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Providing Automatic Feedback to Trainees after Automatic Evaluation

Mégane Millan! and Catherine Achard'

Abstract— Learning how to perform precise and controlled
gestures is difficult, especially when feedback about made errors
is sparse. Therefore, some works try to facilitate learning
by providing virtual '"coaches'. Most of them propose to
automatically score task quality. But simply assessing quality
through a score is not enough. Indeed, it is essential to provide
explanations on assigned scores just like experts do when
supervising trainees. However when quality assessment is done
automatically, such explanations are rare and computing an
automatic feedback is complex. In this work, we propose to
address this problem by providing an automatic feedback based
on neural network explanation. Contrary to previous state
of the art methods, which are focused on neural networks
explicability for classification tasks, we want to explain network
decision on a regression problem (quality score prediction).
Thus, we propose to use gradient-based approaches and adapt
them to a regression task. Moreover, to address the problem
of noise present in sensitivity maps, we propose a solution that
leads to more robust gradients. To test our approach, since
automatic quality assessment datasets do not contain ground
truth about errors position and amplitude, a synthetic dataset
representing a simple temporal task has been created, with its
associated ground truth. Once the method has been validated
on this synthetic dataset, we apply it on real data composed of
robotic surgical gestures.

I. INTRODUCTION

Surgical training is evolving by including simulation and
virtual reality in the curricula. Indeed, many simulators,
especially for laparoscopy have been developed [1], to help
surgeons in their training. These robots record tool kinemat-
ics data during training sessions that can be processed to
provide meaningful feedback to a trainee. At the moment,
only statistics on achievements are given such as the change
in time taken to complete a task, the total path length, the
error counts, the differential number of movements of each
hand or a global scoring. Even if they inform on the overall
level, they do not provide information on mistakes. Such a
feedback is often given naturally by an expert in the field
who are not usually available.

In this article, we propose a method whose goal is to give
precise feedback on the mistakes made during each task
execution.

Our method is based on Neural Networks (NN) explana-
tion. To the best of our knowledge, state of the art for NN
explanation methods have only been applied for classification
issues, i.e. trying to explain why an input image produced a
classification decision in the most likely class. For regression
tasks and more particularly for quality score prediction, the
problem differs. Indeed, determining the important input
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characteristics for the decision is not relevant but determining
the values of the input which would lead to an increase of the
score is what we are aiming for, since it would correspond
to the errors made when carrying out the gesture. Thus,
our contribution is threefold. First, we adapt NN explanation
to regression tasks using a gradient-based method: while a
forward pass leads to the score of the realization, a backward
one, with a specific loss function, gives feedback on errors.
Secondly, as such gradients similar to sensitivity maps are
very noisy, we present a new approach based on several NN
trainings, which takes advantage of their difference. This
allows for gradients and therefore feedback more robust.
Thirdly, we validate the approach on a synthetic database
we created in order to have a ground truth on errors. Indeed,
no ground truth on the mistakes is available in the literature.
Thus, to the best of our knowledge, we propose the first
study to evaluate feedbacks provided when assessing gesture
quality. The proposed method, named Accurate GRAdient
(AGRA), outperforms other methods on this dataset. In a
last part, we apply AGRA on surgical tasks, using the dataset
JIGSAWS [2] acquired with the da Vinci Surgical Robot [3].

II. RELATED WORK
A. Evaluation and Feedback

Knowing which mistakes are made during a realization
is essential and necessary for skill development. Several
methods that provide feedback, are already present in the
literature. Several methods are already present in the litera-
ture, based on traditional techniques. For example, Feygin et
al. are interested in trajectory tracking [4]. By knowing the
ideal trajectory, calculating the error at each instant, gives a
natural feedback about errors. Candalh et al. [5] use the same
approach to study different feedback modalities such as a
visual, a tactile and a kinesthetic feedback. For dance move-
ments, synchronization is required, so Kyan ef al. [6] realign
a novice’s movement with an expert one to provide a score
and a feedback. For tennis serves and karate tsuki, Morel et
al. [7] create a template of the "perfect" gesture, thanks to an
adaptation of the Dynamic Time Warping (DTW) algorithm
and then, compare a new gesture to this template to obtain
both evaluation and feedback. We propose in this article
to take advantages of NN explanation techniques that can
provide feedback for tasks where quality assessment is done
using NN [8].

B. Neural Networks Explicability

Methods explaining NN decisions aim to find the contri-
bution of each input characteristic to the output and thus
produce attribution maps.



