

2.1 Basic reproduction number

In the beginning of epidemic, S1 and S2 can be considered as constant. We set:

S1

N
= k ,

S2

N
= 1− k, 0 ≤ k ≤ 1.

The linearized matrix of the system (2.1) - (2.4) evaluated at disease free equilibrium point
(kN, (1− k)N, 0, 0) is given by

J =


0 0 −kβ11 −kβ12
0 0 −(1− k)β21 −(1− k)β22
0 0 kβ11 − σ1 kβ12
0 0 (1− k)β21 (1− k)β22 − σ2

 .
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The non-zero eigenvalues of J can be obtained from the block matrix

A =

(
kβ11 − σ1 kβ12
(1− k)β21 (1− k)β22 − σ2

)
.

We find maximal eigenvalues of J from the equation:

λ2−(kβ11+(1−k)β22−σ1−σ2)λ+k(1−k)(β11β22−β12β21)−kβ11σ2−(1−k)β22σ1+σ1σ2 = 0.

In order to simplify the expression for basic reproduction number, we suppose that

σ1 = σ2 = σ, β12 = β21 = (β11 + β22)/2 . (2.5)

Then

2λ = kβ11 + (1− k)β22 − 2σ +
√
kβ2

11 + (1− k)β2
22 . (2.6)

The basic reproduction number R0 is as follows:

R0 =

(
kβ11 + (1− k)β22 +

√
kβ2

11 + (1− k)β2
22

)
/(2σ) .

If, moreover, β11 = β22 = β for some β, then λ = β − σ, R0 = β/σ.

2.2 Final size of epidemic

Taking a sum of equations (2.1), (2.3) and (2.2), (2.4), we obtain the equalities:

dS1

dt
+
dI1
dt

= −σ1I1 ,
dS2

dt
+
dI2
dt

= −σ2I2 . (2.7)

Integrating them from 0 to ∞ and assuming that Ij(0) = Ij(∞) = 0, j = 1, 2, we conclude
that

S0
1 − S

f
1 = σ1

∫ ∞

0

I1(t)dt , S0
2 − S

f
2 = σ2

∫ ∞

0

I2(t)dt .

Next, we divide equation (2.1) by S1, equation (2.2) by S2 and integrate from 0 to ∞:

− ln

(
Sf1
S0
1

)
=

β11
Nσ1

(
S0
1 − S

f
1

)
+

β12
Nσ2

(
S0
2 − S

f
2

)
,

− ln

(
Sf2
S0
2

)
=

β21
Nσ1

(
S0
1 − S

f
1

)
+

β22
Nσ2

(
S0
2 − S

f
2

)
.

With the notation x = Sf1 /S
0
1 , y = Sf2 /S

0
2 , and assumptions (2.5) we obtain the system of

two coupled transcendental equations

β11k(1− x) + β12(1− k)(1− y) = −σ lnx, (2.8)
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β21k(1− x) + β22(1− k)(1− y) = −σ ln y, (2.9)

with respect to x and y. If β11 = β22 = β, then this system is reduced to the single equation
R0(1−x)+lnx = 0 independent of k. Its solution gives the final size of susceptible population
for the homogeneous population.

In the general case, the solution of this system depends on β11, β22, and k. We will vary
their values in such a way that the basic reproduction number does not change, and we will
analyze the final size of epidemic.

Figure 1: Final value of the total susceptible population and in the two sub-classes as
functions of β11, S

f
1 - lower curve, Sf2 - middle curve, Sf1 + Sf2 - upper curve. The values of

parameters: β22 = 5− β11, β12 = β21 = 2.5, σ = 1.

Consider the following example: β = 2.5, σ = 1. Then λ = 1.5, R0 = 2.5. For different
values β11 and β22 such that (β11 + β22)/2 = β, we find from (2.6) the value of k for which
λ = 1.5:

β11 2.6 3 3.5 4 4.5 4.75 5
β12, β21 2.5 2.5 2.5 2.5 2.5 2.5 2.5
β22 2.4 2 1.5 1 0.5 0.25 0
k 0.495 0.475 0.45 0.427 0.403 0.393 3.82

For each of these combination of parameters, we determine x and y from system (2.8),
(2.9), and the corresponding values Sf1 and Sf2 . The results of these calculations are shown
in Figure 1. The final value of the first susceptible sub-population slowly decreases, for the
second sub-population increases. The final value of the total susceptible population increases
almost 3 times between the minimal value for the homogeneous population and the maximal
value reached for β22 = 0.
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We consider another example where

β = 1.5, σ = 1, λ = 0.5, R0 = 1.5.

In this case the final size of susceptible for the homogeneous population is Sf = 0.417. The
maximal total susceptible for the heterogeneous population is reached for β11 = 3 and equals
Sf = 0.587. The ratio of the maximal and minimal value decreases with the decrease of R0

but their difference remains approximately the same as in the previous example.

