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In this paper, an enhanced solid finite element formulation for rotor dynamics analysis is presented. The element kinematics is first defined with a Total Lagrangian formulation in order to account for possible centrifugal stiffening effect and its associated pre-stress deformation. The novelty of the threedimensional element proposed in this study is then to correctly consider the effect of inertia due to small rotational deformation occurring around the pre-stressed equilibrium position. The rotational motion is characterized by interpolation of the translational degrees of freedom of the element. The accuracy and convergence of the proposed finite element are tested on several numerical examples consisting of a rotating rigid disk and a rotating Timoshenko beam with different slenderness ratios. All results agree well with analytical solutions excerpted from literature and demonstrate the usefulness and applicability of the proposed finite element formulation.

Introduction

Performing a direct association between three-dimensional (3D) designs and finite element (FE) simulations is current practice in many engineering applications to shorten the development cycle time. In rotating machines, as the design of rotors is developed via 3D software to accurately define for instance advanced geometrically complex blades, the utilization of 3D solid FE modeling is inevitable for a good prediction of the dynamics behavior. 3D solid FEs have been widely employed to investigate the dynamic responses to various rotating structures, such as rotating beam-like structures [START_REF] Bediz | Three dimensional dynamics of rotating structures under mixed boundary conditions[END_REF][START_REF] Kee | Structural dynamic modeling for rotating blades using three dimensional finite elements[END_REF], rotating annular plates [START_REF] Yu | Dynamic analysis of rotor-bearing systems using threedimensional solid finite elements[END_REF], and rotating cylinders [START_REF] Liu | Axisymmetric vibration analysis of rotating annular plates by a 3d finite element[END_REF].

When the rotor is considered as a rigid body, the definition of the rotational motion is clear. If a general flexible structure is tackled, the deformation parameter and the angular velocity vary simultaneously from a material point to another within the rotating body. Without rotational degrees of freedom, one cannot correctly define this rotation at each particle contained in the continuous structure. Thus, it is not straightforward to characterize exactly what the spin speed of the rotor is within the solid FE model [START_REF] Genta | Dynamics of rotating systems[END_REF] and this needs particular attention. In the conventionally used 3D solid FE formulation developed by Genta [START_REF] Genta | Dynamics of rotating systems[END_REF], the rotational moment of inertia is neglected. Such elements become inappropriate especially for thick and/or large rotor in which these moments have a first-order influence on the structural dynamics [START_REF] Geradin | A new approach to finite element modelling of flexible rotors[END_REF][START_REF] Kumar | Rotordynamic analysis using 3d elements in fixed and rotating reference frame[END_REF]. None of the above researches [START_REF] Bediz | Three dimensional dynamics of rotating structures under mixed boundary conditions[END_REF][START_REF] Kee | Structural dynamic modeling for rotating blades using three dimensional finite elements[END_REF][START_REF] Yu | Dynamic analysis of rotor-bearing systems using threedimensional solid finite elements[END_REF][START_REF] Liu | Axisymmetric vibration analysis of rotating annular plates by a 3d finite element[END_REF] takes the inertial effects into consideration.

Models that account for rotational inertia effects have been developed in simpler structures such as a rotating beam [START_REF] Shen | Nonlinear vibration of rotating co-rotational 2d beams with large displacement[END_REF] or a rotating Mindlin plate [START_REF] Hashemi | Free vibration analysis of rotating thick plates[END_REF] equipped with rotational degrees of freedom. However, to the best of authors' knowledge, the investigation of rotational inertia effects on rotating structures using 3D solid FE formulation is very limited. The first attempt was presented by Géradin and Kill [START_REF] Geradin | A new approach to finite element modelling of flexible rotors[END_REF]. They introduced a particular particleattached reference frame whose orientation was used to characterize the particle rotational motion. The rotation was defined by spatial derivatives of translational degrees of freedom. However, the axisymmetric hypothesis made prevents the application of its kinematic description to a more general case.

Commercial software, such as ANSYS [START_REF] Ansys | ANSYS APDL mechanical theory reference[END_REF] and NASTRAN [START_REF] Kumar | MSC Nastran 2018: rotordynamics user's guide[END_REF], account for the inertial effects in their solid FE formulation only when the dynamics analysis is performed in a fixed (inertial) reference frame. However, most of the rotor dynamics models involving isotropic bearing system are developed in the rotating reference frame because it is convenient to express the equations of motion using constant dynamic matrices (given in [START_REF] Friswell | Dynamics of rotating machines[END_REF] for instance).

The absence of rotational inertia for solid elements makes the derivation of these dynamic matrices a challenging task. This complexity has limited the use of these 2D and 3D elements for modeling rotor components [START_REF] Kumar | Rotordynamic analysis using 3d elements in fixed and rotating reference frame[END_REF].

The above review reveals the potential benefit of a 3D solid FE taking the rotational inertia effects into consideration in a general way as there is an industrial demand in both rotor design companies and commercial software developers. The aim of this paper is therefore to develop a new solid element involving these inertial effects. Its main contribution is to propose an enhanced 3D solid FE formulation that can lead to a more general and appropriate kinematic description of rotating structures.

The rotating reference frame approach introduced by Géradin [START_REF] Geradin | A new approach to finite element modelling of flexible rotors[END_REF] serves as the basis for the proposed development and is here extended to include nonlinear deformation generated by centrifugal force and rotational inertia effects. In order to avoid the axisymmetry hypothesis, a general approximation of rotation-translation relation is introduced. In Section 2, the equations of motion, including the effects of the moment of inertia in rotating structures, are established using Hamilton's principle. A Total-Lagrangian formulation is applied to correctly predict the centrifugal-stiffening effect which is fundamental for accurate simulations under large spin-speed. The general formulation of the centrifugal stiffening developed in this section is also an original aspect of this paper. Finally, following the more classical procedure of FE discretization detailed in Section 3, the free vibration of different rotating structures are analyzed in Section 4 to validate the proposed formulation.

