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ABSTRACT

The rise of in situ plankton imaging systems, particularly high volume imagers such as the In Situ Ichthyoplankton Imaging System (ISIIS), has increased the need for fast processing and accurate classification tools that can identify a high diversity of organisms and non-living particles of biological origin. Previous methods for automated classification have yielded moderate results that either can resolve few groups at high accuracy, or many groups at relatively low accuracy. However, with the advent of new deep learning tools such as Convolutional Neural Networks (CNNs), the automated identification of plankton images can be vastly improved. Here we describe a image processing procedure that includes pre-processing, segmentation, classification, and postprocessing, for the accurate identification of 108 classes of plankton using Spatially-Sparse Convolutional Neural Networks. Following a filtering process to remove images with low classification scores, average precision was 84% and recall was 40%. Biological groups, excluding 12 rare taxa, exceeded 93% precision. This method provides proof of concept for the effectiveness of an automated classification scheme using deep learning methods, which can be applied to a range of plankton or biological imaging systems, with the eventual application in a variety of ecological monitoring and fisheries management contexts. 

INTRODUCTION

Much of plankton ecology has been focused upon questions surrounding the identity, quantity, and spatial-temporal variability of planktonic organisms in aquatic systems, which has historically been addressed by various net-based sampling systems (Wiebe and Benfield 2003). Although many advanced nets were designed to overcome limitations in horizontal or vertical resolution in sampling, the emergence of plankton imaging systems represents a significant advancement for plankton ecology. Current imaging systems are able to quantify organisms within fine spatial and temporal scales, with some systems imaging organisms undisturbed and in their natural environment [e.g., Video Plankton Recorder (VPR; [START_REF] Davis | The Video Plankton Recorder (VPR): Design and initial results[END_REF], Shadow Image Particle Profiling Evaluation Recorder (SIPPER; [START_REF] Robinson | A system for high resolution zooplankton imaging[END_REF], ZOOplankton VISualization and Imaging System (ZOOVIS; [START_REF] Benfield | Measurements of zooplankton distributions with a highresolution digital camera system[END_REF], In Situ Ichthyoplankton Imaging System (ISIIS; [START_REF] Cowen | In Situ Ichthyoplankton Imaging System (ISIIS): System design and preliminary results[END_REF], Underwater Vision Profiler 5 (UVP5; [START_REF] Picheral | The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton[END_REF]. Note that the SIPPER samples via an intake tube, and is thus not a truly undisturbed sampler]. Research using plankton imaging systems has led to new insights into the relationships between species and their fine-scale environment (e.g. [START_REF] Benfield | Estimating the in-situ orientation of Calanus finmarchicus on Georges Bank using the Video Plankton Recorder[END_REF][START_REF] Ashjian | Distribution of plankton, particles, and hydrographic features across Georges Bank described using the Video Plankton Recorder[END_REF], with implications ranging from fine-scale aggregation dynamics [START_REF] Luo | Environmental drivers of the fine-scale distribution of a gelatinous zooplankton community across a mesoscale front[END_REF], N 2 fixation [START_REF] Davis | Transatlantic abundance of the N2-fixing colonial cyanobacterium Trichodesmium[END_REF], predator-prey interactions [START_REF] Greer | Relationships between phytoplankton thin layers and the fine-scale vertical distributions of two trophic levels of zooplankton[END_REF], carbon export [START_REF] Petrik | Aggregates and their distributions determined from LOPC observations made using an autonomous profiling float[END_REF], and global plankton biomass estimates [START_REF] Biard | In situ imaging reveals the biomass of giant protists in the global ocean[END_REF].

Though in situ plankton imaging systems were developed with a goal of reducing processing time (very lengthy for physical net samples, which requires sorting and expert identification), in reality, analyzing plankton images currently still requires extensive and human operators' time vs. classification accuracy vs. taxonomic resolution. Manual processing time is typically not reported in papers, but as an example, the manual analysis of 50+ taxa of gelatinous zooplankton within 5,500 m 3 of water, imaged in 750,000 frames (13.5 inch square frames with 66 µm pixel resolution; each frame with up to 50 organisms) required the equivalent of three full man-years [START_REF] Luo | Environmental drivers of the fine-scale distribution of a gelatinous zooplankton community across a mesoscale front[END_REF].

Classification of pre-processed image segments is slightly faster; [START_REF] Faillettaz | Imperfect automatic image classification successfully describes plankton distribution patterns[END_REF] reported a manual classification rate of 10,000 images day -1 into 10-15 biotic and abiotic classes, but a single multiday cruise can easily generate upwards of 50 million image segments. In general, automated classification efforts currently consist of identifying small numbers of classes [five to seven classes [START_REF] Davis | Real-time observation of taxa-specific plankton distributions: An optical sampling method[END_REF][START_REF] Hu | Accurate automatic quantification of taxa-specific plankton abundance using dual classification with correction[END_REF], and three classes [START_REF] Bi | A semi-automated image analysis procedure for in situ plankton imaging systems[END_REF]], but even so, few reach an acceptable benchmark of classification accuracy, commonly set at 67-83% [START_REF] Culverhouse | Do experts make mistakes? A comparison of human and machine identification of dinoflagellates[END_REF][START_REF] Hu | Automatic plankton image recognition with co-occurrence matrices and support vector machine[END_REF]. Alternatively, computer-assisted classification is generally used to achieve higher accuracies, which consists of a computer generated set of automated classifications followed by fully validating all images manually [START_REF] Gorsky | Digital zooplankton image analysis using the ZooScan integrated system[END_REF][START_REF] Ohman | Mesozooplankton and particulate matter responses to a deep-water frontal system in the southern California Current System[END_REF].

Consequently, it is still very difficult and time-consuming to extract high-accuracy data on many types of plankton, particularly in highly diverse areas, which limits the utility of many underwater imaging systems.

The issues with classification accuracy and speed have been pronounced with the

In Situ Ichthyoplankton Imaging System (ISIIS; [START_REF] Cowen | In Situ Ichthyoplankton Imaging System (ISIIS): System design and preliminary results[END_REF], which is a high resolution, large volume imager designed for sampling mesozooplankton. It typically images at a rate of 150-185 L s -1 , depending on tow speed. Compared with other , ZOOVIS: 3.6 L s -1 , SIPPER, 9.2 L s -1 , UVP5: 8-20 L s -1 ), ISIIS records at 10-1000 times the sampling volume, which has allowed for studies on rare organisms such as larval fish [START_REF] Cowen | Evaluation of the In Situ Ichthyoplankton Imaging System (ISIIS): Comparison with the traditional (bongo net) sampler[END_REF] or large gelatinous zooplankton [START_REF] Mcclatchie | Resolution of fine biological structure including small narcomedusae across a front in the Southern California Bight[END_REF][START_REF] Luo | Environmental drivers of the fine-scale distribution of a gelatinous zooplankton community across a mesoscale front[END_REF]. Particularly in subtropical zones such as the northern Gulf of Mexico, ISIIS can simultaneously record infocus, clear images of hundreds of species, ranging from protists, diatom chains, and copepods, to shrimps, larval fish, and medusae. Therefore, in order to properly classify organisms within ISIIS images, a classifier that could handle not just a few (< 10) classes, but many classes (e.g. 30-150) is necessary.

