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ABSTRACT
Before the final experimental validation and certification of

a turboengine, designers perform a numerical simulation of its
vibratory properties, among other things, in order to estimate its
lifespan and adjust the design in an optimization process. One
possible practical solution to decrease the vibratory response is
to add underplatform dampers to the system. These components
dissipate energy by friction and are widely employed in turbo-
machinery. However, a specific underplatform damper is usually
efficient only for a specific mode. The purpose of this work is to in-
vestigate the possibility of adding different kinds of underplatform
dampers to the cyclic structure in order to decrease the vibratory
energy over a larger panel of modes. Different methods exist to
determine the vibrations of nonlinear cyclic symmetric systems,
but creating a robust methodology to account for the additional
effect of mistuning remains a big challenge in the community.
In this paper, the structure is mistuned through the friction co-
efficient of the dampers and not by altering its geometry, as is
usually done in the literature. First, assuming a cyclic symmetric
structure, the performance of the dampers is assessed for spe-
cific modes. Then, employing a method recently developed, the
efficiency of an intentional mistuning pattern of underplatform
dampers is studied and an optimal pattern proposed.
Keywords: Underplatform dampers, Mistuning, Reduced-
order models, Harmonic Balance

NOMENCLATURE
M̃, C̃, K̃ Mass, damping and stiffness cyclic matrices
u Nodal displacements vector
ũ Spectral displacements vector
fnl Nonlinear forces vectors
xr Relative contact displacement vector
N Subscript for the normal direction
T Subscript for the tangential directions
𝑇 Superscript for the transpose operation
𝜇 Friction coefficient

∗Corresponding author: samuel.quaegebeur@ec-lyon.fr

fext Vector of external forces
c Vector of harmonic coefficients for the physical

displacement
𝜔 Excitation frequency
𝑛 Harmonic number index
𝑘 Nodal diameter number index
𝑗 Sector number index
𝑁h Number of harmonics
ℎ𝑒𝑥 Excitation wave number
𝑁 Number of sectors
𝜇∗1𝐹 , 𝜇∗1𝑇 Optimal value of 𝜇 for the 1F and 1T modes
FEM Finite element model
DOF Degree of freedom
HBM Harmonic balance method
SNCR Substructuring method based on Nonlinear Cyclic

Reduction
CNNM Cyclic normal nonlinear mode
ROM Reduced-order model
AFT Alternating frequency time
UPD Underplatform dampers
CB-CMS Craig-Bampton Component Mode Synthesis
1F, 1T First flexural flapwise and torsional modes
DLFT Dynamic Lagrangian Frequency Time

1. INTRODUCTION
Underplatform dampers (UPDs) are key elements in bladed

disks as they make the vibratory responses decrease and hence
extend the lifespan of the systems. Over the years, the physical
mechanisms of UDPs have been investigated [1, 2] and described
by different modeling approaches [3–6]. Many parametric studies
have also been performed, such as [7, 8] for instance, to examine
the influence of the normal load or friction coefficient, or to study
the geometrical design of UPDs [3, 9].

In this paper, we focus on the global impact of dampers on the
maximal displacement of a cyclic finite-element model (FEM)
under harmonic forcing. Simulating the dynamics of the full
structure can be very long in the presence of nonlinearities, due
to the nonlinear solver which, among other things, must evaluate
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the nonlinear forces for all sectors. For perfect cyclic symmetric
structures [10, 11], the problem can be transformed from its
physical into its spectral quantities. This change of variables
significantly reduces the number of unknowns for linear [12] and
nonlinear problems [13, 14].

In the case of mistuning [15] – that usually consists of geo-
metrical or material modifications among the sectors, using the
cyclic symmetric change of variables may no longer be efficient.
Reduced-Order Models (ROMs) have been employed to decrease
the size of the FEM while trying to retain sufficient informa-
tion for accurate results. In linear problems, methods such as the
CMM [16] or the IMM [17] are widely used for small random mis-
tuning, whereas the PRIME [18] or more recently the PRISM [19]
methods are employed for large mistuning. Unfortunately, these
methodologies do not hold for nonlinear problems. Developing
ROMs which enable simulation of the dynamics of nonlinear
mistuned structures is a challenging task. Different strategies
have been proposed [20–23] to tackle this problem. Recently, the
authors have developed a new approach called the Substructur-
ing method based on Nonlinear Cyclic Reduction (SNCR) [24]
which employs a substructuring approach with cyclic complex
nonlinear normal modes.