1) Attention Maps: Attention maps are mechanisms by
which a NN weights characteristics according to their im-
portance level. These maps allow the network to focus only
on task-related areas. Unlike other methods presented below,
weighting is learned at the same time as the network and
improves the results. These maps were introduced by Xu et
al. to automatically subtitle images [9].

Attention maps have already been implemented for gesture
evaluation and feedback. Doughty et al. have set up two
attention mechanisms: one focusing on erroneous moments
and one focusing on "perfect" moments [10]. These two
mechanisms of attention are temporal and not spatial, so
wrong instants are indicated but errors type remains un-
known. Similarly, Li et al. have developed a convolutional
network with a spatial attention module [11] that determines
image area that led to the evaluation. However, this area does
not necessarily correspond to defects location. In both works,
provided feedback was not evaluated.

2) Class Activation Maps: The main objective of the
activation maps is to provide maps that highlight important
regions for the NN decision process. They are estimated in
a classification context and try to explain the most probable
decision. Initial work has been done by Zhou et al [12] who
propose to replace the last max-pooling layer of GoogLe-Net
[13], by a global-average-pooling layer. The weighted sum
of the feature maps (i.e. last convolutional layer) then leads
to the Class Activation Mapping (CAM).

3) Gradient-Based Approaches: Intuitively, important
gradient values correspond to input segments that have a
strong influence on the result. Simonyan et al. [14] proposed
sensitivity maps, by calculating the gradient of the output as
a function of the input pixels in a classification task. If S.(x)
is the output of the classification network for class ¢ and x
is the input image, then the sensitivity maps are defined by:

~08.(x)

Mc(x) - aX (1)

In practice, they are very noisy, and a first solution to de-
crease the noise is to modify the backpropagation algorithm
[15], [16]. A second solution, proposed by Shrikumar et al.
[17], consists in multiplying the sensitivity map by the input:

Gradinput(x) = xM,(x) (2)

Instead of calculating the gradients of the output as a function
of the input x, Sundararajan et al. [18] integrate the gradients
along a path from a base x’ to the input x, for each dimension
i

—0 ’ /

IntGradi(x) = (x; — ) x /0‘ 0S.(x' +a(x—x'))
1 ox;

During computation, the integral is approximated by a sum-
mation: gradients at the N points located on the straight line
between the base x' and the input x, are summed. Thus, if
the base has a score close to zero, the integrated gradients
form a sensitivity map of the prediction output, S.(x).
Smilkov et al. [19] propose to create an improved sensitivity
map based on a smoothing of S.(x) with a Gaussian kernel

do (3)

(SmoothGrad). Since a direct computation of such a local
average in a high-dimensional input space is impossible, a
stochastic approximation is estimated by taking N random
samples from the input neighborhood x and averaging the
resulting sensitivity map:

=

1

SmoothGrad(x) = N M (x+ N(Oa(’z)) “4)

I
-

where A((0,6?) is a Gaussian noise with 0 mean and G as
standard deviation.

Attention maps do not provide joint information (spatial

and temporal) required for meaningful feedback. Approaches
using activation maps make it possible to determine which
parts of the input were more relevant for the classification
results. They are therefore not adaptable to regression prob-
lems. Indeed, activation maps on an evaluation task would
not lead to information about positive or negative impact of
input segments. Methods using the gradient seem to be the
most suitable for our problem. However, they have all been
used in a classification framework, so using them would need
adjustments.
We therefore propose a new approach: instead of estimating
the gradient of the output relative to the input, the gradient
of the ideal output (maximum score) relative to the input
is estimated. This allows us to determine how the input
should be adjusted to get a better score. Moreover, we also
introduce a new approach to deal with noisy gradients. Since
no database proposes ground truth about errors position,
we introduce a synthetic database where ground truth is
known. This approach has been widely used in the literature
to study complex phenomena. For instance, Vaughan et al.
introduced synthetic data in order to develop a network that
learn interpretable features [20].

ITIT. SYNTHETIC DATABASE AND REGRESSION
MODEL

In this section, we present the proposed database as well
as the model used to estimate the quality of each signal.