Methods for the automated analysis of zooplankton images had early beginnings in statistical approaches, e.g., discriminant analysis [START_REF] Jeffries | Computer processing of zooplankton samples[END_REF][START_REF] Jeffries | Automated sizing, counting and identification of zooplankton by pattern recognition[END_REF], but quickly progressed to using machine learning techniques such as artificial neural networks (ANNs; [START_REF] Simpson | Biological pattern recognition by neural networks[END_REF][START_REF] Culverhouse | Automatic categorization of 23 species of dinoflagellate by artificial neural network[END_REF]. [START_REF] Culverhouse | Automatic categorization of 23 species of dinoflagellate by artificial neural network[END_REF] designed their ANN system explicitly for dinoflagellates, and were able to identify species with ca. 72% accuracy, which was comparable to human classification [START_REF] Culverhouse | Do experts make mistakes? A comparison of human and machine identification of dinoflagellates[END_REF]. For a slightly broader range of taxonomic classes (five to seven classes of phytoplankton and zooplankton), an ANN-type network was combined with a support vector machine (SVM) in a dual classification method for VPR images, resulting in classification precision rates between 23-95% when tested on the original training set (Hu andDavis 2005, 2006). For images from the UVP5, an extensive review of different classifiers (including ANN and SVM classifiers) resulted in the adoption of a Random Forest (RF) algorithm, which consistently performed the best, even superseding the SVM classifier (ZooProcess with PkID; [START_REF] Gorsky | Digital zooplankton image analysis using the ZooScan integrated system[END_REF][START_REF] Gasparini | PLANKTON IDENTIFIER: a software for automatic recognition of planktonic organisms[END_REF].
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However, even with the success of the RF algorithm, most UVP5 images are still fully validated by human operators, though there have been some recent efforts towards decreasing the amount of manual labor required through the use of filtering methods [START_REF] Faillettaz | Imperfect automatic image classification successfully describes plankton distribution patterns[END_REF]. In recent years, SVMs have continued to be used, for systems such as the SIPPER (active learning with an SVM reduces human labeling efforts; [START_REF] Luo | Active learning to recognize multiple types of plankton[END_REF] and ZOOVIS (SVM classifier using three classes with > 80% precision; [START_REF] Bi | A semi-automated image analysis procedure for in situ plankton imaging systems[END_REF], while other groups have continued on with RF methods, sometimes with many more classes (47 classes, [START_REF] Laney | Phytoplankton assemblage structure in and around a massive under-ice bloom in the Chukchi Sea[END_REF]114 classes, Schmid et al. 2016).

Nonetheless, for all of these classification algorithms, a highly specific set of premeasured features was crucial for successfully training the classifier; this set of extracted features could not dynamically change, nor be automatically determined by the classifier itself. Furthermore, while the accepted benchmark for plankton classification accuracy (67-83%, [START_REF] Culverhouse | Do experts make mistakes? A comparison of human and machine identification of dinoflagellates[END_REF]) had been met in many classes by different classifiers, for biological questions particularly surrounding rare or cryptic species, a high amount of error is often untenable.

Here we present the results of a process to develop an automated classification algorithm for ISIIS images using Convolutional Neural Networks (CNNs), a relatively new class of methods that has revolutionized the computer vision field in recent years [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Lecun | Deep learning[END_REF], and which falls within the general category known as deep learning. 

METHODS

Description of instrument

The In Situ Ichthyoplankton Imaging System (ISIIS; [START_REF] Cowen | In Situ Ichthyoplankton Imaging System (ISIIS): System design and preliminary results[END_REF] utilizes shadowgraph imaging with a line-scan camera to capture silhouette images of particles in a sampled parcel of water. This backlighting technique, with early application by Arnold and Nuttal-Smith (1974) and [START_REF] Ortner | Silhouette photography of oceanic zooplankton[END_REF][START_REF] Ortner | In-situ silhouette photography of Gulf Stream zooplankton[END_REF], allows for the fine taxonomic resolution of transparent organisms (e.g. gelatinous zooplankton) and the coarse taxonomic resolution of small, opaque organisms (e.g. copepods). The camera used is a 2048-pixel line-scan camera that images over a 13x13-cm field of view and 50cm depth of field, with a resultant 66-µm pixel resolution. The output of the imaging is recorded as a continuous image that is parsed into square frames (2048 x 2048 pixels) at 17 frames s -1 . While sampling, we target a ship speed of 2.5 m s -1 , which results in an ISIIS sampling rate of 169 L s -1 . However, in practice, this sampling rate can vary from 150-185 L s -1 with corresponding ship speeds of 2.25-2.75 m s -1 . The recorded data are ported to the surface via a fiber-optic wire, time-stamped, and saved onto a ship-based computer or raid array.

Field sampling

In Image pre-processing ISIIS uses a line-scanning camera with a single row of pixels, each with its own unique light sensitivity characteristics; consequently, raw ISIIS images have a slight nonuniformity in gray-level across the image, despite the uniform distribution of incoming light. Furthermore, any dust or particles on the lens appears as vertical lines in the raw, square frame (Fig. 3a). These lines and image non-uniformities are corrected in a radiometric calibration called "flat-fielding" in which we calculate a calibration frame (Fig. 3b) that is subtracted from the raw frame. The calibration is calculated per frame;

since the objects of interest occupied only a small amount of the frame (based on initial tests, we assumed it to be <20%), we ignored those outliers and calculated a columnaveraged frame for calibration. Thus, the resultant frame after flat-fielding is devoid of vertical non-uniformities that could bias the segmentation and classification (Fig. 3c).

Next, in order to equalize the image histogram, we normalized the contrast within each frame using the OpenCV 2.4 'equalizeHist' command (https://docs.opencv.org/2.4/modules/imgproc/doc/histograms.html). The histogram normalized frame allowed for the better detection of regions of interest (ROIs) for segmentation (Fig. S1).

Finally, due to the fact that sampling included coastal waters with high turbidity (from the Mississippi River plume), we calculated a signal-to-noise (SNR) ratio for each frame in order to filter out the highly noisy frames captured in turbid waters. The SNR
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10 was computed by first calculating a cleaned-up frame, or the "signal-frame", which was simply done by applying a 3x3 median filter to the histogram normalized frame. The difference between the histogram normalized frame and the signal frame was then considered the "noise-frame". SNR was then calculated as the log of the ratio between vector norm (l 2 -norm) values of the two images:
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where F signal is the signal-frame, and F noise is the noise-frame, and the vector norm values was calculated using the OpenCV 2.4 'norm' function, and is defined as:
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After calculating the SNR on a set of representative images, we found a clear difference in SNR values between frames captured from turbid vs. not turbid waters (Fig. S2). Thus, we used a threshold cutoff of SNR=25 to discard extremely noisy images, which were approximately 26% of all frames originally captured. Note that through earlier efforts, we have found that images from highly turbid waters often require manual identification of images, so we sought to limit this study to images captured from more typically oceanic waters. This exclusion of noisy images should be considered an effect of the sampling environment, rather than the image processing method, as images collected in oceanic waters rarely had high SNRs.

