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Abstract

Displacement control of bladed-disks is of primary stake for turbo-engineers. Such structures present cyclic

symmetric properties that allow some specific reduction techniques. For linear problems, the equation of

motion projected on spectral components, also called nodal diameters, gives a system of equations in which

the unknowns are uncoupled. Each nodal diameter can therefore be considered independently. However

in real applications, the presence of nonlinear terms couples the different nodal diameters and makes the

spectral equation of motion more complex to handle.

This paper deals with this difficulty and presents two main results. It first gives an analytical derivation

to determine which nodal diameters get coupled by friction nonlinearities. Such procedure reduces the size

of the model but also the number of unknowns in the system by considering only the interacting nodal

diameters. This method is general and allows to tackle a wide range of industrial problems. However this

may not be sufficient for an efficient resolution of the nonlinear system since the nonlinear forces must

first be evaluated in the physical domain, and, a priori, for all the sectors of the cyclic system before being

computed in the spectral domain. The second main originality of the paper is the development of different

strategies on this matter. One is analytical, valid for any excitation and is straightforward to implement,

while the others are based on specific assumptions on the deformed shape but offer further reduction.

The new methodologies are validated on a simplified bladed-disk with different excitation forces and

different friction’s laws. They show very good accuracy and a substantial computation time reduction.
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1. Introduction

This paper focuses on cyclic structures such as turbo-engines, with the assumption that they are perfectly

tuned. For a linear system, the equation of motion of such structures are, most of the time, projected on their

spectral components (also called nodal diameters) counterpart [1, 2]. The spectral system is advantageous:

as each nodal diameter is decoupled from each other, it greatly facilitates the solution procedure. In turbo-5

machineries, one stage of bladed-disk is excited by the airflow going through the previous stages that are

either rotating or fixed in the frame of the system studied. Therefore the excitation can either be a standing

wave, a traveling wave, or a combination of both. This external force forms a specific wave shape due to the

cyclic property of the structures. For the forced response of a linear system, only the nodal diameters equal

to the wave numbers composing the force are excited and must be considered.10

In real applications, nonlinear effects may arise in the system due to large displacement or friction

between different bodies. These lead to two difficulties. Firstly, the nodal diameters get coupled by the non-

linear effects and the number of equations to solve is the same as in the initial physical system of equations,

even after a spectral projection. This usually makes the system too large to be solved efficiently. Secondly,

the nonlinear forces must be given in their spectral form in the solution procedure whereas they are generally15

known explicitly in the physical domain. Computing the spectral components of the nonlinearities usually

requires to project the displacement in the physical domain, to compute the nonlinear forces and then to

project them back into the spectral domain. This set of calculations is also time consuming.

Structural cyclicity combined with nonlinearities have interested the scientific community for a long

time. The work of Vakakis [3] presents many interesting insights on the behavior of such systems. The20

concept of nonlinear normal mode [4] has been used in [5] to study the modal interaction of the cyclic

structure. Using cyclic symmetric properties in the case of polynomial nonlinearities, analytical derivations

were provided in [6] to predict which nodal diameters interact with each other and to provide the expression

of the nonlinear effects directly in the spectral domain. This method offers a large system reduction and

enables to recover complex phenomena such as internal resonances. Under the specific case of a traveling25

wave excitation, Petrov [7] made the assumption that the displacements, and hence the nonlinear forces, have

the same shape as the excitation. This assumption simplifies the system and still shows great accuracy for

friction nonlinearities [8]. In the same paper, Petrov proposed an extension for the standing wave excitation

case: the methodology was adapted by increasing the size of the sector of reference. For this ”supersector”,

the standing wave excitation can be seen as a traveling wave excitation with the wave number equal to 0. This30

strategy is theoretically correct but is not practical for finite element models of industrial structures because
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one must still consider several sectors in the model and its associated size may be prohibitive. Moreover, in

the case of a structure with polynomial nonlinearities, complex phenomena can be obtained (such as internal

resonance [9], multiple solutions [10] or localization [11]). Under these circumstances, the solution may not

be following a traveling wave shape anymore and therefore the strategy of [7] can no longer be used.35

The objective of the current work is to provide a new procedure enabling to reduce efficiently the size of

the model and the number of unknowns in cyclic structures undergoing nonlinearities and possible complex

excitation wave forms. The focus will be on friction nonlinearities only but some of the developments

presented in the paper could be extended to other nonlinear effects. Analytical derivations are first proposed

to determine which nodal diameters interact with each other. By this mean, the number of nodal diameters40

to consider in the spectral system of equations is reduced. However, as the nonlinear forces must generally

still be evaluated in the physical domain, it may therefore not be efficient enough for a large number of

sectors. An analytical procedure is then proposed to reduce the number of sectors for which the nonlinear

forces must be evaluated. These analytical derivations give a new general method of reduction, free of any

assumptions. Finally, to go even further in the reduction process and consider a smaller number of sectors in45

the nonlinear effects evaluation, this paper will also provide a new strategy based on an assumption on the

displacement shape.

The paper is organized as follows, Section 2 recalls the properties of cyclic symmetry and provides the

spectral system of equations for any nonlinearity. Analytical derivations are made in Section 3 to explicitly

provide which nodal diameters are going to interact with each other due to the nonlinear terms. This result50

is supplemented with an analytical procedure to reduce the number of sectors for which the nonlinear forces

must be evaluated. Section 4 proposes other strategies to reduce the size of the problem: the work of [7]

will first be recalled before giving details on how it can be adapted with the previously proposed analytical

development. Section 5 validates numerically the new methodologies for different friction law’s and different

excitation forces by comparison with simulations on a full sized model.55

2. Spectral equation of motion for a nonlinear cyclic symmetric structure

The purpose of this section is to briefly derive the equations of motion of a cyclic symmetric system

written in its spectral basis. These well known steps are used to properly introduce the notations. Complete

derivations can be found in [1, 2].

Let consider a cyclic structure composed of N sectors such as the one depicted in Figure 1 (where the60

sectors are represented separated from one another). The system is supposed perfectly tuned. Each sector
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has the same mass, stiffness and damping matrices denoted M0, C0 and K0.

1

2
3

4

5

6
7

8

Figure 1: Representation of a cyclic structure with N = 8 sectors.

For the decoupled system (the cyclic boundaries are not assembled), the equations of motion of the whole

structure are

Mü+Cu̇+Ku+ fc + fnl = fext, (1)

where M = (IN⊗M0), and similarly for C and K. ⊗ denotes the Kronecker product and IN the identity65

matrix of size N. The vector u =
[
uT

1 , ...,u
T
N
]T represents the displacements of the degrees of freedom

(DOFs) of the entire structure, u j denotes the displacement for only the j−th sector ( j ∈ J1,NK). The term

fc contains the forces that the sectors apply on each other. The term fnl represents nonlinear forces and fext

denotes external excitation forces. The cyclic boundaries are supposed to be free of nonlinear forces.

From the theory given in [12], the physical displacement u can be transposed into its spectral compo-70

nents, such that

u = Fũ, (2)

where ũ =
[
ũT

0 , ..., ũ
T
N−1
]

is the full spectral displacement component vectors (ũk represents the spectral
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displacement of order k) and F is the Fourier matrix given by

F =
1√
N


1 1 · · · 1

1 eiα · · · ei(N−1)α

...
...