This paper will use several theoretical and numerical strate-
gies [13, 14, 24] with the following original objective: optimizing
an intentional mistuning pattern of UPDs to minimize the maxi-
mal displacement of the structure over two distinct modes. The
two modes considered are the first flexural flapwise mode (1F)
and the first torsional mode (1T). In the literature, such as for
instance in [9, 25], damper mistuning is defined by considering
different damper geometries. In this paper, the different types of
UPDs are distinguished by their friction coefficient. The resolu-
tion of this problem is broken down into different subproblems
which follow the basic outline of this paper. The methodology is
demonstrated on a simplified, yet realistic, finite-element model
which is described in Section 2. Section 3 provides the optimal
values of the friction coefficient for the two respective modes (1F
and 1T modes) seen separately and assuming a perfectly tuned
structure. In Section 4, we employ the SNCR to determine an op-
timal intentional mistuning pattern of the structure. The strategy
is presented here on a specific structure but is expected to hold
for a large panel of bladed disks. The authors therefore believe it
will help turboengineers in the design process.

2. PRESENTATION OF THE TEST CASE
In this paper, we propose to study a bladed disk with under-

platform dampers, the fundamental sector of which is represented
in Figure 1. The complete system is composed of 𝑁 = 24 sectors.

The model contains 30840 degrees of freedom (DOFs), 712
of which are nonlinear and located on the contact area between the
blades and the UPDs. The full bladed disk undergoes a rotational
velocity of 2200 rad s−1. A Craig-Bampton Component Mode
Synthesis (CB-CMS) [26] is applied to reduce the size of the
FEM: the nonlinear DOFs, an observation node (taken at the tip
of the blade) and the cyclic boundary DOFs (for both the disk
and the UPDs) are kept as master DOFs. A modal damping of
5 × 10−4 is applied to the structure for the modes under study.

Figure 2 denotes the natural frequencies of the fully stuck
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FIGURE 1: DESCRIPTION OF THE MODEL. THE DIMENSIONS
ARE IN mm. A PRETWIST ANGLE OF 30◦ IS APPLIED ON THE
BLADE. THE BLADE IS MADE OF ICONEL®738 AND THE DISK OF
ICONEL®718.

system (UPDs stuck with the blades, and blade stuck with the
disk). Only five families of modes are represented: the first flap-
wise flexural mode (1F, the blades mainly undergo a transversal
motion), the first edgewise flexural mode (1E, both the disk and
blade are deformed along the axial direction), the first torsional
mode (1T), and the second and third flapwise flexural modes
(2F and 3F). In the following, only the 1F and 1T modes of the
tenth nodal diameter are studied (as highlighted in red circles in
Figure 2).

The excitation on a sector 𝑗 , noted fext, 𝑗 , is composed of a
static part fext,0 (equal for all sectors 𝑗 ∈ ⟦1, 𝑁⟧) representing the
centrifugal effects and a harmonic part, noted fext,dyn, 𝑗 (𝑡). The
harmonic excitation force can be seen as a simplified aerodynamic
force and is applied on a node at the tip of the blades. It follows
a traveling wave pattern with a wavenumber ℎ𝑒𝑥 = 10. The
excitation is evaluated with:

fext,1 (𝑡) = fext,0 + fext,dyn,1 (𝑡) (1a)

fext, 𝑗 (𝑡) = fext, 𝑗

(︃
𝑡 − 2𝜋ℎ𝑒𝑥 ( 𝑗 − 1)

𝜔𝑁

)︃
𝑗 ∈ ⟦1, 𝑁⟧. (1b)

The excitation on the entire structure is noted fext =
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[︂
f𝑇ext,1 · · · f𝑇ext,𝑁

]︂𝑇
(the superscript 𝑇 denotes the transpose)

and 𝜔 is the excitation frequency. To study the 1F mode (re-
spectively 1T), the excitation frequency range will be focused
around 2𝜋 × 1597rad s−1 (respectively 2𝜋 × 4860rad s−1) and the
amplitude of the force is taken as 0.5 N (respectively 1.5 N). The
amplitudes were chosen such that the maximal displacements of
the linear system (stuck system) are equal for both modes.
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FIGURE 2: NATURAL FREQUENCIES OF EACH NODAL DIAME-
TER. THE LARGE BLUE CIRCLES DENOTE VEERING AREAS AND
SMALL RED CIRCLES DENOTE THE MODES OF INTEREST.

