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ABSTRACT

This paper proposes a new way of regularizing an inverse
problem in imaging (e.g., deblurring or inpainting) by means
of a deep generative neural network. Compared to end-to-end
models, such approaches seem particularly interesting since
the same network can be used for many different problems
and experimental conditions, as soon as the generative model
is suited to the data. Previous works proposed to use a synthe-
sis framework, where the estimation is performed on the la-
tent vector, the solution being obtained afterwards via the de-
coder. Instead, we propose an analysis formulation where we
directly optimize the image itself and penalize the latent vec-
tor. We illustrate the interest of such a formulation by running
experiments of inpainting, deblurring and super-resolution. In
many cases our technique achieves a clear improvement of the
performance and seems to be more robust, in particular with
respect to initialization.

Index Terms— inverse problems, regularization, genera-
tive models, deep regularization, data-driven priors

1. INTRODUCTION

Inverse problems are ubiquitous in imaging, because many
image acquisition pipelines involve degradation operators that
need to be inverted afterwards, such as radial projections in
tomography or spatial invariant blur in any image or signal
acquisition sensor [1]. This task can be seen as an estimation
problem, which is often solved via optimization algorithms or
Monte Carlo sampling [2]. To circumvent the ill-posedness
of the problem, practicioners need priors or regularizers that
will promote some behavior of the solution.

Famous generic priors have been proposed in imaging in
the past decades, such as Total Variation [3] and variants [4],
which favour piecewise-smooth images. This is done by min-
imizing the `1 norm of some linear differentiation operator of
the image. If we know a priori a basis in which the data is
sparse, the `1 norm can also be placed on the representation
coefficients in that basis, which remains an efficient technique
in some applications [5]. More recently, significant improve-
ments have been achieved by considering plug-and-play pri-
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ors and variants [6, 7], often based on highly efficient denois-
ers such as BM3D [8].

But in many situations such a basis is not known, although
it can be learned from some available training data. This idea
has been first introduced with the problem of dictionary learn-
ing [9], which simultaneously learns the dictionary and the
noise-free image. It has then been applied to many inverse
problems by training the dictionary beforehands on a repre-
sentative dataset. More recently, numerous works considered
to train a deep neural networks (DNN) instead of a dictionary,
which appeared to be a more efficient and effective model for
images. Some works proposed to learn a denoising networks
[10, 11] and use it as a plug-and-play prior; or to learn a 1-
class classification DNN [12] which is used as a projection
operator onto the set of natural images.

We will focus on a different approach introduced by [13],
which simply learns a generative DNN and use it to constrain
the solution to live in its range. In this work, authors showed
recovery results similar to the ones obtained in compressed
sensing, and demonstrated the effectiveness of the approach
with a variational autoencoder (VAE) and a Deep Convolu-
tional Generative Adversarial Network (DCGAN). Impres-
sive results have been obtained by considering another kind
of generative model termed Glow [14], which is invertible
and thus enables to better control the distribution of the latent
factor by optimizing the likelihood. Our aim is to show that
with such a network, the result can be dramatically improved
by optimizing the image itself instead of the latent code, the
network being used only for regularization purpose. We name
our approach deep analysis regularization, as opposed to the
synthesis regularization proposed in [13], and following the
formulation used in sparse recovery [15, 16].

Note that apart from the “deep plug-and-play approaches”
discussed above, which use deep learning only in the regular-
ization, there are several lines of works that tackle inverse
problems with deep learning in very different ways. To cite a
few, this includes unrolled deep networks [17], unsupervised
approaches [18] or other end-to-end approaches [19]. Each
line of methods has its pros and cons, and comparing those
techniques is beyond the scope of the current paper. In a nut-
shell, plug-and-play approaches seem more generic (one prior
for different problems) and somehow more grounded (we can
control the optimization algorithm), but they might be outper-
formed by problem-dependant methods [20].



The remainder of this paper is structured as follows. Sec-
tion 2 recalls some background and the works upon which we
build our analysis deep regularization technique, presented in
Section 3. The experimental setting and the corresponding
results are then presented in Sections 4 and 5, respectively,
while a summary and some perspectives are discussed in Sec-
tion 6 which concludes the paper.

2. BACKGROUND

2.1. Problem statement

Many imaging problems consist in sensing the image y from
an underlying true scene x∗ according to

y = Ax∗ + n, (1)

where A is some observation operator which is often known
with good accuracy, and n an error term accounting for ran-
dom effects and potential model mismatch. This model en-
compasses denoising (A is the identity matrix), inpainting (A
is a mask), deblurring (A is Toeplitz), etc. The noise term
is often assumed to be independent and Gaussian, although
in many imaging modalities is contains a mixing of Gaussian
and Poisson components [21].