. . .
...

1 ei(N−1)α · · · ei(N−1)2α

⊗ INi+2Nb , (3)

Ni and Nb are respectively the number of internal and cyclic boundary (right or left) DOFs. The scalar value

α is the sector angle given by α = 2π
N . As explained in [6], only the quantities (ũk)k∈J0,KK, with K = N

2 if N

is even and K = N−1
2 if N is odd, are required to retrieve the full displacement. The others components are

their complex conjugates:75

ũN−k = ¯̃uk for k ∈ J1,MK, (4)

with M = N
2 −1 if N is even and M = N−1

2 if N is odd. Substituting u by Fũ and projecting (1) on F̄ gives

F̄MF ¨̃u+ F̄CF ˙̃u+ F̄KFũ+ F̄(fc + fnl) = F̄fext. (5)

This expression can be simplified with the following property

N−1

∑
p=0

(
e−ipnα eipmα

)
=

0 if n 6= m

N if n = m,

(6)

where m and n are integers (in our application these will represent nodal diameters numbers). It gives

M ¨̃u+C ˙̃u+Kũ+ F̄(fc + fnl) = F̄fext. (7)

The displacement of each u j is decomposed into three parts: its internal DOFs (subscript i), its right

interface DOFs (subscript r) and its left interface DOFs (subscript l). In order to assemble the structure, the

following displacement continuity must be respected

u j,l = u j+1,r 1≤ j ≤ N, (8)

with uN+1 = u1.

These conditions can be expressed in the spectral domain, and one gets for each spectral component

ũk,l = eikα ũk,r k ∈ J0,N−1K. (9)
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For a finite element model (FEM), the DOFs are usually expressed in a local reference frame which supple-80

ments (9) with a rotation matrix. This will be omitted for simplification purpose and we consider that the

DOFs displacements are all expressed in the same global frame. The information on cyclic boundaries (9)

are then used to reduce further the system (7). For each spectral order k, one has


ũk,i

ũk,r

ũk,l

= B̃k

ũk,i

ũk,r

 , where B̃k =


INi 0

0 INb

0 eikα INb

 (10)

By means of a block diagonal matrix B̃ composed of
(
B̃k
)

k∈J0,N−1K, the new vector of solution becomes B̃ũ.

It will be noted ũ for simplicity in the rest of the paper. Equation (7) is premultiplied by ¯̃BT to give:85

M̃ ¨̃u+ C̃ ˙̃u+ K̃ũ+ ¯̃BT F̄(fc + fnl) =
¯̃BT F̄fext, (11)

where M̃ is a block diagonal matrix which contains the matrices
(
M̃k
)

k∈J0,KK with M̃k = ¯̃BT
k M0B̃k (and

similarly for C̃ and K̃). With Newton’s third principle, the forces between sectors compensate each other

out and assembling the different sectors gives ¯̃BT F̄fc = 0. The new system to be solved is given by:

M̃ ¨̃u+ C̃ ˙̃u+ K̃ũ+ ¯̃BT F̄fnl =
¯̃BT F̄fext. (12)

In turbine engines, the excitation forces arise from the previous stages of bladed-disks and thus lead

to both traveling wave (the force rotates along the structure) and standing wave (the force is fixed in the90

structure) excitations. These excitations are usually characterized with a given wave number. This wave

number will be noted hex (0 ≤ hex ≤ K). Numerical examples will be provided in Section 5 for standing

wave excitations and also for a combination of both traveling and standing waves. The cyclic boundaries are

supposed to be free of external and nonlinear forces. Therefore B̃T does not impact the forcing term and the

nonlinearity.95

In a general manner, a mono-harmonic external force applied on the first sector can be written as

fext,1 (t) =
1
2

(
faeiωt + f̄ae−iωt

)
, (13)

where fa is a complex vector and ω is the excitation frequency. For a sector j, the excitation force fext, j can

be computed directly with the force applied on the first sector fext,1 (t). For a traveling wave excitation, their
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relationship is

fext, j (t) = fext,1

(
t− α ( j−1) hex

ω

)
(14)

A standing wave can be seen as the sum of two waves traveling in opposite direction. Its expression can be

given by

fext, j (t) =
1
2

(
fext,1

(
t− α ( j−1) hex

ω

)
+ fext,1

(
t +

α ( j−1) hex

ω

))
= cos(( j−1)αhex) fext,1 (t)

(15)

Next, we study how a specific excitation impacts its spectral components. Let consider a spectral com-

ponent q ∈ J0,KK. For this component the term F̄fext is noted f̃ext,q (similar notation is used for the nonlinear

forces later on) and it can be calculated using (3). It gives:

f̃ext,q =
1√
N

N

∑
j=1

e−iq( j−1)α fext, j. (16)

Employing the property of (6) for the traveling wave excitation yields,

f̃ext,q =
1

2
√

N

N

∑
j=1

[
e−iq( j−1)α

(
faeiωte−iα( j−1)hex + f̄ae−iωteiα( j−1)hex

)]
=

1
2
√

N

N

∑
j=1

[(
faeiωte−iα( j−1)(q+hex)+ f̄ae−iωteiα( j−1)(−q+hex)

)]

=


0 if q 6= hex√

N
2

f̄ae−iωt if q = hex,

.

(17)

The derivations for the standing wave case are similar and give100

f̃ext,q =


0 if q 6= hex√

N
4
(
faeiωt + f̄ae−iωt

)
if q = hex,

(18)

In both cases, the q−th spectral component of the external force, f̃ext,q, is not zero if and only if q

corresponds to the wave number of the external force. Notice that fnl in (11) depends on u (=Fũ) and/or its

time derivative. Without this term, a linear problem is recovered and each spectral order k is decoupled in

Equation (12). However in the presence of the nonlinear forces, all the nodal diameters may be coupled and

thus the size of the problem is not reduced.105
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3. Reduction procedure for friction nonlinearities

The purpose of this section is to determine which nodal diameters are getting coupled by friction non-

linearities. To determine this coupling, the following work is based on an analytical development presented

in [6] that only handled polynomial nonlinearities. The dynamics involved with polynomial or friction non-

linearities is different as the former represents smooth functions while the latter is irregular. After introducing110

the main result of [6], we will propose its extension to deal with friction nonlinearities.

3.1. Coupling of nodal diameters through the nonlinear forces

3.1.1. Brief recall of the cyclic nonlinear forces for polynomial nonlinearities

Full details of this short derivation are provided in [6] in which polynomial nonlinear forces were studied.

Those can be written as:

fnl, j = knlu
p
j , (19)

with p an integer and knl a scalar value. The displacement u j of sector j in (19) is substituted with its spectral

component counterpart (2). Then the nonlinear forces are projected on their spectral components and the115

q−th spectral forces becomes:

f̃nl,q =
1√
N

N

∑
j=1

[
e−iq( j−1)α knl(√

N
)p

p

∏
m=1

(
N−1

∑
k=0

(
ũkeik( j−1)α

))]

=
1(√

N
)p+1 knl

N−1

∑
k1=0

(
N−1

∑
k2=0

(
...

N−1

∑
kp=0

(
ũk1 ũk2 ...ũkp

N

∑
j=1

[
ei( j−1)α((k1+k2+···+kp)−q)

])))
.