A. Synthetic Database

Gesture quality evaluation databases usually provide only
a score representing the gesture quality but no ground truth
exists about the errors that were made. However, in order
to evaluate and compare methods providing feedback, this
ground truth is essential. Thus we create a database of
synthetic signals, representing simple 2D movements, where
quality evaluation and feedback ground truth are available.
Each "gesture" is represented by 2 sinusoids (one for each
dimension) with an amplitude between 1 and 3, to which
a Gaussian noise of mean 0 with a standard deviation of
0.05 is added. Each signal is composed of 3 periods and
sampled at 60 Hz, and the sinusoid frequency is randomly
drawn between 0.5 and 3.5 Hz. Errors on these sinusoids
are composed of random perturbations. Their number varies
between 0 and 8. Finally their position is drawn according to
an uniform law. Figure [T] shows how a gesture is generated.
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Fig. 1: Gesture generation Example. First a "perfect" signal
is create, and afterwards perturbations can be added in order
to generate gestures where errors were made

A score is generated by calculating the Euclidean distance
between the perfect signal and the created signal. O is
assigned to ideal signals while the score is around 10 when
8 perturbations are present. 1000 signals are generated, 750
for the training base and 250 for the test base. Two examples
of signals extracted from the database are shown Figure [2]

First Dimension Second Dimension Plan Projection

of |

- ~ “ H a\
N K
U\

Signal 1

Signal 2

Samnplesr Samhples
Fig. 2: Examples of two signals of the database. On top a
disturbed signal with 7 errors and on the bottom an error-free
signal.

B. Regression Model

The regression network consists of four layers of temporal
convolution with filters (8, 8, 16, 16) of size (25, 5, 5, 5),
without bias. Each of them is followed by a pooling layer of
size 3. Two layers of fully connected neurons of size 50 and

1, also unbiased, end the network. The model is presented
Figure [3]
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Fig. 3: Neural Network model used to regress scores on the
synthetic database.

During training, a dropout rate of 0.5 is applied to the
50 neurons layer, to avoid overfitting. Training is performed
using the ADAM algorithm [21] with a learning rate of 0.01,
for 100 epochs. In order to obtain 50 different models, 50
trainings are performed. The average MSE of the 50 models,
over the test set, is 0.619 with a standard deviation of 0.089.
Thus, during prediction, these models have similar behaviors.

IV. ACCURATE GRADIENT - AGRA

As stated before, we decided to use a NN explanation
method. As the aim of the method is to evaluate the quality
of a gesture, we are thus in a regression context and not a
classification one, which requires a change in the paradigm
of current state of the art methods. The direct application of
these methods leads to calculate the gradient of the output
with respect to the input. However, this gradient is not very
informative since it indicates the moments of the signal that
have a strong importance on score regression. To provide
useful feedback, we propose to change the loss function
used to compute the feedback, so it will not be the same
that during the learning step. Actually, it must represent the
difference between a perfect gesture and the studied gesture.
Thus, the new cost function used is:

I (x) = (8(X) — scorema)* ®)

where §(x) is the prediction of the network and scoreyqy,
the score obtained by error-less gestures. Gradients obtained
using the cost function /, highlight moments when errors
have been made, but the amplitude remains very far from
the ground truth. Moreover, all gradients are very noisy and
all the erroneous moments are not highlighted, as illustrated
by Grad plots Figure ]

In order to better recognize errors, a second modification
is proposed. It consists in training the input x, with the I,
loss, so that it obtains the best score according to the model.



Algorithm 1 Feedback Computation

Require: x,A,€
Ensure: GRAD(x)
X =x
while /;(x') > € do
grad = a%)(:f,)
x' « x' — Agrad
end while
Grad(x) =x—x

The "correction" of the input is done following Algorithm [T}
where A is the learning rate and € is the tolerance: the loop
stops when the difference between the maximum score and
§(x) is less than €. As mentioned before, this gradient is
very noisy [19], [22]. Moreover, during the experiments, we
observed that it depends strongly on weights initialization
and on network training. Thus, even if two different train-
ings lead to similar regression scores, feedbacks are highly
variable. We decided to take advantage of these feedbacks
variations. Indeed, if two models can highlight different
moments with errors, then by training a large number of
models, it is possible to find all the errors. The proposed
method, named Accurate GRAdient (AGRA), is based on this
assumption. The main idea is to train N models M; on the
same quality evaluation task, but with different initializations
of the model weights. Once these N models have been
trained, averaging gradients obtained by each model gives a
feedback highlighting all the errors. This method is expensive
in terms of computing time since it requires training N
networks on the same task. However, gradients have a strong
dependence on network initialization, which justifies training
several networks to provide meaningful and understandable
feedback.