In this work, we focus on the contact between blades and
UPDs. The blade/disk contact is therefore simplified and assumed
to be always stuck. The UPDs may, however, be either stuck with
the blade (the system is then linear and called a stuck system) or
account for the following contact/separation law⎧⎪⎪⎪⎨⎪⎪⎪⎩

fnl,N (𝑡) ≥ 0 repulsive force only
x𝑟 ,N (𝑡) ≥ 0 no penetration
x𝑟 ,N (𝑡) · fnl,N (𝑡) = 0 either no force or no contact

, (2)

where fnl defines the nonlinear forces between blades and UPDs,
the subscript N denotes the normal direction of the contact, and
x𝑟 represents the relative displacement between both solids on the
contact area. If the bodies are in contact, then frictional effects
are modeled with the following Coulomb’s law,⎧⎪⎪⎨⎪⎪⎩

∥fnl,T∥< 𝜇
|︁|︁fnl,N

|︁|︁ if ẋ𝑟 ,T = 0

fnl,T = −𝜇
|︁|︁fnl,N

|︁|︁ ẋ𝑟 ,T
∥ẋ𝑟 ,T∥ if ∥ẋ𝑟 ,T∥> 0, (3)

where the subscript T denotes the tangential directions and 𝜇 is
the friction coefficient of the contact interface.

3. PARAMETRIC STUDY ON THE FRICTION COEFFICIENT
FOR THE TUNED STRUCTURE

In [27], Krack et al. proposed a novel mathematical ap-
proach to optimize dampers based on nonlinear modes for a
tuned structure. Although excellent results were demonstrated

in [27], several frequency forced responses will be performed
here to optimize the friction coefficient. This optimum is defined
as the value which minimizes the maximal displacement of the
tuned structure. The study is applied for both the 1F and 1T
modes. These are first studied separately and hence two optima
are obtained. Although this paper proposes to handle mistuning
by modifying the friction coefficient, traditional mistuning can
naturally be considered (such as modifying the geometry of the
dampers and hence the mass, for instance).

3.1 Methodology
In this Section, the structure is perfectly tuned and the cyclic

symmetry properties [10, 11] are applied to obtain the different
structural cyclic matrices. As underlined in Section 2, the excita-
tion is composed of static and dynamic parts with a wave number
equal to 10. This leads to a static load on the zeroth nodal di-
ameter f̃ext,0, and a dynamic load on the tenth nodal diameter,
noted f̃ext,dyn,10. As demonstrated in [14], the friction nonlinear
forces create coupling between different nodal diameters. For
the current excitation, the tenth nodal diameter interacts with the
second and sixth nodal diameters [14]. The system of equations
to be solved then becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M̃0 ̈̃u0 + C̃0 ̇̃u0 + K̃0ũ0 + f̃nl,0 = f̃ext,0

M̃10 ̈̃u10 + C̃10 ̇̃u10 + K̃10ũ10 + f̃nl,10 = f̃ext,dyn,10

M̃𝑘 ̈̃u𝑘 + C̃𝑘 ̇̃u𝑘 + K̃𝑘 ũ𝑘 + f̃nl,𝑘 = 0, 𝑘 ∈ {2, 6} ,

(4a)
(4b)
(4c)

where M̃𝑘 , C̃𝑘 and K̃𝑘 are the mass, damping and stiffness cyclic
matrices of the 𝑘−th nodal diameter. The vectors ũ𝑘 and f̃nl,𝑘 are
respectively the 𝑘−th spectral components of the displacements
and nonlinear forces. As the excitation is periodic, we employ the
Harmonic Balance Method (HBM) [28] to solve (4) and compute
the frequency forced response of the system. The solution on the
first sector is sought after as

u1 = c0 + 1
2
⎛⎜⎝

𝑁ℎ∑︂
𝑛=1

c𝑛ei𝜔𝑡 + c̄𝑛e−i𝜔𝑡⎞⎟⎠ , (5)

where 𝑁ℎ is the total number of harmonics (here taken equal to
3), and (c𝑛)𝑛∈⟦0,𝑁ℎ⟧ are the harmonic coefficients. The notation
𝑎̄ denotes the complex conjugate of 𝑎. As the excitation follows
a traveling wave shape (see Equation (1b)), we assume that the
solution also follows the same shape [13]. This allows harmonics
numbers and nodal diameters to be paired and thus efficiently
reduces the number of unknowns. Applying the HBM and the
previous assumption to the system (4) gives:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