(20)

Based on relation (6), f̃nl,q is different from 0 if and only if the set (k1,k2, ...,kp) satisfies the following

relation

p

∑
m=1

km ≡ q mod N. (21)

Since 0≤ km ≤ N−1, the relation (21) is equivalent to

p

∑
m=1

km = q+ jN for j ∈ J0, p−1K. (22)

If this condition is satisfied, the spectral components (km)m∈J1,pK are coupled by the nonlinear forces and

excite the nodal diameter q.120
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3.1.2. Application to friction nonlinearities

In mechanical engineering applications, friction forces are the nonlinear forces that two structural bodies

in contact exert on each other. One common macroscopic way to describe the friction effects is to use

Coulomb’s law 
‖fnl,T‖< µ

∣∣ fnl,N
∣∣ if u̇r,T = 0

fnl,T =−µ
∣∣ fnl,N

∣∣ u̇r,T

‖u̇r,T‖
if ‖u̇r,T‖> 0,

(23)

where fnl,T is the tangential friction nonlinear forces, fnl,N is the normal forces perpendicular to the contact

area, µ is the friction coefficient and u̇r,T is the relative tangential velocity between the two bodies in contact.

As illustrated in Figure 2, this law is highly irregular. Different strategies exist to smoothen the non-

linearity. For instance, Firrone and Zucca [13] presented different models for one and two dimensional125

contacts. An elastic contact was used in [14, 15] and leads to stick slip motion. The following regularized

Coulomb’s law also proves to be interesting [16, 17] for numerical simulations,

fnl,T = µ
∣∣ fnl,N

∣∣ tanh
(

u̇r,T

ε

)
, (24)

where ε is a positive parameter which controls the slope near the zero relative velocity (see Figure 2). The

smaller ε , the more the regularized function fits Coulomb’s law.

µN

−µN

1
ε u̇r

fnl

Figure 2: Representation of friction law; ( ): exact Coulomb’s law; ( ): law regularized with an hyperbolic tangent function.

The hyperbolic tangent friction law is adopted in the rest of this section for analytical purpose. The130

Taylor expansion of the hyperbolic tangent function is

tanh(z) =
∞

∑
n=1

qnz2n−1, (25)
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where qn is the Taylor expansion coefficients of order n. Using this Taylor expansion within (24), and, in a

similar manner as performed in (20), projecting the nonlinear forces on the spectral component q (q∈ J0,KK)

gives:

f̃nl,q =
µ
∣∣ fnl,N

∣∣
√

N

∞

∑
n=1

 qn(√
Nε
)2n−1

N−1

∑
k1=0

N−1

∑
k3=0

...

N−1

∑
k2n−1=0

 ˙̃uk1
˙̃uk3 ... ˙̃uk2n−1

N

∑
j=1

[
ei( j−1)α((k1+k3+···+k2n−1)−q)

] .
(26)

Therefore if there exists an n ∈ N∗ such that135

2n−1

∑
m=1

km ≡ q mod N, (27)

then f̃nl,q is different from 0 and directly excites the spectral component ũq. This Equation (27) provides all

the coupling terms that the nonlinear forces can create and helps to determine which spectral components

will be excited.

These analytical derivations have been obtained with a regularized Coulomb’s law. However taking

ε close to 0 results in the asymptotic case and remains valid with our approach. As it is important to140

generalize this result, numerical simulations that employ the Dynamic Lagrangian Frequency Time (DLFT)

algorithm [18] which assumes no regularization of the friction law will be performed in Section 5.

Overall, the methodology allows to reduce the system (12) by considering only the interacting nodal

diameters. In practice, the Fourier matrix defined in (3) is reduced in the rectangular matrix Fr that contains

only the coupled diameters. The displacement of the structure is then found with

u = Frũr + c.c, (28)

where ũr is the spectral components of the displacements for the interacting nodal diameter up to K. c.c is

the complex conjugate terms to account for (4). Therefore the system (12) becomes:

M̃r ¨̃ur + C̃r ˙̃ur + K̃rũr + F̄T
r fnl = F̄T

r fext. (29)

Notice that (12) was obtained with the projection on the complete Fourier matrix (square and symmetric),145

whereas system (29) is obtained with the projection on the reduced Fourier matrix F̄T
r which is no longer

square.

This single reduction may not be efficient enough due to the process required to evaluate the nonlinear

forces. In numerical applications, one would first need to compute the physical displacement for all sectors,

10



then apply the nonlinear law and finally project the force on the interesting nodal diameters. This may150

become prohibitive for a finite-element model of a real bladed-disk. Therefore Section 3.2 will address this

issue and present a general reduction valid for any wave excitation.

3.1.3. Examples and algorithm

Let consider an external force with a wave number hex. Without nonlinear coupling, only the spectral

component ũhex responds (see Section 2). km can then only take the value hex, and condition (27) is simplified155

in the following: if there is a n ∈ N∗ such that

(2n−1)hex ≡ q mod N, (30)

then f̃nl,q is different from 0 and the spectral component ũq is excited. Although n is an integer (and can thus

take an infinite number of values), the remainder of the Euclidean division of (2n−1)hex by N is finite and

all of its values are obtained for a finite number of possible n−values. When n is larger than a particular

integer, called M1, then the same remainders are obtained once again. The value of M1 can be obtained with

the equation:

(2(n+M1)−1)hex ≡ q mod N, (31)

which gives

2M1hex ≡ 0 mod N. (32)

The scalar value M1 can then be evaluated easily. By varying n ∈ J1,M1K we obtain all the possible values of

the remainder of (2n−1)hex by N for n ∈ N∗. These values correspond to the interacting nodal diameters.

A numerical example will be provided later in this section.160

Through this first iteration, we have obtained a set of nodal diameters {q1, · · ·qP} that are coupled

through an excitation hex. One could then think that the following iterative procedure must be employed:

consider the new set of nodal diameters km ∈ {q1, · · · ,qP}, evaluate all the possibilities from (27), find new

interacting nodal diameters, and so on, until convergence is reached and no more new nodal diameters are

found with the algorithm. However such an iterative process is not needed: the nodal diameters found165

with the first step are necessarily equal to an odd multiplicative factor of hex (with a possible shift of N):

qi ≡ (2ni−1)hex mod N, i ∈ J1,PK. Consider Equation (27) with the new possible values of km. We split

11



this general sum into multiple sums for each different nodal diameters. It gives

m1

∑q1 + · · ·+
mP

∑qP ≡ q mod N, (33)

with ∑i mi = 2n− 1. As explained previously each nodal diameter q is in fact an odd multiplicative factor

times hex. Thus (33) can be written as170

m1

∑(2n1−1)hex + · · ·+
mP

∑(2nP−1)hex ≡ q mod N, (34)

Factoring out the value hex yields

hex

P

∑
i=1

(mi (2ni−1)) ≡ q mod N,

hex

(
2

(
P

∑
i=1

mini

)
−

P

∑
i=1

(mi)

)
≡ q mod N,

(35)

since ∑i mi = 2n− 1, the last equation is just the remainder of the Euclidean division by N of an odd mul-

tiplicative factor times hex. This equation is therefore equivalent to (27), and thus solving it once enables

to recover all interacting nodal diameters. The methodology can be generalized to multiple excitations with

multiple wave numbers (see Appendix A).175

Numerical example

Let consider the case N = 24 and hex = 3. The computation of (32) gives M1 = 4. The values of the

term (2n−1)hex for n ∈ J1,4K gives [3,9,15,21]. As ũ15 = ¯̃u9 and ũ21 = ¯̃u3 (see Equation (4)), only the 3rd

and 9th nodal diameters will get coupled. Then km ∈ {3,9}. Let detail (33) to justify that there is no need to

re-apply the algorithm with this new set of values for km:180

m1

∑3+
m2

∑9 ≡ q mod N,

m1

∑3+
m2

∑(3×3) ≡ q mod N,

3(m1 +3m2) ≡ q mod N,

3(2(m1 +2m2)− (m1 +m2)) ≡ q mod N,

(36)

The term m1 +m2 is equal to 2n− 1 and the term 2(m1 +2m2) is even. As a consequence 2(m1 +2m2)−
(m1 +m2) is an odd number. Computing the remainders of the division of 3(2(m1 +2m2)− (m1 +m2)) by

N will provide the same values as the first iteration.

