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ABSTRACT 22 

The rise of in situ plankton imaging systems, particularly high volume imagers 23 

such as the In Situ Ichthyoplankton Imaging System (ISIIS), has increased the need for 24 

fast processing and accurate classification tools that can identify a high diversity of 25 

organisms and non-living particles of biological origin. Previous methods for automated 26 

classification have yielded moderate results that either can resolve few groups at high 27 

accuracy, or many groups at relatively low accuracy. However, with the advent of new 28 

deep learning tools such as Convolutional Neural Networks (CNNs), the automated 29 

identification of plankton images can be vastly improved. Here we describe a image 30 

processing procedure that includes pre-processing, segmentation, classification, and post-31 

processing, for the accurate identification of 108 classes of plankton using Spatially-32 

Sparse Convolutional Neural Networks. Following a filtering process to remove images 33 

with low classification scores, average precision was 84% and recall was 40%. Biological 34 

groups, excluding 12 rare taxa, exceeded 93% precision. This method provides proof of 35 

concept for the effectiveness of an automated classification scheme using deep learning 36 

methods, which can be applied to a range of plankton or biological imaging systems, with 37 

the eventual application in a variety of ecological monitoring and fisheries management 38 

contexts.  39 
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INTRODUCTION 40 

Much of plankton ecology has been focused upon questions surrounding the 41 

identity, quantity, and spatial-temporal variability of planktonic organisms in aquatic 42 

systems, which has historically been addressed by various net-based sampling systems 43 

(Wiebe and Benfield 2003). Although many advanced nets were designed to overcome 44 

limitations in horizontal or vertical resolution in sampling, the emergence of plankton 45 

imaging systems represents a significant advancement for plankton ecology. Current 46 

imaging systems are able to quantify organisms within fine spatial and temporal scales, 47 

with some systems imaging organisms undisturbed and in their natural environment [e.g., 48 

Video Plankton Recorder (VPR; Davis et al. 1992), Shadow Image Particle Profiling 49 

Evaluation Recorder (SIPPER; Samson et al. 2001), ZOOplankton VISualization and 50 

Imaging System (ZOOVIS; Benfield et al. 2003), In Situ Ichthyoplankton Imaging 51 

System (ISIIS; Cowen and Guigand 2008), Underwater Vision Profiler 5 (UVP5; 52 

Picheral et al. 2010). Note that the SIPPER samples via an intake tube, and is thus not a 53 

truly undisturbed sampler]. Research using plankton imaging systems has led to new 54 

insights into the relationships between species and their fine-scale environment (e.g. 55 

Benfield et al. 2000, Ashjian et al. 2001), with implications ranging from fine-scale 56 

aggregation dynamics (Luo et al. 2014), N2 fixation (Davis and McGillicuddy 2006), 57 

predator-prey interactions (Greer et al. 2013), carbon export (Petrik et al. 2013), and 58 

global plankton biomass estimates (Biard et al. 2016).  59 

Though in situ plankton imaging systems were developed with a goal of reducing 60 

processing time (very lengthy for physical net samples, which requires sorting and expert 61 

identification), in reality, analyzing plankton images currently still requires extensive and 62 
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time-consuming manual classification and expert taxonomic knowledge. The tradeoff is: 63 

human operators’ time vs. classification accuracy vs. taxonomic resolution. Manual 64 

processing time is typically not reported in papers, but as an example, the manual 65 

analysis of 50+ taxa of gelatinous zooplankton within 5,500 m
3
 of water, imaged in 66 

750,000 frames (13.5 inch square frames with 66 µm pixel resolution; each frame with up 67 

to 50 organisms) required the equivalent of three full man-years (Luo et al. 2014). 68 

Classification of pre-processed image segments is slightly faster; Faillettaz et al. (2016) 69 

reported a manual classification rate of 10,000 images day
-1

 into 10-15 biotic and abiotic 70 

classes, but a single multiday cruise can easily generate upwards of 50 million image 71 

segments. In general, automated classification efforts currently consist of identifying 72 

small numbers of classes [five to seven classes (Davis et al. 2004; Hu and Davis 2006), 73 

and three classes (Bi et al. 2015)], but even so, few reach an acceptable benchmark of 74 

classification accuracy, commonly set at 67-83% (Culverhouse et al. 2003; Hu and Davis 75 

2005). Alternatively, computer-assisted classification is generally used to achieve higher 76 

accuracies, which consists of a computer generated set of automated classifications 77 

followed by fully validating all images manually (Gorsky et al. 2010; Ohman et al. 2012). 78 

Consequently, it is still very difficult and time-consuming to extract high-accuracy data 79 

on many types of plankton, particularly in highly diverse areas, which limits the utility of 80 

many underwater imaging systems. 81 

The issues with classification accuracy and speed have been pronounced with the 82 

In Situ Ichthyoplankton Imaging System (ISIIS; Cowen and Guigand 2008), which is a 83 

high resolution, large volume imager designed for sampling mesozooplankton. It 84 

typically images at a rate of 150-185 L s
-1

, depending on tow speed. Compared with other 85 
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plankton imaging systems (VPR: 10-17 mL s
-1

, ZOOVIS: 3.6 L s
-1

, SIPPER, 9.2 L s
-1

, 86 

UVP5: 8-20 L s
-1

), ISIIS records at 10-1000 times the sampling volume, which has 87 

allowed for studies on rare organisms such as larval fish (Cowen et al. 2013) or large 88 

gelatinous zooplankton (McClatchie et al. 2012; Luo et al. 2014). Particularly in sub-89 

tropical zones such as the northern Gulf of Mexico, ISIIS can simultaneously record in-90 

focus, clear images of hundreds of species, ranging from protists, diatom chains, and 91 

copepods, to shrimps, larval fish, and medusae. Therefore, in order to properly classify 92 

organisms within ISIIS images, a classifier that could handle not just a few (< 10) classes, 93 

but many classes (e.g. 30-150) is necessary. 94 

Methods for the automated analysis of zooplankton images had early beginnings 95 

in statistical approaches, e.g., discriminant analysis (Jeffries et al. 1980, 1984), but 96 

quickly progressed to using machine learning techniques such as artificial neural 97 

networks (ANNs; Simpson et al. 1992; Culverhouse et al. 1996). Culverhouse et al. 98 

(1996) designed their ANN system explicitly for dinoflagellates, and were able to 99 

identify species with ca. 72% accuracy, which was comparable to human classification 100 

(Culverhouse et al. 2003). For a slightly broader range of taxonomic classes (five to 101 

seven classes of phytoplankton and zooplankton), an ANN-type network was combined 102 

with a support vector machine (SVM) in a dual classification method for VPR images, 103 

resulting in classification precision rates between 23-95% when tested on the original 104 

training set (Hu and Davis 2005, 2006). For images from the UVP5, an extensive review 105 

of different classifiers (including ANN and SVM classifiers) resulted in the adoption of a 106 

Random Forest (RF) algorithm, which consistently performed the best, even superseding 107 

the SVM classifier (ZooProcess with PkID; Gorsky et al. 2010; Gasparini 2013). 108 
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However, even with the success of the RF algorithm, most UVP5 images are still fully 109 

validated by human operators, though there have been some recent efforts towards 110 

decreasing the amount of manual labor required through the use of filtering methods 111 

(Faillettaz et al. 2016). In recent years, SVMs have continued to be used, for systems 112 

such as the SIPPER (active learning with an SVM reduces human labeling efforts; Luo et 113 

al. 2005) and ZOOVIS (SVM classifier using three classes with > 80% precision; Bi et al. 114 

2015), while other groups have continued on with RF methods, sometimes with many 115 

more classes (47 classes, Laney and Sosik 2014; 114 classes, Schmid et al. 2016). 116 

Nonetheless, for all of these classification algorithms, a highly specific set of pre-117 

measured features was crucial for successfully training the classifier; this set of extracted 118 

features could not dynamically change, nor be automatically determined by the classifier 119 

itself. Furthermore, while the accepted benchmark for plankton classification accuracy 120 

(67-83%, Culverhouse et al. 2003) had been met in many classes by different classifiers, 121 

for biological questions particularly surrounding rare or cryptic species, a high amount of 122 

error is often untenable. 123 

Here we present the results of a process to develop an automated classification 124 

algorithm for ISIIS images using Convolutional Neural Networks (CNNs), a relatively 125 

new class of methods that has revolutionized the computer vision field in recent years 126 

(Krizhevsky et al. 2012; LeCun et al. 2015), and which falls within the general category 127 

known as deep learning. As opposed to conventional machine-learning techniques such 128 

as artificial neural networks, Random Forest, and support vector machines, deep learning 129 

tools do not require extensive domain expertise (e.g., plankton imaging) and the careful 130 

engineering of feature extractors for classification. Instead, they are able to process 131 
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natural data in their raw form, and automatically discover the representations that are best 132 

suited for classification. We describe a whole image processing ‘pipeline’, which 133 

includes pre-processing, segmentation, classification, and post-processing. Then, as a 134 

proof of concept, we apply it to a set of ISIIS images collected in the northern Gulf of 135 

Mexico. While the described method is highly tuned to images collected by a particular 136 

instrument, CNNs in general (as well as the machine learning competition we ran to 137 

generate this solution) are highly versatile, and can be applied to many types of images 138 

within the biological sciences.  139 
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METHODS 140 