K̃0c0 + cfnl,0 = cfext,0(︂
−𝜔2M̃10 + i𝜔C̃10 + K̃10

)︂
c1 + cfnl,1 = cfext,1(︂

−𝜔2M̃6 + i𝜔C̃6 + K̃6

)︂
c3 + cfnl,3 = 0

(6a)

(6b)

(6c)

The vectors cfnl,𝑛 and cfext,𝑛 represent the projection of the non-
linear forces and external forces on the harmonic 𝑛. The second
harmonic is paired with the fourth nodal diameter. However, as
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this fourth diameter does not interact with the tenth nodal diam-
eter [14], the associated equation is not retained in the system to
be solved. In addition, the tenth nodal diameter interacts with the
second nodal diameter, this second nodal diameter is first paired
with the fifth harmonic which is beyond the current harmonic
expansion (𝑁ℎ = 3).

In this paper, the Dynamic Lagrangian Frequency Time [29]
is used as contact algorithm. This procedure assumes no regular-
ization of the friction law (see Equation (3)) and also handles the
existence of possible separation (see Equation (2)) between the
two bodies in the contact region. This algorithm uses the Schur
condensation [30], as well as the Alternating Frequency Time
procedure [31].

3.2 Numerical results
The system (6) was solved for different values of 𝜇 with

excitation frequencies around the 1F and 1T modes which were
studied separately. The initial value of 𝜇 was taken as equal
to 0.3 and was decreased until the optimal value was reached.
The optimal values for the 1F and 1T modes, noted 𝜇∗1F and
𝜇∗1T, correspond to the value of 𝜇 which minimizes the maximal
displacement of the structure for each mode studied separately.
Their values were obtained with a precision of 0.01. Figures 3
and 4 represent the maximum response of the structure for a few
different values of 𝜇 that were simulated.

𝜇
𝜇 = 0.01
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FIGURE 3: FREQUENCY FORCED RESPONSES FOR THE 1F
MODE. ( ): LINEAR (STUCK) CASE; ( ): OPTIMAL CASE µ∗1F =
0.03. ( ): OTHER VALUES OF µ (0.01, 0.02, 0.04, 0.05, 0.1, AND
0.15 IN THIS ORDER).

The influence of 𝜇 on the maximal displacement of the struc-
ture has been studied in several papers, see for instance [3]. For
high values of 𝜇, the system tends towards the fully stuck struc-
ture whereas for very low values, the contact area becomes totally
slippery. Between these two limits, an optimal value of 𝜇 which
minimizes the displacement is reached. For the 1F mode, the
optimal value for 𝜇∗1F = 0.03 and for the 1T, 𝜇∗1T = 0.1.

From this preliminary study, two kinds of sector are defined:
sector A with a friction coefficient equal to 𝜇∗1F and sector B with a

𝜇
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FIGURE 4: FREQUENCY FORCED RESPONSES FOR THE 1T
MODE. ( ): LINEAR (STUCK) CASE; ( ): OPTIMAL CASE µ∗1T =
0.1. ( ): OTHERS VALUES OF µ (0.02, 0.03, 0.07, 0.15, 0.2, AND
0.3 IN THIS ORDER).

coefficient of 𝜇∗1T. In practise, these different kinds of sectors can
be obtained by adding rough and soft patches under the platforms
of the blades. The purpose of the rest of the paper is to investigate
the effect of different intentional mistuning patterns composed of
sectors A and B, and to try to find the pattern which optimizes
both the 1F and 1T modes simultaneously.

