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Abstract. The size of current plankton image datasets renders manual
classification virtually infeasible. The training of models for machine
classification is complicated by the fact that a large number of classes
consist of only a few examples. We employ the recently introduced weight
imprinting technique in order to use the available training data to train
accurate classifiers in absence of enough examples for some classes.
The model architecture used in this work succeeds in the identification of
plankton using machine learning with its unique challenges, i.e. a limited
number of training examples and a severely skewed class size distribution.
Weight imprinting enables a neural network to recognize small classes
immediately without re-training. This permits the mining of examples
for novel classes.

(a) UVP5 (b) ZooScan

Fig. 1: Example images from both datasets.

1 Introduction

Planktonic organisms – drifters in the ocean – cover a large size range from
nanometer-sized bacteria to meter-sized jellyfishes. While some of these organisms
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such as the planktonic copepods can be observed nearly everywhere, others occupy
only small niches. Past observations allow an overview of the most abundant
groups but we can expect that the number of classes will keep increasing with
increasing sampling effort.

Current imaging systems (e.g. UVP5, ZooScan, ISIIS, FlowCytoBot [25,13,6,21])
that target the micro to macroplankton size range (approx. 10 µm to 10 cm) yield
large amounts of image data every day. The size of the resulting datasets renders
manual classification virtually infeasible. Therefore, accurate machine classifi-
cation is a critical step in the processing of these data. Usually, the result is
later verified by human experts. Even the annotation of pre-classified data is still
labor-intensive [7,12], which is why maximally accurate models are crucial.

This work is part of a larger undertaking with the aim of continually mon-
itoring newly acquired data for classes that have been overlooked so far. The
observation of new kinds of objects means that the machine classification models
need to be updated to incorporate these novel classes. In addition, plankton
image datasets typically consist of few classes with many examples and many
classes with only a few examples. A major problem is therefore the scarcity of
training data for a large number of classes.

Here we tackle the question of how available labeled data can be used to
train accurate machine classifiers when some class sizes in the training data
set are very small, which is known as low-shot learning. We employ a recently
presented method for low-shot learning called weight imprinting [27] that is able
to incorporate new classes into a model without re-training it from scratch.

The contribution of this present paper is a rigorous evaluation of whether
weight imprinting works satisfactorily for two plankton image datasets. We also
examine the necessity of the architectural choices made in [27].

Our hypothesis is that once we have trained a classifier, we can use it to
find more examples for underrepresented and novel classes within a large set of
unlabeled data. In this current work, we therefore focus on the smaller classes
instead of maximizing overall accuracy.

The remaining part of this paper is structured as follows. In section 2 we
introduce two plankton image datasets. Then we review the related work in
section 3. Section 4 reproduces the most important aspects of the weight im-
printing technique. In section 5 we apply weight imprinting to both plankton
datasets. Subsequently, we report and discuss our results in section 6 and draw a
conclusion in section 7.

2 Datasets

We evaluate the approach on two datasets extracted from the plankton image
database EcoTaxa [24]. The objects were sampled on numerous cruises in many
parts of the world’s oceans. The first dataset (UVP5) consists of 588,121 pelagic
underwater images acquired with the UVP5 [25]. The images were sorted by
experts into 65 classes. The dataset is available from the authors upon reasonable
request. The second dataset (ZooScan) [10] consists of 1,433,282 wet net samples
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Fig. 2: UVP5 dataset: Classes ordered by their size in the training set. The class
sizes span five orders of magnitude.

digitized with the ZooScan system [13] and sorted into 93 classes. We use a subset
of 1,146,684 images for training and validation.

Both datasets are severely imbalanced, as shown in Figure 2 for the UVP5
dataset. The 10% most populated classes contain more than 77% of all objects
and the class sizes span multiple orders of magnitude. Figure 1 shows some
exemplary objects from both datasets.

3 Related Work

One-shot and low-shot learning One-shot and low-shot learning is concerned
with training a model with only one or a few training examples for each class.

Low-shot learning using neural networks usually incorporates two phases [15].
In the representation learning phase, the learner finds a suitable feature space,
usually guided by a set of base classes with abundant examples. In the low-
shot learning phase, a classifier is trained that incorporates both base and low-
shot classes. Different approaches emphasize different aspects of the process [3]:
the discriminative approach is concerned with learning powerful features, the
generative approach enlarges the training set by augmentation or generation and
the network structural approach utilizes new types of classifiers.