Description of instrument 141 

The In Situ Ichthyoplankton Imaging System (ISIIS; Cowen and Guigand 2008) 142 

utilizes shadowgraph imaging with a line-scan camera to capture silhouette images of 143 

particles in a sampled parcel of water. This backlighting technique, with early application 144 

by Arnold and Nuttal-Smith (1974) and Ortner et al. (1979, 1981), allows for the fine 145 

taxonomic resolution of transparent organisms (e.g. gelatinous zooplankton) and the 146 

coarse taxonomic resolution of small, opaque organisms (e.g. copepods). The camera 147 

used is a 2048-pixel line-scan camera that images over a 13x13-cm field of view and 50-148 

cm depth of field, with a resultant 66-µm pixel resolution. The output of the imaging is 149 

recorded as a continuous image that is parsed into square frames (2048 x 2048 pixels) at 150 

17 frames s
-1

. While sampling, we target a ship speed of 2.5 m s
-1

, which results in an 151 

ISIIS sampling rate of 169 L s
-1

. However, in practice, this sampling rate can vary from 152 

150-185 L s
-1

 with corresponding ship speeds of 2.25-2.75 m s
-1

. The recorded data are 153 

ported to the surface via a fiber-optic wire, time-stamped, and saved onto a ship-based 154 

computer or raid array. 155 

 156 

Field sampling 157 

In July-August 2011, ISIIS was deployed over eight, 6-hr transects during two 158 

oceanographic cruises onboard the NOAA ship McArthur II in the northern Gulf of 159 

Mexico (Fig 1). The sampling plan was designed to capture images of species present 160 

during the day and night, at various locations and depths, and over multiple months. ISIIS 161 
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sampled in tow-yo undulations from the surface to 130 m depth at the offshore sites, and 162 

from the surface to 40-60 m depth at the inshore sites.  163 

 164 

Image pre-processing 165 

 ISIIS uses a line-scanning camera with a single row of pixels, each with its own 166 

unique light sensitivity characteristics; consequently, raw ISIIS images have a slight non-167 

uniformity in gray-level across the image, despite the uniform distribution of incoming 168 

light. Furthermore, any dust or particles on the lens appears as vertical lines in the raw, 169 

square frame (Fig. 3a). These lines and image non-uniformities are corrected in a 170 

radiometric calibration called “flat-fielding” in which we calculate a calibration frame 171 

(Fig. 3b) that is subtracted from the raw frame. The calibration is calculated per frame; 172 

since the objects of interest occupied only a small amount of the frame (based on initial 173 

tests, we assumed it to be <20%), we ignored those outliers and calculated a column-174 

averaged frame for calibration. Thus, the resultant frame after flat-fielding is devoid of 175 

vertical non-uniformities that could bias the segmentation and classification (Fig. 3c). 176 

Next, in order to equalize the image histogram, we normalized the contrast within 177 

each frame using the OpenCV 2.4 ‘equalizeHist’ command 178 

(https://docs.opencv.org/2.4/modules/imgproc/doc/histograms.html). The histogram 179 

normalized frame allowed for the better detection of regions of interest (ROIs) for 180 

segmentation (Fig. S1).  181 

Finally, due to the fact that sampling included coastal waters with high turbidity 182 

(from the Mississippi River plume), we calculated a signal-to-noise (SNR) ratio for each 183 

frame in order to filter out the highly noisy frames captured in turbid waters. The SNR 184 
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was computed by first calculating a cleaned-up frame, or the “signal-frame”, which was 185 

simply done by applying a 3x3 median filter to the histogram normalized frame. The 186 

difference between the histogram normalized frame and the signal frame was then 187 

considered the “noise-frame”. SNR was then calculated as the log of the ratio between 188 

vector norm (l
2
-norm) values of the two images:  189 

!"# = 20 ∗ ()*+, -
./012345.
|/37108|

9  (eq. 1) 190 

where Fsignal is the signal-frame, and Fnoise is the noise-frame, and the vector norm values 191 

was calculated using the OpenCV 2.4 ‘norm’ function, and is defined as: 192 

  |:| = 	<∑ |>?|@A
?B+ , where : = [>+, >@, >E, … , >A]  (eq. 2) 193 

After calculating the SNR on a set of representative images, we found a clear difference 194 

in SNR values between frames captured from turbid vs. not turbid waters (Fig. S2). Thus, 195 

we used a threshold cutoff of SNR=25 to discard extremely noisy images, which were 196 

approximately 26% of all frames originally captured. Note that through earlier efforts, we 197 

have found that images from highly turbid waters often require manual identification of 198 

images, so we sought to limit this study to images captured from more typically oceanic 199 

waters. This exclusion of noisy images should be considered an effect of the sampling 200 

environment, rather than the image processing method, as images collected in oceanic 201 

waters rarely had high SNRs. 202 

 203 

Segmentation 204 

Pre-processed frames were then segmented using the ISIIS image segmentation 205 

software (Tsechpenakis et al. 2007, 2008, Iyer 2012, 206 

http://cs.iupui.edu/~gavriil/vital/MVISIIS). The segmentation software uses an 207 
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unsupervised machine learning technique, K-harmonic means clustering, to detect ROIs 208 

from the raw images. Iyer (2012) tested six different clustering methods for segmentation 209 

(K-means, iterative K-means, fuzzy C-means, Isodata, Spectral algorithm, and K-210 

harmonic means), and chose the K-harmonic means method because it achieved the 211 

highest accuracy rates (95%) at relatively fast speeds and was easily implemented for 212 

parallel processing. In our implementation, we found that the segmentation process was 213 

further improved after the addition of the image histogram equalization step (see Image 214 

Pre-processing). Finally, the segmented images were given a unique name that refers to 215 

its time-stamp and location within the original frame. This naming convention allows for 216 

each image to be quickly associated with neighboring images, the original frame, 217 

shipboard GPS, and the environmental data recorded by the instrument. 218 

 219 

Automated image classification 220 

Convolutional Neural Networks 221 

Segmented images were classified using convolutional (or deep) neural networks 222 

(CNNs), a method that is able to process images directly and automatically discover the 223 

characteristics within the images that are best suited for classification. Deep neural 224 

networks make use of the fact that natural images can be analyzed in a hierarchical 225 

fashion, with lower-level features organizing to form higher-level features (e.g. pixels to 226 

edges, edges to body parts, and body parts into organisms), and have been used in 227 

numerous applications from speech and face recognition (Lawrence et al. 1997, Hinton et 228 

al. 2012) to predictions of galaxy morphology (Dieleman et al. 2015). The four key ideas 229 

that characterize CNNs (local connections, shared weights, pooling, and the use of many 230 
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layers) facilitate minimal pre-processing and require no prior knowledge in designing 231 

features for classification; this represents a significant advance compared with traditional 232 

machine learning methods such as ANNs and SVMs (LeCun et al. 2015).  233 

 Spatially sparse convolutional neural networks (SparseConvNets) were initially 234 

designed for the recognition of Chinese handwriting. SparseConvNets recognize that the 235 

background of an image often occupies many pixels and not processing them allows the 236 

CNN approach to be applied more efficiently, with less computational cost (Graham 237 

2014). Plankton images can also be considered “sparse images,” as the majority of the 238 

image, even in segmented images, is background. The actual particle or organism 239 

occupies a relatively small percentage of the pixels in the image. Thus, not processing the 240 

background (white) pixels results in a much faster classification process.  241 

An application of SparseConvNets with Fractional Max-Pooling (Graham 2015) 242 

was initially developed as part of the Poisson Process team for the 2015 National Data 243 

Science Bowl competition (3-mo machine learning competition to classify ca. 60,000 244 

ISIIS plankton images within 121 categories; dataset available at Cowen et al. 2015, see 245 

competition solution at: www.kaggle.com/c/datasciencebowl/forums/t/13158/poisson-246 

process-competition-report-and-code/). For the competition, a number of similar models 247 

were used to generate an ensemble solution. We chose the best single model from team 248 

Poisson Process and made small modifications to improve overall speed with little 249 

apparent changes in accuracy. 250 

As opposed to artificial neural networks, which process images as vectors, 251 

convolutional neural networks process images as three-dimensional arrays. Images are 252 

represented in a computer as three-dimensional arrays with size NxNxC, where the first 253 
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two dimensions (NxN) are spatial dimensions, representing the number of pixels in the 254 

image, and the last dimension (C) is the number of color-channels. In our case, the input 255 

image has dimensions of NxNx1, as there is only one color channel in monochrome 256 

images (RGB color images have C=3). However, the C dimension does not necessarily 257 

have to represent only true colors, but rather can be generalized and expanded to 258 

represent abstract “features” of an image. On a basic level, convolutional networks work 259 

by going through an iterative process of collecting features and appending them as 2-260 

dimensional slices to the C dimension. These additional abstract color-channels are 261 

‘value-added’ images, as they represent increasingly higher-level features, as the 262 

algorithm progresses from the bottom of the network to the top. Examples of features that 263 

would be detected at the bottom of the network include edges or combinations of edges, 264 

and at the top of the network, these features would be something biologically relevant, 265 

such as tails or antennae. These collections of features are constructed by a numerical 266 

optimization technique which involves iteratively showing the network training images 267 

from which it can learn discriminative features useful for classification. 268 

Our network is constructed as a sequence of two alternating types of layers, 269 

termed convolutional and pooling layers. Convolutional layers form the main building 270 

block for CNNs, as they detect local combinations of features. Pooling layers operate by 271 

merging semantically similar features into one (for a general description, please see 272 