Results on the natural frequencies are compared with those obtained from analytical or semi-analytical solutions found in the literature.

Enhanced kinematics relation including rotational inertia effects

Géradin and Kill in [START_REF] Geradin | A new approach to finite element modelling of flexible rotors[END_REF] first developed a new approach to formulate a finite element of rotating structures. They defined a dynamic reference frame for each point in the body according to the fact that, in a flexible continuum, the deformation and angular velocity change from point to point. With an infinitesimal displacement hypothesis, the Lagrangian and Eulerian description were considered as coincident. The objective of this section and novelty of this paper is to extent their approach into a more general and more versatile 3D solid form with the least possible approximations.

Kinematics description

In this paper, we consider a general solid rotating with an imposed constant spin speed Ω about an axis (Oz) and want to express the system dynamics in the rotating reference frame. The two frames (O; x, y, z) and (O; x r , y r , z r ) in Fig. 1 denote respectively the stationary and rotating reference frames. The position vector of a general point P in the stationary reference frame is related to its expression in the rotating reference frame with the orthogonal rotation matrix H given as: Let consider an arbitrary material point P whose initial coordinate vector p i , with respect to the rotating reference, is written as:

H =       cos (Ωt) -sin (Ωt) 0 sin (Ωt) cos (Ωt) 0 0 0 1       (1) 
p i = x 0 y 0 z 0 T (2) 
The rigid body translation field c = c x c y c z T and the deformational displacement field u def = u def v def w def T are then introduced to move particle from p i to p such that: and deformational displacement u def , the general material point p initially located at p i is subsequently displaced to p and then transformed into the current configuration p n . The coordinate vector of the particle in C n with respect to the rotating reference frame becomes (see Fig. 2b):

p = p i + u def + c (3) 
p n = Rp = R (p i + u def + c) (4) 

Kinetic energy analysis

The velocity v s of the general particle p n in C n with respect to the stationary reference frame is given, using (4), by:

v s = d dt (Hp n ) = ḢRp + H Ṙp + HR ṗ ( 5 
)
where subscript { } s represents the stationary reference frame. The kinetic energy of the structure, noted Π 0 , is defined with:

Π 0 = 1 2 0 V v T s v s d 0 V (6) 
where 0 V represents the undeformed configuration. Using Eqs. ( 5) and [START_REF] Geradin | A new approach to finite element modelling of flexible rotors[END_REF] gives the following expression for the kinetic energy:

Π 0 = 1 2 0 V ṗ T ṗ + p T ṘT Ṙp + p T R T ḢT ḢRp + 2p T R T ḢT H Ṙp + 2p T R T ḢT HR ṗ + 2p T ṘT R ṗ d 0 V (7) 
In order to express the kinetic energy in a quadratic form in terms of the proposed generalized coordinates q 0 (q 0 = u T def , θ x , θ y , θ z , c T T ) and their time-derivatives q0 , the transformation R shall be limited to a secondorder approximation in terms of the elemental rotations (θ x , θ y , θ z ). This approximation is explained in Appendix B. Substituting the expansion of R given in Eq. (B.4) into Eq. ( 7) and neglecting the high-order terms with respect to q 0 and q0 gives the following kinetic energy which is in q 0 -related quadratic form:

Π quad 0 = 0 V 1 2 qT 0 M 0 q0 + Ω qT 0 G 0 q 0 + 1 2 Ω 2 q T 0 K 0,Ω q 0 + Ωf T 1 q0 + Ω 2 f T 2 q 0 + E d 0 V (8) 
where M 0 , G 0 and K 0,Ω are respectively the mass, gyroscopic and spinsoftening stiffness matrices with respect to q 0 . The term in f 1 will vanish in the Lagrange's equation because f 1 is time-independent. Once differentiated with respect to q 0 , the term in f 2 will generate the centrifugal force. The last term E is a constant and represents the rigid-body kinetic energy due to the imposed uniform rotation Ω about the z-axis. The explicit expressions of matrices, vectors and constant terms in Eq.( 8) are given in Appendix C.

All three types of motions (deformation, rigid-body translational and rigid- The formulation proposed in this paper is built using only the translational degrees of freedom of solid finite elements. Therefore, it will be necessary to establish a relationship between the components of q 0 and these degrees of freedom. This is the focus of the next section.

Continuum kinematic approximation

An efficient approximation of q 0 can be derived from the basic definition of deformation in continuum mechanics. The position p n of the particle in the current configuration can also be defined with a simple general translation field u which coincides with the description of the degrees of freedom of the solid finite element such that:

p n = p i + u (9) 
where u = u r v r w r T represents the general translations of the particle with respect to the rotating reference frame. By introducing the definition of general in-homogeneous deformation [START_REF] Ogden | Non-linear Elastic Deformations[END_REF] in classical continuum kinematics, we may write:

p n = F p i + r (10a) = RU p i + r (10b) = R(p i + (U -I) p i u def + R T r c ) (10c) 
where:

F = [∇p n ] = I + [∇u] (11) 
In these expressions, ∇ is the gradient operator, F represents the deformation gradient (second-order tensor) [START_REF] Kim | Introduction to nonlinear finite element analysis[END_REF], r is the spatial non-uniform rigid body translation [START_REF] Ogden | Non-linear Elastic Deformations[END_REF]. R and U are respectively the rigid body rotation tensor and the right stretch tensor obtained from the polar decomposition of F = RU .

