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The geometric properties of cyclic symmetric structures (such as, for instance, turboengines) combined with large displacement nonlinearities yield complex and specific nonlinear effects such as internal resonances or energy localization. Robust and efficient methods have been developed to recover the solutions of such problems but they currently lack proper tools to analyze the results. In this paper, a formula is provided to compute polynomial nonlinear forces directly in the cyclic (spectral) domain of a cyclic symmetric structure. This new approach enables to express the equation of motion directly in the spectral domain which yields two main advantages: it provides a reduction of the system, and facilitates results interpretations. We apply the proposed method to a simplified bladed disk with a cubic nonlinearity representative of a large deformation. A detailed analysis of the different phenomena occuring in the cyclic structure excited along a particular nodal diameter is provided. More precisely, a multiple scales analysis is performed and yields interesting insights of internal resonances between different nodal diameters. This analytical method is completed with several numerical simulations involving the harmonic balance method and bifurcation algorithms.

Both of these analyses recover coherent results such as a 1:3 internal resonance for a traveling wave excitation, and 1:1 and 1:3 internal resonances for a standing wave excitation.

Introduction

Cyclic symmetric structures are widely used in mechanical engineering applications (for instance in the design of wind turbines or engines) and have been studied with keen interest by many researchers. It was demonstrated by Thomas [START_REF] Thomas | Dynamics of rotationally periodic structures[END_REF] that mechanical problems for such geometries could be transpose into its cyclic (spectral) representation. These spectral components (commonly called nodal diameters) define the deformed shape of the entire structure. The forced response of a linear problem creates displacements along one or several specific nodal diameters depending on the excitation. Resolving the problem, not in its physical form, but in its spectral formulation enables to save tremendous amount of computational time [START_REF] Joannin | Nonlinear Modal Analysis of Mistuned Periodic Structures Subjected to Dry Friction[END_REF].

However real mechanical structures necessarily present some fabrication discrepancies which break the cyclic symmetry property. Many studies have been conducted on such mistuned structures; a state of the art can be found in [START_REF] Castanier | Modeling and analysis of mistuned bladed disk vibration : Status and emerging directions[END_REF]. Despite this well-known problem, the cyclic symmetric assumption is commonly used as a first approximation of the behaviour of the structure. In this paper, we will use this assumption and study a perfectly tuned system. While linear problems can be solved efficiently in the spectral domain, nonlinear problems remain difficult and time consuming to solve, and generally require some specific assumptions on the shape of the deformed structure in order to facilitate simulations [START_REF] Siewert | Multiharmonic Forced Response Analysis of a Turbine Blading Coupled by Nonlinear Contact Forces[END_REF]. One classical assumption is the decomposition of the displacement and nonlinear forces into a traveling wave [START_REF] Petrov | A Method for Use of Cyclic Symmetry Properties in Analysis of Nonlinear Multiharmonic Vibrations of Bladed Disks[END_REF]. Such hypotheses lead to a set of equations for particular nodal diameters. Although it is a fairly strong assumption, it is commonly used for frictional problem [START_REF] Siewert | Multiharmonic Forced Response Analysis of a Turbine Blading Coupled by Nonlinear Contact Forces[END_REF][START_REF] Petrov | A Method for Use of Cyclic Symmetry Properties in Analysis of Nonlinear Multiharmonic Vibrations of Bladed Disks[END_REF]. However engines tend to get larger (increase of the bypath ratio) and large displacement with polynomial nonlinear effects are expected. Polynomial nonlinearities have hence become a common problem. For such nonlinearities, the assumption made in [START_REF] Petrov | A Method for Use of Cyclic Symmetry Properties in Analysis of Nonlinear Multiharmonic Vibrations of Bladed Disks[END_REF] no longer holds true [START_REF] Grolet | Free and forced vibration analysis of a nonlinear system with cyclic symmetry: Application to a simplified model[END_REF]. Polynomial nonlinearities in cyclic systems have also aroused some academic interests: the geometric properties of the structure combined with nonlinear forces may create many complex nonlinear effects which are not yet fully understood.