2.3 Maximum number of infected

Maximal number of infected individuals for homogeneous population. If we as-
sume that βij = β for all i, j = 1, 2 for some β, and σ1 = σ2, then system (2.1)-(2.4) can be
reduced to the system

dS

dt
= −β S

N
I ,

dI

dt
= β

S

N
I − σI, (2.10)

where S = S1 + S2, I = I1 + I2. Denote by tm the time of maximum of I(t), and by Im the
maximal value, Im = I(tm), and Sm = S(tm). Integrating the sum of the equations in (2.10)

dS

dt
+
dI

dt
= −σI

from 0 to tm, we get

Sm − S0 + Im − I0 = −σ
∫ tm

0

I(t)dt, (2.11)

where S0 = S(0) = N , I0 = I(0). Next, from the first equation in (2.10),

ln(Sm)− ln(S0) = − β
N

∫ tm

0

I(t)dt. (2.12)

From equations (2.11), (2.12),

Im − I0 = S0 − Sm +
σN

β
ln

(
Sm
S0

)
. (2.13)

From the second equation in (2.10), since the derivative equals 0 at t = tm, we find Sm =
σN/β. Using the notation R0 = β/σ, from (2.13) we find,

Im − I0
N

= 1− 1

R0

− lnR0

R0

, Sm =
N

R0

. (2.14)

If R0 = 1, then from the previous equations it follows that Im = I0, Sm = N . For R0 > 1,
we get Im > I0 and Sm < N .
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Figure 2: The maximal number of infected individuals (left figure) in direct numerical sim-
ulations of system (2.1)-(2.4) (solid lines) and as solution of system (2.19), (2.20) (dashed
lines). The lower curves correspond to the first sub-population (Im1 ) and the upper curves
to the second sub-population (Im2 ). The corresponding values of the number of susceptible
individuals (right figure) in numerical simulations of system (2.1)-(2.4) (solid lines) and by
formulas (2.18). The lower curves correspond to the fist sub-population (Sm1 ) and the up-
per curves to the second sub-population (Sm2 ). The values of parameters: β22 = 5 − β11,
β12 = β21 = 2.5, σ = 0.1. The value of k is chosen in such a way that the basic reproduction
number R0 = 2.5 is the same in all simulations (see the explanation in the text).

Maximal number of infected individuals in a heterogeneous population. In order
to find the maximal number of infected individuals in the heterogeneous population, we
consider an approximation t1m = t2m, where t1m is the time of maximum of I1(t) and t2m of
I2(t). Numerical simulations show that these times to maximum are close to each other.
Integrating equations (2.7) from 0 to tm, we obtain:

S0
1 − Sm1 + I01 − Im1 = σ1

∫ tm

0

I1(t)dt , S0
2 − Sm2 + I02 − Im2 = σ2

∫ tm

0

I2(t)dt , (2.15)

where S0
j = Sj(t0), S

m
j = Sj(tm), I0j = Ij(t0), I

m
j = Ij(tm), j = 1, 2. Next, we divide equation

(2.1) by S1, equation (2.2) by S2 and integrate to get:

− ln

(
Sm1
S0
1

)
=
β11
N

∫ tm

0

I1(t)dt+
β12
N

∫ tm

0

I2(t)dt ,

− ln

(
Sm2
S0
2

)
=
β21
N

∫ tm

0

I1(t)dt+
β22
N

∫ tm

0

I2(t)dt .

Taking into account (2.15), we obtain

− ln

(
Sm1
S0
1

)
=

β11
Nσ1

(S0
1 − Sm1 + I01 − Im1 ) +

β12
Nσ2

(S0
2 − Sm2 + I02 − Im2 ) , (2.16)
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− ln

(
Sm2
S0
2

)
=

β21
Nσ1

(S0
1 − Sm1 + I01 − Im1 ) +

β22
Nσ2

(S0
2 − Sm2 + I02 − Im2 ) . (2.17)

Assuming that I ′1(tm) = I ′2(tm) = 0, we get from (2.3), (2.4):

Sm1 = σ1N
Im1

β11Im1 + β12Im2
, Sm2 = σ2N

Im2
β21Im1 + β22Im2

. (2.18)

We suppose that I0j � Imj , j = 1, 2 and σ1 = σ2. Set

x = Im1 /N, y = Im2 /N, γij = βij/σ, i, j = 1, 2.

With this notation and (2.18), equations (2.16), (2.17) can be written in the following form:

ln

(
k
γ11x+ γ12y

x

)
= (k − x)γ11 + (1− k − y)γ12 −

γ11x

γ11x+ γ12y
− γ12y

γ21x+ γ22y
, (2.19)

ln

(
(1− k)

γ21x+ γ22y

y

)
= (k−x)γ21 + (1− k− y)γ22−

γ21x

γ11x+ γ12y
− γ22y

γ21x+ γ22y
. (2.20)

Solving this system of equations, we find x and y and, consequently, Imj , j = 1, 2. We then
use formulas (2.18) to determine Smj , j = 1, 2.