Comparing Eq. (10c) with Eq. ( 4) shows that R represents the same rigid body rotation in both kinematics description. By equating Eq. ( 9) and Eq. ( 10), u def and c can be given in form of continuum mechanics terms as:

u def = (U -I) p i = R T F -I p i c = R T r = R T (I -F ) p i + R T u (12) 
Both expressions in Eq. ( 12) are of second-order in the general translation field u. In order to keep the kinetic energy expression in Eq. ( 8) in a quadratic form, Eq. ( 12) should be approximated into a first-order form with respect to u before substituting the q 0 -value into Eq. [START_REF] Shen | Nonlinear vibration of rotating co-rotational 2d beams with large displacement[END_REF]. Following the infinitesimal deformation theory [START_REF] Mase | Continuum mechanics for engineers[END_REF], the following consistent linearization of Eq. ( 12) will be used:

ũdef = [∇u] + [ω] T p i c = -[∇u] p i + u (13) 
where [∇u] is the displacement gradient matrix andf [ω] is the skew-symmetric rotation tensor. The detailed analytical developments can be found in Ap-pendix D.

We may note that the R-matrix in Eq. ( 4), parameterized by the angles θ x , θ y and θ z , and the R-matrix in Eq. ( 10) extracted from deformation gradient describe identical kinematics. Thus, it is possible to relate the angles θ x , θ y and θ z to the translations at the point of interest by:

θ x (p i ) = 1 2 ∂w r ∂y 0 - ∂v r ∂z 0 θ y (p i ) = 1 2 ∂u r ∂z 0 - ∂w r ∂x 0 θ z (p i ) = 1 2 ∂v r ∂x 0 - ∂u r ∂y 0 (14) 
Similar rotation-translation relations can also be found in various references [START_REF] Genta | Dynamics of rotating systems[END_REF][START_REF] Filippi | Dynamic analyses of axisymmetric rotors through three-dimensional approaches and high-fidelity beam theories[END_REF]. However, only a few of them provide full coupled expressions and a detailed demonstration. In order to verify the proposed kinematic relation of Eq. ( 14), a different explicit development can be found in Appendix E. One may also notice that the approximated rotations in Eq. ( 14) are firstorder of general translation. Thus, for the sake of simplicity, we can keep the rotation-related quadratic kinetic energy terms of Eq. ( 8) as a function of (θ x , θ y , θ z ) until the discretization step. It is only at this point that the spatial derivatives of Eq. ( 14) will be used.

The kinetic energy in Eq. ( 8) is then expressed as a quadratic form in the general translation u by substituting ũdef and c from Eq. ( 13) into Eq. ( 8).

It gives:

Π quad = Π v 0 + Π v 1 + Π v 2 + Π v 3 ( 15 
)
The different components of Π quad are detailed next:

• the relative kinetic energy:

Π v 0 = 1 2 0 V ρ u2 r + v2 r + ẇ2 r d 0 V (16) 
It will provide the mass matrix after discretization.

• the coupling kinetic energy, function of Ω:

Π v 1 = Ω 0 V ρ (p i ) vr (x 0 + u r ) -ur (y 0 + v r ) + x 0 ( ur θ z + θz u r ) -y 0 ( ẇr θ y + θy w r ) + y 2 0 /2( θx θ y + θy θ x ) -x 2 0 /2( θx θ y + θy θ x ) + x 0 y 0 ( θx θ x -θy θ y ) - x 0 z 0 2 ( θy θ z + θy θ z ) + y 0 z 0 2 ( θx θ z + θx θ z ) d 0 V (17) 
It will generate the gyroscopic matrix after discretization.

• the spin softening kinetic energy, function of Ω 2 :

Π v 2 = 1 2 Ω 2 0 V ρ (p i ) x 2 0 + u 2 r + y 2 0 + v 2 r + 2w r (x 0 θ y -y 0 θ x ) + 2θ z (y 0 u r -x 0 v r ) + (θ x y 0 -θ y x 0 ) 2 + θ 2 z x 2 0 + y 2 0 -x 0 z 0 θ x θ z -y 0 z 0 θ y θ z d 0 V (18) 
After discretization, this will provide not only the standard spin-softening matrix but also original terms that couple position and rotation.

• the centrifugal kinetic energy:

Π v 3 = Ω 2 0 V ρ (p i ) x 0 u r + y 0 v r + 1 2 x 2 0 + y 2 0 d 0 V (19) 
According to Lagrange's equation, this term will give rise to an inertial force f Ω given by:

f Ω = Ω 2 0 V [ρ (p i ) Ap i ] d 0 V (20) 
where

A = diag ([1, 1, 0]) 1 .
f Ω is a geometry-dependent centrifugal force vector. It can be treated like a static load. The force f Ω depends simultaneously on the updated mass density ρ(p i ) and on the updated mass particle distribution p i . The particular effect of this term will be detailed in Section 2.5.

Rotational effects, due to the consideration of the rotational motion in the kinematics description, are now present in both coupling kinetic energy and centrifugal softening kinetic energy. This is not the case in a purely linear description of the kinematics. In Section 2.4, the extended rotation-included kinematic relation will be applied into strain energy evaluation.

Strain energy analysis

We consider in this paper the dynamic behavior of rotating systems at high spin speed with respect to a rotating reference frame. It is crucial to calculate the pre-stressed state of the system, deformed under centrifugal force, around which the final equation of motion of the rotating structure is established. In the case that the spin speed is important and the associated centrifugal deformation is large, the conventional linear perturbation method based on in-extensible model is no longer accurate. Thus, in order to precisely predict the static displacement generated by the centrifugal force and to accurately evaluate the centrifugal stiffening effect, the Total-Lagrangian formulation is adopted in this paper.