One of those is internal resonances which traduces the transfer of energy from one mode to another. It may occur if the frequencies of both modes are commensurable [START_REF] Nayfeh | Nonlinear Oscillations[END_REF]. This particular effect will be studied in this paper. Lacarbonara et al. [START_REF] Lacarbonara | Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems[END_REF] studied different types of energy transfer (1:1 and 1:3 internal resonances). The work of Monteil et al. [START_REF] Monteil | Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances[END_REF], on the multiple internal resonances (1:2:2 and 1:2:4 internal resonances), should also be mentioned.

Bifurcation analysis [START_REF] Seydel | Practical Bifurcation and Stability Analysis, 3rd Edition[END_REF] is usually employed to detect the different solutions of a nonlinear system. Vakakis [START_REF] Vakakis | Dynamics of a nonlinear periodic structure with cyclic symmetry[END_REF] proposed a stability analysis for the orthogonal nodal diameter. Georgiades et al. [START_REF] Georgiades | Modal Analysis of a Nonlinear Periodic Structure with Cyclic Symmetry[END_REF] proposed an algorithm to detect modal coupling in nonlinear cyclic system and have shown that coupling may exist between modes without the requirement of commensurable frequencies.

They have also shown the existence of 1:1 and 1:3 internal resonances for free vibrations of the structure. Employing a bifurcation analysis, Sarrouy et al. [START_REF] Sarrouy | Global and bifurcation analysis of a structure with cyclic symmetry[END_REF] performed a thorough analysis on the existence of multiple solutions in cyclic structures. To capture these nonlinear phenomena, the entire structure is generally modelled without employing the cyclic symmetry property and robust but rather blunt methods are used. The purpose of this paper is to propose an efficient method that facilitates the understanding of the nonlinear phenomena taking place in cyclic structures.

In this paper, we study the forced response of a cyclic structure with polynomial nonlinearities.

The originality of our work is to derive a formula to evaluate the nonlinear forces directly in the spectral domain, thus enabling the use of the cylic symmetry property with nonlinear problems. It will be shown that this new approach provides both a time computation gain as well as an immediate understanding of the nonlinear phenomena taking places in the structure. The proposed formulation is exploited analytically via the multiple scales method and numerically with the Harmonic Balance Method (HBM) [START_REF] Krack | Vibration prediction of bladed disks coupled by friction joints[END_REF]. It will be used to exhibit the transfer of energy between different nodal diameters via internal resonances. A thorough review of possible analytical and numerical approaches to solve nonlinear mechanical problems can be found in [START_REF] Kerschen | Nonlinear normal modes, part i: A useful framework for the structural dynamicist[END_REF] and [START_REF] Peeters | Nonlinear normal modes, part ii: Toward a practical computation using numerical continuation techniques[END_REF].

The paper first presents, in Section 2 the computation of the nonlinear forces in the spectral domain as well as the expression of the reduced system of equations. The method is validated numerically in Section 3. A multiple scales analysis is then performed in Section 4 to obtain insights of the possible internal resonances. Finally numerical results are provided in Section 5 and compared to the analytical method.

Spectral formulation of a cyclic symmetric structure with polynomial nonlinearities

In this Section, the equation of motion are written in terms of spectral components and then a spatial condition for energy transfer between nodal diameters in the presence of polynomial nonlinearities is formulated.