Figure 2 shows the comparison of the values Imj and Smj , j = 1, 2 obtained from direct
numerical simulations and found by the approximate analytical method presented above.
This approximation is more accurate for β11 > β22 (β11 + β22 = 5) which corresponds to our
main assumption that the first sub-population is smaller and spreads infection faster than
the second sub-population. Let us recall that the population is homogeneous if β11 = β22.
The heterogeneity of the population increases with the increase of β11. The maximal current
number of infected individuals decreases with the increase of β11. This effect is especially
pronounced for the second sub-population.

2.4 Collective immunity

The notion of collective immunity implies that epidemic progression slows down due to the
decrease of the number of susceptible individuals. Let us give a more precise definition for
the homogeneous population implying that collective immunity begins at the moment of
time when the number of infected individuals reaches its maximum, t = tm, Im = I(tm).
The number of infected individuals begins to decrease after this time. The results of the
previous section allow us to determine the exact value of Im and Sm but not tm. In order
to find an approximate value of tm we use the approximation I(t) = I0e

λt within the time
interval I0 ≤ I(t) ≤ Im. Then

tm ≈
1

λ
ln

(
Im
I0

)
=

1

β − σ
ln

(
1 +

N

I0

(
1− 1

R0

− lnR0

R0

))
.

In the case of heterogeneous population, the total number of infected individuals I(t) =
I1(t) + I2(t) has a single maximum at some t = tm though the maxima of each component
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I1(t) and I2(t) are reach at some close but different times t1m and t2m, respectively. We
consider that collective immunity begins at time t = tm. In the approximate analytical
solution considered above we assume that t1m = t2m. Under this approximation, the time
of the beginning of collective immunity can be determined similarly to the homogeneous
population but with more cumbersome calculations related to solution of system (2.19) -
(2.20).

2.5 Vaccination

The result of vaccination of a heterogeneous population essentially depends on the distribu-
tion of vaccinated individuals between different population groups. The epidemic is mainly
spread by the first sub-population (HT), and their vaccination efficiently decreases the num-
ber of infected individuals.

Figure 3: The total number of infected individuals (left figure) in numerical simulations of
system (2.1)-(2.4) at the end of epidemic depending on the proportion of vaccinated individ-
uals V to the total population N . The lower curve corresponds to the vaccination of the first
sub-population (κ = 1) and the upper curve to the vaccination of the second sub-population
(κ = 0) with the same total number of vaccinated individuals. The maximal current number
of infected individuals (right figure) depending on the proportion of vaccinated individuals
V to the total population N . The lower curve corresponds to the vaccination of the first
sub-population (κ = 1) and the upper curve to the vaccination of the second sub-population
(κ = 0) with the same total number of vaccinated individuals. The values of parameters:
β11 = 4, β22 = 1, β12 = β21 = 2.5, σ = 0.1, k = 0.1, t0 = 5.

We assume that vaccination is fully efficient in the sense that vaccinated individuals do
not become infected. In order to model the action of vaccination at time t = t0, we set

S1(t0+0) = S1(t0−0)−κV, S2(t0+0) = S2(t0−0)−(1−κ)V, Ij(t0+0) = Ij(t0−0), j = 1, 2,

where V is the number of vaccinated, κ is part of vaccinated in the first sub-population,
(1 − κ) in the second sub-population. System (2.1)-(2.4) is considered for t > t0 with the
indicated initial conditions at t = t0.
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Table 1: The model under consideration is (2.1) - (2.4) with vaccine in S1.

k % Im1 /N Im2 /N Sf1 /N Sf2 /N tf
0.2 – 0.0007 0.0016 0.1209 0.6187 846

10% 0.00004 0.0009 0.1249 0.6645 1113
20% 0.00001 0.0003 0.1286 0.7168 1715
30% 0.000008 0.00002 0.1321 0.7770 4828

0.3 – 0.0031 0.0045 0.1220 0.4334 488
10% 0.0020 0.0031 0.1294 0.4742 582
20% 0.0011 0.0019 0.1371 0.5216 736
30% 0.0004 0.0008 0.1450 0.5772 1084
40% 0.00007 0.0001 0.1530 0.6437 2068

0.4 – 0.0068 0.0069 0.1199 0.3086 365
10% 0.0047 0.0051 0.1302 0.3435 422
20% 0.0029 0.0034 0.1414 0.3846 510
30% 0.0015 0.0019 0.1535 0.4337 664
40% 0.0005 0.0007 0.1665 0.4935 1012

Figure 3 (left) shows the total number of infected individuals IT depending on vaccination.
The total number of infected is calculated by the formula: IT = N−V −Sf1−S

f
2 . In numerical

simulations we set Sfj = Sj(tf ), j = 1, 2, where tf is the final time of epidemic defined as
time when the number of infected individuals becomes less than 1. Let us recall, that Ij(t)
converge to 0 as t → ∞ but these functions remain positive for any finite time. Taking
into account that these variables signify the number of individuals, the epidemic can be
considered as finished at t = tf defined above.

We compare two cases, where all vaccinated belong to the first sub-population (κ = 1)
or all of them belong to the second sub-population (κ = 0). In the first case, the influence of
vaccination on the total number of infected individuals at the end of epidemic is essentially
stronger than in the second case. If we take as example V equal 5% of the total population
(V/N = 0.05), then IT reduces from 0.45N (without vaccination) to 0.25N , that is almost
twice. At the same time, if only the second population is vaccinated, then the reduction is
only 5%, that is the same as the number of vaccinated.