V. EXPERIMENTAL RESULTS

The method presented Section is first tested on the
synthetic dataset presented Section To determine its
contribution, we compare it with other state of the art
methods. In the following section, we first present qualitative
then quantitative results of the different methods, For all
the methods involved in this section, the loss function /5 (x)
previously defined is used to compute gradients. Results for
the following five methods are presented afterwards:

o Gradient Grad [14] calculated with the algorithm [T} a
learning rate, A of 0.1 and a tolerance, € of 0.015.

o GradxInput as defined in the equation [2] and proposed
by [17], [23].

o SmoothGrad [19] estimated as the mean of 50 gradients
obtained with the Algorithm |I| by adding a Gaussian
noise of mean 0 and standard deviation 0.1 on the input
signal (equation [).

o IntGrad [18]. Since the proposed network has no bias,
the x’ base is set to a zero signal of the same length
as X. Under these conditions, the score of the base is

A

§(x') = 0 and the method IntGrad can be interpreted as

a sensitivity map of the prediction output §(x).
+ The AGRA method with 50 models, with a learning rate
A of 0.1 and a tolerance € of 0.015.
For all methods, which do not involve averaging across
multiple models, a random model was chosen from all
models, and remains the same for all methods and results
presented.

A. Qualitative Results

As shown Figure ] the (Grad) method is very noisy
and does not give clear and easily interpretable results.
Multiplying this noisy gradient by the input only amplifies
the noise and makes the results even less interpretable.
Interesting peaks are more distinct, but the overall results
seem more noisy than before. In addition, the gradient sign
which gives information about error direction, is lost because
of this multiplication. Using the SmoothGrad method gives
better qualitative results. However, noise is still present and
results are again difficult to interpret. In addition, gradient
amplitude on errors is often smaller than the ground truth.
The IntGrad method gives very noisy gradients, which show
peaks at undisturbed locations, making it very difficult to
interpret. The least noisy and most accurate results are
obtained with the AGRA method. The method effectively
highlights the samples corresponding to the perturbations,
with the right sign, leading to a clear and easily interpretable
feedback.

Moreover, it is possible to reconstruct what the network
considers to be an ideal signal, by adding the computed
gradient to the initial signal. In the ideal case, these recon-
structed signals are assumed to be a line, like the second
signal Figure [2|
We compare AGRA and SmoothGrad (that seems to be the
two most promising methods) on two signals Figure [5] and
find that AGRA method performs the best reconstruction.

B. Quantitative Results

To compare methods more thoroughly, we also computed
quantitative results. As the ground truth is available for each
example, it is possible to compute the ideal feedback (the dif-
ference between the disturbed and ideal signals) and compare
it with the results obtained with the different methods. Two
measurements are used to make this comparison:

« Mean Square Error (MSE) between the error-free signal
and the reconstructed signal obtained from the gra-
dients. This metric cannot be used for methods such
as GradxInput or IntGrad, because their purpose is
only to highlight important temporal steps and not to
reconstruct a perfect signal.

o The Pearson correlation coefficient between the ideal
gradient and the gradient obtained with the different
methods. To avoid penalizing methods that do not
handle signs (GradxInput and IntGrad), this coefficient
is calculated between the norms of the ideal gradient and
the gradient obtained with the methods.

The 250 test examples were used for these two metrics and
the results presented are the average over these examples.
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Fig. 5: Correction obtained with the AGRA and SmoothGrad
methods applied on a test signals.

Moreover, for the methods Grad, Gradx Input, SmoothGrad
and IntGrad, the calculation of metrics was done on the 50
models and then averaged.

Methods MSE Pearson Correlation
(Norm)
Grad [14] 5.81 0.85
GradxInput [17], [23] NA 0.86
SmoothGrad [19] 6.10 0.84
IntGrad [18] NA 0.67
AGRA

TABLE I: Results for the two proposed metrics.

As a reminder, a perfect feedback would lead to a MSE
of 0. Table [I] presents the MSE and Pearson’s correlation
obtained with different methods. Both Grad and SmoothGrad
gradient are noisy, leading to bigger MSE than AGRA
method. Concerning defaults detection, the Pearson corre-

this method gives better results than the state of the art ones.
To study the behavior of the AGRA method, it is relevant

to show the evolution of Pearson correlation and MSE, as a

function of the number of averaged models (Figure [6).
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Fig. 6: Evolution of MSE and correlation as a function of
the number of averaged models.

Overall, correlation and MSE improve over iterations and
stabilize around 50. Remember that the different models
differ only by their weights initialization. Regression scores
are therefore the same, but gradients differ greatly. It is
impossible to a priori define models that will lead to useful
feedback. By averaging gradients obtained by 50 or more
models, provided feedbacks are understandable regardless of
network initialization. The same reasoning can be applied to
the Pearson correlation coefficient.