4. GLOBAL OPTIMIZATION OF THE MISTUNED
STRUCTURE

When the system is mistuned, the solution methodology em-
ployed in Section 3 can no longer be applied. To determine the
exact motion of such structures, the equation of motion of the
full system must be solved. In practise, this procedure is not
used because it requires large memory space to store the mass,
damping, and stiffness matrices, and the computation time would
be excessively long, mainly due to the computation of the non-
linear forces for all sectors. In this paper, we employ a recent
nonlinear ROM methodology called the Substructuring method
based on Nonlinear Cyclic Reduction (SNCR) [24] to compute
the frequency forced responses of systems with different inten-
tional mistuning patterns. This approach is briefly explained in
Section 4.1, and then tested and analyzed for cyclic symmetric
structures in Section 4.2. In Section 4.3, it is applied to solve the
optimization problem on a mistuned structure.

4.1 Short description of the ROM methodology
The SNCR [24] employs a substructuring approach [32] in

which the full structure is broken down into 𝑁 substructures (the
𝑁 sectors). Hence, for each different kind of sector (two in this
case), the associated cyclic nonlinear normal modes (CNNMs)
must be computed. The full reduced structure is obtained by
assembling the reduced sectors on their boundary control coor-
dinates. To ensure a compact system, we employ the strategy
proposed in Section 4.2 of [24] and only compute the CNNMs
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for the 0, 2, 6 and 10−th nodal diameters, for both the 1F and 1T
modes. Once the reduced model is obtained, a frequency force
response synthesis can be simulated. To ensure fast computation,
the SNCR substitutes the nonlinear forces by the CNNMs.

4.2 Performance and validation of the method
The reduced basis is made up of 2 × 4 = 8 CNNMs (two

kinds of sector: A and B, and four nodal diameters) for the
1F and 1T modes. These modes are evaluated only once and
can be used to simulate the frequency forced response of any
intentional mistuning pattern (any combination of sectors A and
B) excited around either the 1F or 1T frequency. The purpose of
the following study is to show the accuracy and performance of
the SNCR when applied to the current FEM. Since the reference
method, presented in Section 3.1, only handles cyclic symmetric
structures, four such structures were considered as test cases:
the (A)24, (B)24, (AB)12, and (ABBA)6 structures. The notation
(X)𝑌 denotes the full 24-sector system composed of a supersector
X which is repeated 𝑌 times. For these four systems, and thus
in total eight cases (four systems and two modes), the SNCR
was applied and compared with the methodology explained in
Section 3.1 which acts as the reference method. Note that for
the reference method, supersectors (composed of standard single
sectors put next to each other) must be used for the AB and ABBA
cases, whereas the SNCR employs a reduction basis composed
of the CNNMs of sectors A and B taken independently, whatever
the test case.
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FIGURE 5: FREQUENCY FORCED RESPONSES FOR THE 1F
MODE. ( ): REFERENCE METHOD; ( ): SNCR. THE MARK-
ERS ( ), ( ), ( ), AND ( ) DENOTE THE (A)24, (B)24, (AB)12, AND
(ABBA)6 STRUCTURES.

Figure 5 represents the maximal displacement of the four test
cases around the 1F natural frequency for the reference method
and the SNCR. For the (A)24 and (B)24 systems, the results match
perfectly. For the (AB)12, and (ABBA)6 structures, discrepan-
cies can be observed: a shift of approximately 1 Hz in the resonant
frequency peaks, and an error in the maximal amplitude of ap-
proximately 8% for the (AB)12 case and 5% for the (ABBA)6

case.
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FIGURE 6: FREQUENCY FORCED RESPONSES FOR THE 1T
MODE. ( ): REFERENCE METHOD; ( ): SNCR. THE MARK-
ERS ( ), ( ), ( ), AND ( ) DENOTE THE (A)24, (B)24, (AB)12, AND
(ABBA)6 STRUCTURES.

Figure 6 represents the maximal displacement around the 1T
frequency. For all four cases, the SNCR results provide a good
match with the reference. Small discrepancies can be observed
for the (AB)12 and (ABBA)6 structures (the amplitude error is
below 2%) but the results are much more satisfactory overall than
those obtained for the 1F mode.