The kinematic relation pn,d of Eq. (E.2) is projected into the rotating reference frame with the transformation matrix in Eq. (B.4) in order to evaluate the strain energy. Removing higher order terms yields to the second-order approximation:

pn,r =       x 0 y 0 z 0       +       u r v r w r       +       0 -θ z θ y θ z 0 -θ x -θ y θ x 0             u r v r w r       - 1 2       0 -θ z θ y θ z 0 -θ x -θ y θ x 0       2       x 0 y 0 z 0       (21) 
where pn,r represents the coordinate vector of a particle in the current configuration C n , expressed in the rotating reference frame. The conventional solid element formulation for rotor dynamics analysis in [START_REF] Genta | Dynamics of rotating systems[END_REF][START_REF] Friswell | Dynamics of rotating machines[END_REF][START_REF] Vollan | Computational techniques of rotor dynamics with the finite element method[END_REF] includes the first and second terms of Eq. [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF]. By introducing the local dynamic frame, the second-order rotation-related (third and fourth terms) terms are also taken into account leading to a more accurate relation to perform the strain energy analysis.

Using this extended kinematic relation, some forces and displacements are applied on the solid so that its geometry changes from the initial configuration (C 0 ) to the current configuration (C n ). The one-to-one mapping from a particular material point in (C 0 ) with coordinate vector p i to a point with coordinate vector pn,r , given in Eq. ( 21), in the deformed geometry can also be written as:

pn,r = p i + ũ (p i , t) (22) 
where the displacement vector ũ of a particle P , expressed in the rotating reference frame, is simply the difference between the final position pn,r and the initial position p i . Therefore, ũ can be expressed as:

ũ =       u r v r w r       +       0 -θ z θ y θ z 0 -θ x -θ y θ x 0             u r v r w r       - 1 2       0 -θ z θ y θ z 0 -θ x -θ y θ x 0       2       x 0 y 0 z 0       (23) 
According to the Total-Lagrangian formulation, the strain measure of the flexible body in the rotating reference frame is defined by Green-Lagrangian (G-L) strains with respect to the initial configuration. Using the G-L strain measure referencing to C 0 , the total strain energy Π s of the deformed body is [START_REF] Borst | Nonlinear finite element analysis of solids and structures[END_REF]:

Π s = 0 V 1 2 e (p i , ũ) T Ce (p i , ũ) d 0 V ( 24 
)
where 0 V represents the volume domain of the initial undeformed configuration C 0 ; e is the G-L strain tensor written in a vector form; and C is the constitutive matrix of the material assumed to be linear elastic, homogeneous and isotropic, defined using Lame's coefficients λ and µ as:

C =                 λ + 2µ λ λ 0 0 0 λ + 2µ λ 0 0 0 λ + 2µ 0 0 0 µ 0 0 symm. µ 0 µ                 . ( 25 
)
According to the Lagrange's equation, the internal elastic force f s can be obtained by differentiating the total strain energy (Eq. ( 24)) with respect to the displacement vector in the rotating reference frame u r . This gives:

f s (u r ) = ∂ ∂u r 0 V 1 2 e (p i , ũ) T Ce (p i , ũ) d 0 V (26) 
In order to equilibrate the static load generating from the centrifugal force, the iterative Newton-Raphson method will be used. It then needs the tangent elastic force matrix K s given by:

K s = ∂f s ∂u r (27) 
Eq. ( 26) gives the internal elastic force. However, in order to evaluate the centrifugal stiffening effect, one must still carefully define the pre-stress due to centrifugal force. This will be detailed in the next section.

Centrifugal stiffening effect evaluation

The above total strain energy and its corresponding elastic force are expressed referencing to the initial configuration C 0 . However, because the inertial force (centrifugal load) of the material point is function of both its current position coordinates and its current mass density (which changes with deformation) [START_REF] Dhondt | The finite element method for three-dimensional thermomechanical applications[END_REF], the centrifugal load should also be expressed with 

f p Ω (p i + ũ) = Ω 2 ρ (p i + ũ) A (p i + ũ) ( 28 
)
where ρ is the mass density of this particular point P in the current deformed configuration. The centrifugal force applied on the deformed body is then expressed as:

f Ω = n V Ω 2 ρ (p i + ũ) A (p i + ũ) d n V ( 29 
)
where n V represents the volume of the current deformed configuration C n .

Using the following mass conservation property [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF]:

0 V [ρ (p i + ũ) J -ρ 0 ] d 0 V = 0 or ρ (p i + ũ) J -ρ 0 = 0 ( 30 
)
where J is the determinant of the deformation gradient (equivalent to the change of volume), and changing the integration domain (d n V = Jd 0 V ), the expression of the centrifugal force ( 29) can be finally transformed into a form of integration over C 0 with a constant mass density ρ 0 :

f Ω = 0 V Ω 2 ρ 0 J A (p i + ũ) Jd 0 V = 0 V Ω 2 ρ 0 A (p i + ũ) d 0 V (31) 
This later expression gives a direct relationship between the centrifugal load and the displacement taking account for both the current material point coordinates and its actualized mass density. The internal elastic force coming from the elastic deformation is equal to the centrifugal force supplemented by all other external forces. This gives the following equilibrium at a given spin speed:

f s (u r ) = f Ω (u r , Ω) + f ext (32)
where f ext is the applied external forces and u r is the unknown initial displacement vector that equilibrates both forces. To solve the above static boundary value problem, the iterative Newton-Raphson method [START_REF] Kim | Introduction to nonlinear finite element analysis[END_REF] can be applied.

After finding the converged displacement u r , the centrifugal-stiffening effect can be correctly evaluated. The updated mass density will be reused in the following dynamic analysis in order to improve the model accuracy. In other words, the final set of dynamic matrices used to perform the vibration analysis are established around the centrifugal-equilibrium configuration C eq .