This difference becomes even more essential for the maximal current number of infected
individuals (Figure 3, right). More detailed data on the results of vaccination are presented in
Tables 1-3. These results depend on the values of parameters, in particular on the parameter
k characterizing the proportion between the two sub-populations. However, the general
tendency is the same as presented above: vaccination of the first sub-population is much
more efficient. It is also interesting to note that vaccination increases the final time of
epidemic. These tables show the results of numerical simulations of the results of vaccination
in three cases: vaccination is applied only to the first sub-population (HT), only to the second
sub-population (LT), and in proportion 20% HT and 80% LT. In all cases the number of
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Table 2: The model under consideration is (2.1) - (2.4) with vaccine in S2.

k % Im1 /N Im2 /N Sf1 /N Sf2 /N tf
0.2 – 0.0007 0.0016 0.1209 0.6187 846

10% 0.0006 0.0014 0.1259 0.6152 901
20% 0.0005 0.0011 0.1310 0.6114 965
30% 0.0004 0.0009 0.1363 0.6073 1040

0.3 – 0.0031 0.0045 0.1220 0.4334 488
10% 0.0028 0.0039 0.1291 0.4265 511
20% 0.0025 0.0033 0.1366 0.4190 536
30% 0.0022 0.0028 0.1446 0.4109 565
40% 0.0020 0.0024 0.1530 0.4020 599

0.4 – 0.0068 0.0069 0.1199 0.3086 365
10% 0.0063 0.0059 0.1289 0.2986 380
20% 0.0057 0.0050 0.1387 0.2875 397
30% 0.0052 0.0041 0.1491 0.2753 416
40% 0.0046 0.0034 0.1605 0.2619 439

vaccinated individuals is the same. It is given in percentage of N1. The case k = 0.2 and 10%
of N1, for example, corresponds to 2% of the total population N . In all cases the vaccine is
administrated on day 5.

3 Full model

3.1 Model of heterogeneous population

We consider conventional compartmental approach to model the epidemic progression with
the following classes of population: susceptible individuals S, exposed (with viral load) but
not yet infectious E1, exposed infectious (no yet symptoms) E2, infected symptomatic Is,
infected asymptomatic Ia, quarantined Q, hospitalized J , recovered R. Exposed infectious
and infected asymptomatic individuals are in some sense similar to each other because they
are infectious but do not manifest symptoms. However, the rate of disease transmission and
the duration of these stages for them can be different.

The susceptible population can be heterogeneous with respect to a variety of character-
istics: age classes, their activity including education, professional, retired, medical workers
[10, 19, 21]. We will study how the heterogeneity of the population can influence the final
size and duration of epidemic. For simplicity of presentation and analysis we restrict our-
selves to two subclasses of susceptible individuals S1 and S2. According to this separation
on subclasses, we introduce the corresponding subclasses in the groups E1, E2, Is, and Ia,
while Q, J , and R remain homogeneous. Under these assumptions, we obtain the following
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Table 3: The model under consideration is (2.1) - (2.4) with vaccine in S1 and S2.

k % Im1 /N Im2 /N Sf1 /N Sf2 /N tf
0.2 – 0.0007 0.0016 0.1209 0.6187 846

10% 0.0006 0.0013 0.1257 0.6247 935
20% 0.0004 0.0009 0.1307 0.6306 1050
30% 0.0003 0.0007 0.1359 0.6366 1203

0.3 – 0.0031 0.0045 0.1220 0.4334 488
10% 0.0025 0.0037 0.1292 0.4402 529
20% 0.0020 0.0029 0.1369 0.4471 581
30% 0.0016 0.0022 0.1451 0.4541 647
40% 0.0012 0.0016 0.1538 0.4610 734

0.4 – 0.0068 0.0069 0.1199 0.3086 365
10% 0.0056 0.0056 0.1295 0.3158 395
20% 0.0045 0.0044 0.1399 0.3231 433
30% 0.0035 0.0034 0.1512 0.3304 483
40% 0.0025 0.0024 0.1636 0.3378 549

equations for S1 and S2:

dS1

dt
= −S1

N
[β11(Is1 + p11Ia1 + p12E12) + β12(Is2 + p21Ia2 + p22E22) + βQQ+ βJJ ] , (3.1)

dS2

dt
= −S2

N
[β21(Is1 + p31Ia1 + p32E12) + β22(Is2 + p41Ia2 + p42E22) + βQQ+ βJJ ] . (3.2)

Here E12, Is1 , Ia1 and E22, Is2 , Ia2 are the subclasses of the corresponding classes E2, Is, Ia; βij
are the coefficients characterizing the intensity of infection transmission between the classes
Si and Isj , i, j = 1, 2; the coefficients pij, i = 1, 2, 3, 4, j = 1, 2 show how the coefficients
of infection propagation change for the classes Ia1 , Ia2 and E21, E22 in comparison with Is1
and Is2 . Finally, the coefficients βQ and βJ characterize infection progression due to the
interaction with the classes Q and J .