In order to explain these different results, we can focus on the
deformed shapes induced by the different values of 𝜇. Figure 5
shows that, for the 1F mode, the difference in maximal amplitude
between the (A)24 and (B)24 structures is 43% which is nec-
essarily associated with significant different deformed shapes.
However, for the 1T mode, the level of vibration of the (B)24
structure is only 14% lower than the (A)24 structure. The de-
formed shapes of sectors A and B are thus closer in this case.

FIGURE 7: ILLUSTRATION OF THE DEFORMED SHAPE OF THE
RIGHT UDP BOUNDARY SURFACE FOR THE 1F MODE. DIREC-
TION AND AMPLITUDE OF THE MAXIMAL DISPLACEMENT FOR:
[ ] THE (A)24 STRUCTURE, AND [ ] THE (B)24 STRUCTURE.

Because the only difference between the designs of sectors
A and B is their 𝜇-value, the deformed shapes may be particu-
larly different around the contact area. The contact area is close
to the cyclic boundary DOFs which get assembled in the SNCR.
Although the displacement is imposed continuously at the bound-
ary, these different deformed shapes may create discrepancies in
the assembling step when sectors A and B are put together. Fig-
ure 7 illustrates the deformed shape of the boundary surface of
the right UPD (see Figure 1b) for the (A)24 and (B)24 structures
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at their respective maximum resonant peak. On the left side of
the boundary surface, the direction of motion is approximately
the same, but its amplitude is greater for the (B)24 structure. On
the right side of the boundary surface, the direction and ampli-
tude do not match. The difference in deformed shape can also be
confirmed by Figures 5 and 6. First, the level of error between
the reference and SNCR methods is higher overall for the 1F than
for the 1T mode. This is because the deformed shapes between
sectors A and B are similar in the 1T mode but significantly dif-
ferent in 1F. Furthermore, the (AB)12 structure gives the largest
error for both modes as sectors A and B keep alternating.

Despite these differences, the SNCR provides the correct
trends in all cases. For example, for the 1F mode, the optimal
case is the (A)24 structure, followed in order by the (AB)12, the
(ABBA)6 and then the (B)24 structures. Moreover, the compu-
tation time of the SNCR is generally lower that of the reference,
as highlighted in Table 1. The computation of a single CNNM
lasts around 3 h but is performed only once. When the size of
the supersector increases (from a single sector A to AB, and then
to ABBA), the reference method gets more unknowns, whereas
the SNCR keeps a constant number of generalized control coor-
dinates. One of the main benefits of the SNCR is that it can be
used for any intentional mistuning pattern, whereas the reference
method is limited to cyclic structures with a small supersector
size.

Modes Systems No. of unknowns Comp. time (in h)
SNCR Reference SNCR Reference

1F

(A)24 672 1530 1.2 1.2
(B)24 672 1530 1.6 1.2
(AB)12 672 3060 1.4 5.7
(ABBA)6 672 7120 1.6 32.5

1T

(A)24 672 1530 2.1 1.5
(B)24 672 1530 1.5 1.5
(AB)12 672 3060 1.9 6.3
(ABBA)6 672 7120 1.7 35.8

TABLE 1: PERFORMANCE OF THE SNCR. THE SIMULATIONS
WERE RUN ON A INTEL(R) CORE(TM) I7-7700 @ 3.6 GHZ COM-
PUTER.

In light of the accuracy and efficiency of the SNCR, a series
of simulations for multiple intentional mistuning patterns were
performed next. The purpose was to establish the optimal pattern
which minimizes the maximal displacement for both the 1T and
the 1F modes. Although the SNCR does not provide exact results
on this model, it does at least simulate the correct trends. Note that
without such a method, the computation of an arbitrary intentional
mistuning pattern would require the equation of motion of the full
structure to be solved, which is not feasible in a reasonable amount
of time.

4.3 Finding the optimal mistuning pattern for both the 1F
and 1T modes
Sector A was chosen to optimize the 1F mode, and sector B

the 1T mode. The purpose of this section is to find the optimal

A-B pattern that can minimize the displacement of both modes
simultaneously. There are different possibilities to perform such
a task. The most obvious would be to compute the frequency
forced responses for all possible combinations (≈ 2𝑁/𝑁) [33].
This would require the computation of too many nonlinear sim-
ulations, however, and is not currently feasible. In [34], Choi et
al. proposed to use a genetic algorithm to optimize an intentional
mistuning pattern for a linear problem. Such a procedure could
be considered in this paper, but the main downside of the genetic
algorithm is that we cannot ensure the global convergence of the
solution. In [33], the authors used a subspace optimization strat-
egy. Based on [34, 35], it was shown, in a linear system, that for
weakly coupled blades, the optimized pattern exhibited frequent
switches between the A and B sectors. However, for strong cou-
pling, the optimized pattern did not present many switches. Such
a strategy is commonly used, as in [36], and will be employed
next.