Segmentation

Pre-processed frames were then segmented using the ISIIS image segmentation software (Tsechpenakis et al. 2007[START_REF] Cowen | In Situ Ichthyoplankton Imaging System (ISIIS): System design and preliminary results[END_REF][START_REF] Iyer | Machine vision assisted In Situ Ichthyoplankton Imaging System[END_REF] (K-means, iterative K-means, fuzzy C-means, Isodata, Spectral algorithm, and Kharmonic means), and chose the K-harmonic means method because it achieved the highest accuracy rates (95%) at relatively fast speeds and was easily implemented for parallel processing. In our implementation, we found that the segmentation process was further improved after the addition of the image histogram equalization step (see Image Pre-processing). Finally, the segmented images were given a unique name that refers to its time-stamp and location within the original frame. This naming convention allows for each image to be quickly associated with neighboring images, the original frame, shipboard GPS, and the environmental data recorded by the instrument.

2 1

Automated image classification

Convolutional Neural Networks

Segmented images were classified using convolutional (or deep) neural networks (CNNs), a method that is able to process images directly and automatically discover the characteristics within the images that are best suited for classification. Deep neural networks make use of the fact that natural images can be analyzed in a hierarchical fashion, with lower-level features organizing to form higher-level features (e.g. pixels to edges, edges to body parts, and body parts into organisms), and have been used in numerous applications from speech and face recognition [START_REF] Lawrence | Face recognition: A convolutional neural-network approach[END_REF], Hinton et al. 2012) to predictions of galaxy morphology [START_REF] Dieleman | Rotation-invariant convolutional neural networks for galaxy morphology prediction[END_REF]. The four key ideas that characterize CNNs (local connections, shared weights, pooling, and the use of many Spatially sparse convolutional neural networks (SparseConvNets) were initially designed for the recognition of Chinese handwriting. SparseConvNets recognize that the background of an image often occupies many pixels and not processing them allows the CNN approach to be applied more efficiently, with less computational cost [START_REF] Graham | Spatially-sparse convolutional neural networks[END_REF]. Plankton images can also be considered "sparse images," as the majority of the image, even in segmented images, is background. The actual particle or organism occupies a relatively small percentage of the pixels in the image. Thus, not processing the background (white) pixels results in a much faster classification process.

An application of SparseConvNets with Fractional Max-Pooling [START_REF] Graham | Fractional max-pooling[END_REF] was We trained for 150 epochs, as this represented the point at which the error rate plateaued at a minimum value (14.9-15.1%). Using a g2.2xlarge instance on the Amazon elastic computing cloud (one NVIDIA GPU with 1536 CUDA cores), training 150 epochs took ca. 24 hours.

Model predictions

To make the prediction robust, each of the 23.4M images in the full data set was passed through the fitted network 24 times, each time with different data augmentation parameters. The probabilities for each object to belong to each class, predicted by the model, were averaged over the 24 predictions, the maximum was found, and the corresponding class was considered as the predicted class. Total prediction time was 165 machine hours (though < 36 actual hours, as we used five GPU instances in parallel).

Classification groupings

The 108 original classes in the training set were mapped onto 37 broader groups, which represented taxonomic or functional groupings that were more relevant for ecological analyses (Fig. 4, Table S2). For example, many of the original classes were created for automated image classification purposes, with the distinctions between classes only morphological (e.g., straight vs. curved appendicularians) or due to an imaging or segmentation artifact (e.g., cropped bells and tentacles). Others were created to
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16 distinguish between different forms within a diverse class (e.g., detritus) that would otherwise pollute many other classes. Lastly, some taxonomic classes were grouped together for filtering purposes and further analyses (e.g., the fish groups).

3 2

Model performance

Confusion matrices (CMs) are a tool for quantifying classifier accuracy (e.g., Hu

and [START_REF] Hu | Automatic plankton image recognition with co-occurrence matrices and support vector machine[END_REF][START_REF] Bi | A semi-automated image analysis procedure for in situ plankton imaging systems[END_REF]. The calculated CM statistics included three values and three rates, calculated separately for each class i: values were numbers of true positives (TP i ), false positives (FP i , type I error), and false negatives (FN i , type II error). The rates calculated were precision (P i , eq. 3), recall (R i , eq. 4), and the F1-score, which is the harmonic mean of the precision and recall rates (F1 i , eq. 5). For a given class, precision quantifies the "purity" of the prediction and recall quantifies the "completeness" of the prediction.

P i = TP i / (TP i + FP i ) (eq. 3) R i = TP i / (TP i + FN i ) (eq. 4) F1 i = 2 × P i × R i / (P i + R i ) (eq. 5)
A self-prediction of the training set and the associated CM represent the theoretical maximum of the classifier performance. It was computed to give a benchmark for determining which classes had naturally high variability and which ones were relatively homogenous (Table S1).

To evaluate the classification success on the full dataset, we performed spotchecks: 75,000 predicted images were picked randomly (0.30% of the total dataset) and
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17 their identification was manually validated. The corresponding CM is shown in Table S2 (see column "Without Probability Filtering").

Probability filtering

In the full dataset, images of organisms spanned the range in terms of quality:

small (e.g., early life stage) to large (e.g., adult), blurry to clear, oriented towards, away, or to the side of the camera, etc. Thus, the images that were more difficult to predict, or less archetypal often were associated with a low prediction score. The prediction score is an output of any classification algorithm: for each candidate image, the algorithm computes a score (often a probability) associated with every category in the training set.

Classification is then just a matter of picking the maximum score. However, for difficult to identify objects that could fit in many classes, even the maximum score can be low, reflecting a low confidence in the classification. Therefore, we used this score to filter classified images into "high" vs. "low" likelihood of correct classification using a threshold value set for each class. [START_REF] Faillettaz | Imperfect automatic image classification successfully describes plankton distribution patterns[END_REF] first demonstrated this approach, showing that the removal of "low-confidence images" (in their case, over 70% of their original dataset) still allowed for the prediction of true spatial distributions of many taxa.

In S3), was chosen as a compromise between improving classification accuracy and retaining enough images for ecological analyses. As a comparison, if the thresholds were set at the 90% level, then only 19% of images would be cut, but at 99% level, then 63% of all images would be discarded.

The discarded, "low confidence images", were put into the "unknown" category.

Since this affected some of the 75,000 randomly selected images used to compute the confusion matrix, a post-filtering confusion matrix was then recalculated. The differences between the CM stats before vs. after probability filtering are shown in Table S2, and the section "With Probability Filtering" gives the CM for the final processed dataset, which can be used for future ecological studies. S2). After filtering, 64.3% of the images were retained, and 35.7% discarded.

Aside from the detritus and artifact images, there were 1.62 million images of phytoplankton and protists and 1.37 million images of mesozooplankton.

3 8

Training set prediction: accuracy benchmarks

Overall, the F1-score (the harmonic mean between precision and recall) for all classes was 88.1, with 67% with a F1-score over 90, and 83% with a F1 score over 80.

The hardest classes to predict were the fish classes, with a mean F1 score of 70.7 (e.g., myctophid fishes were often confused for other types of fishes), and the easiest classes to predict included the protists (mean F1 of 98.0), cyclopoid copepods (mean F1 of 96.1), and chaetognath classes (mean F1 of 93.4) (Table S1). At the group level, the F1-scores increase, such that the lowest was 85.6 (physonect siphonophores), and 70% had F1scores of 95 or above (Table 1).