12



3.2. Reduction of the nonlinear evaluation for a general wave excitation (Method 1)

The purpose of this section is to propose a general and efficient method to compute the term F̄T
r fnl of185

system (29). This term represents the projection on a reduced Fourier matrix of the physical nonlinear forces

for all sectors. Such operation is time consuming and is to be avoided as much as possible. The following

proposes an analytical approach to reduce the number of sector for which the nonlinear forces must be

evaluated.

Similarly to the displacement reduction in (28), we have for the nonlinear forces,

fnl = Fr f̃nl,r + c.c, (37)

where f̃nl,r is the spectral component of the nonlinear forces for the interacting nodal diameters. This equa-

tion can be split into

fnl =

fnl,m

fnl,s

= 2

Re(Fr,m) − Im(Fr,m)

Re(Fr,s) − Im(Fr,s)

Re
(
f̃nl,r
)

Im
(
f̃nl,r
)
 , (38)

where fnl,m are the nonlinear forces applied on the sectors J1,NdiamK, with Ndiam the number of interacting190

nodal diameters pondered by a coefficient 2 if the nodal diameter is degenerated. fnl,s are the nonlinear forces

applied on the remaining sectors JNdiam + 1,NK. The spectral nonlinear forces are split into their real and

imaginary parts denoted with the operators Re and Im. Notice that for non-degenerated nodal diameters, the

imaginary part of the spectral nonlinear forces is equal to 0 and is thus removed from the equation. The term

[Re(Fr,m) − Im(Fr,m)] is a square matrix of size Ndiam×Ndiam. Inversing this matrix and substituting the195

first line of (38) into the second line gives:

F̄T
r fnl = F̄T

r

 INdiam

[Re(Fr,s) − Im(Fr,s)] [Re(Fr,m) − Im(Fr,m)]
−1


︸ ︷︷ ︸

P

fnl,m (39)

Finally, following this substitution procedure, the system (29) is reduced in

M̃r ¨̃ur + C̃r ˙̃ur + K̃rũr + F̄T
r Pfnl,m = F̄T

r fext. (40)

In contrast of system (29), this new system (40) does not require an evaluation of the nonlinear forces

for the entire structure but only for the subset of sectors J1,NdiamK. Notice that even though the evaluation

must be performed for several sectors, only the spectral matrices of the reference sector are needed.
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The previous development can be extended to the entire set of interacting nodal diameters of hex. The200

interacting nodal diameters are equal to a product of an odd number by hex whith a possible shift of N (as

shown in Section 3.1). It corresponds to the same wave moving faster and thus the reduced number of

sectors Ndiam remains the same. Therefore the new method can also handle excitation forces which combine

multiple traveling and standing wave excitations whose wave numbers are equal to an odd number times hex

modulo N.205

This reduction is general, valid for any wave excitation and straightforward to implement in a numerical

code. The choice was made in this paper to study nonlinearities coming from frictional effects. However,

the results remain valid for any polynomial nonlinearity.

Other strategies will be presented in Section 4. But those require specific approximations to reduce

further the computation of the nonlinear forces. Section 4 will first explain the strategy developped by210

Petrov [7] for both a traveling wave and a standing wave excitations. Then we will show how this strategy

can be extended with the previous development that predicts the interacting nodal diameters. Moreover,

considering an additional particular assumption on the deformed shape, an original method will be given to

decrease further the size of the problem for the case of a standing wave excitation.

Numerical example215

Consider N = 24 sectors and an excitation force which combines traveling and standing wave excitations

with hex ∈ {3,9}. Only the third and ninth nodal diameters interact. Both of them are degenerated nodal

diameters and thus Ndiam = 4. The matrix P of (39) is

P =


1

1

1

⊗



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



. (41)

For better readability, the matrix is represented as a Kronecker product. The size of the first vector 3× 1

comes from the hex = 3 excitation.220
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4. Strategies for specific wave excitation

Before proposing two original methods of reduction, this section will first recall the strategies proposed

by Petrov [7] for the case of standing and traveling wave excitations.

4.1. Summary of the article by Petrov [7]

4.1.1. Reduction for a traveling wave excitation225

In the specific case of a traveling wave excitation, Petrov [7] developed a methodology to reduce the size

of the problem (12). This methodology has been widely used, for instance to study shrouds [19], fretting of

bladed-disks [20] or creep effect [21]. As opposed to the analytical development proposed in Section 3.1,

the work in [7] relies on the specific assumption that the displacement (and thus the nonlinear forces) has

the same shape as the traveling wave excitation (14). It uses the following assumption:230

u j (t) = u1

(
t− α ( j−1) hex

ω

)
, (42)

which is fundamentally different from the proposed approach in Section 3. Both approaches are actually

complementary, as it will be shown at the end of this section. To better understand the differences, the

method of [7] is explained first.

To take into account the nonlinear effects, the Harmonic Balance Method (HBM) [22] is used, and, the

steady-state solution on the first sector, supposed periodic, is sought as a Fourier series235

u1 (t) = c0 +
1
2

Nh

∑
n=1

(
cneinωt + c̄ne−inωt

)
, (43)

where Nh is the total number of harmonics retained and cn are the Fourier components (notice that c0 is real).

Due to the particular shape of the solution (42), the spectral displacement can be easily computed. Using the

same derivations as the traveling excitation force (17), we have for each harmonic n ∈ J0,NhK and a given

15



wave number hex:

ũq =
1

2
√

N

N

∑
j=1

[(
cneinωte−iα( j−1)(q+nhex)+ c̄ne−inωteiα( j−1)(−q+nhex)

)]

=



√
N

2

(
cneinωt + c̄ne−inωt

)
if q = 0 and nhex ≡ 0 mod N,

√
N

2

(
cneinωt + c̄ne−inωt

)
if q = N

2 and (nhex)≡ N
2 mod N

√
N

2 c̄ne−inωt if (q−nhex)≡ 0 mod N, and q /∈
{

0, N
2

}
√

N
2 cneinωt if (q+nhex)≡ 0 mod N, and q /∈

{
0, N

2

}
0 otherwise

.