The corresponding equations for the classes E11, E21 have the following form:

dE11

dt
=

S1

N
[β11(Is1 + p11Ia1 + p12E12) + β12(Is2 + p21Ia2 + p22E22) + βQQ+ βJJ ]− µ1E11,

(3.3)
dE21

dt
=

S2

N
[β21(Is1 + p31Ia1 + p32E12) + β22(Is2 + p41Ia2 + p42E22) + βQQ+ βJJ ]− µ2E21,

(3.4)
where µ1 and µ2 are the rates at which E11 and E21 progress to the infectious exposed
compartments E12 and E22, respectively. Next,

dE12

dt
= µ1E11 − δ1E12, (3.5)
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dE22

dt
= µ2E21 − δ2E22. (3.6)

The coefficients δ1 and δ2 characterize the transition from exposed to infected classes. The
equations for the infected classes are as follows:

dIa1
dt

= (1− σ1)δ1E12 − η1Ia1 , (3.7)

dIa2
dt

= (1− σ2)δ2E22 − η2Ia2 , (3.8)

dIs1
dt

= σ1δ1E12 − (ρ11 + ζ11 + ζ12 + ζ13)Is1 , (3.9)

dIs2
dt

= σ2δ2E22 − (ρ21 + ζ21 + ζ22 + ζ23)Is2 , (3.10)

where σ1 and σ2 determine the the proportions between the classes of symptomatic and
asymptomatic individuals, 0 < σj < 1, j = 1, 2.

Figure 4: Schematic representation of the model with different classes of individuals. Two
subclasses of susceptible give respectively exposed non-infectious, exposed infectious, infected
symptomatic and asymptomatic. There are unique classes of quarantined, hospitalized,
recovered, and dead.

Symptomatic infected individuals can become quarantined, hospitalized or recover, and
asymptomatic infected recover without hospitalization. Symptomatic individuals move to
the quarantine class, and the rate of their transfer to hospital and recovered class are ξ1 and
ξ2, respectively. The equation for the quarantined class writes:

dQ

dt
= ζ11Is1 + ζ21Is2 − (ξ1 + ξ2)Q. (3.11)
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Hospitalized individuals can recover or die with the rates ν and ρ2:

dJ

dt
= ζ12Is1 + ζ22Is2 + ξ1Q− (ρ2 + ν)J, (3.12)

dR

dt
= η1Ia1 + η2Ia2 + ζ13Is1 + ζ23Is2 + ξ2Q+ νJ. (3.13)

This model was introduced in [22] where the basic reproduction number and the final size
of epidemic were found. It was also used to fit the data on the Covid-19 epidemic in some
countries before and during the lockdown and to determine the parameters by fitting the
numerical simulation with the epidemiological data. Furthermore, most sensitive parameters
were estimated. We will use this model and parameter values in the next section in order to
study the influence of vaccination on epidemic progression, as illustrative example.

3.2 Characterization of epidemic progression

In this section we present the results of numerical simulations of system (3.1)-(3.13). Figure
5 shows the evolution in time of the two susceptible populations S1(t) (left figure) and S2(t)
(right figure) for different values of parameter k = N1/N . Larger values of k corresponds to
the increase of the proportion of the first sub-population for which the disease transmission
rate is more intensive. We observe from the figure that increasing k leads to the decrease of
the final time of epidemic. The final size of the first sub-population remains approximately
constant. This is due to the fact that epidemic is basically transmitted by the first sub-
population, and it is finished when this sub-population reaches collective immunity. The
final size of the second sub-population decreases with the increase of k (Figure 6, left) but
it remains above the level of collective immunity. These final sizes can be found from the
analytical formulas obtained in [22].

The maximal values of infected individuals increase with the increase of k (Figure 6,
right). We consider here the sum of symptomatic and asymptomatic classes,

Ij(t) = Iaj(t) + Isj(t) , j = 1, 2.

Though the first sub-population N1 = kN is essentially less than the second one, N2 =
(1−k)N for small k, the maximal values of infected individuals, I1m and I2m are close to each
other because disease transmission occurs faster in the first sub-population.

4 Application to the Covid-19 epidemic

4.1 Coefficient of social interaction

The heterogeneity of the population with respect to the disease transmission is related to
multiple factors. Among them different age, professional and social groups, various religious
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Figure 5: Numerical simulations of system (3.1)-(3.13). The evolution of the sub-populations
S1(t) (left) and S2(t) in time for different values of k. The values of the coefficients βij are
as follows: β11 = 4, β22 = 1, β12 = β21 = 2.5. The values of other parameters are given in
Table 4 in the appendix.