This configuration may have a large change of mass distribution when a high spin speed is applied. Substituting the found initial displacement u r into Eq. [START_REF] Gonzalez | A first course in continuum mechanics[END_REF] gives us the expression of the updated mass distribution as:

ρ = ρ 0 J (u r , p i ) ( 33 
)
The kinematics presented in Section 2.1 will then be applied on the new 'initial' configuration C eq with a new updated mass distribution calculated with Eq. (33).

In the numerical applications presented in Section 4, the changes of mass density due to the centrifugal pre-stress are all naturally embedded in the numerical process.

Finite element discretization

There are many different approaches to discretize a solid in a FE method [START_REF] Sindel | Tangent stiffness properties of finite elements[END_REF][START_REF] Bathe | Finite element procedures[END_REF]. In this paper, the 20-node second order hexahedron element with uniform reduced numerical integration technique is applied. This element has 8

nodes on corners and 12 mid-side nodes, with only translational degrees of freedom. Its advantages are its accuracy in 3D complex geometry modeling, its robustness in shear and volume locking and its tolerance under coarse mesh. By opposition to first order elements (4-node tetrahedral element or 8-node hexahedron element), the 20-node second order element does not require an enhanced strain technique [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF]. This simplifies its strain-related formulation.

Iso-parametrized mapping

Two different discretized models are used for respectively the centrifugal stiffening analysis and the dynamic analysis. The centrifugal stiffening model, based on T-L formulation, is discretized upon C 0 . On the contrary, the discretized model for the dynamic analysis is based on the new centrifugal equilibrium configuration C eq . Particular attention must be paid to update the change of mass density in the discretized dynamic model.

Discretized centrifugal stiffening model

In the centrifugal stiffening analysis, the initial configuration C 0 is used as basic reference. The material point coordinates vector p i in C 0 and its corresponding translational displacement vector u are interpolated using a 20-node iso-parametric formulation. They are expressed by:

p i = 20 i=1 ϕ i (ξ, η, ζ) x 0 i and u = 20 i=1 ϕ i (ξ, η, ζ) u i ( 34 
)
where ϕ i is the i-th nodal shape function (explicitly expressed in [START_REF] Ansys | ANSYS APDL mechanical theory reference[END_REF] for instance) with local coordinates -1 ≤ ξ, η, ζ ≤ 1. x 0 i represents the i-th nodal coordinates in C 0 and u i denotes the i-th nodal translational displacement vector with respect to its initial coordinates x 0 i in C 0 .

In order to realize the reduced integration operation, one defines the Jacobian mapping matrix J 0 from the initial configuration C 0 to the isoparametric parenting reference by taking the derivative of p i as [START_REF] Kim | Introduction to nonlinear finite element analysis[END_REF]:

J 0 (p i , ξ) = ∂p i ∂ξ = 20 i=1 x 0 i ∂ϕ i ∂ξ ( 35 
)
where ξ contains the three local coordinates. With the use of the above defined Jacobian J 0 , the integration over the element domain in the initial configuration 0 V e can be converted into the integration over the isoparametric reference element. This is achieved using the following relation:

0 V e d 0 V e = +1 -1 det (J 0 ) dξdηdζ (36) 
One can also express the discretized form of the displacement gradient ∂u/∂p i as:

∂u ∂p i = 20 i=1 u i ∂ϕ i ∂ξ J -1 0 (37)

Discretized dynamic model

Following the explanation given in Section 2, it is possible to get the equilibrium configuration C eq by updating the mass distribution (Eq. ( 33))

and equilibrating the centrifugal force. In this section, we consider that the effect of change of geometry has already been taken into account and will define the dynamics governing equation on C eq .

Assuming that u is known after resolving the boundary value problem (Eq. ( 32)), the material point P 's coordinates vector x and its related translational displacement vector u r can be interpolated with nodal coordinates as:

x = 20 i=1 ϕ i (ξ, η, ζ) x eq i and u r = 20 i=1 ϕ i (ξ, η, ζ) u r i (38)
where x eq i is the element's i-th node's position vector in C eq . Using the same technique as the one explained in Section 3.1.1, the mapping from the physical configuration C eq to the isoparametric reference, and the discretized form of the displacement gradient with respect to C eq are given by:

J eq 0 (x, ξ) = ∂x ∂ξ = 20 i=1 x eq i ∂ϕ i ∂ξ and ∂u r ∂x = 20 i=1 u r i ∂ϕ i ∂ξ (J eq 0 ) -1 (39)

General equation of motion and derivation of its matrices

After substituting Eqs. ( 38) and (39) into the quadratic form of the kinetic energy (Eqs. ( 16), ( 17) and ( 18)) and applying Lagrange's equations, the motion of the solid linearized around the centrifugal stiffened equilibrium configuration can be defined with the following differential equation:

M {ü r i } r + G{ ur i } r + (K s ({x eq i }) + K Ω ) {u r i } = 0 (40) 
The expression of K s was directly given in Eq. ( 27).

For the sake of simplicity, in the following detailed expression of the matrices M , G and K Ω , we will employ the notations: N = {ϕ i } is the vector of element's shape functions ; N x = {ϕ i,x }, N y = {ϕ i,y } and N z = {ϕ i,z } are respectively the vector of spatial derivative of shape functions along

x-direction, y-direction and z-direction. All the above spatial differentiations are with respect to the centrifugal-stiffened equilibrium configuration C eq which can be evaluated by using Eq. (39). Finally, (x, y, z) represents the position of a general particle in the solid element. Using the above mentioned notations, the characteristic matrices of Eq. ( 40) are:

• the mass matrix M :

M = +1 -1 ρ 0 /detJ (x, p i )       N T N 0 0 0 N T N 0 0 0 N T N       detJ (x, ξ) dξdηdζ (41) 
where detJ (x, p i ) is the change of volume calculated from Eq. (33).