LeCun et al. 2015). The network has 13 convolutional layers in total, separated by 12 273 

pooling layers. The n-th convolutional layer looks at overlapping 2x2 pixel regions of the 274 

image below, producing an output image with 32*n color-channels. The number of color-275 

channels increases as we rise through the network in the expectation that we will produce 276 
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an increasingly rich description of the contents of the image. The interleaved pooling 277 

layers reduce the spatial size of the input image, but leave the number of color-channels 278 

unchanged. We use fractional max-pooling with scaling factor of 1/√2. The scaling is 279 

multiplicative, so the image shrinks exponentially as we climb the network. This 280 

reduction in resolution offsets the increase in the number of color-channels, ensuring 281 

computational feasibility. After the last convolutional layer, we calculate the average of 282 

each color-channel over the spatial dimensions. We then perform multinomial logistic 283 

regression on the set of color-channel features to predict the class of the image. We used 284 

the SparseConvNet (https://github.com/btgraham/SparseConvNet) software package, 285 

which takes advantage of the sparsity of the images to reduce the computational burden, 286 

to train the convolutional neural network. 287 

 288 

Network training 289 

42,564 images were manually sorted in 108 classes to serve as a training set. We 290 

used 100+ classes to accurately represent the taxonomic diversity in the data (Fig 4). 291 

Initially, we started with a training set that was a subset of the data (not shown), which 292 

represented the actual proportions of objects in each class, but refined the training set by 293 

adding in rare classes. Since we were most interested in rarer groups (e.g., larval fish, 294 

jellies, etc.), they were inflated to provide a greater number of representative samples for 295 

the training set. The total number of images in each class of the training set is provided in 296 

Table S1.  297 

 In addition, at each `epoch`(i.e. training cycle), SparseConvNet picks examples 298 

from the training set and performs data augmentation (randomly rotates, skews, and 299 
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scales each image), hence creating subtle variations of the original shapes and simulating 300 

new training examples. This procedure is fairly common in CNNs and helps to generalize 301 

a model based on a limited set of examples. 302 

We trained for 150 epochs, as this represented the point at which the error rate 303 

plateaued at a minimum value (14.9-15.1%). Using a g2.2xlarge instance on the Amazon 304 

elastic computing cloud (one NVIDIA GPU with 1536 CUDA cores), training 150 305 

epochs took ca. 24 hours.  306 

 307 

Model predictions 308 

To make the prediction robust, each of the 23.4M images in the full data set was 309 

passed through the fitted network 24 times, each time with different data augmentation 310 

parameters. The probabilities for each object to belong to each class, predicted by the 311 

model, were averaged over the 24 predictions, the maximum was found, and the 312 

corresponding class was considered as the predicted class. Total prediction time was 165 313 

machine hours (though < 36 actual hours, as we used five GPU instances in parallel). 314 

 315 

Classification groupings 316 

The 108 original classes in the training set were mapped onto 37 broader groups, 317 

which represented taxonomic or functional groupings that were more relevant for 318 

ecological analyses (Fig. 4, Table S2). For example, many of the original classes were 319 

created for automated image classification purposes, with the distinctions between classes 320 

only morphological (e.g., straight vs. curved appendicularians) or due to an imaging or 321 

segmentation artifact (e.g., cropped bells and tentacles). Others were created to 322 
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distinguish between different forms within a diverse class (e.g., detritus) that would 323 

otherwise pollute many other classes. Lastly, some taxonomic classes were grouped 324 

together for filtering purposes and further analyses (e.g., the fish groups). 325 

 326 

Model performance 327 

Confusion matrices (CMs) are a tool for quantifying classifier accuracy (e.g., Hu 328 

and Davis 2005, Bi et al. 2015). The calculated CM statistics included three values and 329 

three rates, calculated separately for each class i: values were numbers of true positives 330 

(TPi), false positives (FPi, type I error), and false negatives (FNi, type II error). The rates 331 

calculated were precision (Pi, eq. 3), recall (Ri, eq. 4), and the F1-score, which is the 332 

harmonic mean of the precision and recall rates (F1i, eq. 5). For a given class, precision 333 

quantifies the “purity” of the prediction and recall quantifies the “completeness” of the 334 

prediction. 335 

Pi = TPi / (TPi + FPi)     (eq. 3) 336 

Ri = TPi / (TPi + FNi)     (eq. 4) 337 

F1i = 2 × Pi × Ri / (Pi + Ri)    (eq. 5) 338 

A self-prediction of the training set and the associated CM represent the 339 

theoretical maximum of the classifier performance. It was computed to give a benchmark 340 

for determining which classes had naturally high variability and which ones were 341 

relatively homogenous (Table S1). 342 

To evaluate the classification success on the full dataset, we performed spot-343 

checks: 75,000 predicted images were picked randomly (0.30% of the total dataset) and 344 
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their identification was manually validated. The corresponding CM is shown in Table S2 345 

(see column “Without Probability Filtering”). 346 

 347 

Probability filtering 348 

In the full dataset, images of organisms spanned the range in terms of quality: 349 

small (e.g., early life stage) to large (e.g., adult), blurry to clear, oriented towards, away, 350 

or to the side of the camera, etc. Thus, the images that were more difficult to predict, or 351 

less archetypal often were associated with a low prediction score. The prediction score is 352 

an output of any classification algorithm: for each candidate image, the algorithm 353 

computes a score (often a probability) associated with every category in the training set. 354 

Classification is then just a matter of picking the maximum score. However, for difficult 355 

to identify objects that could fit in many classes, even the maximum score can be low, 356 

reflecting a low confidence in the classification. Therefore, we used this score to filter 357 

classified images into “high” vs. “low” likelihood of correct classification using a 358 

threshold value set for each class. Faillettaz et al. (2016) first demonstrated this approach, 359 

showing that the removal of “low-confidence images” (in their case, over 70% of their 360 

original dataset) still allowed for the prediction of true spatial distributions of many taxa. 361 

In the present study, we determined the appropriate threshold values for each 362 

class by predicting a new, independent, 43,000-member test set. All images in this test set 363 

were manually identified, which allowed us to detect prediction errors. For each class, we 364 

set the threshold value to be the classification score above which 95% of images were 365 

correctly classified into the corresponding group (as opposed to the class itself). Groups 366 

were used because many of the 108 classes were separated based on morphological 367 
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distinctions with little ecological relevance (e.g., “chaetognaths curved” vs “chaetognaths 368 

straight”). The 95% level, which resulted in 29.6% of images discarded (though 369 

individual classes varied, Table S3), was chosen as a compromise between improving 370 

classification accuracy and retaining enough images for ecological analyses. As a 371 

comparison, if the thresholds were set at the 90% level, then only 19% of images would 372 

be cut, but at 99% level, then 63% of all images would be discarded.  373 

The discarded, “low confidence images”, were put into the “unknown” category. 374 

Since this affected some of the 75,000 randomly selected images used to compute the 375 

confusion matrix, a post-filtering confusion matrix was then recalculated. The differences 376 

between the CM stats before vs. after probability filtering are shown in Table S2, and the 377 

section “With Probability Filtering” gives the CM for the final processed dataset, which 378 

can be used for future ecological studies. 379 

  380 
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RESULTS 381 

A total of 2.4 million raw ISIIS frames (nearly 40 hours of imaging, 10 TB data) 382 

were collected from eight transects in the northern Gulf of Mexico. The raw ISIIS frames 383 

were segmented into 23.4 million images (27 GB), and classified into all 108 categories 384 

(Table S2). After filtering, 64.3% of the images were retained, and 35.7% discarded. 385 

Aside from the detritus and artifact images, there were 1.62 million images of 386 

phytoplankton and protists and 1.37 million images of mesozooplankton. 387 

 388 

Training set prediction: accuracy benchmarks 389 

 Overall, the F1-score (the harmonic mean between precision and recall) for all 390 

classes was 88.1, with 67% with a F1-score over 90, and 83% with a F1 score over 80. 391 

The hardest classes to predict were the fish classes, with a mean F1 score of 70.7 (e.g., 392 

myctophid fishes were often confused for other types of fishes), and the easiest classes to 393 

predict included the protists (mean F1 of 98.0), cyclopoid copepods (mean F1 of 96.1), 394 

and chaetognath classes (mean F1 of 93.4) (Table S1). At the group level, the F1-scores 395 

increase, such that the lowest was 85.6 (physonect siphonophores), and 70% had F1-396 

scores of 95 or above (Table 1). 397 

 398 

Image filtering and confusion matrices 399 

In total, filtering removed 30% of all images, though this percentage differed by 400 

category. Out of 108 categories, 26 were well-predicted (over 60% retained after 401 

filtering), including the diatom chains, chaetognaths, dark detritus, protists, doliolids, and 402 

three calanoid copepod classes. Many of these 26 classes also fell within the top quarter 403 
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in terms of numerical abundance (10 classes, containing 18.1 out of 23.4 million images). 404 

In particular, the main artifact class (imaging artifacts, as opposed to detritus), which 405 

comprised over 8.2 million images, or 35% of the total, were well-predicted, and over 406 

93% were retained. However, the well-predicted classes were not only the common 407 

classes, since some of the rare but morphologically monotypic (e.g. the cestid 408 

ctenophores and goby fishes) also performed very well. In contrast, 22 classes were very 409 

heavily filtered, where less than 10% were retained. These classes included six (out of 410 