Figure 6: The final size of susceptible classes for different values of k (left). The upper curve
shows the total number of susceptible, the middle curve corresponds to S2(t) and the lower
curve to S1(t). The maximal number of infected individuals for different values of k (right).
The upper curve shows the total number of infected (symptomatic plus asymptomatic),
the middle curve corresponds to the second sub-population and the lower curve to first sub-
population. The values of the coefficients βij are as follows: β11 = 4, β22 = 1, β12 = β21 = 2.5.
The values of other parameters are given in Table 4 in the appendix.

and cultural traditions which can influence people behavior with respect to the measures of
social distancing and vaccination. Detailed description of all these different groups would
essentially complicate the model and would increase the number of parameters difficult to
estimate. Therefore, we propose to consider only two cumulative groups. One of them
includes people with high disease transmitting potential (HT) and another one with low
disease transmitting potential (LT). According to the models we consider here, these two
classes are represented by S1 and S2 respectively. They differ by the values of parameter
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βij in the expression βijIiSj/N , i, j = 1, 2. These are effective parameters characterizing the
frequency of contacts between infected and susceptible individuals and the rate of infection
transmission. For the two groups N1 (HT) and N2 (LT) of the whole population N , there are
the corresponding subclasses of susceptible S1 and S2, exposed and infected. Hence, there
are four different coefficients: β11 characterizes the interaction inside HT, β22 inside LT, and
β12, β21 between the groups.

We consider the parameter k = N1/N already used in the previous sections. For k = 0,
there is a single group LT, for k = 1 another single group HT. We will consider the values
of k between 0 and 1. This parameter characterizes the distribution of total population into
two groups and influences the intensity of social interactions.

We determine the values of parameters βij and k from the Covid-19 data. In the beginning
of the epidemic, before lockdown, there were no measures of social distancing. We suppose
that the whole population belonged to the first group (HT). We neglect here the heterogeneity
of the population with respect to the frequency of contacts. Fitting the data on the epidemic
progression allows us to determine the coefficient β11. Its value can be different in different
countries. Next, we suppose that during the first lockdown the whole population respected
the measures of social distancing and belonged to the second group (LT). As before, fitting
the data allows us to determine β22. In the data fitting we used the model presented in
Section 3 [22]. The values of the other parameters were determined from the available data.

After the first lockdown, the measures of social distancing were partially preserved. These
restrictions differed between the countries and evolved in time. They were less strict than
during the first lockdown allowing the emergence of two cumulative groups N1 and N2

described above. Simplifying this characterization of the population, we suppose that the
first group (HT) is similar to the population before lockdown, and it is characterized by
the coefficient β11 described above. The second group (LT) is similar to the population
during the lockdown, and it is characterized by the coefficient β22. We set the values of the
coefficients β12 and β21 characterizing the interactions between the groups according to the
formula β12 = β21 = (β11 + β22)/2. It is an empiric relation which cannot be determined
from the data. We will discuss it below.

Next, we determine the value of the coefficient k fitting the data after lockdown. Figure
7 shows consecutive stages of epidemic progression in Germany with the first stage (before
lockdown), second stage (during lockdown), third stage (June-July, 2020), and the fourth
stage (September-November, 2020). According to the method described above, we get β11 =
3.95, β22 = 1.05, β12 = β21 = 2.5 (the values of other parameters are given in Table 4 in
the appendix). Fitting the data in June-July, we find k = 0.1, that is the first group (HT)
represents 10% of the whole population. We then continued the simulation for the period
September-November with two different values of k: the same as before, k = 0.1 (left figure),
and k = 0.2 (right figure). Increase of k shows a rapid growth of the number of infected.
Let us note that this simulation was done in July, 2020 [22], and it gave a reasonably good
prediction of the epidemic progression during the fourth stage. Increase of the coefficient of
social interaction k during the fourth stage is related to the beginning of the academic year
and the intensification of professional activity after summer vacation.
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Figure 7: Numerical simulations of epidemic progression in Germany with system (3.1)-
(3.13). The values of the coefficients βij are as follows: β11 = 3.95, β22 = 1.05, β12 = β21 = 2.5
(see the explanation in the text). The values of other parameters are given in the appendix.
The values of k: 1 in February-March 2020 (before lockdown), 0 in April-May (lockdown), 0.1
in June-August (after lockdown), 0.1 in September-November (left) and 0.2 in September-
November (right). Reprinted from [22] with permission.

Figure 8: Numerical simulations of epidemic progression in Israel with system (3.1)-(3.13).
The values of the coefficients βij are as follows: β11 = 2.91, β22 = 0.3, β12 = β21 = 1.17.
The values of other parameters are given in the appendix. The values of k after lockdown
changes from 0.1 to 0.3.

Another example is shown in Figure 8. Fitting of data for Israel gives β11 = 2.91,
β22 = 0.3, β12 = β21 = 1.17. The value of k after lockdown varied from 0.1 to 0.3. The
estimates of the coefficients βij for some European countries are presented in [22]. The values
around β11 = 4 and β22 = 1 are quite specific, and we used them in the previous sections of
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this work. The value of k after the first lockdown usually changes between 0.1 and 0.3. We
will use these characteristic values of parameters in the next subsection in order to study
the influence of vaccination on the epidemic progression.