• the gyroscopic matrix G:

G = +1 -1 Ωρ 0 /detJ (x, p i )       0 -2N T N 0 2N T N 0 0 0 0 0       detJ (x, ξ) dξdηdζ (42) 
• and the spin-softening stiffness matrix K Ω :

K Ω = +1 -1 Ω 2 ρ 0 /detJ (x, p i ) G T K core Ω GdetJ (x, ξ) dξdηdζ (43)
where the matrix of rotation-inclusion G is:

G =                 N 0 0 0 N 0 0 0 N 0 -N z /2 N y /2 N z /2 0 -N x /2 -N y /2 N x /2 0                 (44) 
and the core spin-softening matrix K core Ω is:

K core Ω =                 1 0 0 0 0 y 0 1 0 0 0 -x 0 0 0 -y x 0 0 0 -y y 2 -xy -(xz)/2 0 0 x -xy x 2 -(yz)/2 y -x 0 -(xz)/2 -(yz)/2 x 2 + y 2                 (45) 
The major difference in the proposed formulation compared with conventional solid FE for rotating structures [START_REF] Bediz | Three dimensional dynamics of rotating structures under mixed boundary conditions[END_REF][START_REF] Kee | Structural dynamic modeling for rotating blades using three dimensional finite elements[END_REF][START_REF] Genta | Dynamics of rotating systems[END_REF] lies in the spin-stiffness matrix K Ω of Eq. ( 43). In these references, the spin-stiffness matrix used is defined with:

K Ω = +1 -1 Ω 2 ρ 0 GT Kcore Ω GdetJ (x, ξ) dξdηdζ ( 46 
)
where G and Kcore Ω contains only the top three components of G and K core Ω .

In practical applications, once the centrifugal stiffened stationary configuration is determined, the natural frequencies and mode shapes of the rotating model can be calculated by solving the general equation of motion (40) in state-space.

Numerical application

In this section, the natural frequencies of different rotating structures are calculated with the proposed formulation and compared with analytical expression or conventional FE method. The evolution of the natural frequencies of the six rigid body motion modes as a function of the spin speed are next compared between the proposed FE formulation, the conventional FE method [START_REF] Genta | Dynamics of rotating systems[END_REF] and analytical solutions. The results are illustrated in Fig. 5 for a circular disk and in Fig. 6 for an elliptic disk. These figures show that the frequencies are very well predicted by applying the proposed solid FE formulation. On the other hand, as the rotational inertia effects play an important role for large values of spin speed, the conventional method that neglect these effects is not able to predict correctly the three rigid rotational modes (mode 4, 5 and 6) in the whole spin speed range. These two numerical applications validate the proposed enhanced kinematic description in this specific rigid body case. The objective of the next application is to validate the whole process, from the consideration of the centrifugal stiffening to the dynamical analysis around the pre-deformed state.

Rotating thick beam

In this section, the proposed enhanced solid element is applied to a rotating flexible beam as the one illustrated in Fig. 8. The beam is clamped on one end, and is rotating with a constant spin speed Ω around the z r -axis.

The y r -axis is chosen to coincide with the centroid axis of the undeformed structure, and x r -axis and z r -axis are chosen to be the principle directions of the cross-section. The beam has an uniform rectangular cross-section and is made of elastic isotropic material. The following set of dimensionless parameters will be employed in the numerical applications related to this test-case: the dimensionless spin speed K = ΩL ρ/E, the dimensionless natural frequency k = ωL ρ/E and the slenderness ratio η = 2 √ 3L/h, where L is the length of the beam, ρ its density, E its Young's modulus, h the width of the cross-section along the z r direction, and ω the natural frequency. To verify the accuracy and versatility of the present method, numerical examples obtained for different slenderness ratios (η = 10, 20, 50) are investigated.

We first study the convergence of our approach with respect to the number of elements in the mesh discretization. Results on the natural frequencies of the first 6 lateral modes with different slenderness ratios and different spin speeds are compared with analytical reference found in the literature [START_REF] Lin | Vibration analysis of a rotating timoshenko beam[END_REF] based on Timoshenko beam theory. Both centrifugal stiffening effect and Coriolis effect are considered. Fig. 9 illustrates the normalized ratio (ratio between the natural frequency obtained from the proposed method and the analytical one used as reference [START_REF] Lin | Vibration analysis of a rotating timoshenko beam[END_REF]) as a function of the number of elements, for different modes and spin speed.

( We next compare the natural frequencies of flap-wise and lag-wise modes of vibration obtained for given values of spin speed (K = 0.05 and K = 0.1) between our formulation, the conventional method [START_REF] Genta | Dynamics of rotating systems[END_REF] and reference [START_REF] Lin | Vibration analysis of a rotating timoshenko beam[END_REF] for different slenderness ratios (η = 10, 20, 50). The same number of elements (125 elements) are used in our formulation and the conventional FE method.

Results are presented in Table 1. Table 1: Dimensionless natural frequencies for lag-wise (LW) and flap-wise (FW) modes of the rotating beam calculated with different approaches (A: proposed method, B: conventional FE method, based on beam theory [START_REF] Lin | Vibration analysis of a rotating timoshenko beam[END_REF]) with different slenderness ratios η under dimensionless spin speed K. The percentage corresponds to the difference between the FE approaches and [START_REF] Lin | Vibration analysis of a rotating timoshenko beam[END_REF] taken as reference.

η K LW 1 FW
Table 1 shows that the results found with the proposed formulation are slightly closer to the solutions based on Timoshenko beam theories than results generated by conventional FE formulation. However, the differences between the 2 FE approaches are not substantial in this example. This is most probably because the effects of rotational inertia included in our model are here almost negligible. The next application deals with this matter and focuses on a structure in which these effects are expected to be more important. As our last example, the proposed enhanced solid element is applied to the inclined rotating beam shown in Fig. 10. The configuration of the beam is the same as in Fig. 8, except that the axial direction of the beam is inclined with an angle β in the plane (x r , z r ). When the beam is inclined, the coupling between centrifugal force and rotational inertia is expected to play a more important role. Thus, the differences of natural frequencies obtained by the proposed method and by the conventional method may become more visible.