14) hydromedusae, five (out of 19) fish, two polychaete worms, two siphonophores, one 411 

copepod and one shrimp, and tended to be the less common but morphologically diverse 412 

classes (Table S3).  413 

Results from the 75,000 random spot-checks showed that filtering improved the 414 

mean classification precision rate at the group level by 33 percentage points, from 53% to 415 

86% precision (Table S2). If only the biological groups were considered (thus excluding 416 

artifacts, detritus, and unknown, which was nearly 80% of the dataset), this increase was 417 

just slightly greater, from 51% to 87% precision. Twelve of the biological groups had less 418 

than 25 randomly drawn images (Table S2, also marked in grey in Table 1); these groups 419 

were very rare, each representing less than 0.12% of the total biological data. Excluding 420 

the rare biological groups, the precision rate after filtering was 89.7%.  421 

Naturally, using the filtering thresholds decreased the total recall rate, by 19 422 

percentage points, from 63% to 44%. For the non-rare biological groups (n=23), the 423 

decrease was greater (22 points), but final recall rate was higher (47%). However, the F1-424 

score, which is the harmonic mean of the precision rate and recall rate, only increased 425 

slightly, from 54% to 55%, 426 
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The final classification comparison was conducted between the (post-filtering) 427 

classifier and the training set, which represents the difference between a full dataset 428 

classification and the theoretical maximum for a classifier (Table 1). On the full dataset, 429 

classification precision was actually close to, or even exceeded that of the training set, 430 

which was possible because of the application of the filtering thresholds. Despite the 431 

corresponding decrease in the recall rate, a comparison of F1-scores showed that a few of 432 

the biological groups had a less than 10-point difference (Oithona copepods, sergestid 433 

shrimp, and ablyid siphonophores). Groups that were less common, or had a lot of natural 434 

variability, such as other shrimp, pteropods, and cydippid ctenophores, showed a much 435 

greater difference, of 70-80 points, which was largely due to low recall rates post-436 

filtering. However, the average difference in F1-scores for the (non-rare) biological 437 

groups was 40%, representing a moderate difference between the final classifier and the 438 

training set.  439 

  440 
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DISCUSSION 441 

We demonstrate the successful application of an image processing procedure, 442 

using a deep learning convolutional neural network, to classify a ~40 hour, 10 TB in situ 443 

plankton imaging dataset containing 25 million image segments into 108 classes. After 444 

applying a filtering threshold on the classification probabilities, and grouping the classes 445 

into 37 taxonomically and functionally meaningful groups, the average classifier 446 

precision on non-rare biological groups (n=23) was 93%, which is higher than any 447 

previous attempt on high sampling volume, in situ plankton images. 448 

Since Culverhouse et al. (2003) published a finding that trained personnel are 449 

only able to achieve 67-83% self-consistency on an expert plankton classification task, 450 

that range has existed as a sort of de facto benchmark within the plankton imaging field 451 

in which computer classification can be considered to be as good as human classification 452 

(e.g. Hu and Davis 2005, 2006). In reality, Culverhouse et al. (2003)’s findings were 453 

specific to a difficult identification task, in which morphologically variable dinoflagellate 454 

species (genus Dinophysis) were being distinguished from each other. For in situ 455 

plankton images, it is not very difficult for a human to distinguish between broad 456 

plankton community-based groups (e.g. calanoid copepods, shrimps, and larval fish), but 457 

rather, the difficulty only lies when distinguishing within certain taxa (e.g. between larval 458 

mesopelagic fishes, or between small decapod shrimps). Of course, classification 459 

difficulty may vary due to environmental conditions and ecosystem composition. 460 

Nonetheless, we suggest that this benchmark should be revisited, and raised to at least 461 

90%. In manual sorting for the present dataset as well as others with 120+ classes (e.g. 462 

Cowen et al. 2015), the proportion of unknowns, in which an expert operator is unable to 463 
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sort the image, ranged from < 1% for 30-35 classes to ca. 5% for 120-130 classes. In the 464 

present case, application of a method incorporating deep machine learning and filter 465 

thresholding resulted in nearly 90% precision on all the non-rare biological groups; this 466 

approaches the point in which we may consider an automated classifier to be as good as a 467 

human operator in sorting common plankton groups at higher taxonomic levels. 468 

Application of the Faillettaz et al. (2016) filtering method gives us the ability to 469 

select for the highest probability images, and subsequently manipulate the precision 470 

levels (and by association, the recall rates) in the final classifier. This step allowed us to 471 

ensure the best description of biological patterns, which was important given the 472 

scientific goals of the image analysis procedure. Application of the filtering method 473 

would likely significantly increase the overall performance of other previously published 474 

classification schema, and would likely temper the difference between our results and 475 

those earlier studies. Secondarily, we also note that it is not sufficient to judge a classifier 476 

by the class precision alone; the recall rate must also be incorporated. We therefore 477 

propose a more widespread adoption of the F1-score, which is the harmonic mean of the 478 

precision and recall.  479 

Convolutional neural networks represent a significant advance over traditional 480 

machine learning methods, because they are designed to learn and automatically extract 481 

feature descriptors (LeCun et al. 2015). Aside from the construction of the neural 482 

network architecture, the single most important factor determining the success of the 483 

classifier was the training set. Fernandes et al. (2009) had proposed a computer-assisted 484 

method for determining the optimal number of classes (settled on 30), using a Tree-485 

Augmented Naïve Bayes classifier. In our case, since deep learning methods are capable 486 
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of classifying many more classes, we manually defined 108 classes and then grouped 487 

them into 37 groups after classification, but future efforts with CNNs should utilize some 488 

amount of computer assistance in determining the identity and quantity of classes.  489 

Deep learning methods require large amounts of training data, and our 42,000 490 

item training set for 108 categories was likely on the low end; significant amounts of data 491 

augmentation was necessary. However, this is still an order of magnitude greater than the 492 

training sets used by traditional machine learning plankton image classifiers: Hu and 493 

Davis (2006) used 200 images per class for seven classes, Bi et al. (2005) used 210 494 

images total for three classes, and Faillettaz et al. (2016) used 5,979 images for 14 495 

classes. Our choice of using a "natural" training set, where rare classes were augmented 496 

but not to the quantity of the most common classes, was a decision following our broader 497 

research objectives of describing mesozooplankton (including larval fish) distributions. 498 

These organisms are relatively rare, especially compared to protists and diatom chains, 499 

and thus needed special attention within the training set. Augmenting rare groups in the 500 

training set is naturally a time-consuming process. However, if the scientific objective of 501 

the image analysis system were to classify the detritus and common phytoplankton, then 502 

a more representative training set would achieve higher accuracies (Chang et al. 2012). 503 

Furthermore, to the extent possible, it was necessary to include the range of images, from 504 

the best (clearest, sharpest) image to the worst (most ambiguous, blurry) image, and to 505 

divide classes not only by taxonomy, but also morphological differences. Still, there were 506 

classes that did not perform very well (e.g., “shrimp other”), but were too difficult to 507 

separate further. 508 
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The development of our classifier (an application of the Spatially-Sparse 509 

Convolutional Neural Network, Graham 2014, 2015) was achieved following the 2015 510 

National Data Science Bowl, a Kaggle.com machine learning competition. For the 511 

competition, we used the same ISIIS imaging system as in the present paper, but data 512 

from a different sampling region (Straits of Florida; competition data available at Cowen 513 

et al. 2015). While crowd-sourcing and machine learning competitions are not within the 514 

scope of the present paper (but discussed in Robinson et al. 2017), there were some key 515 

lessons we learned through the process that determined the successful application of the 516 

present classifier. First, in many competition settings, teams submit results that are an 517 

average of multiple models, also known as ensembles, which are computationally 518 

expensive and not necessarily the most realistic for real-world use. Therefore, it was 519 

critical to identify the single best model, which may or may not be part of the best 520 

ensemble (it was not in our case). Second, further development of the classification 521 

scheme was necessary after the competition ended. Essential to our success was the 522 

inclusion of a bio-computing specialist who could bridge the gap between the biologists 523 

and the computer scientists. Finally, the design of the competition dataset was also highly 524 

important, as it determined the types of solutions that emerged. We found that it was 525 

essential that the dataset had all the qualities of a good training set (ratio of images within 526 

rare vs. common classes, inclusion of high and low quality images, and separation of 527 

classes by taxonomy and morphology). These three key points facilitated the successful 528 

transfer of an image classifier between the competition and the present context. 529 

As plankton datasets, both physical (e.g. the Continuous Plankton Recorder 530 

archive) and digital (the growing ISIIS collection), get larger and more comprehensive, it 531 
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is critical to note that the amount of samples to sort at a particular taxonomic resolution 532 

will always depend on the scientific question and the time available for analyses. For 533 

some questions, such as the spatio-temporal variability in ichthyoplankton distributions 534 