Equation of motion for cyclic structures

Let us consider a cyclic symmetric structure as shown in Figure 1. For each sector j ∈ 0, N -1 , where N denotes the number of sector, the equation of motion considered is

0 N -1 1 u N -1,l u 0,l u 1,r u 0,r
M 0 üj + C 0 uj + K 0 u j + f s,j-1 + f s,j+1 + f nl,j = f ext,j , (1) 
where M 0 , C 0 and K 0 are respectively the mass, damping and stiffness matrices for a single sector of the structure (identical for all sectors); u j denotes the displacements of the degrees of freedom (DOFs) of the j-th sector. Since all the sectors are in fact assembled, the neighbouring sectors of 65 the j-th sector apply forces denoted f s,j-1 and f s,j+1 on its cyclic boundaries (note that for the cyclic structure, f s,N = f s,0 ). To further simplify the notation, f c,j = f s,j-1 + f s,j+1 is introduced.

Finally the system undergoes nonlinear forces represented by f nl,j as well as external excitation forces, f ext,j .

Using the theory of linear representation of cyclic group of order N [START_REF] Valid | Théorie et calcul statique et dynamique des structures à symétries cycliques[END_REF], the physical displacement u j is transposed into its spectral components. For each sector j,

u j = N -1 k=0 ũk e ikjα , (2) 
where α = 2π N and ũk represents the spectral displacement of order k. Note that ũk is a complex vector. However, as shown in Appendix A,

ũN-k = ūk , (3) 
where . represents the complex conjugate, for k ∈ 1,

K with K = N 2 -1 if N is even and K = N -1 2
if N is odd. Therefore u j is, indeed, a real vector. The transformation from the spectral displacement to the physical displacement is obtained via the matrix F,

F =         1 1 • • • 1 1 e iα • • • e i(N -1)α . . . . . . . . . . . . 1 e i(N -1)α • • • e i(N -1) 2 α         ⊗ I Ni+2N f , (4) 
where ⊗ denotes the Kronecker product, N i the number of internal DOFs per sector and N f the 70 number of DOFs for the right (or left) cyclic boundary.

We introduce the following notation to allow compact equations, M = (I N ⊗ M 0 ) (similarly for

C and K), u = u T 0 , ..., u T N -1
T , where . T denotes the transpose matrix, (similarly for the forces and ũ). After substituting u by Fũ and projecting (1) on F, we obtain,

FMF ü + FCF u + FKFũ + F (f c + f nl ) = Ff ext . (5) 
Following the property of the exponential,

N -1 p=0 e -ipnα e ipmα =      0 si n = m N si n = m, (6) 
Equation [START_REF] Thomas | Dynamics of rotationally periodic structures[END_REF] gives

N M ü + N C u + N Kũ + + F (f c + f nl ) = Ff ext . (7) 
The displacement u j of sector j is now expressed into three parts: its internal DOFS (subscript i), its right interface DOFS (subscript r) and its left interface DOFs (subscript l). In order to reduce the number of terms in Equation ( 7) and consider only one of the two cyclic symmetric interfaces, we use the relation (see Figure 1)

u j,l = u j+1,r 0 ≤ j ≤ N -1, (8) 
with u N = u 0 .

The spectral form of these conditions [START_REF]NASTRAN cyclic symmetry capability[END_REF] yields ũk,l = e i kα ũk,r k ∈ 0, N -1 .

This gives for instance ũ0,l = ũ0,r and, if N is even, ũ N 2 ,l = -ũ N 2 ,r .

Therefore for each spectral order k, we have

     ũk,i ũk,r ũk,l      = Bk   ũk,i ũk,r   , (10) 
where, Bk =

     I Ni 0 0 I N f 0 e i kα I N f     
. Creating a diagonal by block matrix B with the matrices Bk k∈ 0,N -1

, the new vector of unknowns is ũT

0,i , ũT 0,r , ..., ũT N -1,i , ũT N -1,r
T . It will be denoted ũ for simplicity.

Note that the previous vector had N × (N i + 2N f ) unknowns while the new formulation only contains N × (N i + N f ) unknowns. The projection of ( 7) on BT gives

Mü + C u + Kũ + BT F (f c + f nl ) = BT Ff ext , ( 11 
)
where M is a block diagonal matrix which contains the matrices N Mk k∈ 0,N -1

with Mk = BT M 0 B (and similarly for C and K). Recall that f c are the forces that one sector applies to another. With Newton's third principle, f s,i→j = -f s,j→i , the matrix operation BT Ff c yields 0.