Inclined rotating thick beam

In the following numerical applications, a moderate thick beam (η = 20) is studied as a practical example. We use 64 elements in the simulations. The inclination angle β may take different values. 2: Dimensionless natural frequencies for lag-wise (LW) and flap-wise (FW) modes of the rotating inclined beam calculated with different approaches (A: proposed method, B: conventional method) with slenderness ratio η = 20 under different dimensionless spin speeds K and inclination angles β.

In Table 2, the first 6 flap-wise and leg-wise natural frequencies obtained with the present method are compared with those obtained by the conventional method [START_REF] Genta | Dynamics of rotating systems[END_REF]. The frequencies obtained by the proposed method are smaller than the ones simulated by conventional solid elements. The difference percentage increases with the inclination angle. By considering rotational inertia, the newly proposed spin-softening matrix tends to reduce the natural frequencies and even more so for an inclined beam. The inclusion of rotational inertia effects in the formulation corrects the overestimation of the frequency simulated with the classic solid formulation.

Conclusion

This paper presents an extended kinematic description of rotating structures based on a 3D solid FE formulation that takes rotational inertia effect into account. The novelty of this formulation lies on the introduction of a particle-attached reference frame to characterize the rotational orientation.

Furthermore, a general rotation-translation relation is also introduced to approximate the rotation under small rotation hypothesis.

Based on the Total Lagrangian method, a general procedure to evaluate the effect generated by the displacement-dependent centrifugal load was provided. The centrifugal stiffened pre-deformed state is then used to characterize the new equations of motion. Different numerical applications have shown that the proposed formulation has great potential in the FE simulation of rotating structures using 3D solid elements. Indeed, as it correctly accounts for the rotational effects of inertia of the elements, the proposed approach is appropriate for modeling both rigid and flexible structure at high spin speed. This will help to accurately predict the vibration behavior of rotating system. Compared to the conventional FE approach currently employed in commercial FE softwares, our methodology provides more accurate natural frequencies that are not overestimated from neglected rotational inertia effects.

The formulation was chosen in terms of pure translational degrees of freedom in order to be directly compatible with existing FE commercial codes.

It could have been more straightforward to develop an element with both 40 translational and rotational degrees of freedom, but this would be hardly compatible with existing codes. Therefore, the original proposed FE formulation not only is more accurate to simulate complex rotor dynamics effects but also has a high potential for industrial implementation. The Euler angles (which are also referred as Cardan or Bryant angles [START_REF] Ernesto | 3D Motion of Rigid Bodies[END_REF]) are adopted to parameterize the angular orientation R of the particle in Eq. ( 4). It is assumed that the orthogonal rotation matrix R(θ x , θ y , θ z ) results from three successive infinitesimal rotations: firstly, a rotation θ x about the It can be easily verified that the final Euler-rotation matrix depends on the sequence with which the different rotations were applied. A good example of the issues concerning Euler angles is provided in [START_REF] Surana | Geometrically nonlinear formulation for the curved shell elements[END_REF][START_REF] Bates | The mechanics of thin walled structures with special reference to finite rotations[END_REF] where it is shown that the finite element model which uses Euler angles is not always independent of this sequence. Thus, in order to get rid of the influence of the lack of uniqueness of Euler angles, the approximation with higher precision proposed in [START_REF] Bates | The mechanics of thin walled structures with special reference to finite rotations[END_REF][START_REF] Vollan | Computational techniques of rotor dynamics with the finite element method[END_REF] is applied in this paper. The derivation process of this approximation is provided next.

The second-order approximation begins with the Rodrigues' rotation formula [START_REF] Bates | The mechanics of thin walled structures with special reference to finite rotations[END_REF]. Based on the small rotation hypothesis, we can define θ the magnitude of the rotation as θ = θ 2 x + θ 2 y + θ 2 z , and the corresponding normalized cross-product matrix (skew-symmetric rotation tensor) can be given by:

[ω] =

      0 -θ z θ y θ z 0 -θ x -θ y θ x 0       (B.2)
Subsequently, the rotation matrix R can be alternatively given by: R = I + sin θ θ R is the same whatever the sequence of Euler angles used. R and R share the same eigenvectors, which helps to be consistent in the rotational axis definition [START_REF] Ernesto | 3D Motion of Rigid Bodies[END_REF][START_REF] Bates | The mechanics of thin walled structures with special reference to finite rotations[END_REF]. In Section 2.2, R will be used in Eq. ( 16) to lead to an extended kinematic relation that takes rotational motion into consideration.

Finally, the useful first-order approximation of R is given by: R The explicit expressions of the different components of Eq. ( 8) are detailed next: 

M 0 =                           1 
                          (C.1) G 0 =                           0 1 0 -z 0 0 2x 0 0 1 0
-1 0 0 0 -z 0 2y 0 -1 0 0 0 0 0 -x 0 -y 0 0 0 0 0 z 0 0 -x 0 -x 0 y 0 x 2 0 /2 -y 2 0 /2 + z 2 0 -3y 0 z 0 /2 z 0 0 -x 0 0 z 0 -y 0 x 2 0 /2 -y 2 0 /2 -z 2 0

x 0 y 0 3x 0 z 0 /2 0 z 0 -y 0 0 0, 0 y 0 z 0 /2 -x 0 z 0 /2 0 0 0 0 

0 1 0 -z 0 0 2x 0 0 1 0 -1 0 0 0 -z 0 2y 0 -1 0 0 0 0 0 -x 0 -y 0 0 0 0 0                           (C.2) K 0,Ω =                           1 
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 1 Figure 1: Stationary and rotating reference frames

  This is illustrated inFig. 2a. Subsequently, in order to associate each material point with a particular rotational orientation, we define an auxiliary local dynamic frame noted p n ; x d 0 , y d 0 , z d 0 attached to every material point p n in the current configuration C n . The transformation used to create the dynamic reference frame follows the definition of 3D Euler rotations. These rotations, whom details are illustrated in Appendix B, are: a rotation θ x about the x r -axis, a rotation θ y about the new y , r -axis, and finally a θ x rotation about the new z d -axis. The above three successive rotations are similar to a rigid body rotation applied on each material particle (the corresponding transformation matrix R is given in Eq. (B.1) in Appendix B).