4.2 Vaccination

We proceed to the effect of vaccination on the epidemic progression. Similar to the modelling
approach considered in Section 2, we apply vaccination at some time t = t0 and model it by
decreasing the number of susceptible individuals:

S1(t0 + 0) = S1(t0 − 0)− κV , S2(t0 + 0) = S2(t0 − 0)− (1− κ)V,

while all other classes do not change. Here κ is the proportion of all vaccinated individuals
V in the first sub-population and (1− κ) in the second one.

Figure 9: Total number of infected individuals at the end of epidemic as a function of the
number vaccinated individuals applied only to the first sub-population (κ = 1, left figure)
or only to the second sub-population (κ = 0, right figure). The percentage of vaccinated
individuals is counted with respect to N1 in both cases. The lower curve shows the total
number on infected individuals in the first sub-population, the middle curve in the second
sub-population, and the upper curve their sum.

Figures 9 and 10 show the influence of the number of vaccinated individuals and of
their distribution among the two sub-population on the total and maximum number of
infected individuals. The total number of infected individuals in the first sub-population is
determined as IT1 = N1−Sf1 −κV and in the second sub-population IT2 = N2−Sf2 −(1−κ)V ,
where Sfj , j = 1, 2 are the final numbers of susceptible individuals, Sfj = Sj(tf ), j = 1, 2
where tf is time at which Ia1(t) + Ia2(t) + Is1(t) + Is2(t) < 1. The maximal current number
of infected individuals in each sub-class are defined as the maximum of the function I im(t) =
Isj(t) + Iaj(t), j = 1, 2.

The result of the vaccination strongly depends on its distribution between the two sub-
populations. If vaccination is applied to the first sub-population (κ = 1), it decreases the
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Figure 10: Maximal current number of infected individuals as a function of the number
vaccinated individuals applied only to the first sub-population (κ = 1, left figure) or only to
the second sub-population (κ = 0, right figure). The percentage of vaccinated individuals
is counted with respect to N1 in both cases. The lower curve shows the maximal number
on infected individuals in the first sub-population, the middle curve in the second sub-
population, and the upper curve their sum.

total number of infected individuals much stronger than if it is applied to the second sub-
population (κ = 0) (Figure 9). In this example, k = 0.2 and N1 = 0.2N . The percentage
of vaccinated individuals is measured with respect to N1. So, 30% of vaccination in HT
class correspond to 6% of the total population N . In this case, the total number of infected
individuals at the end of epidemic decreases 6 times if the vaccination is applied to the
first sub-population, compared to the same number of vaccination (6% of total population)
is applied to the second sub-population. This striking difference shows that in the first
case vaccination acts to stop epidemic progression while in the second case it only protects
vaccinated individuals from infection. This difference is even more essential for the current
maximal number of infected individuals (Figure 10).

5 Discussion

Actual stage and epidemic waves. At the end of the first year of the Covid-19 epidemic,
some of its properties are already sufficiently well understood. Among them, it is now clear
that the epidemic progression obeys the usual epidemiological laws, and it can be described
by conventional epidemiological models. There is a large body of research devoted to the
description of the first stage of epidemic with such models, to the determination of the basic
reproduction number and to related questions, basically with ODE models (see [14] and the
references therein) but also with individual based models [5].

Another important observation is that, due to relatively high mortality rate and pro-
portion of severe cases, the epidemic cannot be left to follow its natural route to collective
immunity and extinction. National health systems become rapidly saturated and fail to
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treat not only coronavirus patients but the whole population. Therefore, the only avail-
able method up to now consists in the introduction of the measures of social distancing,
confinement, wearing mask and even strict lockdown [12].

On the other hand, these measures impose a heavy burden on the economy, and they are
relaxed as soon as the epidemiological situation improves. Some time later, the epidemic
progression restarts, and it becomes necessary to introduce these measures again. We now
observe the second wave of epidemic spread at different countries, and they will certainly
continue unless the vaccination will stop them. These oscillations in the epidemic progression
can be described by the simple delay differential equation

dI

dt
= β(Id(t− τ))

S

N
I(t)− σI(t) (5.1)

for the number of infected individuals I assuming that the number of susceptible individuals
S is constant in the beginning of epidemic and β(Id) is a decreasing function of the number
of new daily cases Id taken with some time delay. This function describes the measures
of social distancing depending on the epidemiological situation. Since the number of new
daily cases is usually taken proportional to the product SI, we obtain a closed equation
with respect to I(t). During further epidemic progression, when S cannot be considered as
constant, the combination of equation (5.1) with the other equations of the epidemiological
models will describe the interaction of this oscillatory dynamics with collective immunity.
Let us note that equation (5.1) is a particular case of a more general information-related
SIR model [7, 8].

Further epidemic progression depends on the structure of the population. At
the actual stage of epidemic progression, serological tests in some countries show that there
are of the order of 10% of population with antibodies [15, 18]. We are yet far from the
collective immunity but we need already to take into account the variation of S. Moreover,
vaccination expected during the next year will also change the number of susceptible and,
consequently, will influence the pattern of epidemic progression.