Therefore we finally have

Mü + C u + Kũ + BT Ff nl = BT Ff ext . (12) 
Notice that f nl depends on u (=Fũ). Without this term we recover a linear problem and obtain the classical result, i.e., Equation ( 12) is decoupled for each spectral order k. The evaluation of the nonlinear forces in the spectral domain is not trivial: an exact but time-consuming method would be to compute the physical solution on all sectors, then calculate the resulting nonlinear forces for the entire structure before projecting it to the spectral domain. On the other hand, an approximate but fast method is to assume the physical solution to be of a particular shape (such as a traveling wave). This former method is commonly used for friction problems [START_REF] Siewert | Multiharmonic Forced Response Analysis of a Turbine Blading Coupled by Nonlinear Contact Forces[END_REF] but is too restrictive for polynomial nonlinear forces [START_REF] Grolet | Free and forced vibration analysis of a nonlinear system with cyclic symmetry: Application to a simplified model[END_REF]. In the next section, we provide the community with a formula to evaluate the nonlinear forces directly in the cylic domain.

Condition on the energy transfer

In this section, the term BT Ff nl of Equation ( 12) is expanded for the case of polynomial nonlinear forces. The expansion yields an expression that defines the nonlinear forces directly in the spectral domain, which eventually provides a condition for coupling the nodal diameters.

We consider that the nonlinear forces are only applied on the internal DOFs (hence the matrix BT has no effect on the nonlinear forces). Without loss of generality, we consider that the nonlinear force is applied on a single DOF (we will drop the bold notation) and has the following expression

f nl,j = k nl u p j , (13) 
where k nl is a scalar value, p is an integer greater than 1 and u j is the displacement of an internal DOF of sector j. Substituting u j by ( 2) in [START_REF] Sarrouy | Global and bifurcation analysis of a structure with cyclic symmetry[END_REF] gives

f nl,j = k nl p m=1   N -1 k=0 ũk e ikjα   . ( 14 
)
With the matrix F defined in (4), we can compute the spectral nonlinear forces,

95            fnl,0 . . . fnl,q . . . fnl,N-1            = F            f nl,0 . . . f nl,j . . . f nl,N -1            . (15) 
For a spectral order q, Equation ( 15) is expanded to

fnl,q = N -1 j=0 e -iqjα k nl p m=1 N -1 k=0 ũk e ikjα = k nl N -1 k1=0   N -1 k2=0   ... N -1 kp=0   ũk1 ũk2 ...ũ kp N -1 j=0 e ijα((k1+k2+•••+kp)-q)       . (16) 
Therefore based on relation [START_REF] Grolet | Free and forced vibration analysis of a nonlinear system with cyclic symmetry: Application to a simplified model[END_REF], fnl,q is different from 0 if and only if the set (k 1 , k 2 , ..., k p ) satisfies the following relation

p m=1 k m ≡ q mod N. ( 17 
) Since 0 ≤ k m ≤ N -1, the set (k 1 , k 2 , ..., k p ) must verify p m=1 k m = q + jN for j ∈ 0, p -1 . (18) 
The entire set of solutions S q of Equation ( 18) can be obtained with a basic algorithm. It depends on the polynomial order of the nonlinear force and on the number of sectors N . The nonlinear force can then be expressed as follows:

fnl,q = N k nl (km)∈Sq ũk1 ũk2 ...ũ kp , (19) 
Equation ( 18) provides a way to compute the nonlinear forces directly in the spectral domain.

Remark. Since ũN-q = ūq , all the informations about the displacement for the entire structure is contained in (ũ k ) k∈ 0,K (and ũ N 2 if N is even). Such a property holds for the nonlinear forces.