(44)

In practice the user provides the number of harmonics considered (Nh) and evaluates for each harmonic240

the remainder of (nhex) by N to determine q. For each harmonic n, a single value of q is obtained. This

process must be applied for all n ∈ J0,NhK. In the end, a table of correspondence can be created between the

harmonics number and the nodal diameter. For each harmonic n, we finally have

ũq =


√

N
2 c̄ne−inωt or

√
N

2 cneinωt if q ∈ J1,MK
√

N
2

(
cneinωt + c̄ne−inωt

)
if q ∈

{
0, N

2

} . (45)

This equation is substituted in (12) and the system is projected on the exponential basis
(
einωt

)
n∈J0,NhK

with the scalar product:

〈 f ,g〉= 1
T

∫ T

0
f (t) ḡ(t)dt, (46)

where T is the fundamental time period equal to 2π
ω . Finally, the system (12) which initially required the

computation of all nodal diameters, each of whom was expanded up to Nh harmonics, is now simplified to245

[
(inω)2 M̃q− (inω) C̃q + K̃q

]√N
2

c̄n + 〈f̃nl,q,e−inωt〉= 〈f̃ext,q,e−inωt〉 ∀n ∈ J0,NhK. (47)

This means that each harmonic only affects one nodal diameter. The harmonic coefficients
(
c fnl,n

)
of the

nonlinear force on the first sector fnl,1 are evaluated through an AFT procedure [23]. It gives

fnl,1 (t) = c fnl,0 +
1
2

Nh

∑
n=1

(
c fnl,neinωt + c̄ fnl,ne−inωt

)
. (48)
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The nonlinear forces for the remaining sectors are obtained with the assumption (42)

fnl, j (t) = fnl (u̇ j (t))

= fnl

(
u̇1

(
t− α ( j−1) hex

ω

))
= fnl,1

(
t− α ( j−1) hex

ω

)
.

(49)

Finally 〈f̃nl,q,e−inωt〉 is obtained with a similar development as the one used for ũ (Equation (43) to (45)),

f̃nl,q =


√

N
2 c̄ fnl,ne−inωt or

√
N

2 c fnl,neinωt if q ∈ J1,MK
√

N
2

(
c fnl,neinωt + c̄ fnl,ne−inωt

)
if q ∈

{
0, N

2

} . (50)

This reduction proposed by Petrov [7] is powerful: instead of having a full system to solve of size Ndof×
N× (1+2Nh) (with Ndof the number of DOFs in a single sector), we have a reduced system of size Ndof×
(1+2Nh). It offers a reduction by N. This reduction could have been expected since the assumption of a

traveling wave displacement implies that knowing the displacement on one sector provides the displacement250

for the full structure. However, seeking the solution as a traveling wave shape is detrimental for bifurcation

analysis where symmetry-breaking bifurcation points destroys the initial shape of the solution [9]. Moreover

in the case of a standing wave excitation the inital hypothesis is broken and the traveling assumption is, a

priori, not valid.

Numerical example255

As a numerical example, consider the case of N = 24, hex = 3 and Nh = 7 harmonics. The reduction

process of matching one harmonic to a nodal diameter is depicted in Table 1. The harmonics n ∈ {1,7}
activate the third nodal diameter (see Equation (44)), harmonics {3,5} activate the ninth nodal diameter and

so on.

Harmonic number n 1 2 3 4 5 6 7

Nodal diameter q 3 6 9 12 9 6 3

Table 1: Table of correspondence between the harmonic number and the nodal diameter with a traveling wave assumption.

4.1.2. Reduction for a standing wave excitation260

In order to handle standing wave excitations, Petrov [7] proposed an alternative to apply its strategy.

The N initial sectors are decomposed into M groups of N1 sectors (N1 depends on hex and N). The system
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remains cyclic. The standing wave excitation with an initial wave number hex applied on the N sectors is

transformed into a traveling wave with zero nodal excitation applied on the M sectors. The previous strategy

explained in Section 4.1.1 can then be employed for M sectors with hex = 0. This method is interesting but265

difficult to use in practice as one must create a supersector composed of N1 sectors and the final size of the

system remains large in the case of a finite element model of an industrial structure. In order to illustrate this

methodology, Figure 3 represents a standing wave excitation with hex = 3 and N = 24. We can see that if we

consider M = 3 groups of N1 = 8 sectors then this ”supersector” undergoes a traveling wave with hex = 0.

In order to compute the spectral nonlinear forces, the nonlinear forces must be computed for N1 sectors in270

the physical domain.

0

T

N2 N1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(a) Example of a standing wave distribution for a time period.

N1

N2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
−1

−0.5

0

0.5

1

Number of sectors

(b) Example of a standing wave distribution at a given time (t = 0).

Figure 3: Representation of a standing wave excitation hex = 3, N = 24.
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4.2. Prediction of nodal diameters interaction combined with Petrov’s method [7] (Method 2)

The purpose of this section is to combine the work of Petrov [7] presented in Section 4.1.1 with the

possibility to predict which nodal diameters will interact (see Section 3.1).

The work in [7] detailed in 4.1.1 for a traveling wave excitation enables to consider only specific har-275

monics in the HBM for a set of nodal diameters. The method in Section 3.1 enables to reduce the number

of nodal diameters to consider. Combining them both lowers the overall number of unknowns and allows

to evaluate the nonlinear forces on a single sector. Based on the previous example (N = 24 and hex = 3),

the algorithm of Section 3.1 provided the interacting nodal diameters {3,9} (see Section 3.1.3). In Table 1,

nodal diameters 6 and 12 can thus be removed from the reduction procedure. Notice that only odd number of280

harmonics are thus retained. This result can be explained by the fact that since the friction is antisymmetric

only odd harmonics will respond on the main branch of solution of the system. Although the reduction is

very interesting, it is only true for a traveling wave excitation and assumes that the dynamic of the structure

shows a traveling shape under forcing.

In the case of a standing wave excitation, Section 3.1 allows to determine exactly which nodal diameters285

will respond and thus there is no need to consider a ”supersector” (the description of one single sector is

sufficient). This enables to reduce drastically the size of the model. Based on the previous example (N = 24

and hex = 3), the method in [7] required a supersector composed of N1 = 8 standard sectors. The unknowns

of the problem are then the displacements of these N1 sectors. In the new method, only the reference sector

must be considered and the number of unknowns is reduced by 2 (only ũ3 and ũ9 must be evaluated).290

However the evaluation of the nonlinear force must still be performed on N1 = 8 sectors and this may be

time consuming. The next section proposes a new strategy to deal with this issue.

4.3. Reduction of the nonlinear force evaluation in the case of a standing wave excitation (Method 3)

The purpose of this section is to propose a new reduction of the number of sectors for which the nonlinear

forces must be evaluated to solve (12).295

Consider a structure of N sectors excited with a standing wave force (15). The spatial distribution is

embedded in the term cos(( j−1)αhex). An example of a standing wave excitation is given in Figure 3. The

new proposed strategy is based on symmetric properties that allow to determine a pattern in the different

levels of the standing wave excitation. By this mean, it only requires the computation of a small subset of

sectors to retrieve the solution for the entire structure.300
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The first property that offers a standing wave shape is spatial periodicity whose period is composed of

N1 sectors. This translates into

cos(( j−1)αhex) = cos(( j−1+N1)αhex)

⇐⇒ N1αhex ≡ 0 mod N
(51)

The spatial periodicity N1 corresponds to the minimum value for which Equation (51) is satisfied. In Figure 3

we have represented this condition with a red dashed square. This condition is equivalent to the one provided

by Petrov (M group of N1 sectors for a zero nodal diameter excitation). Within a group of N1 sectors, the

spatial distribution of the excitation is cos(2π ( j−1)/N1). Depending on the value of N1, one considers

three different cases: ”N1 is odd”, ”N1 is even” and ”N1 is divisible by 4”. For each of these cases, different305

reductions based on symmetric properties are possible. When N1 is odd, see Figure 4a, N2 = (N1 +1)/2

sectors are sufficient to describe the entire force distribution (through the use of an horizontal symmetry).