The inverse problem consists in estimating the true scene
x, which amounts to inverting the linear operator A. This
problem is in general ill-posed, because A is often singular
or at least badly conditioned. To overcome this, one needs
to bring additional information by means of a regularizer ϕ.
The formulation of the inverse problem then writes

x̂ = argmin
x

1

2
‖Ax− y‖22 + λϕ(x) (2)

where parameter λ tunes the level of regularization.
Such a formulation can be related to Bayesian estimation:

if the noise n is assumed to be Gaussian, then (2) is the max-
imum a posteriori (MAP) estimate under the prior p(x) ∝
e−ϕ(x). Note that this remains valid if the noise follows a
different statistics, as long as we replace the least-square by
the adequate divergence measure. For convenience, we will
restrict our study to the least-square formulation, which is the
most convenient and the most widely used.

2.2. Priors via deep generative neural networks

Auto-encoders are special kinds of neural networks. They
are composed of an encoder which computes the latent code
z = E(x), and a decoder or a generator D(z), both being
trained so that xi ≈ D(E(xi)) for all data samples xi of
a given training dataset. While autoencoders have been in-
troduced a long time ago, there has been a stunning renewal
with the introduction of so-called variational auto-encoders
(VAEs) in [22, 23]. The aim of these works was to constrain
the latent space to exhibit a proper structure, which can be

seen as a regularization of the learning problem. The first
purpose was to be able to generate realistic images by sam-
pling from a simple distribution in the latent space. Recall
that the loss function of a VAE is intractable and requires the
use of approximate inference techniques. To overcome this,
some works [24, 25] followed a different approach inspired by
normalizing flows, where each layer of the network remains
invertible, its gradient being efficiently computed to allow for
backpropagation. Once learned, such networks can be use as
priors to regularize any inverse problem, as described in the
following paragraph.

2.3. Synthesis-based regularization

We describe here our baselines [13, 14]. They both assume
that a generative model has been learned beforehand on a
representative database. Then, they propose to solve (2), by
constraining the sought image x to be in the range of the gen-
erator: x = D(z) for some latent vector z. Both works add
an extra regularizer, based on the normal distribution assumed
for the latent vector, which finally gives

x̂ = D

(
argmin

z

1

2
‖AD(z)− y‖22 + λ‖z‖22

)
. (3)

3. AN ANALYSIS FORMULATION

3.1. Limits of the synthesis regularization

The synthesis formulation (3) operates in the latent space,
which brings some clear benefits but also several drawbacks.
On the one hand, the solution of such a problem is likely to
be visually consistent, since it has been generated by the de-
coder. But on the other hand, the found solution is often very
different from the ground truth, because of the strong non-
convexity of the problem which makes the solution highly
dependent to initialization. To reduce this effect one should
properly initialize the optimization algorithm, for instance by
setting z0 = E(x0), with x0 an initial guess. According to
our experience, this trick however does not always produce
an image which is fully consistent with the observations.

3.2. An analysis formulation

To circumvent the drawbacks discussed above, we propose
here a straightforward solution which consists in optimizing
directly the image. The regularization is performed in the la-
tent space, capitalizing on the Gaussian distribution which is
assumed for the latent vector. This writes:

x̂ = argmin
x

1

2
‖Ax− y‖22 + λ‖E(x)‖22. (4)

We named this formulation analysis. Note that, contrary to
the synthesis formulation, the role of parameter λ is funda-
mental, since it controls the only regularization brought about
by the network.



The two formulations are the counterpart of what was al-
ready studied concerning sparse representations in redundant
dictionaries [15]. But in the case of deep regularization, both
approaches always lead to different results, even if the net-
work is invertible, because of the strong non-convexity of the
problem. The remainder of the paper is devoted to illustrate
the pros and cons of the two formulations, on various simple
inverse problems. To this end, we describe the experimental
setting and the results in the next two sections.

4. EXPERIMENTAL SETTING

We restrict our study to the comparison between the proposed
analysis formulation and the more standard synthesis, as im-
plemented by [14]. Note that this recent work competes fa-
vorably with several state of the art techniques, we thus tried
to reproduce a close experimental setting.

For the generative DNN, we use the Glow network as in-
troduced in [25]. Glow is inspired by flow-based generative
models [26], whose particularity is to exhibit a tractable log-
likelihood for the generative process, which avoids the use of
approximate inference techniques. This is achieved by means
of a particular architecture, composed of invertible layers with
(fast) tractable Jacobian. Instead of standard convolutions, the
layers of Glow are thus composed of split, 1× 1 convolutions
and actnorm operations, we refer to [25] for more details. We
trained Glow on the CelebA dataset [27], composed of col-
ored images of faces with size 64 × 64. We used 4 blocks
with 32 steps of flow each and additive coupling layers. The
optimizer chosen for the training was Adam with a learning
rate of 10−4 (β1 = 0.9 & β2 = 0.999).

Insofar as Glow is invertible, it can be used both as an
Encoder E(.) or a Decoder D(.) for (respectively) the analy-
sis and the synthesis formulations. Because of the Gaussian
prior on the latent space, the regularizer ϕ will be the squared
`2 norm. The optimisation problems (3) and (4) are solved
by gradient descent (either on the latent space or on the im-
age). The initialization of the gradient descent is done, as
explained by [14], by z0 = 0 and x0 = D(0) for the syn-
thesis and analysis formulations, respectively. Parameter λ is
chosen empirically around 10−4 for each method and every
inverse problems, so as to obtain the best performance.