Image filtering and confusion matrices

In total, filtering removed 30% of all images, though this percentage differed by category. Out of 108 categories, 26 were well-predicted (over 60% retained after filtering), including the diatom chains, chaetognaths, dark detritus, protists, doliolids, and three calanoid copepod classes. Many of these 26 classes also fell within the top quarter In particular, the main artifact class (imaging artifacts, as opposed to detritus), which comprised over 8.2 million images, or 35% of the total, were well-predicted, and over 93% were retained. However, the well-predicted classes were not only the common classes, since some of the rare but morphologically monotypic (e.g. the cestid ctenophores and goby fishes) also performed very well. In contrast, 22 classes were very heavily filtered, where less than 10% were retained. These classes included six (out of 14) hydromedusae, five (out of 19) fish, two polychaete worms, two siphonophores, one copepod and one shrimp, and tended to be the less common but morphologically diverse classes (Table S3).

Results from the 75,000 random spot-checks showed that filtering improved the mean classification precision rate at the group level by 33 percentage points, from 53% to 86% precision (Table S2). If only the biological groups were considered (thus excluding artifacts, detritus, and unknown, which was nearly 80% of the dataset), this increase was just slightly greater, from 51% to 87% precision. Twelve of the biological groups had less than 25 randomly drawn images (Table S2, also marked in grey in Table 1); these groups were very rare, each representing less than 0.12% of the total biological data. Excluding the rare biological groups, the precision rate after filtering was 89.7%.

Naturally, using the filtering thresholds decreased the total recall rate, by 19 percentage points, from 63% to 44%. For the non-rare biological groups (n=23), the decrease was greater (22 points), but final recall rate was higher (47%). However, the F1score, which is the harmonic mean of the precision rate and recall rate, only increased slightly, from 54% to 55%, applying a filtering threshold on the classification probabilities, and grouping the classes into 37 taxonomically and functionally meaningful groups, the average classifier precision on non-rare biological groups (n=23) was 93%, which is higher than any previous attempt on high sampling volume, in situ plankton images.

Since [START_REF] Culverhouse | Do experts make mistakes? A comparison of human and machine identification of dinoflagellates[END_REF] published a finding that trained personnel are only able to achieve 67-83% self-consistency on an expert plankton classification task, that range has existed as a sort of de facto benchmark within the plankton imaging field in which computer classification can be considered to be as good as human classification (e.g. Hu andDavis 2005, 2006). In reality, [START_REF] Culverhouse | Do experts make mistakes? A comparison of human and machine identification of dinoflagellates[END_REF]'s findings were specific to a difficult identification task, in which morphologically variable dinoflagellate species (genus Dinophysis) were being distinguished from each other. For in situ plankton images, it is not very difficult for a human to distinguish between broad plankton community-based groups (e.g. calanoid copepods, shrimps, and larval fish), but rather, the difficulty only lies when distinguishing within certain taxa (e.g. between larval mesopelagic fishes, or between small decapod shrimps). Of course, classification difficulty may vary due to environmental conditions and ecosystem composition.

Nonetheless, we suggest that this benchmark should be revisited, and raised to at least 90%. In manual sorting for the present dataset as well as others with 120+ classes (e.g. [START_REF] Cowen | PlanktonSet 1.0: Plankton imagery data collected from F.G. Walton Smith in Straits of Florida from 2014-06-03 to 2014-06-06 and used in[END_REF], the proportion of unknowns, in which an expert operator is unable to
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23 sort the image, ranged from < 1% for 30-35 classes to ca. 5% for 120-130 classes. In the present case, application of a method incorporating deep machine learning and filter thresholding resulted in nearly 90% precision on all the non-rare biological groups; this approaches the point in which we may consider an automated classifier to be as good as a human operator in sorting common plankton groups at higher taxonomic levels.

Application of the [START_REF] Faillettaz | Imperfect automatic image classification successfully describes plankton distribution patterns[END_REF] filtering method gives us the ability to select for the highest probability images, and subsequently manipulate the precision levels (and by association, the recall rates) in the final classifier. This step allowed us to ensure the best description of biological patterns, which was important given the scientific goals of the image analysis procedure. Application of the filtering method would likely significantly increase the overall performance of other previously published classification schema, and would likely temper the difference between our results and those earlier studies. Secondarily, we also note that it is not sufficient to judge a classifier by the class precision alone; the recall rate must also be incorporated. We therefore propose a more widespread adoption of the F1-score, which is the harmonic mean of the precision and recall. classes. Our choice of using a "natural" training set, where rare classes were augmented but not to the quantity of the most common classes, was a decision following our broader research objectives of describing mesozooplankton (including larval fish) distributions.

These organisms are relatively rare, especially compared to protists and diatom chains, and thus needed special attention within the training set. Augmenting rare groups in the training set is naturally a time-consuming process. However, if the scientific objective of the image analysis system were to classify the detritus and common phytoplankton, then a more representative training set would achieve higher accuracies [START_REF] Chang | Methods of training set construction: Towards improving performance for automated mesozooplankton image classification systems[END_REF].

Furthermore, to the extent possible, it was necessary to include the range of images, from the best (clearest, sharpest) image to the worst (most ambiguous, blurry) image, and to divide classes not only by taxonomy, but also morphological differences. Still, there were classes that did not perform very well (e.g., "shrimp other"), but were too difficult to separate further. ), there were some key lessons we learned through the process that determined the successful application of the present classifier. First, in many competition settings, teams submit results that are an average of multiple models, also known as ensembles, which are computationally expensive and not necessarily the most realistic for real-world use. Therefore, it was critical to identify the single best model, which may or may not be part of the best ensemble (it was not in our case). Second, further development of the classification scheme was necessary after the competition ended. Essential to our success was the inclusion of a bio-computing specialist who could bridge the gap between the biologists and the computer scientists. Finally, the design of the competition dataset was also highly important, as it determined the types of solutions that emerged. We found that it was essential that the dataset had all the qualities of a good training set (ratio of images within rare vs. common classes, inclusion of high and low quality images, and separation of classes by taxonomy and morphology). These three key points facilitated the successful transfer of an image classifier between the competition and the present context.

As plankton datasets, both physical (e.g. the Continuous Plankton Recorder archive) and digital (the growing ISIIS collection), get larger and more comprehensive, it
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26 is critical to note that the amount of samples to sort at a particular taxonomic resolution will always depend on the scientific question and the time available for analyses. For some questions, such as the spatio-temporal variability in ichthyoplankton distributions [START_REF] Richardson | Larval assemblages of large and medium-sized pelagic species in the Straits of Florida[END_REF] or the niche shift of sibling species [START_REF] Beaugrand | Reorganization of North Atlantic marine copepod biodiversity and climate[END_REF], manually sorting physical samples to the genus or species level is necessary, but in those cases, only a relatively small number of organisms can realistically be sorted. For other questions, such as the fine-scale distribution of broad taxonomic groups, the complete analyses of samples collected by high throughput imaging systems is most adapted. In that case, manual sorting would be time prohibitive, especially with increasing numbers of classes (we estimate that sorting into 40-50 classes, which can be done at 5,000 images [and corresponding groups] are: 1) acantharia protist 1, 2) acantharia protist 2 [protist]; 3) appendicularian sinusoidal tail, 4) appendicularian slight curve, 5) appendicularian straight

[appendicularian]; 6) artifact 1, 7) artifact 2, 8) bubbles [artifact]; 9) chaetognath c-curved, 10) 
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  manual classification and expert taxonomic knowledge. The tradeoff is:

  July-August 2011, ISIIS was deployed over eight, 6-hr transects during two oceanographic cruises onboard the NOAA ship McArthur II in the northern Gulf of Mexico (Fig 1). The sampling plan was designed to capture images of species present during the day and night, at various locations and depths, and over multiple months. ISIIS -yo undulations from the surface to 130 m depth at the offshore sites, and from the surface to 40-60 m depth at the inshore sites.

  minimal pre-processing and require no prior knowledge in designing features for classification; this represents a significant advance compared with traditional machine learning methods such as ANNs and SVMs[START_REF] Lecun | Deep learning[END_REF].

  initially developed as part of the Poisson Process team for the 2015 National Data Science Bowl competition (3-mo machine learning competition to classify ca. 60,000ISIIS plankton images within 121 categories; dataset available at[START_REF] Cowen | PlanktonSet 1.0: Plankton imagery data collected from F.G. Walton Smith in Straits of Florida from 2014-06-03 to 2014-06-06 and used in[END_REF], see competition solution at: www.kaggle.com/c/datasciencebowl/forums/t/13158/poissonprocess-competition-report-and-code/). For the competition, a number of similar models were used to generate an ensemble solution. We chose the best single model from team Poisson Process and made small modifications to improve overall speed with little apparent changes in accuracy.As opposed to artificial neural networks, which process images as vectors, convolutional neural networks process images as three-dimensional arrays. Images are represented in a computer as three-dimensional arrays with size NxNxC, where the first NxN) are spatial dimensions, representing the number of pixels in the image, and the last dimension (C) is the number of color-channels. In our case, the input image has dimensions of NxNx1, as there is only one color channel in monochrome images (RGB color images have C=3). However, the C dimension does not necessarily have to represent only true colors, but rather can be generalized and expanded to represent abstract "features" of an image. On a basic level, convolutional networks work by going through an iterative process of collecting features and appending them as 2dimensional slices to the C dimension. These additional abstract color-channels are 'value-added' images, as they represent increasingly higher-level features, as the algorithm progresses from the bottom of the network to the top. Examples of features that would be detected at the bottom of the network include edges or combinations of edges, and at the top of the network, these features would be something biologically relevant, such as tails or antennae. These collections of features are constructed by a numerical optimization technique which involves iteratively showing the network training images from which it can learn discriminative features useful for classification.Our network is constructed as a sequence of two alternating types of layers, termed convolutional and pooling layers. Convolutional layers form the main building block for CNNs, as they detect local combinations of features. Pooling layers operate by merging semantically similar features into one (for a general description, please see[START_REF] Lecun | Deep learning[END_REF]. The network has 13 convolutional layers in total, separated by 12 pooling layers. The n-th convolutional layer looks at overlapping 2x2 pixel regions of the image below, producing an output image with 32*n color-channels. The number of colorchannels increases as we rise through the network in the expectation that we will produce description of the contents of the image. The interleaved pooling layers reduce the spatial size of the input image, but leave the number of color-channels unchanged. We use fractional max-pooling with scaling factor of 1/√2. The scaling is multiplicative, so the image shrinks exponentially as we climb the network. This reduction in resolution offsets the increase in the number of color-channels, ensuring computational feasibility. After the last convolutional layer, we calculate the average of each color-channel over the spatial dimensions. We then perform multinomial logistic regression on the set of color-channel features to predict the class of the image. We used the SparseConvNet (https://github.com/btgraham/SparseConvNet) software package, which takes advantage of the sparsity of the images to reduce the computational burden, to train the convolutional neural network. Network training 42,564 images were manually sorted in 108 classes to serve as a training set. We used 100+ classes to accurately represent the taxonomic diversity in the data (Fig 4). Initially, we started with a training set that was a subset of the data (not shown), which represented the actual proportions of objects in each class, but refined the training set by adding in rare classes. Since we were most interested in rarer groups (e.g., larval fish, jellies, etc.), they were inflated to provide a greater number of representative samples for the training set. The total number of images in each class of the training set is provided in Table S1. In addition, at each `epoch`(i.e. training cycle), SparseConvNet picks examples from the training set and performs data augmentation (randomly rotates, skews, and ), hence creating subtle variations of the original shapes and simulating new training examples. This procedure is fairly common in CNNs and helps to generalize a model based on a limited set of examples.

  2.4 million raw ISIIS frames (nearly 40 hours of imaging, 10 TB data) were collected from eight transects in the northern Gulf of Mexico. The raw ISIIS frames were segmented into 23.4 million images (27 GB), and classified into all 108 categories (Table

  numerical abundance (10 classes, containing 18.1 out of 23.4 million images).

  comparison was conducted between the (post-filtering) classifier and the training set, which represents the difference between a full dataset classification and the theoretical maximum for a classifier (Table1). On the full dataset, classification precision was actually close to, or even exceeded that of the training set, which was possible because of the application of the filtering thresholds. Despite the corresponding decrease in the recall rate, a comparison of F1-scores showed that a few of the biological groups had a less than 10-point difference (Oithona copepods, sergestid shrimp, and ablyid siphonophores). Groups that were less common, or had a lot of natural variability, such as other shrimp, pteropods, and cydippid ctenophores, showed a much greater difference, of 70-80 points, which was largely due to low recall rates postfiltering. However, the average difference in F1-scores for the (non-rare) biological groups was 40%, representing a moderate difference between the final classifier and the training set.

  successful application of an image processing procedure, using a deep learning convolutional neural network, to classify a ~40 hour, 10 TB in situ plankton imaging dataset containing 25 million image segments into 108 classes. After

  Convolutional neural networks represent a significant advance over traditional machine learning methods, because they are designed to learn and automatically extract feature descriptors[START_REF] Lecun | Deep learning[END_REF]. Aside from the construction of the neural network architecture, the single most important factor determining the success of the classifier was the training set.[START_REF] Fernandes | Optimizing the number of classes in automated zooplankton classification[END_REF] had proposed a computer-assisted method for determining the optimal number of classes (settled on 30), using a Tree-Augmented Naïve Bayes classifier. In our case, since deep learning methods are capable more classes, we manually defined 108 classes and then grouped them into 37 groups after classification, but future efforts with CNNs should utilize some amount of computer assistance in determining the identity and quantity of classes.Deep learning methods require large amounts of training data, and our 42,000 item training set for 108 categories was likely on the low end; significant amounts of data augmentation was necessary. However, this is still an order of magnitude greater than the training sets used by traditional machine learning plankton image classifiers:[START_REF] Hu | Accurate automatic quantification of taxa-specific plankton abundance using dual classification with correction[END_REF] used 200 images per class for seven classes, Bi et al. (2005) used 210 images total for three classes, and Faillettaz et al. (2016) used 5,979 images for 14

  our classifier (an application of the Spatially-Sparse Convolutional Neural Network,[START_REF] Graham | Spatially-sparse convolutional neural networks[END_REF][START_REF] Graham | Fractional max-pooling[END_REF] was achieved following the 2015 National Data Science Bowl, a Kaggle.com machine learning competition. For the competition, we used the same ISIIS imaging system as in the present paper, but data from a different sampling region (Straits of Florida; competition data available at[START_REF] Cowen | PlanktonSet 1.0: Plankton imagery data collected from F.G. Walton Smith in Straits of Florida from 2014-06-03 to 2014-06-06 and used in[END_REF]. While crowd-sourcing and machine learning competitions are not within the scope of the present paper (but discussed inRobinson et al. 2017