Weight imprinting [27], label diffusion [9], and metric learning [20] belong to
the third category. They provide low-shot learning without having to retrain the
whole model from scratch.

Classification of plankton images Classification of plankton images is tra-
ditionally performed using shallow models, like Support Vector Machines or
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Random Forests, trained with handcrafted local features measured on the image
(e.g. size, grey level distribution, etc.) [8,1,28,13,11].

Since Kaggle’s National Data Science Bowl competition to sort data from
ISIIS [6], there has been a slow transition towards deep models [26,18,14,22,4].

In the representation learning phase, we rely on the observations of [22]
regarding the classification of plankton images with deep learning models, i.e.
that the initialization with pre-trained weights outperforms random initialization.

4 Weight imprinting

In this section, we outline the most important aspects of weight imprinting as
introduced by [27].

The technique follows the two-phase paradigm of [15]: The set of all classes
C is partitioned into base classes C0 with enough training data and the smaller
low-shot classes C+, i.e. C = C0 ∪ C+.

In the representation learning phase, a convolutional neural network (CNN)
is trained to distinguish the base classes with enough training data C0. In the
low-shot learning phase, the classifier is then updated with calculated weights
(see section 4.2 for details) to also to distinguish the smaller low-shot classes
C+. Finally, the whole model can be fine-tuned to further increase its predictive
power.

4.1 Neural network model

The model consists of two stages: A feature extractor network f : I → Rd maps
an input image x ∈ I to an L2-normalized d-dimensional feature vector ŷ. The
second stage is a modified softmax classifier g : Rd → [0, 1]|C| that maps the
feature activations to a discrete probability distribution of |C| classes.

gi(y) = exp(s · ŵT
i ŷ)∑

j∈C

exp(s · ŵT
j ŷ)

(1)

ŵi is the the weight vector corresponding to class i and is normalized to
unit length as well. The scalar product ŵT

i ŷ is the angle or cosine similarity [19]
between the feature vector and the weight vector. A weight vector ŵi therefore acts
as a template for class i. s is a learnable scale factor that allows the probabilities
to match the one-hot encoding of classes [29].

4.2 Low-shot learning

To learn a new class c+ ∈ C+, the weight matrix is extended by a column w+. It
follows from the above characterization of weight vectors ŵi and image feature
vectors ŷ that they are interchangeable. Therefore, w+ can be calculated directly
from the feature vectors of the examples of class c+. In the simplest case, if only
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Table 1: Network architecture.
Layer #Parameters Output shape

Input 128× 128× 3
ResNet18 11M 4× 4× 512
Global Average Pooling 512
Linear Layer (Embedding) 262 k 512
Normalization 512

Linear Layer (ŵi)i∈C 512 · |C| |C|
Scale 1 |C|

one single training example x+ belongs to c+, the weight vector is equal to its
feature vector, i.e. w+ = f(x+). In the general case, if c+ consists of multiple
examples (|c+| ≥ 1), the weight vector is calculated as the arithmetic average of
the image features, i.e. w+ = 1

|c+|
∑

x+∈c+
f(x+), and renormalized. The scalar

product ŵT
+ŷ then acts as a nearest mean classifier [20] using the cosine similarity.

The underlying assumption is that the distribution of the examples is unimodal
for each new class c+.

5 Experiments

This section describes the experiments to evaluate the ability of weight imprinting
to incorporate new classes into a plankton classification model without completely
re-training from scratch.

5.1 Network architecture

The model architecture is summarized in table 1. The feature extractor network
is based on the ResNet18 architecture, as it has a favorable accuracy-speed trade-
off [2]. It is initialized with weights pre-trained on the ImageNet dataset [16].
The grayscale plankton images are converted to color images to fit the pre-
trained model. We use 512-dimensional embeddings as we observed that the
64-dimensional embeddings from the original paper delayed the convergence of
the training and did not bring an advantage. The last three layers implement the
operations required for the weight imprinting as described in section 4.1 and are
initialized randomly.