In the experiments, we consider the three following in-
verse problems:

• Super-resolution: increasing the resolution of an image
which has been previously downsampled by a factor 2
or 4 with local averaging (uniform filter).

• Deblurring: removing the blur caused by a 7 × 7 uni-
form filter.

• Inpainting: filling the gaps in an image caused by the
application of a mask. We consider two different set-
tings, either 60% of uniformly random missing pixels
or a squared mask centered on the image of size 1

9 ×
1
9 .

The metrics used to evaluate the effectiveness of the re-
sult are the widely used PSNR and SSIM. For the sake of re-
producibility, our code and additional results are available at
https://github.com/Mathieu-Verm/Analysis_
Synthesis_GLOW.

5. RESULTS

We run experiments on 50 images from the test set of CelebA.
Let us first show visual comparisons between the synthesis
and analysis frameworks, to highlight the pros and cons of
both formulations. The result of the deblurring and the super-
resolution experiments are depicted on Fig. 1 for three im-
ages of the test set, that were randomly selected. Concern-
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Fig. 1. Results of deblurring (left) and 2x super-resolution
(right) for three images of the test set. From top to bottom:
truth, degraded image, results of synthesis and analysis for-
mulations.

ing the deblurring, the results of the synthesis method ex-
hibit artefacts, that are particularly visible in the background
and do not disappear if we increase λ. The analysis formu-
lation instead shows a far better result, both for the back-
ground and the face. To explain this, we believe that the
synthesis approach struggles to represent the background, in
particular for the first image because its pattern is a bit un-
usual and might not have been seen during training. In the
analysis approach instead there is no need to generate the
background, since the optimization takes place in the image
space. The super-resolution experiment investigates a more
difficult setting where fewer information is available, and for
this the synthesis approach might seem preferable. Indeed,
the faces reconstructed by synthesis are much more pleasant
than the analysis counterpart, which suffer from strong arte-
facts (the prior does not seem to work well enough, even for a
large value of λ). Note however that the synthesis results, al-
though visually better, are outperformed by analysis in terms
of PSNR or SSIM, as we will see later.

Let us now move to the inpainting results, depicted on



Task PSNR (synthesis) PSNR (analysis) SSIM (synthesis) SSIM (analysis)
Deblurring 23.38 ±2.04 32.16 ±1.56 0.74 ±0.09 0.94 ±0.01

Super-resolution (x2) 22.26 ±4.21 31.19 ±1.33 0.76 ±0.12 0.93 ±0.01

Super-resolution (x4) 18.94 ±2.81 24.12 ±1.21 0.61 ±0.11 0.76 ±0.03

Inpainting (random mask) 21.84 ±3.57 27.89 ±2.24 0.71 ±0.14 0.87 ±0.05

Inpainting (structured mask) 30.40 ±2.53 27.50 ±3.26 0.94 ±0.02 0.91 ±0.03

Table 1. Average performance over a test set of 50 images and corresponding standard deviations. The best score between
analysis and synthesis are highlighted in bold, for both metrics.

Figure 2 for the random and the structured masks. In the first
case, the analysis technique seems to achieve the best results,
while it is outperformed by its synthesis counterpart for the
structured mask. We have the same explanations as in the
previous experiment: we believe that in general, the analysis
formulation stays closer to the true solution because it does
not suffer from the intrinsic bias given by the generative net-
work, and its optimization seems safer (there might be more
spurious local minima in the latent space than in the image
space). However when the problem becomes too difficult, the
analysis does not seem to regularize enough, and the synthe-
sis formulation obtains visually better results, although not
clearly better in terms of PSNR or SSIM.
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Fig. 2. Inpainting with random mask (left) and structured
mask (right), for the same three images of the test set.

We also computed the PSNR and SSIM for the 50 images
and the 5 different inverse problems, and gathered the results
in Table 1. It confirms the previous findings: in most cases,
the analysis formulation enables an image recovery which is
dramatically closer to the ground truth than with the synthe-
sis formulation. But for the most difficult problem, i.e., in-
painting with a structured mask (and to a lower extent, super-
resolution with factor 4), the synthesis formulation seems bet-
ter. Another interesting point is the variance of the metrics
across the 15 images, which is significantly lower for the anal-
ysis formulation. This means that the optimization landscape
seems somehow safer in the image space that in the latent
space, which is an expected benefit of the analysis formula-

tion.

6. CONCLUSION

We presented here a variant of the deep learning regulariza-
tion via generative models, were the solution is searched di-
rectly in the image space. According to our experiments, our
analysis formulation obtains an estimation of the image which
is more robust and often closer to the ground truth, even if
sometimes visually less pleasant, particularly when the ob-
servation does not contain enough information.

Further work is required to better understand what is the
best formulation for a given setting, and to extend these find-
ings to improved learning strategies such as in [28] or [29].
Concerning the applications, the main bottleneck up to now is
the limited ability of generative networks to represent hetero-
geneous datasets, such as images with various size and con-
tent. Forthcoming contributions in generative models should
soon overcome this, opening a huge number of possible real-
world applications.
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