(Richardson et al. 2010) or the niche shift of sibling species (Beaugrand et al. 2002), 535 

manually sorting physical samples to the genus or species level is necessary, but in those 536 

cases, only a relatively small number of organisms can realistically be sorted. For other 537 

questions, such as the fine-scale distribution of broad taxonomic groups, the complete 538 

analyses of samples collected by high throughput imaging systems is most adapted. In 539 

that case, manual sorting would be time prohibitive, especially with increasing numbers 540 

of classes (we estimate that sorting into 40-50 classes, which can be done at 5,000 images 541 

d
-1

, occurs at roughly half the rate of sorting into 10-15 classes). Therefore, computer-542 

assisted or fully automated classification becomes more expedient. Even the necessity of 543 

creating a training set, with associated independent test set, for each sampling region is 544 

time consuming (by our estimates, ca. 2-3 mo.). The future development of a master, 545 

global-level training set with regional filters could facilitate a more rapid image 546 

classification process. This could eventually lead to a minimal amount of manual 547 

identification work for each additional dataset (i.e. for spot-checks for the final confusion 548 

matrix, which would yield a class-specific correction factor for densities). The 549 

combination of the speed of classification, use of 100+ classes, high precision, and only 550 

needing to do small amounts of manual sorting would significantly increase the utility of 551 

plankton imaging systems, as we will be able to classify millions to billions of in situ 552 

plankton images quickly and accurately. 553 
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It is evident that with the recent interest in plankton (e.g. from the Tara Oceans 554 

project, Bork et al. 2015) that there are many additional questions and areas for 555 

exploration regarding the base of the marine food chain. Imaging systems are inherently 556 

complementary to net-based sampling; physical samples are always going to be necessary 557 

for ecological questions requiring fine taxonomic resolution and the analysis of hard 558 

structures (e.g. otoliths), isotopes, or genetics. However, large-volume imaging systems 559 

can be particularly useful for addressing questions regarding rare, gelatinous, or large 560 

organisms in the context of predator-prey dynamics, horizontal and vertical aggregations, 561 

and fine-scale relationships to the environment. Plankton imaging systems can also 562 

provide important validation data for regional and global ocean ecosystem models, which 563 

suffer from insufficient data for constraining patterns and processes. The development of 564 

whole, integrated pipelines for plankton image analysis can enhance the utility of 565 

automated classification tools, and can eventually lead to the goal of real-time image 566 

processing done at sea. Combined with some net-sampling for taxonomic validation, 567 

plankton imaging systems can be an incredibly powerful tool, with applications in ocean 568 

monitoring and fisheries management, as well as in addressing many of the fundamental 569 

questions still existing within plankton ecology.   570 
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TABLES 
 
Table 1. Comparison of precision, recall, and F1-ratio for the prediction of the training set 
compared to the full dataset (from the random 75,000 spot-checks, after applying the filtering 
thresholds), calculated at the group level. Gray rows indicate rare groups with < 25 images in the 
spot-checked set. 
 

Class 
Training Set Full Dataset 

Precision Recall F1 Precision Recall F1 
appendicularian 97.5 99.2 98.3 90 39.1 54.5 
artifact 94.6 96.8 95.7 96.5 90.5 93.4 
chaetognath 98.7 99 98.8 92.7 46.9 62.3 
copepod_calanoid 98.3 99.2 98.7 98.8 62.4 76.5 
copepod_copilia 97.7 97.7 97.7 60 75 66.7 
copepod_oithona 97.5 99.8 98.6 100 57.6 73.1 
ctenophore_beroida 98.8 89.4 93.9 100 20 33.3 
ctenophore_cestida 100 99.3 99.6 100 33.3 50 
ctenophore_cydippid 100 83.3 90.9 100 3.1 6 
ctenophore_lobata 99.3 98.7 99 100 14.3 25 
detritus 97.4 92.6 94.9 98.2 55.3 70.8 
diatom_chain 97.6 98 97.8 92.3 78.6 84.9 
echinoderm 98.2 98.6 98.4 100 16.5 28.3 
ephyra 100 100 100 52.8 47.5 50 
fish 99.5 99.8 99.6 76.3 38.5 51.2 
hydro_liriope 93.5 96.1 94.8 100 21.4 35.3 
hydro_narcomedusae 97.4 95.5 96.4 98.8 23 37.3 
hydro_other 88.8 92.3 90.5 79.7 15 25.2 
hydro_rhopalonematidae 95.4 97 96.2 96.7 33.1 49.3 
medusa_pelagia 98.8 95.3 97 NA 0 NA 
polychaete_worm 99 99 99 90 45.8 60.7 
protist 99.1 99.6 99.3 93.9 53.7 68.3 
pteropod 99 94.6 96.8 55.6 14.7 23.3 
radiolarian_chain 100 100 100 100 77.8 87.5 
shrimp_euphausiid 95.8 98.8 97.3 94.1 69.6 80 
shrimp_lucifer 93.1 94.7 93.9 100 32.5 49.1 
shrimp_other 97.4 91.7 94.5 86.2 12.3 21.5 
shrimp_sergestidae 92.1 89.4 90.7 90 50 64.3 
siph_ablyidae 96.7 97.8 97.2 87.5 21.9 35 
siph_calycophoran 95.9 95.6 95.7 98.6 24.6 39.4 
siph_lilyopsis_rosea 92 89.6 90.8 100 44.4 61.5 
siph_physonect 95 80 86.9 NA 0 NA 
stomatopods 95.3 95.3 95.3 13.3 66.7 22.2 
tornaria 98.4 98.4 98.4 50 25 33.3 
trichodesmium 92.3 95.5 93.9 93.2 29.5 44.8 
tunicates 97.8 99.2 98.5 95.5 50.9 66.4 
zoea 97.9 100 98.9 1.5 92.7 3 
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FIGURES 

Figure 1. Sampling sites in the northern Gulf of Mexico (GOM), spanning two months (July and 

August 2011), in nearshore and offshore sites, occurring during evening (solid lines) or morning 

(dashed lines) times. Each transect was sampled over 6 hours, and consisted of tow-yo 

undulations, from the surface to a maximum of 50 m for the inshore sites and 130 m for the 

offshore sites.  

 

Figure 2. Flowchart overview of the processing steps. Raw frames were first flat-fielded and 

corrected, then segmented into smaller image segments. A training set was generated to train the 

image classifier, which was a convolutional neural net (CNN). The full dataset of ~24M images 

were classified. Afterwards, a random subset of 75k images were spot-checked (manually 

validated) to estimate the accuracy of the classifier. Separately, a 43k-test set was also validated 

and used to set probability thresholds, which separated the classified dataset into low probability 

(discarded into “unknown”) and high probability images (retained). Confusion matrices (CMs) 

were generated to evaluate classifier performance at each step.  

 

Figure 3. An example of the flat-fielding process, showing the raw image (left), the flat-field 

frame that was removed from the raw image (center), and the corrected frame (right). 

 

Figure 4 (A,B). Example images from each of the 108 classes within the learning set. Classes 

[and corresponding groups] are: 1) acantharia protist 1, 2) acantharia protist 2 [protist]; 3) 

appendicularian sinusoidal tail, 4) appendicularian slight curve, 5) appendicularian straight 

[appendicularian]; 6) artifact 1, 7) artifact 2, 8) bubbles [artifact]; 9) chaetognath c-curved, 10) 
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chaetognath curved, 11) chaetognath dark, 12) chaetognath straight [chaetognath]; 13) copepod 

calanoid, 14) copepod calanoid eggs, 15) copepod calanoid eucalanus, 16) copepod calanoid 

flatheads, 17) copepod calanoid frilly antennae, 18) copepod calanoid large, 19) copepod 

calanoid small long-antennae [copepod calanoid]; 20) copepod cyclopoid copilia [copepod 

copilia]; 21) copepod cyclopoid oithona, 22) copepod cyclopoid oithona eggs [copepod oithona]; 

23) copepod escape [copepod calanoid]; 24) ctenophore beroida [ctenophore beroida]; 25) 

ctenophore cestida [ctenophore cestida]; 26) ctenophore cydippid [ctenophore cydippid]; 27) 

ctenophore lobata mnemiopsis, 28) ctenophore lobata ocyropsis, 29) ctenophore lobata type 1 

[ctenophore lobata]; 30) detritus sparse blob, 31) detritus casings, 32) detritus dark, 33) detritus 

filamentous [detritus]; 34) diatom chain string, 35) diatom chain tube [diatom chain]; 36) 

echinoderm brachiolaria, 37) echinoderm pluteus [echinoderm]; 38) ephyra [ephyra]; 39) fecal 

pellets [detritus]; 40) fish bregmacerotidae, 41) fish carangidae, 42) fish ceratioidei, 43) fish 

echeneidae, 44) fish engraulidae, 45) fish gobiidae, 46) fish gonostomatidae, 47) fish labroidei, 