The whole model is fine-tuned to the task at hand, following the common
practice [5]. Each experiment is carried out with three-fold cross-validation. To
counter the class imbalance in the dataset we randomly subsample 1000 samples
from the larger classes for each training epoch independently. Early stopping
is used to avoid overfitting to the training split. To treat all classes equally, we
weight the validation loss by the inverse class size. The initial learning rate is set
to 1× 10−4 and decreased whenever the validation loss plateaus until it reaches
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1× 10−8. The Adam algorithm [17], an extension to stochastic gradient descent, is
used for parameter optimization. The batch size is set to 128 images. The images
are cropped to their tight bounding box and padded to a square with a minimum
edge length of 128px. Images larger than 128px are shrunken to this size. The
grey values are scaled to the [0, 1] range. We perform training-time augmentation
using random rotations in 90◦ steps, random horizontal and vertical flips and
Gaussian noise with σ = 0.001. The models are trained using the PyTorch deep
learning library [23] on an NVIDIA GeForce GTX 1070 GPU.

5.2 Baselines

As a baseline (bl), we train the whole network on all classes C = C0 ∪C+ jointly
and without altering the weights in a separate step. Larger classes are subsampled,
smaller classes oversampled. We also conduct an ablation experiment to examine
the necessity of the architectural choices made in [27] by comparing the original
architecture to two modified versions where we removed the weight normalization
(bl-w) and subsequently the feature normalization as well (bl-wf).

5.3 Representation learning

In the first phase of model training, the model learns the base classes C0. For
the UVP5 dataset, we selected the classes with more than 1000 members in the
training split (22 classes out of 65) as base classes. For the ZooScan dataset,
the classes with more than 1500 members in the training split (44 classes out of
93) were selected as base classes.

The network is trained until the validation loss does not decrease for 25
epochs. No oversampling is performed because the minimum class size (1000 or
1500) is equal to or larger than the number of images needed per epoch (1000).

5.4 Low-shot learning

Now, the low-shot weights of the base network are set to their calculated values.
For this purpose, we apply the feature extractor part of the network to every
image. For each low-shot class ci ∈ C+, we calculate the mean feature vector,
re-normalize it, and write it into the entry ŵi of the weight matrix in the classifier
part of the network corresponding to the respective class. We compare the
described mean imprinting (mi) to random imprinting (ri), where ŵi is initialized
randomly.

5.5 Fine-tuning

Finally, the imprinted networks are fine-tuned (mi+ft, ri+ft). Classes with
less than 1000 examples are oversampled to counteract the class imbalance.
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Table 2: Macro precision and recall (UVP5).
Base classes Low-shot classes

Macro precision Macro recall Macro precision Macro recall

mi 0.569± 0.019 0.466± 0.051 0.030± 0.001 0.149± 0.023
mi+ft 0.581± 0.001 0.644± 0.002 0.121± 0.035 0.296± 0.035

ri 0.538± 0.024 0.675± 0.015 0
ri+ft 0.593 ± 0.008 0.642± 0.005 0.163± 0.026 0.299± 0.022

bl 0.539± 0.004 0.689 ± 0.003 0.366 ± 0.049 0.265± 0.022
bl-w 0.489± 0.006 0.634± 0.015 0.212± 0.033 0.289± 0.014
bl-wf 0.487± 0.017 0.555± 0.087 0.157± 0.010 0.302 ± 0.006

Table 3: Macro precision and recall with standard deviation (ZooScan).
Base classes Low-shot classes

Macro precision Macro recall Macro precision Macro recall

mi 0.701± 0.001 0.716± 0.006 0.066± 0.008 0.205± 0.010
mi+ft 0.724± 0.005 0.771± 0.002 0.174± 0.010 0.650± 0.010

ri 0.663± 0.006 0.823 ± 0.003 0
ri+ft 0.731 ± 0.005 0.775± 0.003 0.187± 0.003 0.664± 0.003

bl 0.627± 0.008 0.812± 0.005 0.459 ± 0.019 0.614± 0.002
bl-w 0.544± 0.010 0.793± 0.007 0.350± 0.025 0.675± 0.021
bl-wf 0.502± 0.019 0.747± 0.028 0.242± 0.013 0.709 ± 0.012

6 Results and Discussion

Tables 2 and 3 list the evaluation results for the UVP5 and ZooScan datasets,
respectively. Both datasets behave comparably regarding the success of weight
imprinting. We show the arithmetic average and standard deviation of three
validation splits. Macro precision and macro recall are reported for base and
low-shot classes separately. We do not report accuracy as it is mainly influenced
by the base classes that contain most of the examples. Bold entries are global
maxima, italic entries are maximal among their respective group.