Two optimized patterns were studied. The first was com-
posed of AB or BA supersectors to account for weakly coupled
blades; the second pattern was composed of AA or BB super-
sectors and accounts for strong coupling. For each optimization
problem and each mode, there were 352 (≈ 212/12) simulations
to perform (and not ≈ 224/24 because a supersector composed
of two standard sectors was considered here). The task was still
significant as a total of 2× 2× 352 = 1408 nonlinear simulations
must be carried out. Parallel computations were employed to
perform this in a reasonable amount of time.
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FIGURE 8: MAXIMAL AMPLITUDE DISPLACEMENT FOR THE DIF-
FERENT MISTUNING PATTERNS FOR THE 1F MODE. ( ): COMBI-
NATION OF AB AND BA; ( ): COMBINATION OF AA AND BB.

Figure 8 (respectively Figure 9) represents the maximal dis-
placement with respect to the mistuning pattern number for the
1F mode (respectively 1T mode). The red squares correspond to
the structures composed of AB and BA supersectors, and the blue
crosses are those containing AA and BB supersectors. For both
modes, the AB/BA structures show smaller displacements than
the AA/BB ones. Based on [33], this would mean that the blades
are weakly coupled in the current model. The blades are coupled
by the disk and the dampers. However, for the latter, vibratory
energy is lost due to friction and may explain the weak coupling
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FIGURE 9: MAXIMAL AMPLITUDE DISPLACEMENT FOR THE DIF-
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observed.
Using the maximal displacement of the 1F and 1T modes

(noted |max 𝑢1𝐹 | and |max 𝑢1𝑇 |), the best intentional mistuned
pattern can be determined. Two different objective functions that
must be minimized are considered:

critsum = |max 𝑢1𝐹 | + |max 𝑢1𝑇 | , (7)

and
critfatigue = |max 𝑢1𝐹 | + 𝜔1𝑇

𝜔1𝐹
|max 𝑢1𝑇 | . (8)

The first function, critsum, is simply the sum of the ampli-
tudes. The second takes into account the frequencies of each
mode and can be related to the fatigue of the system. Tables 2
and 3 provide the first six best intentional mistuning patterns for
the two criteria. The rank, value of the objective functions and
corresponding mistuning pattern are provided. The mistuned
pattern numbers are also given in Tables 2 and 3 to help identify
the best structures in Figures 8 and 9 (see the larger markers).
The same six mistuned patterns are obtained in both cases. Out
of these six, three have been studied in Section 3.2 the (A)24,
(B)24, and (AB)12 structures. The fourth, fifth and sixth best pat-
terns are respectively (2A2B1A1B)4, (2A2B1A1B1A1B)3 and
2A2B1A1B2A2B1A1B1A1B1A1B2A2B1A1B1A1B (noted
MP345 in Tables 2 and 3). In real bladed disk designs, the
(A)24 and (B)24 structures are not suited due to flutter phenom-
ena [15, 37, 38]. Moreoever in the presence of random mistuning
(which is unavoidable in reality), the structures showing a
pattern that repeats itself are subjected to a large amplification
factor due to the frequency splitting of the degenerated nodal
diameter (such as the tenth nodal diameter under study). As a
consequence, the mistuned pattern noted MP345 may be the best
compromise here.

A more complete study would consist of evaluating the am-
plification factor of these six mistuned patterns with respect to
random mistuning deviation. Such an analysis is beyond the
scope of this work. Instead, in the next Section we propose a

sensitivity analysis of the influence of random mistuning on the
maximal displacement of the structure.