  roughly half the rate of sorting into 10-15 classes). Therefore, computerassisted or fully automated classification becomes more expedient. Even the necessity of creating a training set, with associated independent test set, for each sampling region is time consuming (by our estimates, ca. 2-3 mo.). The future development of a master, global-level training set with regional filters could facilitate a more rapid image classification process. This could eventually lead to a minimal amount of manual identification work for each additional dataset (i.e. for spot-checks for the final confusion matrix, which would yield a class-specific correction factor for densities). The combination of the speed of classification, use of 100+ classes, high precision, and only needing to do small amounts of manual sorting would significantly increase the utility of plankton imaging systems, as we will be able to classify millions to billions of in situ plankton images quickly and accurately. that with the recent interest in plankton (e.g. from the Tara Oceans project,[START_REF] Bork | Tara Oceans studies plankton at planetary scale[END_REF]) that there are many additional questions and areas for exploration regarding the base of the marine food chain. Imaging systems are inherently complementary to net-based sampling; physical samples are always going to be necessary for ecological questions requiring fine taxonomic resolution and the analysis of hard structures (e.g. otoliths), isotopes, or genetics. However, large-volume imaging systems can be particularly useful for addressing questions regarding rare, gelatinous, or large organisms in the context of predator-prey dynamics, horizontal and vertical aggregations, and fine-scale relationships to the environment. Plankton imaging systems can also provide important validation data for regional and global ocean ecosystem models, which suffer from insufficient data for constraining patterns and processes. The development of whole, integrated pipelines for plankton image analysis can enhance the utility of automated classification tools, and can eventually lead to the goal of real-time image processing done at sea. Combined with some net-sampling for taxonomic validation, plankton imaging systems can be an incredibly powerful tool, with applications in ocean monitoring and fisheries management, as well as in addressing many of the fundamental questions still existing within plankton ecology.
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  the present study, we determined the appropriate threshold values for each class by predicting a new, independent, 43,000-member test set. All images in this test set were manually identified, which allowed us to detect prediction errors. For each class, we set the threshold value to be the classification score above which 95% of images were correctly classified into the corresponding group (as opposed to the class itself). Groups were used because many of the 108 classes were separated based on morphological

	distinctions with little ecological relevance (e.g., "chaetognaths curved" vs "chaetognaths
	straight"). The 95% level, which resulted in 29.6% of images discarded (though
	individual classes varied, Table
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Table 1 .

 1 Comparison of precision, recall, and F1-ratio for the prediction of the training set compared to the full dataset (from the random 75,000 spot-checks, after applying the filtering thresholds), calculated at the group level. Gray rows indicate rare groups with < 25 images in the spot-checked set.
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Table S2 .

 S2 Confusion matrix on spot-checks of 75,000 random images, showing values with and without probability filtering. Images were pulled from a random subset of the whole dataset, so proportions of images in each category reflects the proportions in the data. The gray rows indicates rare classes, where less than 25 images were randomly pulled out for spot-checks. Type B = biological, and NB = non-biological. TP = True Positives, FP = False Positives, and FN = False Negatives. Note that for each group, TP + FN = Total count. F1 ratio is the harmonic mean between precision and recall.