Figures 3 and 4 show how precision and recall of individual classes depend
on the size of the respective class. The vertical line divides low-shot classes (left)
and base classes (right). To show the general tendency, the graphs contain a
LOWESS fit for each set of classes. The figures compare mi, mi+ft, and bl.
They are best viewed in color.

Table 4 lists the amount of time required to train a model to convergence in
each condition, respectively.
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Fig. 3: UVP5: Comparison of per-class precision and recall for mean imprinting
(mi), fine-tuning (mi+ft), and training from scratch (bl).
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Fig. 4: ZooScan: Comparison of per-class precision and recall for mean imprinting
(mi), fine-tuning (mi+ft), and training from scratch (bl).

6.1 Low-shot learning

For both datasets, mean imprinting (mi) leads to a better precision for the base
classes than random imprinting (ri) and to a nonzero recall and precision of
the low-shot classes. However, recall for the base classes is impaired. This was
expected because as the low-shot classes are initialized with plausible locations
in the feature space, they will draw off objects from the base classes.

As apparent in table 4, the time to calculate the weights is negligible. This
is a huge advantage of weight-imprinting compared to other training methods
when speed is important, e.g. when a user iteratively trains a model.

Figures 5 and 6 show the confusion matrices for both datasets averaged over all
three splits and examples images for the three or four most often misclassifications
of existing classes as novel. The entries of the matrices are ordered by ascending
class size and the low-shot classes are separated by red lines.

In the UVP5 dataset, images of a few of the more abundant base classes
contaminate the predictions of low-shot classes (lower left rectangle in fig. 5). In
the ZooScan this behavior is less pronounced and the confusion matrix has a
stronger diagonal and looks more uniform (fig. 6), i.e. the model is more accurate.
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Table 4: Training times (s).
UVP5 ZooScan

mi 0.476± 0.026 2.120± 0.500
mi+ft 6588.105± 989.882 10 550.683± 961.637
bl 10 261.286± 425.061 22 182.181± 665.596

Predicted class

Tr
ue

 c
la

ss

1
2

3

4

B B, confused LS

1

2

3

4

Fig. 5: Mean imprinting: Confusion matrices and failure cases (UVP5, validation
set). Four of the entries with the most objects from a base class falsely predicted
as a low-shot class are numbered. Representative images of the true base class
(B) and the predicted low-shot class (LS), as well as two confused images (B
falsely predicted as LS) are shown for each entry. 1: Copepoda vs. Cladocera, 2:
fluffy dark vs. t003, 3: Collodaria solitary black vs. other dark sphere, 4: fluffy
dark vs. t015. See the electronical version for a magnified view.

The images representative of true and falsely predicted classes are very similar
in most cases. In fact, several of the smaller classes were defined only recently
and accordingly, many of their belonging images were assigned to more general
classes in earlier days. We therefore suspect that some of the “errors” made
by the models originate from an incoherent labeling of the data. Another type
of error is the confusion of classes that differ only by a minuscule feature, for
example the missing tail of the Cladocera in fig. 5 or the regular shape of the
Ephyra in fig. 6.

6.2 Fine-tuning

Fine-tuning (mi+ft) always improves over mean imprinting alone (mi). This is
in agreement with [27]. However, fine-tuning a mean imprinted model does not
yield better results than fine-tuning a randomly initialized model (ri+ft). In
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Fig. 6: Mean imprinting: Confusion matrices and failure cases (ZooScan, vali-
dation set). Three of the entries with the most objects from a base class falsely
predicted as a low-shot class are numbered. Representative images of the true base
class (B) and the predicted low-shot class (LS), as well as two confused images
(B falsely predicted as LS) are shown for each entry. 1: Detritus vs. Ephyra, 2:
Calanoida vs. Calocalanus pavo, 3: Detritus vs. scale. See the electronical version
for a magnified view.

fact, both perform in a very similar way, while most scores are slightly higher for
random initialization. Here, our results differ from [27]. The reason is presumably
overfitting of the weight imprinted models to too few samples in the training split.
Finetuning a mean imprinted model roughly halves the training time compared
to the baseline.