48) fish leptocephali, 49) fish microdesmidae, 50) fish myctophidae, 51) fish ophidiidae, 52) fish 

phosichthyidae, 53) fish pleuronectiformes, 54) fish scombridae, 55) fish serranidae, 56) fish 

synodontidae, 57) fish trichiuridae, 58) fish xyrichtys [fish]; 59) hydromedusae 

rhopalonematidae [hydro rhopalonematidae], 60) hydromedusae eucheilota, 61) hydromedusae 

haliscera [hydro other]; 62) hydromedusa liriope tetraphylla, 63) hydromedusa liriope cut-off-

bell [hydro liriope]; 64) hydromedusae narcomedusae other [hydro narcomedusae]; 65) 

hydromedusae rhopalonema 2 [hydro rhopalonematidae], 66) hydromedusae solmaris 

rhodoloma, 67) hydromedusae solmaris spp, 68) hydromedusae solmundella, 69) hydromedusae 

tiny solmaris [hydro narcomedusae]; 70) hydromedusae type 1 small bell, 71) hydromedusae 

type 2, 72) hydromedusae type 3 [hydro other]; 73) medusa pelagia noctiluca [medusa pelagia]; 
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74) medusa tentacles [hydro other]; 75) polychaete type 1, 76) polychaete type 2, 77) polychaete 

type 3 [polychaete worm]; 78) protist noctiluca, 79) protist radiolarian, 80) protist radiolarian 

clear [protist]; 81) pteropod type 1, 82) pteropod type 2, 83) pteropod type 3 [pteropod]; 84) 

radiolarian chain [radiolarian chain]; 85) shrimp caridean, 86) shrimp caridean small [shrimp 

other]; 87) shrimp euphausiid, 88) shrimp euphausiid escape posture [shrimp euphausiid]; 89) 

shrimp lucifer [shrimp lucifer]; 90) shrimp mysid [shrimp other]; 91) shrimp sergestidae [shrimp 

sergestidae]; 92) siphonophore ablyidae [siph ablyidae]; 93) siphonophore calycophoran pointy 

head no-stem, 94) siphonophore calycophoran pointy head with-stem, 95) siphonophore 

calycophoran round head [siph calycophoran]; 96) siphonophore lilyopsis rosea [siph lilyopsis 

rosea]; 97) siphonophore physonect [siph physonect]; 98) stomatopods [stomatopods]; 99) 

tornaria acorn worm larvae [tornaria]; 100) trichodesmium bow-tie, 101) trichodesmium tuft, 

102) trichodesmium puff [trichdodesmium]; 103) tunicate doliolid, 104) tunicate doliolid 

budding, 105) tunicate salp, 106) tunicate salp chains [tunicates]; 107) unknown dark blob 

[detritus]; 108) zoea [zoea].  

 

Figure 5. Confusion matrix on the 75,000 random images, classified into 108 classes, and then 

grouped into 38 groups (including unknowns). Low-probability images were moved into 

Unknowns. Rows show computer-predicted classes, and columns show human-validated classes. 

Color indicates proportion of images sorted from computer-predicted classes into manually 

verified classes, scaled by row. Grey rows indicate rare categories where no (high probability) 

images were randomly selected for validation. 
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Figure 4 (A,B). 
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SUPPLEMENTAL TABLES AND FIGURES 
 
Table S1. Confusion matrix statistics of a model prediction on the original 108 class training set, 
showing number of true positives (TP), false positives (FP), false negatives (FN), total number of 
objects in each class, precision (P = TP / (TP + FP)), recall (R = TP / (TP + FN)), and F1-score 
(harmonic mean of precision and recall, F1 = 2*P*R / (P + R)). 
 

# Class TP FP FN Total Prec. Recall F1-score 
1 acantharia_protist_type1 73 2 3 76 97.3 96.1 96.7 
2 acantharia_protist_type2 504 2 0 504 99.6 100 99.8 

3 
appendicularian_ 

sinusoidal_tail 1392 175 96 1488 88.8 93.5 91.1 
4 appendicularian_slight_curve 956 173 215 1171 84.7 81.6 83.1 
5 appendicularian_straight 510 86 67 577 85.6 88.4 87 
6 artifact_type1 211 13 4 215 94.2 98.1 96.1 
7 artifact_type2 96 3 11 107 97 89.7 93.2 
8 bubbles 205 13 2 207 94 99 96.4 
9 chaetognath_c_curved 66 2 8 74 97.1 89.2 93 

10 chaetognath_curved 65 9 9 74 87.8 87.8 87.8 
11 chaetognath_dark 108 5 4 112 95.6 96.4 96 
12 chaetognath_straight 120 7 1 121 94.5 99.2 96.8 
13 copepod_calanoid 65 8 41 106 89 61.3 72.6 
14 copepod_calanoid_eggs 304 29 21 325 91.3 93.5 92.4 
15 copepod_calanoid_eucalanus 199 3 9 208 98.5 95.7 97.1 
16 copepod_calanoid_flatheads 303 77 58 361 79.7 83.9 81.7 

17 
copepod_calanoid_ 

frillyAntennae 90 14 46 136 86.5 66.2 75 
18 copepod_calanoid_large 705 88 34 739 88.9 95.4 92 

19 
copepod_calanoid_ 

small_longantennae 173 7 2 175 96.1 98.9 97.5 
20 copepod_cyclopoid_copilia 253 6 6 259 97.7 97.7 97.7 
21 copepod_cyclopoid_oithona 1685 78 130 1815 95.6 92.8 94.2 

22 
copepod_cyclopoid_ 

oithona_eggs 2427 170 19 2446 93.5 99.2 96.3 
23 copepod_escape 94 6 2 96 94 97.9 95.9 
24 ctenophore_beroida 84 1 10 94 98.8 89.4 93.9 
25 ctenophore_cestida 133 0 1 134 100 99.3 99.6 
26 ctenophore_cydippid 10 0 2 12 100 83.3 90.9 

27 
ctenophore_lobata_ 

mnemiopsis 656 13 4 660 98.1 99.4 98.7 
28 ctenophore_lobata_ocyropsis 12 0 12 24 100 50 66.7 
29 ctenophore_lobata_type1 23 0 1 24 100 95.8 97.9 
30 detritus_blob_sparse 2315 300 321 2636 88.5 87.8 88.1 
31 detritus_casing 182 2 1 183 98.9 99.5 99.2 
32 detritus_dark 350 62 58 408 85 85.8 85.4 
33 detritus_filamentous 511 93 270 781 84.6 65.4 73.8 
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34 diatom_chain_string 1101 46 80 1181 96 93.2 94.6 
35 diatom_chain_tube 1012 102 58 1070 90.8 94.6 92.7 
36 echinoderm_brachiolaria 263 8 2 265 97 99.2 98.1 
37 echinoderm_pluteus 288 2 6 294 99.3 98 98.6 
38 ephyra 144 0 0 144 100 100 100 
39 fecal_pellets 177 12 12 189 93.7 93.7 93.7 
40 fish_bregmacerotidae 1756 230 34 1790 88.4 98.1 93 
41 fish_carangidae 222 108 74 296 67.3 75 70.9 
42 fish_ceratioidei 4 1 16 20 80 20 32 
43 fish_echeneidae 63 36 27 90 63.6 70 66.6 
44 fish_engraulidae 784 83 107 891 90.4 88 89.2 
45 fish_gobiidae 911 118 130 1041 88.5 87.5 88 
46 fish_gonostomatidae 38 7 125 163 84.4 23.3 36.5 
47 fish_labroidei 825 72 90 915 92 90.2 91.1 
48 fish_leptocephali 125 10 14 139 92.6 89.9 91.2 
49 fish_microdesmidae 37 2 4 41 94.9 90.2 92.5 
50 fish_myctophidae 1187 513 245 1432 69.8 82.9 75.8 
51 fish_ophidiidae 75 12 33 108 86.2 69.4 76.9 
52 fish_phosichthyidae 73 30 140 213 70.9 34.3 46.2 
53 fish_pleuronectiformes 95 7 7 102 93.1 93.1 93.1 
54 fish_scombridae 323 91 70 393 78 82.2 80 
55 fish_serranidae 6 0 23 29 100 20.7 34.3 
56 fish_synodontidae 1 0 172 173 100 0.6 1.2 
57 fish_trichiuridae 75 10 3 78 88.2 96.2 92 
58 fish_xyrichtys 1057 91 86 1143 92.1 92.5 92.3 
59 hydro_rhopalonematidae 675 31 19 694 95.6 97.3 96.4 
60 hydro_eucheilota_spp 65 0 6 71 100 91.5 95.6 
61 hydro_haliscera_spp 42 17 10 52 71.2 80.8 75.7 
62 hydro_liriope 118 8 9 127 93.7 92.9 93.3 
63 hydro_liriope_cutoffbell 51 8 2 53 86.4 96.2 91 
64 hydro_narco_other 170 24 16 186 87.6 91.4 89.5 
65 hydro_rhopalonema2 58 11 10 68 84.1 85.3 84.7 
66 hydro_solmaris_rhodoloma 401 20 54 455 95.2 88.1 91.5 
67 hydro_solmaris_spp 191 5 12 203 97.4 94.1 95.7 
68 hydro_solmundella 302 2 2 304 99.3 99.3 99.3 
69 hydro_tinysolmaris 52 28 19 71 65 73.2 68.9 
70 hydro_type1_smallbell 105 35 22 127 75 82.7 78.7 
71 hydro_type2 112 9 17 129 92.6 86.8 89.6 
72 hydro_type3 95 8 2 97 92.2 97.9 95 
73 medusa_Pelagia 82 1 4 86 98.8 95.3 97 
74 medusa_tentacles 65 17 7 72 79.3 90.3 84.4 
75 polychaete_type1 27 2 6 33 93.1 81.8 87.1 
76 polychaete_type2 97 0 3 100 100 97 98.5 
77 polychaete_type3 163 10 3 166 94.2 98.2 96.2 