When N1 is even and not divisible by 4, see Figure 4b only N2 =
(

N1
2 +1

)
/2 sectors are required to deter-

mine the entire spatial distribution. Finally, when N1 is divisible by 4, see Figure 4c, only N2 = N1/4 sectors

need to be computed (through the use of an horizontal symmetry followed by a vertical one). For this last310

case there is no need to consider the sector situated on the y−axis since cos(( j−1)αhex) = 0 for this sector

and thus the excitation is zero.

In the particular case that N = 24 and hex = 3, such as illustrated in Figure 3, N1 = 8. It corresponds to

Figure 4c and therefore N2 = 2 as represented by the green dashed box in Figure 3.
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(a) Case 1 with N1 odd.

1

N2

N1 = 10

(b) Case 3 with N1 even.

1

N2

N1 = 8

(c) Case 2 with N1 even and divisible by 4.

Figure 4: Numbers of sectors to consider for different N1−values in the case of a standing wave excitation. 1st line: spatial distribution

of the excitation over N1 sectors. 2nd line: cyclic representation of these distributions.

As a consequence, the standing wave excitation presents only N2 non-zero different amplitudes. Shifting315

these N2 forces properly, one can retrieve the forces on the N1 sectors. The pattern then repeats itself for the

M groups (the structure was decomposed into M identical ”supersectors” of N1 sectors).

Let denote fext =
[
fT
ext,1, · · · , fT

ext, j, · · · , fT
ext,N

]T
the standing wave excitation for all sectors. It can then be

written as

fext = Pfext,r, (52)

where fext,r =
[
fT
ext,1, · · · , fT

ext,N2

]T
is the reduced excitation forces and P is the pattern matrix (determined

with the aforementioned symmetric properties) of size N×N2. In the numerical example given before, P is
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obtained with320

P =


1

1

1

⊗



1 0

0 1

0 0

0 −1

−1 0

0 −1

0 0

0 1


︸ ︷︷ ︸

Pm

. (53)

and is composed of the matrix Pm that defines the symmetric properties for the N1 = 8 first sectors, and a

Kronecker product (of size M = 3) to repeat the pattern M times. For finite-element models, this matrix must

be completed with rotation matrices that express local reference frames between the different sectors.

One now makes the assumption that the displacement and the nonlinear forces have a shape similar as

the external force (52):

u = Pur, (54)

with ur =
[
uT

1 , · · · ,uT
N2

]T
the reduced displacement. Combining this assumption with the result of Sec-

tion 3.1 (see Equation (28)) yields325

ũr = F̄rPur. (55)

Finally the system (29) is once more reduced and gives (40) with the new matrix P. The nonlinear forces

must only be evaluated for N2 sectors. This methodology, with the assumption (55), will be called ”Method

3” in the remaining of the paper. It simplifies the AFT procedure (explained in Section 4.1.1) by reducing

the number of sectors that must be considered.

4.4. Performance of the different methodologies330

The purpose of this section is to compare the reduction performance of the reference solution (modeling

of the full system), the method in [7], and the proposed methodologies. The HBM is employed in all solution

procedures. Section 5 will provide numerical comparison on frequency response functions. Tables 2 and 3
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summarize the advantages of these different methods in the cases of traveling and standing wave excitations.

A ranking based on numerical performance is also provided.335

For the traveling wave excitation case (see Table 2), the method in [7] with the HBM enables to associate

each Nh harmonic to a single nodal diameter. Method 2 uses the same results but only takes into account the

harmonics which are associated to interacting nodal diameters (determined by Section 3.1). This reduces the

number of harmonics that needs to be considered (size Nh,2 < Nh). Both of these methods are more efficient

than Method 1 due to the strong assumption that the displacement has a traveling wave shape.340

For the standing wave excitation case (see Table 3), the new methodologies (Methods 1, 2 and 3) present

many interesting advantages compared to [7]. Firstly, they only require to model a single sector before

applying the cyclic symmetry procedure (whereas the former needed to model N1 sectors). This corresponds

to a reduction by N1 of the model. Secondly, the size of the problem to solve is also greatly reduced.

For the former method, a solution for the full supersector was required. With the new methods, its size345

is reduced to Ndiam (smaller than N1) nodal diameters. The number of sectors for which the nonlinearities

must be evaluated depend on the chosen method. With the assumption of a particular shape of the solution,

Method 3 requires an evaluation of the nonlinear forces for N2 (smaller than Ndiam) sectors. Method 1, is the

second most efficient method and requires the evaluation for Ndiam sectors. Lastly, comes Method 2 with an

evaluation for N1 sectors.350

Notice, that in the case of an excitation with traveling and standing waves combined, only Method 1 is

correct and it keeps the same reduction capabilities as the ones given in Table 2 and 3.

Methodology Size of the reference sector
Nonlinear solver (HBM)

Rank
Number of unknowns AFT procedure

Reference N×Ndof (2Nh +1)×N×Ndof Evaluation for N sector 4

Former Method [7] Ndof (2Nh +1)×Ndof Evaluation for 1 sector 2

Method 1 Ndof (2Nh +1)×Ndiam×Ndof Evaluation for Ndiam sectors 3

Method 2 Ndof
(
2Nh,2 +1

)
×Ndof Evaluation for 1 sector 1

Table 2: Comparison of the different methods for a traveling wave excitation.
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Methodology Size of the reference sector
Nonlinear solver (HBM)

Rank
Number of unknowns AFT procedure

Reference N×Ndof (2Nh +1)×N×Ndof Evaluation for N sector 5

Former Method [7] N1×Ndof (2Nh +1)×N1×Ndof Evaluation for N1 sectors 4

Method 1 Ndof (2Nh +1)×Ndiam×Ndof Evaluation for Ndiam sectors 2

Method 2 Ndof (2Nh +1)×Ndiam×Ndof Evaluation for N1 sectors 3

Method 3 Ndof (2Nh +1)×Ndiam×Ndof Evaluation for N2 sectors 1

Table 3: Comparison of the different methods for a standing wave excitation.

To better assess the performances of the new methods for a standing wave, the numerical values of N1,

N2 and Ndiam are provided in Table 4 for different values of N and hex. For N = 24 and hex = 2 the former

method [7] needed to create a supersector of 12 sectors and then to compute the nonlinear forces for these355

12 sectors. With Method 3, only one single sector needs to be created and the nonlinear evaluation is done

for 3 sectors.

N 24 27

hex 2 3 4 5 2 3 4 5

N1 12 8 6 24 27 9 27 27

N2 3 2 2 6 14 5 14 14

qinteract (2,6,10) (3,9) (4,12) (1,3,5,7,9,11) J0,13K (0,3,6,9,12) J0,13K J0,13K

Ndiam 6 4 4 12 27 9 27 27

Table 4: Comparison of the values of N1 and N2 for different values of N and hex.