In the beginning of epidemic, observed exponential growth of the number of infected
individuals can be described for any population structure [1, 11, 17, 26]. The heterogeneity
of the population becomes important at the later stages of the epidemic development when
it deviates from the exponential growth and approaches the stage of collective immunity
and when it decays approaching the final time, defined as time when the number of infected
individuals becomes less than 1. Essentially, it indicates that no one remain in the system
who can spread the epidemic.

We study the influence of the heterogeneity of the population with the model problem
in Section 2. This relatively simple model allows us to determine the final size of epidemic,
the total and the maximal current number of infected individuals. The latter is particularly
important for the estimation of available hospitals beds. The main conclusion here is that
the data on the initial epidemic stage are now sufficient to predict its further progression. In
the case of the homogeneous population, conventional SIR model allows the determination
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of the final size of epidemic and of the maximal current number of infected individuals solely
on the basis of the basic reproduction number, that is, on the basis of the initial growth rate.
However, this is not the case for the heterogeneous population any more [6]. With the same
initial growth rate, the final size of epidemic and the maximal current number of infected
individuals strongly depend on the structure of the heterogeneous population. Moreover,
the total and maximal numbers of infected individuals can change several times for realistic
values of parameters determining the distribution of population into two groups.

How to estimate the structure of the heterogeneous population. Thus, we come
to the question about the estimation of the structure of a heterogeneous population. In
the context of COVID-19, it is needless to mention that the number of reasonable grouping
seems to be greater than two but for the simplicity of mathematical modelling we restricted
oursleves to HT and LT classes only. We use here the data on the Covid-19 epidemic
for different countries. The main idea of our approach is to present the population as a
combination of two groups, with high and low disease transmission potentials. The first
group is related to the period before lockdown without measures of social distancing and
some other control measures, and the second group to the period during lockdown when
these measures were strict. In a simplified representation, these two groups can be identified
by two factors: a) the number of interactions with other individuals, b) respect of the
measures of social distancing (masks, sanitizers, and so on). For example, people who have
their normal (as before lockdown) average interaction belong to the HT group, those who
have reduced interaction (as during lockdown) belong to the LT group. Certainly, this is
a simplified representation of the population because each group is heterogeneous itself,
and some individuals can change their groups in different time periods. Furthermore, we
approximate a gradual distribution of interactions by a binary function. However, these
simplifications allow us to obtain tractable analytical results and give a simple description
of the population characterized by a single parameter k defined as a proportion of the HT
group to the whole population.

The population consisting of two groups is characterized by four parameters βij, i, j = 1, 2
describing the intensity of disease transmission in the groups SiIj, i, j = 1, 2. The coefficient
β11 for the disease transmission inside the HT group is obtained by fitting the data before
lockdown. The coefficient β22 for the disease transmission inside the LT group is obtained by
fitting the data during lockdown. However, the cross-group coefficients β12 and β21 cannot
be determined from the data. We impose the assumption that β12 = β21 = (β11 + β22)/2.
The justification of this assumption is based on the physical example of two groups of balls
moving with different speeds, v1 and v2. The number of their collisions is proportional to
the average speed (v1 + v2)/2. We are aware that this representation of the population is
too simplified, and further analysis of these coefficients is needed.

Let us note that in the model problem (2.1)-(2.4), only parameters βij are unknown,
while σj can be estimated from the data on disease duration. Therefore, assuming that the
population is homogeneous before lockdown, that is all βij are equal to each other, we have
only one parameter β11 to determine by fitting the data. Similarly, a single parameter β22
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should be determined from the data during the lockdown, and the single parameter k from
the data after lockdown. A similar situation occurs for a more complete model considered in
Sections 3 and 4. If we consider more detailed models with different sub-classes inside HT
and LT groups and the corresponding contact matrices, then there are more parameters βij,
and they cannot be uniquely determined from the data.

The influence of heterogeneity on vaccination. Knowing the structure of the popula-
tion, we can investigate how its heterogeneity influences the results of vaccination. Vaccina-
tion is modeled as a decrease of the number of susceptible individuals. We assume here that
vaccinated individuals cannot become infected, that is, that vaccination is fully efficient. The
results of the vaccination strongly differ depending on whether it is applied to the HT group
or to the LT group. In the first case, a relatively small part of vaccinated individuals (5%
of the total population) can reduced several times the total number of infected individuals
at the end of epidemic, and even more, the maximal current number of infected individuals.
Therefore, vaccination of the HT group strongly contributes to stop the epidemic in case
of limited number of available doses of vaccine. Vaccination of the second group has much
weaker influence on the epidemic progression. It is basically reduced to the protection of
vaccinated individuals from infection. These results can be qualitatively expected but we
need to determine first the structure of the population in order to give quantitative analysis
of the results of vaccination. Future directions of this work will include vaccination taking
into account age structure and comorbidities in order to reduce the death toll.

Let us also note that vaccination increases the final time of epidemic. In the case of
vaccination of the HT group with 6% of vaccinated individuals of the total population and
k = 0.2, the final time of epidemic increases almost 6 times in comparison with the case
without vaccination. More complete results of vaccination are presented in Tables 1-3.
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6 Appendix

The values of parameters used in the simulations presented in Figure 7 are given in the
following table.
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