Page 48 of 56Limnology and Oceanography: Methods



For Review Only

 47

78 protist_noctiluca 100 4 3 103 96.2 97.1 96.6 
79 protist_rad 108 3 0 108 97.3 100 98.6 
80 protist_rad_clear 103 1 2 105 99 98.1 98.5 
81 pteropod_type1 164 6 12 176 96.5 93.2 94.8 
82 pteropod_type2 64 0 5 69 100 92.8 96.3 
83 pteropod_type3 67 1 4 71 98.5 94.4 96.4 
84 radiolarian_chain 113 0 0 113 100 100 100 
85 shrimp_caridae 71 14 38 109 83.5 65.1 73.2 
86 shrimp_caridae_sm 277 10 12 289 96.5 95.8 96.1 
87 shrimp_euphausiid 921 38 3 924 96 99.7 97.8 
88 shrimp_euphausiid_escape 47 6 10 57 88.7 82.5 85.5 
89 shrimp_lucifer 2544 189 143 2687 93.1 94.7 93.9 
90 shrimp_mysid 81 0 2 83 100 97.6 98.8 
91 shrimp_sergestidae 1693 146 200 1893 92.1 89.4 90.7 
92 siph_ablyidae 753 26 17 770 96.7 97.8 97.2 

93 
siph_calycophoran_ 

pointy_notail 235 23 13 248 91.1 94.8 92.9 

94 
siph_calycophoran_ 

pointy_tail 104 9 8 112 92 92.9 92.4 
95 siph_calycophoran_round 915 44 58 973 95.4 94 94.7 
96 siph_lilyopsis_rosea 103 9 12 115 92 89.6 90.8 
97 siph_physonect 76 4 19 95 95 80 86.9 
98 stomatopods 101 5 5 106 95.3 95.3 95.3 
99 tornaria_acorn_worm_larvae 63 1 1 64 98.4 98.4 98.4 

100 tricho_bow_tie 171 15 13 184 91.9 92.9 92.4 
101 tricho_tuft 95 28 19 114 77.2 83.3 80.1 
102 tricho_puff 103 3 0 103 97.2 100 98.6 
103 tunicate_doliolid 467 19 8 475 96.1 98.3 97.2 
104 tunicate_doliolid_budding 266 2 2 268 99.3 99.3 99.3 
105 tunicate_salp 92 8 21 113 92 81.4 86.4 
106 tunicate_salp_chains 92 16 1 93 85.2 98.9 91.5 
107 unknown_dark_blob 177 54 79 256 76.6 69.1 72.7 
108 zoea 46 1 0 46 97.9 100 98.9 

 
Total 

∑TP 
 

38605 

∑FP 
 

3959 

∑FN 
 

3959 

∑Tot. 
 

42564 

!"#$.&&&&&&&& 
 

91.5 

'#$())&&&&&&&&&& 
 

87.3 

*+&&&&  
 

88.1 
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Table S2. Confusion matrix on spot-checks of 75,000 random images, showing values with and without probability filtering. Images 
were pulled from a random subset of the whole dataset, so proportions of images in each category reflects the proportions in the data. 
The gray rows indicates rare classes, where less than 25 images were randomly pulled out for spot-checks. Type B = biological, and 
NB = non-biological. TP = True Positives, FP = False Positives, and FN = False Negatives. Note that for each group, TP + FN = Total 
count. F1 ratio is the harmonic mean between precision and recall. 
 

Class Type Total # 
Without probability filtering With probability filtering 

TP FP FN Precision Recall F1 TP FP FN Precision Recall F1 

All groups 75000 65515 9485 9485 53.2 63.3 54.0 51285 23715 23715 84.2 39.9 49.3 

Biological groups, non-rare 15286 12316 6296 2970 54.6 69.6 57.3 8949 631 6337 90.7 38.9 51.1 
appendicularian B 1218 915 947 303 49.1 75.1 59.4 476 53 742 90 39.1 54.5 

artifact NB 26112 24955 1490 1157 94.4 95.6 95 23632 850 2480 96.5 90.5 93.4 

chaetognath B 1608 909 115 699 88.8 56.5 69.1 754 59 854 92.7 46.9 62.3 

copepod_calanoid B 2067 1703 152 364 91.8 82.4 86.8 1290 16 777 98.8 62.4 76.5 

copepod_copilia B 12 12 117 0 9.3 100 17 9 6 3 60 75 66.7 

copepod_oithona B 663 647 493 16 56.8 97.6 71.8 382 0 281 100 57.6 73.1 

ctenophore_beroida B 10 4 3 6 57.1 40 47 2 0 8 100 20 33.3 

ctenophore_cestida B 6 3 0 3 100 50 66.7 2 0 4 100 33.3 50 

ctenophore_cydippid B 32 7 10 25 41.2 21.9 28.6 1 0 31 100 3.1 6 

ctenophore_lobata B 7 3 2 4 60 42.9 50 1 0 6 100 14.3 25 

detritus NB 33141 28182 1501 4959 94.9 85 89.7 18342 327 14799 98.2 55.3 70.8 

diatom_chain B 5817 5569 2321 248 70.6 95.7 81.3 4574 382 1243 92.3 78.6 84.9 

echinoderm B 91 45 129 46 25.9 49.5 34 15 0 76 100 16.5 28.3 

ephyra B 40 23 51 17 31.1 57.5 40.4 19 17 21 52.8 47.5 50 

fish B 117 90 258 27 25.9 76.9 38.7 45 14 72 76.3 38.5 51.2 

hydro_liriope B 14 12 11 2 52.2 85.7 64.9 3 0 11 100 21.4 35.3 

hydro_narcomedusae B 369 330 303 39 52.1 89.4 65.8 85 1 284 98.8 23 37.3 

hydro_other B 341 177 437 164 28.8 51.9 37 51 13 290 79.7 15 25.2 

hydro_rhopalonematidae B 178 173 125 5 58.1 97.2 72.7 59 2 119 96.7 33.1 49.3 

medusa_pelagia B 1 0 0 1 NA 0 NA 0 0 1 NA 0 NA 
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polychaete_worm B 59 47 203 12 18.8 79.7 30.4 27 3 32 90 45.8 60.7 

protist B 1140 669 87 471 88.5 58.7 70.6 612 40 528 93.9 53.7 68.3 

pteropod B 34 10 55 24 15.4 29.4 20.2 5 4 29 55.6 14.7 23.3 

radiolarian_chain B 45 35 0 10 100 77.8 87.5 35 0 10 100 77.8 87.5 

shrimp_euphausiid B 46 38 14 8 73.1 82.6 77.6 32 2 14 94.1 69.6 80 

shrimp_lucifer B 77 70 38 7 64.8 90.9 75.7 25 0 52 100 32.5 49.1 

shrimp_other B 203 75 91 128 45.2 36.9 40.6 25 4 178 86.2 12.3 21.5 

shrimp_sergestidae B 18 17 25 1 40.5 94.4 56.7 9 1 9 90 50 64.3 

siph_ablyidae B 32 31 129 1 19.4 96.9 32.3 7 1 25 87.5 21.9 35 

siph_calycophoran B 285 213 164 72 56.5 74.7 64.3 70 1 215 98.6 24.6 39.4 

siph_lilyopsis_rosea B 9 4 1 5 80 44.4 57.1 4 0 5 100 44.4 61.5 

siph_physonect B 20 2 6 18 25 10 14.3 0 0 20 NA 0 NA 

stomatopods B 3 2 19 1 9.5 66.7 16.6 2 13 1 13.3 66.7 22.2 

tornaria B 4 1 8 3 11.1 25 15.4 1 1 3 50 25 33.3 

trichodesmium B 278 126 30 152 80.8 45.3 58.1 82 6 196 93.2 29.5 44.8 

tunicates B 546 414 144 132 74.2 75.8 75 278 13 268 95.5 50.9 66.4 

unknown NB 354 0 0 354 NA 0 NA 328 21885 26 1.5 92.7 3 

zoea B 3 2 6 1 25 66.7 36.4 1 1 2 50 33.3 40 
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Table S3. Probability filtering of the 108 classes, showing the original classes, groupings, total 
original counts, values of the probability thresholds per class, percent retained after filtering, and 
percent discarded after filtering. 
 