VI. FEEDBACK FOR SURGERY

The AGRA method shows the best qualitative and quan-
titative results so the next step consists in applying it on a



real dataset. We chose the JIGSAWS dataset [2], which is
composed of different surgical tasks done with the da Vinci
surgical robot.

A. Model presentation

To extract meaningful features for gesture quality evalua-
tion, temporal convolution are used. Inputs are composed of
kinematic data which include position, rotation matrix, linear
and rotational velocity, as well as gripper angle velocity, for
both slave and master parts, leading to a descriptor of size
(T x76). All signals are padded with zero, so that they all
have the same input length. The model embedded in this
architecture is composed of 4 temporal convolutional layers:
the first two with 9 filters of size 5, and the last two with 18
filters also of size 5. Each one is followed by a max-pooling
layer of size 5. To ensure a global score, features maps are
flattened after the last max pooling layer in order to get a
vector compatible with fully connected layers. Afterwards,
two fully connected layers are added of size 100 and 1,
in order to predict the global score. The L2 regularization
is used on the weights of each layer with a coefficient of
0.1 to limit overfitting. Adam algorithm [21] is used for the
retropropagation using an initial learning rate of 0.001 and
a batch size of 4. Just like for the synthetic dataset, scores
inverse is predicted: perfect gestures get a score of 0 and
really bad ones get a score of 30. 10 networks are trained to
provide feedback with the AGRA Methods.

B. Results
MSE results are presented in Table As scores are

Knot
Tying

Regression | 4.40+£0.25 | 3.794+0.12 | 2.89+0.21

Needle

Suturing Passing

TABLE II: MSE results for score prediction.

evaluated on a scale going from 5 to 30, obtained MSE
are quite good. Since scores need to be perfectly regressed,
results in the following are computed using instances from
the Knot Tying task.

Feedback Norm
Feedback Norm

0 10 20 30 40 50 60 70 0 5 10 15 20 25 30
Time Time

(a) Feedback norm for an in- (b) Feedback norm for an in-

stance with a true score of
9, and an estimated score of
9.254+1.51.

Fig. 7: Illustration of the provided feedback for two Knot

stance with a true score of
22, and an estimated score of
20.17 £0.69.

Tying tasks with different scores.

Kinematic data are composed of 76 dimensions at any
given time and therefore the feedback provided by AGRA
is also composed of 76 dimensions. It is difficult, from this
multi-dimensional signal of variable length, to follow up the
learner’s skills. Thus, we estimate AGRA gradient norm at
every moment to highlight moments considered erroneous
by the model as shown Figure [7a and [7b] for two gesture
realisations. These results are coherent since the feedback has
less peaks when the score is closer to the perfect score (30).
Furthermore, to check the meaningfulness of the feedback,
we studied the correlation between real scores and sum of the
gradient norm along the temporal dimension. When scores
are high, this sum is supposed to be small and vice versa.

T
[ ]
M 6ol |
g °,
= ° °
3 50
(5] [ ° ]
LL‘ LN ] °
é ° ° o %,
5 40 . . °® -
Z [ ] . L ]
L °
g 301 ° o o . i
m L ]
L ] L ]
20 kL L L 1 J
5 10 15 20
Scores

Fig. 8: Norm feedback sum according to real scores.

Figure 6 shows that it is indeed the case, with a Pearson
Correlation of —0.72. Without ground truth on the errors,
it is difficult to go further in the interpretation of feedback
quality, but this high correlation value is promising.

VII. CONCLUSION

In this article, we proposed a method to provide automatic
feedback after gesture evaluation.
Among all methods performing NN explanation, we have
chosen to use sensitivity maps to obtain this feedback.
Several adaptations have been done to work on regression
tasks. Even with these adaptations, sensitivity maps are very
noisy, not precise and lead to a feedback that is difficult to
understand. Moreover, it strongly depends on the network
weights initialization. We decided to take advantage of these
variations to average the gradients coming from different
learning processes and obtain a robust gradient, able to
detect all errors. In order to test this approach, a synthetic
database, composed of 2D signals, has been created. It has
the advantage of being associated with a ground truth where
signals defects are known. Comparing the proposed method,
AGRA, with state of the art ones, it appears that AGRA
gives better results both qualitatively and quantitatively.
Furthermore, when tested on robotic tasks, AGRA shows
a correlation between the feedback norm and the real score.
This result is encouraging and we propose, afterwards, to
create an annotated database with a score but also errors
in order to validate this approach on real data and, most
importantly, to be able to create a real virtual coach.
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