The Method 1 (nonlinear evaluation on the Ndiam sectors) is general and can handle a wide range of

industrial problems while reducing significantly the size of the model. This methodology is expected to

be able to recover internal resonance and follows bifurcated branches from symmetry-breaking bifurcation360

points [9]. The reduction proposed in [6], valid in the specific case of polynomial nonlinearities, is expected

to be more efficient as the nonlinear forces are directly evaluated in the spectral domain. In Method 2

(respectively Method 3), the number of sectors for which the nonlinear forces must be evaluated is greatly

reduced for a traveling wave excitation (respectively standing wave excitation). However the hypothesis
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made on the deformed shape of the structure may not be valid for complex behaviour (combined excitation,365

gyroscopic terms, ...).

5. Numerical examples

The previous Sections 3 and 4 have established three new methods for the reduction of models undergo-

ing friction nonlinearities. Method 1 is general and makes no assumption. Method 2 combines predicting

spectral component interaction with Petrov [7] methodology. Method 3 proposes an additional reduction370

of the number of sectors for which the nonlinear forces must be evaluated but requires the assumption that

both the displacement and the external force have a standing wave shape. The purpose of this section is to

compare the accuracy and reduction performances of these methods with respect to a reference solution (full

solution of the entire system).

The model considered in this study is a simplified bladed-disk represented in Figure 5. This model has375

been previously used in [17] to assess the performance of another reduction method based on a nonlinear

superelement: the Component Nonlinear Complex Mode Synthesis (CNCMS) procedure. For the numerical

values of the masses, spring stiffnesses and dampers, the reader is referred to Table 2 of [17]. The mass

values were chosen to be representative of a bladed-disk mass distribution. Spring stiffnesses values were

calculated such that the first bending mode family matches the one of a linear bladed-disk, and modal380

damping of 0.1% was used, which is representative of classical structural damping. In the simulation the

term fnl,N is taken equal to 1000N and µ to 0.3. The external force is applied to the tip mass m1 of each

sector. The full structure is composed of 24 identical sectors. The following Figures, results are directly

represented for the spectral components and only non-zero components are plotted.
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fext,1 (t)

fnl (ẋ)
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Figure 5: Representation of the test case.

5.1. Frictional effects modeled with a regularized Coulomb’s law385

Methods 1, 2 and 3 are first employed to simulate the structure illustrated in Figure 5, under a standing

wave excitation of wave number hex = 3. Its amplitude varies between 1N and 5N with a 1N step. The fric-

tional effects are modeled with a regularized Coulomb’s law (defined in (24)). For all methods, 15 harmonics

are retained in the HBM procedure. This number is sufficient to reach convergence on the nonlinear effects

evaluation. The results of the different simulations are illustrated in Figure 6. For both Petrov’s method and390

the new methods, the responses match perfectly with the reference solution. The wide range of excitation

amplitude allows to cover both small and high levels of nonlinearities. For the ũ3 component represented

in Figure 6, the different peaks vary between 207Hz (corresponding to a configuration obtained with low

excitation values) and 205Hz (slip case at high excitations). Even for a small excitation, a coupling occurs

since the ninth nodal diameter responds even though only the third nodal diameter is directly excited.395

Table 5 provides the number of unknowns and the computation time for the different methods. For the

proposed methodologies (Methods 1, 2 and 3), the size of the model is reduced by 87.5% compared to [7],

which offers tremendous computing gain and is especially interesting for industrial FEM. Moreover the size

of the problem to solve is divided by 2, which allows Method 1 to decrease the computation time by about

53%. For Method 3 in which the nonlinear forces are evaluated only for two sectors, this gain increases and400
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reaches 65%. The only difference between Methods 1, 2 and 3 is the evaluation of the nonlinear forces and

thus one can clearly see the negative impact of computing the nonlinear forces on too many sectors.
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Figure 6: Frequency response function under a standing wave excitation of various amplitudes (1N to 5N). Frictional effects are

modeled with a regularized Coulomb’s law. ( ): reference solution; ( ): Method 1; ( ): Method 2; ( ): Method 3; ( ): Petrov’s

method.
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Method Size of the reference sector Number of unknowns Computation time (s)

HBM full system 120 3600 11621

Former Method [7] 40 1240 1417

Method 1 5 620 659

Method 2 5 620 949

Method 3 5 620 488

CNCMS 5 96 232

Table 5: Performance of the methods. The computation time is given for the 5N amplitude. The simulations were run on a Intel(R)

Core(TM) i7-7700 @ 3.6 GHz computer.

The simulated dynamical response of the structure is compared in Figure 7 with another reduction pro-

cedure: the CNCMS procedure [17]. The main idea of the CNCMS is to create nonlinear Craig-Bampton

superelements (with the computation of nonlinear normal modes with fixed-boundaries). This reduction405

methodology is efficient as the nonlinear forces are evaluated only once for the nonlinear modes and are

then substituted in the synthesis procedure [24]. It enables to reduce drastically the computation time as

shown in Table 5. However these nonlinear modes with fixed boundaries may not correctly capture the

dynamics of the system when the nonlinearities are important or when the vibratory energy of the disk is

large (these limitations were underlined in Section 5.3 of [17]). The CNCMS manages to capture coupling410

between nodal diameters, but the method shows large discrepancies with Method 3 (which was shown to be

exact). The discrepancies with the CNCMS can therefore be explained by the particular excitation used. The

simulations illustrated in Figure 7 are obtained with an excitation whose amplitude is large and whose wave

shape corresponds to a low wave number hex = 3 for which the motion of the disk is important. The authors

chose on purpose this set of parameters to show that the new method is more general than the CNCMS415

method. However note that when the condition for which the CNCMS works well (low nonlinearity and/or

high excitation wave number), this method is very efficient and can be applied for both tuned and mistuned

structures (as shown in [17] and [25] for a realistic FEM).
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Figure 7: Frequency response function for a 5N standing wave excitation. Frictional effects are modeled with a regularized Coulomb’s

law. ( ): Method 3; ( ): CNCMS procedure.

Through the exactness of the method seen in Figure 6 and the large computing gain given in Tables 5,

the advantages of the new methodologies are clear. In the next simulations, only the reference solution and420

the solution of Method 3 will be computed.

5.2. Frictional effects modeled with the Dynamic Lagrangian Frequency Time (DLFT) method

In this Section, the same structure undergoing the same external excitation is used but the frictional

effects are modeled with the DLFT procedure [18]. This methodology avoids to regularize the Coulomb’s

law as previously done. It is highly efficient and largely used in the community [24, 26]. The purpose of this425

section is to validate the methodology for a discontinuous contact interface. Details on the DLFT algorithm

are provided in Appendix B.

Figure 8 illustrates the frequency response function of the system with this configuration. Similarly to

Figure 6, it shows that the new methodology perfectly matches the reference solution. This validates the

29



analytical derivations of Section 3.1 for a non-regular frequency representation of the Coulomb’s law.430

Comparing the results of Figures 6 and 8 gives some insights on the influence of the frictional effects

modeling as only the expression of the nonlinear force has changed between these two sets of simulation.

For a high level of excitation, the differences are small since the system is in the ”slip” situation. However

for low values of amplitude, the system is partly stuck and the results differ because the DLFT is able to

retrieve an exact case of a stuck system whereas the hyperbolic tangent function always allows some partial435

slip (in Figure 2 the slope of fnl at 0 is not perfectly vertical). This difference is mostly visible for 1N for the

ninth nodal diameter (its amplitude is twice higher in Figure 8 due to more coupling).
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Figure 8: Frequency response function under a standing wave excitation of various amplitudes (1N to 5N). The DLFT procedure is

used to model frictional effects. The legend matches the one in Figure 6.