	34 diatom_chain_string 78 protist_noctiluca polychaete_worm B	59	1101 100 47	46 4 203	80 3 12	1181 103 18.8	96 96.2 79.7	93.2 97.1 30.4	94.6 96.6 27		32	90	45.8	60.7
	35 diatom_chain_tube 79 protist_rad protist	B	1140	1012 108 669	102 3 87	58 0 471	1070 108 88.5	90.8 97.3 58.7	94.6 100 70.6	92.7 98.6 612	40	528	93.9	53.7	68.3
	36 echinoderm_brachiolaria 80 protist_rad_clear pteropod B	34	263 103 10	8 1 55	2 2 24	265 105 15.4	97 99 29.4	99.2 98.1 20.2	98.1 98.5 5		29	55.6	14.7	23.3
	37 echinoderm_pluteus 81 pteropod_type1 radiolarian_chain	B	45	288 164 35	2 6 0	6 12 10	294 176 100	99.3 96.5 77.8	98 93.2 87.5	98.6 94.8 35		10	100	77.8	87.5
	38 ephyra 82 pteropod_type2 shrimp_euphausiid	B	46	144 64 38	0 0 14	8	0 5	144 69 73.1	100 100 82.6	100 92.8 77.6	100 96.3 32		14	94.1	69.6	80
	# 1 2 3 4 5 6 7 8 9 10 chaetognath_curved Class acantharia_protist_type1 acantharia_protist_type2 appendicularian_ sinusoidal_tail appendicularian_slight_curve appendicularian_straight artifact_type1 artifact_type2 bubbles chaetognath_c_curved 11 chaetognath_dark 12 chaetognath_straight 13 copepod_calanoid 14 copepod_calanoid_eggs 15 copepod_calanoid_eucalanus 16 copepod_calanoid_flatheads 17 copepod_calanoid_ frillyAntennae 18 copepod_calanoid_large 19 copepod_calanoid_ small_longantennae 20 copepod_cyclopoid_copilia 21 copepod_cyclopoid_oithona 22 copepod_cyclopoid_ oithona_eggs 23 copepod_escape 24 ctenophore_beroida 25 ctenophore_cestida 26 ctenophore_cydippid 70 hydro_type1_smallbell F o r TP 73 504 1392 956 510 211 96 205 66 65 108 120 65 304 199 303 90 705 173 253 1685 2427 94 84 133 10 105 R e v FP 2 2 175 173 86 13 3 13 2 9 5 7 8 29 3 77 14 88 7 6 78 170 6 1 0 0 35 i e w FN Total Prec. Recall F1-score 3 76 97.3 96.1 96.7 0 504 99.6 100 99.8 96 1488 88.8 93.5 91.1 215 1171 84.7 81.6 83.1 67 577 85.6 88.4 87 4 215 94.2 98.1 96.1 11 107 97 89.7 93.2 2 207 94 99 96.4 8 74 97.1 89.2 93 9 74 87.8 87.8 87.8 4 112 95.6 96.4 96 1 121 94.5 99.2 96.8 41 106 89 61.3 72.6 21 325 91.3 93.5 92.4 9 208 98.5 95.7 97.1 58 361 79.7 83.9 81.7 46 136 86.5 66.2 75 34 739 88.9 95.4 92 2 175 96.1 98.9 97.5 6 259 97.7 97.7 97.7 130 1815 95.6 92.8 94.2 19 2446 93.5 99.2 96.3 2 96 94 97.9 95.9 10 94 98.8 89.4 93.9 1 134 100 99.3 99.6 2 12 100 83.3 22 127 75 82.7 78.7 90.9 O n l y 39 fecal_pellets 177 12 12 189 93.7 93.7 93.7 40 fish_bregmacerotidae 1756 230 34 1790 88.4 98.1 93 41 fish_carangidae 222 108 74 296 67.3 75 70.9 42 fish_ceratioidei 4 1 16 20 80 20 32 43 fish_echeneidae 63 36 27 90 63.6 70 66.6 44 fish_engraulidae 784 83 107 891 90.4 88 89.2 45 fish_gobiidae 911 118 130 1041 88.5 87.5 88 46 fish_gonostomatidae 38 7 125 163 84.4 23.3 36.5 47 fish_labroidei 825 72 90 915 92 90.2 91.1 48 fish_leptocephali 125 10 14 139 92.6 89.9 91.2 49 fish_microdesmidae 37 2 4 41 94.9 90.2 92.5 50 fish_myctophidae 1187 513 245 1432 69.8 82.9 75.8 51 fish_ophidiidae 75 12 33 108 86.2 69.4 76.9 52 fish_phosichthyidae 73 30 140 213 70.9 34.3 46.2 53 fish_pleuronectiformes 95 7 7 102 93.1 93.1 93.1 54 fish_scombridae 323 91 70 393 78 82.2 80 55 fish_serranidae 6 0 23 29 100 20.7 34.3 56 fish_synodontidae 1 0 172 173 100 0.6 1.2 57 fish_trichiuridae 75 10 3 78 88.2 96.2 F o r R e v i e 83 pteropod_type3 67 1 4 71 98.5 94.4 96.4 84 radiolarian_chain 113 0 0 113 100 100 Without probability filtering shrimp_lucifer B 77 70 38 7 64.8 90.9 75.7 25 100 85 shrimp_caridae 71 14 38 109 83.5 65.1 73.2 86 shrimp_caridae_sm 277 10 12 289 96.5 95.8 96.1 87 shrimp_euphausiid 921 38 3 924 96 99.7 97.8 88 shrimp_euphausiid_escape 47 6 10 57 88.7 82.5 85.5 89 shrimp_lucifer 2544 189 143 2687 93.1 94.7 93.9 90 shrimp_mysid 81 0 2 83 100 97.6 98.8 91 shrimp_sergestidae 1693 146 200 1893 92.1 89.4 90.7 92 siph_ablyidae 753 26 17 770 96.7 97.8 97.2 93 siph_calycophoran_ pointy_notail 235 23 13 248 91.1 94.8 92.9 94 siph_calycophoran_ pointy_tail 104 9 8 112 92 92.9 92.4 95 siph_calycophoran_round 915 44 58 973 95.4 94 94.7 96 siph_lilyopsis_rosea 103 9 12 115 92 89.6 90.8 97 siph_physonect 76 4 19 95 95 80 86.9 98 stomatopods 101 5 5 106 95.3 95.3 95.3 99 tornaria_acorn_worm_larvae 63 1 1 64 98.4 98.4 98.4 F o r R e v i e w O n l y Class Type Total # TP FP FN Precision Recall F1 TP All groups 75000 65515 9485 9485 53.2 63.3 54.0 51285 23715 23715 52 With probability filtering 100 FP FN Precision Recall F1 32.5 49.1 84.2 39.9 49.3 Biological groups, non-rare 15286 12316 6296 2970 54.6 69.6 57.3 8949 631 6337 90.7 38.9 51.1 appendicularian B 1218 915 947 303 49.1 75.1 59.4 476 53 742 90 39.1 54.5 artifact NB 26112 24955 1490 1157 94.4 95.6 95 23632 850 2480 96.5 90.5 93.4 chaetognath B 1608 909 115 699 88.8 56.5 69.1 754 59 854 92.7 46.9 62.3 copepod_calanoid B 2067 1703 152 364 91.8 82.4 86.8 1290 16 777 98.8 62.4 76.5 copepod_copilia B 12 12 117 0 9.3 100 17 9 6 3 60 75 66.7 copepod_oithona B 663 647 493 16 56.8 97.6 71.8 382 0 281 100 57.6 73.1 ctenophore_beroida B 10 4 3 6 57.1 40 47 2 0 8 100 20 33.3 ctenophore_cestida B 6 3 0 3 100 50 66.7 2 0 4 100 33.3 50 ctenophore_cydippid B 32 7 10 25 41.2 21.9 28.6 1 0 31 100 3.1 6 ctenophore_lobata B 7 3 2 4 60 42.9 50 1 0 6 100 14.3 25 detritus NB 33141 28182 1501 4959 94.9 85 89.7 18342 327 14799 98.2 55.3 70.8 diatom_chain B 5817 5569 2321 248 70.6 95.7 81.3 4574 382 1243 92.3 78.6 84.9 shrimp_other B 203 75 91 128 45.2 36.9 40.6 25 178 86.2 12.3 21.5 shrimp_sergestidae B 18 17 25 1 40.5 94.4 56.7 9 9 90 50 64.3 siph_ablyidae B 32 31 129 1 19.4 96.9 32.3 7 25 87.5 21.9 35 siph_calycophoran B 285 213 164 72 56.5 74.7 64.3 70 215 98.6 24.6 39.4 siph_lilyopsis_rosea B 9 4 1 5 80 44.4 57.1 4 5 100 44.4 61.5 siph_physonect B 20 2 6 18 25 10 14.3 0 20 NA 0 NA stomatopods B 3 2 19 1 9.5 66.7 16.6 2 13 1 13.3 66.7 22.2 F o r R e v i e w tornaria B 4 1 8 3 11.1 25 15.4 1 3 50 25 33.3 trichodesmium B 278 126 30 152 80.8 45.3 58.1 82 196 93.2 29.5 44.8 tunicates B 546 414 144 132 74.2 75.8 75 278 13 268 95.5 50.9 66.4 unknown NB 354 0 0 354 NA 0 NA 328 21885 26 1.5 92.7 3 zoea B 3 2 6 1 25 66.7 36.4 1 2 50 33.3 40 F o r R e v i O n l y e 92 58 fish_xyrichtys 1057 91 86 1143 92.1 92.5 92.3 59 hydro_rhopalonematidae 675 31 19 694 95.6 97.3 w 100 tricho_bow_tie 171 15 13 184 91.9 92.9 92.4 101 tricho_tuft 95 28 19 114 77.2 83.3 80.1 echinoderm B 91 45 129 46 25.9 49.5 34 15 0 76 100 16.5 28.3 ephyra B 40 23 51 17 31.1 57.5 40.4 19 17 21 52.8 47.5 50 w 96.4 60 hydro_eucheilota_spp 65 0 6 71 100 91.5 95.6 61 hydro_haliscera_spp 42 17 10 52 71.2 80.8 75.7 62 hydro_liriope 118 8 9 127 93.7 92.9 93.3 63 hydro_liriope_cutoffbell 51 8 2 53 86.4 96.2 91 64 hydro_narco_other 170 24 16 186 87.6 91.4 89.5 65 hydro_rhopalonema2 58 11 10 68 84.1 85.3 84.7 66 hydro_solmaris_rhodoloma 401 20 54 455 95.2 88.1 91.5 67 hydro_solmaris_spp 191 5 12 203 97.4 94.1 68 hydro_solmundella 302 2 2 304 99.3 99.3 99.3 69 hydro_tinysolmaris 52 28 19 71 65 73.2 68.9 38605 3959 3959 42564 91.5 87.3 88.1 48 Total 95.7 O n l y 102 tricho_puff 103 3 0 103 97.2 100 98.6 103 tunicate_doliolid 467 19 8 475 96.1 98.3 97.2 104 tunicate_doliolid_budding 266 2 2 268 99.3 99.3 99.3 105 tunicate_salp 92 8 21 113 92 81.4 86.4 106 tunicate_salp_chains 92 16 1 93 85.2 98.9 91.5 107 unknown_dark_blob 177 54 79 256 76.6 69.1 72.7 108 zoea 46 1 0 46 97.9 100 ∑TP ∑FP ∑FN ∑Tot. !"#$. &&&&&&&& *+ &&&& '#$()) &&&&&&&&&& 98.9 fish B 117 90 258 27 25.9 76.9 38.7 45 14 72 76.3 38.5 51.2 hydro_liriope B 14 12 11 2 52.2 85.7 64.9 3 0 11 100 21.4 35.3 hydro_narcomedusae B 369 330 303 39 52.1 89.4 65.8 85 1 284 98.8 23 37.3 hydro_other B 341 177 437 164 28.8 51.9 37 51 13 290 79.7 15 O n 25.2 hydro_rhopalonematidae B 178 173 125 5 58.1 97.2 72.7 59 2 119 96.7 33.1 49.3 medusa_pelagia B 1 0 0 1 NA 0 NA 0 0 1 NA 0 NA l y
	27 71 hydro_type2 ctenophore_lobata_ mnemiopsis 28 ctenophore_lobata_ocyropsis 72 hydro_type3 29 ctenophore_lobata_type1 73 medusa_Pelagia 30 detritus_blob_sparse 74 medusa_tentacles 31 detritus_casing 75 polychaete_type1 32 detritus_dark 76 polychaete_type2 33 detritus_filamentous 77 polychaete_type3	656 112 12 95 23 82 2315 65 182 27 350 97 511 163	13 9 0 8 0 1 300 17 2 2 62 0 93 10	4 17 12 2 1 4 321 7 1 6 58 3 270 3	660 129 24 97 24 86 2636 72 183 33 408 100 781 166	98.1 92.6 100 92.2 100 98.8 88.5 79.3 98.9 93.1 85 100 84.6 94.2	99.4 86.8 50 97.9 95.8 95.3 87.8 90.3 99.5 81.8 85.8 97 65.4 98.2	89.6 98.7 95 66.7 97 97.9 84.4 88.1 87.1 99.2 98.5 85.4 73.8 96.2				
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Table S3 .