Figure 2 :

 2 Figure 2: Proposed kinematic relation

.

  body rotational) contribute to these matrices. The effects of Coriolis and spin-softening associated with the rotational motion of spin speed Ω are well taken into account in Π quad 0 The proposed kinematics therefore offers a general description able to model rotating structures.

  respect to the current configuration C n . Thus, in order to accurately solve the centrifugal load corresponding static equation, a Total-Lagrangian (T-L) based process is proposed where the initial position becomes the current configuration state prior to some incremental change. T-L approach offers advantages since the initial configuration remains constant which simplifies formulation and computation. Following the same kinematic relation, the expression of the centrifugal force density of the displaced point P , noted f p Ω , as a function of the displacement is given by
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 3 Figure 3: Rotating rigid disk configurations: (a) circular disk, (b) elliptic disk
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 4 Figure 4: Convergence analysis on the natural frequencies of the first 6 modes of a circular disk ((a) and (b)) and an elliptic disk ((c) and (d)) as a function of the number of elements and for different rotating speeds ((a) and (c): Ω = 10000rad/s, (b) and (d): Ω = 20000rad/s
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 56 Figure 5: Campbell diagram for a rigid circular disk. Comparison between the analytical solution ( ), (a): the conventional method ( ), and (b): the proposed method ( )
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 7 Figure 7: Finite element mesh (a): circular disk with 96 elements, and (b): elliptic disk with 72 elements
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 8 Figure 8: Geometry of a thick rotating Timoshenko beam

Figure 9 :

 9 Figure 9: Ratio between the natural frequencies obtained from the proposed approach and the one from [26], as a function of the number of elements and for different slenderness ratios. (a): η = 10, (b): η = 20 and (c): η = 50

Figure 10 :

 10 Figure 10: Geometry of a thick rotating inclined Timoshenko beam
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  Fig. B.11b); and finally a θ x rotation about the new z d -axis (see Fig. B.11c).The components of the[3 × 3] transformation matrix R are:

3 ) 1 - 1 -(θ 2 x + θ 2 y

 3112 Substituting sin θ = θ and cos θ = 1 -θ 2 /2 gives the following second-order approximation of R, called R:(θ 2 y + θ 2 z )/2 -θ z + (θ x θ y )/2 θ y + (θ x θ z )/2 θ z + (θ x θ y )/2 1 -(θ 2 x + θ 2 z )/2 -θ x + (θ y θ z )/2 -θ y + (θ x θ z )/2 θ x + (θ y θ z )/2

1 )

 1 = I + [ω] (B.5) Appendix C. Kinetic energy expression with enhanced kinematics description

Km

  0 -x 0 z 0 /2 0 -z 0 -y 0 I xx + I yy -I zz ) 0 Ω (I xx + I yy -I zz ) r -Ω 2 (I yy -I zz ) 0 0 0 K r -Ω 2 (I yy -I zz ) is the mass of the disk, I xx , I yy and I zz are its three moments of inertia along the three principal axes (which are here chosen to coincide with the three axes of the rotating reference frame). K r and K t are respectively the rotational and translational stiffnesses constraining the disk. The natural frequencies used as reference in Section 4.1 are the solutions of Eqs. (F.1) and (F.2).

diag is the diagonal matrix operator
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Appendix D. First-order approximation for u def and c

The explicit expression of F in Eq. ( 11) and the first-order expansion of R in Eq. (B.5) are firstly substituted into Eq. ( 12) to obtain the following second-order expansion form:

Eq. ( 13) is then obtained by taking the first-order approximation of Eq. (D.1).

Appendix E. Demonstration of relationship between rotational and translational displacements

In order to find a relationship between local rotations and displacements, the coordinate vector of a particle in the current configuration is firstly projected into the dynamic reference as:

Since the elastic rotational and translational displacements of p are supposed infinitesimally small, p n,d is then first-order approximated as:

At the same time, p n can also be directly first-order approximated with the rotational operator R ur associated with the given translational displacement field as:

where x r is the initial position of the particle expressed in the rotating reference frame and R ur is the linearized rotational motion operator defined with [START_REF] Gonzalez | A first course in continuum mechanics[END_REF]:

∇ is the gradient operator with respect to the equilibrium configuration and = det (∇u). Finally, by equating Eq. (E.2) and Eq. (E.3), the consistent approximation of elastic rotations can be given as a function of the elastic translations:

Appendix F. Analytical equations of motion of a rotating rigid disk

The governing equations of motion derived in the rotating reference frame for a general rigid disk can be found, for instance, in [START_REF] Friswell | Dynamics of rotating machines[END_REF][START_REF] Vollan | Computational techniques of rotor dynamics with the finite element method[END_REF]. The free translational and rotational motions of the disk are decoupled and are governed by: M u ür + G u ur + K u u r = 0 (F.1)

where u r and θ r contain respectively the translational and rotational degrees of freedom expressed in the rotating reference frame. The characteristic