6.3 Baselines

When comparing the baseline models amongst each other, it is apparent that the
best scores are achieved with weight normalization and feature normalization (bl).
Taking away weight normalization (bl-w) and subsequently feature normalization
(bl-wf), the scores get worse. One exception is the recall of the low-shot classes
which is maximal for minimal restrictions (bl-wf). We assume that feature and
weight normalization have a regularizing effect that leads to a better generalization
of the model.

Regarding the low-shot classes, a model trained from scratch (bl) leads to a
significantly higher precision and recall than an imprinted model (mi) and to a
better or equal recall than a fine-tuned model (mi+ft).

For the base classes, all three conditions behave roughly similarly, although
the precision of bl is slightly worse than of mi and mi+ft. This can be explained
by the fact that during the representation learning phase of mi and mi+ft, the
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models learn features that are explicitly adapted to the base classes. Fine-tuning
does not seem to destroy this advantage. Conversely, when training on all classes
jointly (bl), the features are adapted to all classes equally (and not primarily
to the base classes). This also explains the better scores of bl concerning the
low-shot classes.

The negative slope of the recall of the base classes in the ZooScan dataset
can be explained by the decreasing sampling rate of the base classes, where down
to 1% (for the largest classes) of the available examples are used in each training
epoch. Therefore, the model may not be able to capture the full variability of
the data.

Training a model from scratch takes roughly twice as long as finetuning a
mean imprinted model.

6.4 Dataset maintenance

When collecting plankton images, it is important to constantly monitor the
newly acquired data for previously overlooked classes and to update the models
accordingly. When a dataset is extended by a novel class, more examples of this
novel class have to be found among a large number of images. These examples
can be found in new unlabeled data and may also hide in existing labeled data,
as in some cases they might have been assigned to a more general class before
the introduction of the novel class.

Figures 3 and 4 show how precision and recall are linked to the class size for
all models (bl, mi, and mi+ft). Although the imprinting of weights (mi) does
not achieve the best scores, its huge advantage is the instant integration of novel
data.

Correspondingly, the model may serve as a tool to quickly build up a collection
of images in order to train a more powerful classifier later. As weight imprinting
allows instant (i.e. in less than one second) re-training for every additional training
example without much overhead (see section 4.2), it can be used during a process
of iterative example mining: The model is initialized using one or few examples of
a class. It is then used to classify unlabeled data and a human operator validates
these classifications. The positive examples are used to improve the classifier. In
this way, the suggestions will get increasingly better in every iteration.

For the suggestions to be useful, they have to contain positive examples at
all, which manifests in a non-zero recall. In the ZooScan dataset, the recall is
stable at an average of approx. 0.2 for even the smallest classes. In the UVP5
dataset, the recall is low for most classes. However, there are notable outliers
with a recall of up to 1.0. Further research is needed to figure out what makes
these outliers special.

As a result, weight imprinting is useful in the mining of additional exam-
ples for small and novel classes in both plankton image datasets. The actual
implementation of the described procedure will be a task for the future.

The incoherent labeling of novel low-shot classes and existing base classes
apparent in the evaluation underlines the usefulness of weight imprinting to keep
a dataset consistently labeled when the set of classes evolves.
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7 Conclusion

Deep learning models often fail when it comes to training classifiers with very
little training data. This is the case for a considerable number of classes in both
plankton image datasets. We therefore employed weight imprinting [27], a low-
shot learning method. When applying this method to plankton image datasets, it
allows a model to incorporate underrepresented classes without overly impairing
the performance on the base classes.

Weight imprinting resulted in an acceptable recall for the low-shot classes
immediately without re-training the neural network. This permits the extension
of a training set by examples of a novel class as soon as a single example of this
class is observed.

Even when training from scratch, the underlying network architecture per-
forms better than a model without normalization of features and weights in most
cases. Apart from a reduced training time, we observed no significant advantage
of an imprinted and fine-tuned model over a model trained from scratch.

In summary, the techniques in question, i.e. normalization of features and
weights and weight imprinting, are able to advance the identification of plankton
using machine learning with its unique challenges, i.e. a limited number of
training examples, a severely skewed class size distribution and ever-emerging
novel classes.
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