 S3 Probability filtering of the 108 classes, showing the original classes, groupings, total original counts, values of the probability thresholds per class, percent retained after filtering, and percent discarded after filtering.

	33 detritus_filamentous 76 polychaete_type2	detritus polychaete_worm	1104433 1827	0.5946 0.2887	41.31 96.5	58.69 3.5
	34 diatom_chain_string 77 polychaete_type3	diatom_chain polychaete_worm	1599323 76895	0.5908 0.9183	83.07 9.37	16.93 90.63
	35 diatom_chain_tube 78 protist_noctiluca	diatom_chain protist	861349 30117	0.9475 0.2528	24.98 99.32	75.02 0.68
	# 36 echinoderm_brachiolaria Class 79 protist_rad 37 echinoderm_pluteus 80 protist_rad_clear	Group echinoderm protist echinoderm protist	Total 19850 52375 39949 23841	Prob. filter % Kept 0.8697 14.34 0.2288 99.36 0.935 10.89 0.2615 99.88	85.66 0.64 % Discard 89.11 0.12
	1 38 ephyrae acantharia_protist_type1 81 pteropod_type1	protist ephyra pteropod	25886 22441 8391	0.804 0.62 0.665	17.5 41.57 15.58	82.5 58.43 84.42
	2 39 fecal_pellets acantharia_protist_type2 82 pteropod_type2	protist detritus pteropod	78880 337405 5806	0.4161 0.8071 0.6687	93.4 19.58 18.72	6.6 80.42 81.28
	appendicularian_ 40 fish_bregmacerotidae 83 pteropod_type3	fish_bregmacerotidae pteropod	23696 5762	0.8179 0.7679	20.02 14.7	79.98 85.3
	3 41 fish_carangidae sinusoidal_tail 84 radiolarian_chain	appendicularian fish_other radiolarian_chain	208569 2922 10579	0.8189 0.6751 0.2932	51.91 4.24 98.15	48.09 95.76 1.85
	appendicularian_ 42 fish_ceratioidei 85 shrimp_caridae	fish_other shrimp_other	18 4617	0.4 0.8125	16.67 8.34	83.33 91.66
	4 43 fish_echeneidae slight_curve 86 shrimp_caridae_sm	appendicularian fish_other shrimp_other	228665 506 40329	0.9191 0.6373 0.7715	11.98 6.32 19.08	88.02 93.68 80.92
	5 44 fish_engraulidae appendicularian_straight 87 shrimp_euphausiid	appendicularian fish_engraulidae shrimp_euphausiid	137453 17051 15380	0.7857 0.8873 0.5932	21.25 7.72 61.58	78.75 92.28 38.42
	6 45 fish_gobiidae artifact_type1 88 shrimp_euphausiid_escape	artifact fish_gobiidae shrimp_euphausiid	8201765 1738 2209	0.7199 0.4473 0.4812	92.63 65.94 46.27	7.37 34.06 53.73
	7 8 9 10 chaetognath_curved artifact_type2 bubbles chaetognath_c_curved F o artifact artifact chaetognath chaetognath 46 fish_gonostomatidae fish_other 47 fish_labroidei fish_other 48 fish_leptocephali fish_other F o 89 shrimp_lucifer shrimp_lucifer 90 shrimp_mysid shrimp_other 91 shrimp_sergestidae shrimp_sergestidae F o 11 chaetognath_dark chaetognath 12 chaetognath_straight chaetognath 13 copepod_calanoid copepod_calanoid 14 copepod_calanoid_eggs copepod_calanoid 15 copepod_calanoid_ eucalanus copepod_calanoid r R e v i 49 fish_microdesmidae fish_other 50 fish_myctophidae fish_myctophidae r 92 siph_ablyidae siph_ablyidae r siph_calycophoran_ 51 fish_ophidiidae fish_other 52 fish_phosichthyidae fish_other 53 fish_pleuronectiformes fish_other R e 93 pointy_notail siph_calycophoran 94 R siph_calycophoran_ pointy_tail siph_calycophoran e 54 fish_scombridae fish_other v i 95 siph_calycophoran_round siph_calycophoran 96 siph_lilyopsis_rosea siph_lilyopsis_rosea v i	11118 10017 1545 3701 27 1607 8720 31633 5148 15238 259481 60903 67528 35059 37834 27 34205 50518 352 3590 5622 41298 14650 6305 59727 1843	0.996 0.9898 0.4244 0.3247 0.4 0.5223 0.8931 0.8455 0.8495 0.9732 0.5445 0.1848 0.1621 0.6059 0.1859 0.293 0.5174 0.9952 0.2741 0.4406 0.4677 0.8834 0.6591 0.7189 0.9841 0.5354	1.78 25.13 80.32 90.73 44.44 50.16 9.45 35.25 18.51 15.75 77.42 99.78 99.94 59.6 99.36 77.78 28.93 6.45 72.44 16.69 26.08 27.31 47.55 3.19 6.63 72.82	98.22 74.87 19.68 55.56 49.84 90.55 64.75 81.49 84.25 9.27 22.58 0.22 0.06 40.4 0.64 22.22 93.55 71.07 27.56 83.31 72.69 52.45 73.92 96.81 93.37 27.18
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