5.3. Complex external excitation forces

The purpose of this numerical example is to show the generality of Method 1 and to validate the fact

that it can handle complex excitation forces (created with a combination of traveling and standing waves) as440
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underlined in Section 3.2.

Let consider an external force composed of two standing wave excitations (hex = 2 and hex = 6) and

a traveling wave excitation (hex = 10). All forces have an amplitude of 5N. The shape of this particular

excitation is represented in Figure 9. For this excitation, only the 2, 6 and 10 nodal diameters must be

computed (see Section 3.1 and Table 4) and the nonlinear forces must only be evaluated for 6 consecutive445

sectors. Although such excitation was not considered in [7], its methodology can be applied but requires

to consider a large ”supersector” composed of 12 sectors. Overall the new method enables a reduction of

91.7% for the size of the reference sector and a reduction of 50% for the number of unknowns and the

number of sectors for which the nonlinear forces must be evaluated compared to [7]. Figure 10 compares

the results obtained with the new method and the reference solution. The accuracy is excellent and proves450

that Method 1 can perfectly handle complex excitation and large coupling.

0

T

Ndiam
N1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 9: Excitation shape for the case of a combination of traveling and standing waves.
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Figure 10: Frequency response function under an external force composed of a combination of traveling and standing waves excitations.

The DLFT procedure is used to model the frictional effects. The legend matches the one in Figure 6.
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6. Conclusion

Several reductions methods were proposed in this paper and offer large computational time saving by

reducing both the model to consider and the number of equations to solve. They are all based on an ana-

lytical results which determine the coupling between nodal diameters for a regularized Coulomb’s law. The455

difference in the methodologies lies in the level of approximation made: Method 1 is purely analytical and is

thus the most general, Method 2 only requires the assumption of [7] and finally Method 3 requires a specific

solution shape. These methodologies have been validated numerically with a regularized Coulomb’s law, but

also with the DLFT algorithm which is a non-regular frequency representation of the Coulomb’s law. Over-

all, the new methods have shown really interesting applicability for industrial problems, especially Method460

1. Different assumptions usually made in other reduction approaches may lack dynamic representativity

and are valid only for a particular range of excitation frequencies. The proposed methodologies seem more

robust because they are based on exact analytical development.

Future work would consist in extending this reduction methodology to mistuned structures. These sys-

tems are currently widely studied in the scientific community and present a numerical challenge as the cyclic465

symmetry property no longer holds.
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Appendix

A. General algorithm to determine nodal diameter interactions470

In Section 3.1 analytical derivations were proposed to obtain the interacting nodal diameters for an

excitation with a specific wave number hex. This section proposes a general algorithm enabling to determine

the coupling when multiple excitations with different wave numbers are applied to the structure. Let consider

P wave numbers noted q= (qi)i∈J1,PK. Then Equation (27) is split into multiple sums with the different nodal

diameters and becomes475

P

∑
i=1

(miqi)≡ q mod N, (A.1)
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with the condition of
P

∑
i=1

mi = 2n−1 (mi can be even or odd). This equation can be written as

P

∑
i=1

(2niqi)− ∑
k∈SP

δkiqi

≡ q mod N, (A.2)

with the condition of
P

∑
i

∑
k∈SP

δki being odd. The space SP denotes all the possibilities for (mi)i∈J1,PK. For

instance if P = 5, then we have three sets of possibilities : all mi are odd, 3 out of the 5 mi are odd or only 1

value out of 5 is odd. It can be easily shown than the number of possibilities is equal to P
2 if P is even and

P+1
2 is P is odd.480

For the case of a single value hex, we can determine the periodicity (noted Mi) of each nodal diame-

ter qi through Equation (32). Therefore we can compute all the possibilities of condition (A.2) by taking

(n1, · · · ,nP) = J1,M1K×·· ·× J1,MPK.

To facilitate the general understanding, Algorithm A.1 summarizes the different steps to follow in order
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to obtain the interacting diameters.485

Algorithm A.1: Determination of nodal diameters coupling
1: Provide N and q

2: diam← q {Total number of nodal diameter.}
3: for i = 1 : 1 : P do

4: Compute Mi {see Equation (32)}
5: end for

6: list combinaison← [ ]{Initialisation of all combinaisons set to null}
7: for i = 1 : 1 : P do

8: We extend list combinaison with 2qi[1 : Mi]{see first term of Equation (A.2)}
9: end for

10: if P is even then

11: nbr S← P
2 {Determination of the space SP}

12: else

13: nbr S← P+1
2 {Determination of the space SP}

14: end if

15: for k = 1 : 1 : nbr S do

16: additional combinaison← nchoosek(diam,2k−1){We extend list combinaison with δkiqi; see

second term of Equation (A.2) where nchoosek denotes the binomial coefficient.}
17: end for{Keep only the nodal diameter 0≤ q≤ K}
18: qupdate← qupdate ≤ K

19: Update of diam {Retrieve only new nodal diameters.}
20: qnew← setdiff(diam,qnew)

B. Dynamic Lagrangian Frequency Time method

In this Appendix, we recall briefly the procedure of the DLFT method for cyclic components (its adap-

tation to a full physical system is similar). In the following, we will suppose that the solids are always in

contact and thus only the tangential movement is considered. Employing the HBM procedure on (40), and490

using a Schur condensation, as explained in [27], gives

Z̃r c̃r + c̃ fnl = c̃ fr,ext , (B.1)
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where Z̃r is the relative flexural rigidity matrix of the system, c̃r denotes the relative harmonics components

of the spectral displacement, c̃ fnl corresponds to the harmonics of the nonlinear forces projected on the

spectral basis, and c̃ fr,ext contains the harmonics of the reduced spectral external forces. In the case of a

frictional contact, the nonlinear forces are sought as

c̃ fnl = c̃ fr,ext − Z̃r c̃r + ε (∇c̃r− ṽr) , (B.2)

where ε is a penalty coefficient (the choice of this parameter is provided in [28]). ṽr represents the harmonics

of the spectral relative velocity of the system’s interface and must satisfy Coulomb’s law. The nonlinear force

is separated into two parts: the prediction of the nonlinear forces

c̃ fnl,u = c̃ fr,ext − Z̃r c̃r + ε∇c̃r, (B.3)

and the correction of the nonlinear forces to satisfy Coulomb’s law:

c̃ fnl,x =−ε ṽr. (B.4)

The prediction is projected in the physical and time domains (see Equation (55) and the AFT procedure [23]).

Two cases must be considered: if fnl,u < µ
∣∣ fnl,N

∣∣ (sticking case), then the prediction is correct (there is no

relative velocity) and hence

fnl = fnl,u (B.5)

otherwise if ‖fnl,u‖ ≥ µ
∣∣ fnl,N

∣∣ (sliping case), then the prediction is incorrect and must be corrected by

fnl,x = fnl,u

(
1− µ

∣∣ fnl,N
∣∣

‖fnl,u‖

)
. (B.6)

Finally the nonlinear forces are equal to

fnl = fnl,u− fnl,x. (B.7)
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