 
# Class Group Total 

Prob. 
filter % Kept 

% 
Discard 

1 acantharia_protist_type1 protist 25886 0.804 17.5 82.5 

2 acantharia_protist_type2 protist 78880 0.4161 93.4 6.6 

3 
appendicularian_ 

sinusoidal_tail appendicularian 208569 0.8189 51.91 48.09 

4 
appendicularian_ 

slight_curve appendicularian 228665 0.9191 11.98 88.02 

5 appendicularian_straight appendicularian 137453 0.7857 21.25 78.75 

6 artifact_type1 artifact 8201765 0.7199 92.63 7.37 

7 artifact_type2 artifact 11118 0.996 1.78 98.22 

8 bubbles artifact 10017 0.9898 25.13 74.87 

9 chaetognath_c_curved chaetognath 1545 0.4244 80.32 19.68 

10 chaetognath_curved chaetognath 3701 0.3247 90.73 9.27 

11 chaetognath_dark chaetognath 259481 0.5445 77.42 22.58 

12 chaetognath_straight chaetognath 60903 0.1848 99.78 0.22 

13 copepod_calanoid copepod_calanoid 67528 0.1621 99.94 0.06 

14 copepod_calanoid_eggs copepod_calanoid 35059 0.6059 59.6 40.4 

15 
copepod_calanoid_ 

eucalanus copepod_calanoid 37834 0.1859 99.36 0.64 

16 
copepod_calanoid_ 

flatheads copepod_calanoid 133661 0.2157 99.75 0.25 

17 
copepod_calanoid_ 

frillyAntennae copepod_calanoid 35423 0.4735 55.81 44.19 

18 copepod_calanoid_large copepod_calanoid 163326 0.6264 57.64 42.36 

19 
copepod_calanoid_ 

small_longantennae copepod_calanoid 18037 0.7493 31.25 68.75 

20 
copepod_cyclopoid_ 

copilia copepod_copilia 40258 0.9438 8.38 91.62 

21 
copepod_cyclopoid_ 

oithona copepod_oithona 228400 0.9265 31.81 68.19 

22 
copepod_cyclopoid_ 

oithona_eggs copepod_oithona 143712 0.9404 34.12 65.88 

23 copepod_escape copepod_calanoid 73310 0.8732 22.01 77.99 

24 ctenophore_beroida ctenophore_beroida 1033 0.8787 26.82 73.18 

25 ctenophore_cestida ctenophore_cestida 714 0.308 92.72 7.28 

26 ctenophore_cydippid ctenophore_cydippid 4481 0.9262 7.5 92.5 

27 
ctenophore_lobata_ 

mnemiopsis ctenophore_lobata 2110 0.9941 30.95 69.05 

28 
ctenophore_lobata_ 

ocyropsis ctenophore_lobata 363 0.795 9.37 90.63 

29 ctenophore_lobata_type1 ctenophore_lobata 271 0.7904 41.7 58.3 

30 detritus_blob_sparse detritus 6795341 0.6826 65.37 34.63 

31 detritus_casing detritus 10535 0.9792 10.87 89.13 

32 detritus_dark detritus 879666 0.1896 99.98 0.02 

Page 52 of 56Limnology and Oceanography: Methods



For Review Only

 51

33 detritus_filamentous detritus 1104433 0.5946 41.31 58.69 

34 diatom_chain_string diatom_chain 1599323 0.5908 83.07 16.93 

35 diatom_chain_tube diatom_chain 861349 0.9475 24.98 75.02 

36 echinoderm_brachiolaria echinoderm 19850 0.8697 14.34 85.66 

37 echinoderm_pluteus echinoderm 39949 0.935 10.89 89.11 

38 ephyrae ephyra 22441 0.62 41.57 58.43 

39 fecal_pellets detritus 337405 0.8071 19.58 80.42 

40 fish_bregmacerotidae fish_bregmacerotidae 23696 0.8179 20.02 79.98 

41 fish_carangidae fish_other 2922 0.6751 4.24 95.76 

42 fish_ceratioidei fish_other 18 0.4 16.67 83.33 

43 fish_echeneidae fish_other 506 0.6373 6.32 93.68 

44 fish_engraulidae fish_engraulidae 17051 0.8873 7.72 92.28 

45 fish_gobiidae fish_gobiidae 1738 0.4473 65.94 34.06 

46 fish_gonostomatidae fish_other 27 0.4 44.44 55.56 

47 fish_labroidei fish_other 1607 0.5223 50.16 49.84 

48 fish_leptocephali fish_other 8720 0.8931 9.45 90.55 

49 fish_microdesmidae fish_other 27 0.293 77.78 22.22 

50 fish_myctophidae fish_myctophidae 34205 0.5174 28.93 71.07 

51 fish_ophidiidae fish_other 352 0.2741 72.44 27.56 

52 fish_phosichthyidae fish_other 3590 0.4406 16.69 83.31 

53 fish_pleuronectiformes fish_other 5622 0.4677 26.08 73.92 

54 fish_scombridae fish_other 6305 0.7189 3.19 96.81 

55 fish_serranidae fish_other 5 0.4 20 80 

56 fish_synodontidae fish_other 401 0.1974 52.12 47.88 

57 fish_trichiuridae fish_other 290 0.441 45.86 54.14 

58 fish_xyrichtys fish_xyrichtys 3949 0.6252 38.72 61.28 

59 hydro_rhopalonematidae 
hydro_ 

rhopalonematidae 39185 0.9852 32.46 67.54 

60 hydro_eucheilota_spp hydro_other 839 0.9346 33.97 66.03 

61 hydro_haliscera_spp hydro_other 2121 0.9059 7.87 92.13 

62 hydro_liriope hydro_liriope 5247 0.9686 19.5 80.5 

63 hydro_liriope_cutoffbell hydro_liriope 1427 0.9894 7.22 92.78 

64 hydro_narco_other hydro_narcomedusae 16836 0.9913 4.35 95.65 

65 hydro_rhopalonema2 
hydro_ 

rhopalonematidae 42323 0.9673 4.4 95.6 

66 
hydro_solmaris_ 

rhodoloma hydro_narcomedusae 50965 0.7825 20.12 79.88 

67 hydro_solmaris_spp hydro_narcomedusae 2923 0.9069 36.02 63.98 

68 hydro_solmundella hydro_narcomedusae 26406 0.9221 36.36 63.64 

69 hydro_tinysolmaris hydro_narcomedusae 100296 0.7853 6.02 93.98 

70 hydro_type1_smallbell hydro_other 30137 0.7628 7.91 92.09 

71 hydro_type2 hydro_other 7359 0.6295 38.71 61.29 

72 hydro_type3 hydro_other 3639 0.8075 15.58 84.42 

73 medusa_Pelagia medusa_pelagia 447 0.8918 34 66 

74 medusa_tentacles hydro_other 143834 0.8972 11.42 88.58 

75 polychaete_type1 polychaete_worm 3916 0.6359 9.22 90.78 
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76 polychaete_type2 polychaete_worm 1827 0.2887 96.5 3.5 

77 polychaete_type3 polychaete_worm 76895 0.9183 9.37 90.63 

78 protist_noctiluca protist 30117 0.2528 99.32 0.68 

79 protist_rad protist 52375 0.2288 99.36 0.64 

80 protist_rad_clear protist 23841 0.2615 99.88 0.12 

81 pteropod_type1 pteropod 8391 0.665 15.58 84.42 

82 pteropod_type2 pteropod 5806 0.6687 18.72 81.28 

83 pteropod_type3 pteropod 5762 0.7679 14.7 85.3 

84 radiolarian_chain radiolarian_chain 10579 0.2932 98.15 1.85 

85 shrimp_caridae shrimp_other 4617 0.8125 8.34 91.66 

86 shrimp_caridae_sm shrimp_other 40329 0.7715 19.08 80.92 

87 shrimp_euphausiid shrimp_euphausiid 15380 0.5932 61.58 38.42 

88 shrimp_euphausiid_escape shrimp_euphausiid 2209 0.4812 46.27 53.73 

89 shrimp_lucifer shrimp_lucifer 31633 0.8455 35.25 64.75 

90 shrimp_mysid shrimp_other 5148 0.8495 18.51 81.49 

91 shrimp_sergestidae shrimp_sergestidae 15238 0.9732 15.75 84.25 

92 siph_ablyidae siph_ablyidae 50518 0.9952 6.45 93.55 

93 
siph_calycophoran_ 

pointy_notail siph_calycophoran 41298 0.8834 27.31 72.69 

94 
siph_calycophoran_ 

pointy_tail siph_calycophoran 14650 0.6591 47.55 52.45 

95 siph_calycophoran_round siph_calycophoran 59727 0.9841 6.63 93.37 

96 siph_lilyopsis_rosea siph_lilyopsis_rosea 1843 0.5354 72.82 27.18 

97 siph_physonect siph_physonect 4695 0.883 17.98 82.02 

98 stomatopods stomatopods 6015 0.3433 62.39 37.61 

99 
tornaria_acorn_ 

worm_larvae tornaria 3096 0.7542 9.46 90.54 

100 tricho_bow_tie trichodesmium 10731 0.5208 72.07 27.93 

101 tricho_tuft trichodesmium 26651 0.6139 46.92 53.08 

102 tricho_puff trichodesmium 11933 0.7488 47.36 52.64 

103 tunicate_doliolid tunicates 111780 0.8433 48.02 51.98 

104 tunicate_doliolid_budding tunicates 25639 0.2869 95.25 4.75 

105 tunicate_salp tunicates 2338 0.7394 12.36 87.64 

106 tunicate_salp_chains tunicates 25450 0.9096 4.46 95.54 

107 unknown_dark_blob detritus 180127 0.7406 14.34 85.66 

108 zoea zoea 1415 0.688 23.53 76.47 

Total 23,380,779  70.36 29.64 
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Figure captions 

 

Figure S1. Example of the histogram equalization procedure on a flat-fielded frame. After flat-

fielding, some images are very white, resulting in insufficient contrast between the target 

organisms and the background. This causes the segmentation algorithm to not work well and at 

times miss (not segment) those organisms. In order to increase contrast, we applied histogram 

equalization, which is a form of histogram modification that redistributes the gray-level values of 

pixels within an image so that the number of pixels at all gray levels is nearly the same. 

 

Figure S2. Signal to Noise Ratios (SNR) on a representative sample of 62 images, half chosen 

from clear water and the other half chosen from turbid water. The segmentation algorithm often 

over-segments frames from turbid waters. We used a standard 3x3 median filter to estimate the 

signal in the frames (after histogram equalization), and then subtracted the signal from the 

histogram equalized frames for the noise-frames. There is a clear separation in the SNR between 

noisy and non-noisy images, so a SNR cutoff of 25 was chosen. 
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Figure S1. 
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Figure S2. 
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