Rank Mistuning pattern Pattern number Function value

1 (A)24 1 for AA/BB 1.2 × 10−3

2 (AB)12 1 for AB/BA 1.4 × 10−3

3 (B)24 352 for AA/BB 1.4 × 10−3

4 (2A2B1A1B)4 342 for AB/BA 1.5 × 10−3

5 (2A2B1A1B1A1B)3 347 for AB/BA 1.5 × 10−3

6 MP345 345 for AB/BA 1.5 × 10−3

TABLE 2: OPTIMAL MISTUNING PATTERNS FOR THE FUNCTION
critsum.

Rank Mistuning pattern Pattern number Function value

1 (B)24 352 for AA/BB 3.0 × 10−3

2 (A)24 1 for AA/BB 3.0 × 10−3

3 (AB)12 1 for AB/BA 3.1 × 10−3

4 (2A2B1A1B)4 342 for AB/BA 3.3 × 10−3

5 (2A2B1A1B1A1B)3 347 for AB/BA 3.3 × 10−3

6 MP345 345 for AB/BA 3.3 × 10−3

TABLE 3: OPTIMAL MISTUNING PATTERNS FOR THE FUNCTION
critfatigue.

4.4 Sensitivity of the systems to random mistuning
As explained in [24], the SNCR can handle random mistun-

ing. In this work, the influence of random mistuning on the (A)24,
(AB)12, (2A2B1A1B)4 and MP345 structures was investigated.
The mistuning was modeled by modifying the internal modes
in the Craig-Bampton reduction following a normal distribution
with a standard deviation equal to 10% (as proposed in [16]).
The sensitivity of the (A)24, (AB)12, (2A2B1A1B)4 and MP345
structures to a random mistuning with deviation equal to 10%
was investigated. Only a single simulation was performed on the
1F mode and the associated results are presented in Figure 10.

As expected, for each system (denoted by different markers
in Figure 10), the presence of random mistuning leads to a higher
maximal displacement response. The amplification response fac-
tor (defined as the ratio between the maximal displacement of the
randomly mistuned structure and the maximal displacement of
the initial structure) was computed for each system. Their val-
ues are equal to 14%, 17%, 8% and 6% for the (A)24, (AB)12,
(2A2B1A1B)4 and MP345 systems respectively. Although the
(A)24, (AB)12 show better results in Tables 2 and 3 than the
MP345 system, they are much more sensitive to random mistun-
ing and as a consequence should not be kept as optimal candidates.
On the other hand, the MP345 system (which does not contain any
supersector repetition) is the least sensitive to random mistuning
and may be considered the optimal solution.

CONCLUSION
This paper proposes an original application for an intentional

mistuning nonlinear finite-element structure. Two kinds of sector
were defined with different friction coefficients on the contact
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FIGURE 10: FREQUENCY FORCED RESPONSES FOR THE 1F
MODE FOR THE SIX BEST STRUCTURES. ( ): WITHOUT RAN-
DOM MISTUNING; ( ): WITH RANDOM MISTUNING. THE MARK-
ERS ( ), ( ), ( ), AND ( ) DENOTE THE (A)24, (AB)12, (2A2B1A1B)4
AND MP345 SYSTEMS.

area between the blades and the UPDs. The first kind of sector
(A) was chosen to optimize the maximal displacement of the as-
sociated tuned structure for the first flexural mode, whereas the
second (B) optimizes the first torsional mode. An optimization
procedure was then performed to determine the best intentional
mistuned patterns. Patterns composed of alternating A and B
sectors showed better characteristics than those composed of re-
peating A and/or B sectors because they simultaneously optimize
the forced response around both the 1F and the 1T frequencies.
This result is mode-dependent, and the optimal pattern may be
different when focusing on modes in a veering zone. To the au-
thors’ knowledge, such optimization has never been proposed in
the literature due to the complex nature of the system (mistuned
and nonlinear). Through a subspace optimization strategy, the
best six mistuned patterns were identified. In reality, some of
the patterns are ill-suited due to aerodynamical considerations
(such as flutter phenomena), as well as to the negative impact
of random mistuning on the level of vibration of the structure.
With these further constraints, a final optimal mistuned pattern
was identified. It is interesting to note that it does not present any
supersector repetition.

Perspectives of this work could consist in extensive studies on
the random mistuning effect (for instance by performing a Monte-
Carlo simulation). In light of the numerical results presented
here, experimental tests could also be considered, such as the one
presented in [39], to complete the study.
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