Hence only the nonlinear forces for q ∈ 0, K need to be computed.

Based on the previous remark, the final system, for all k ∈ 0, K (and N 2 if N is even), becomes

N Mk ük + N Ck uk + N Kũ k + fnl,k = fext,k , (20) 
where fext,k is the projection of B Ff ext on the nodal diameter k. In practice, the term fnl,k is evaluated via Equation [START_REF] Joannin | A nonlinear component mode synthesis method for the computation of steady-state vibrations in non-conservative systems[END_REF].

Types of excitation

In the remaining of the paper, two types of excitation are considered: a traveling wave and a standing wave. Such excitations are typically encountered in turbomachinery where a rotating bladed disk excites a fixed bladed disk. Although they are similar in shape, they may yield fundamentally different responses as it will be seen later. Let assume that the excitation force is acting on internal DOFs. Similar to the nonlinear forces, the matrix B will not impact fext . Moreover, assume the force to be harmonic of frequency ω and, equal to, on the first sector,

f ext,0 (t) = f a e iωt + fa e -iωt , (21) 
where f a is a complex vector.

For both types of excitation, consider the wave number

h ex (0 ≤ h ex ≤ N 2 (if N is even; N -1 2 
otherwise)). For a sector j, a traveling wave excitation writes as

f ext,j (t) = f ext,0 t - αj h ex ω (22) 
and for a standing wave,

f ext,j (t) = f ext,0 t - αj h ex ω + f ext,0 t + αj h ex ω (23) 
In a similar way as performed for the nonlinear forces (see Equation ( 16)), the q-th spectral excitation forces can also be evaluated. As explained previously, only the coupled equations of motion for q ∈ 0, K (and N 2 if N is even) are needed to be solved. The calculation yields

fext,k =      0 if k = h ex N f a e iωt if k = h ex , (24) 
for a traveling wave, and,

fext,k =      0 if k = h ex N f a e iωt + fa e -iωt if k = h ex , (25) 
for a standing wave.

For q = h ex , the nodal diameter ũq will be directly affected by the excitation force. However, based on the condition ( 18), the nonlinear effects may excite other nodal diameters.

Example of the energy transfer condition

An example of the spectral condition ( 18) is proposed in this section. Consider a structure with N = 24 sectors and a cubic nonlinearity (p = 3). With these values, Equation ( 18) is computed and hence the spectral nonlinear forces are evaluated for all nodal diameters. Obviously, many couplings will occur; however, given a specific excitation force (along a specific nodal diameter), most of the terms will be equal to 0.

Therefore the analysis is restricted to the following case: assume that the excitation force is on the third nodal diameter (h ex = 3), hence fext,3 and fext,21 are different from 0 based on Equation (3). The displacement will have a ũ3 component (and its complex conjugate, i.e ũ21 ).

Restricting k m in [START_REF]NASTRAN cyclic symmetry capability[END_REF] to be equal to {3, 21}, only specific spectral components of the nonlinear forces will respond. These forces may act as excitation forces on other nodal diameters. In this case, the third and ninth spectral components may respond (ũ 3 , ũ9 and their complex conjugate may be different from 0). Once more, condition ( 18) is run with k m ∈ {3, 9, 15, 21}. This new set only provides additional terms to the already existing fnl,3 and fnl,9 . No other spectral components of the nonlinear forces respond. The previous discussion is summarized in Figure 2 where the result of condition ( 18) is detailed step by step.

fext,3 ũ3 ( ũ21 ) fnl,3 , fnl,9 The condition ( 18) not only establishes which spectral component will respond but also the expression of the different nonlinear forces. For the (ũ 3 , ũ9 ) case, the following set of equations is

( ũ3 , ũ9 ) ( ũ21 , ũ15 ) fnl,3 , fnl,9
obtained fnl,3 = N k nl 3ũ 2 3 ū3 + 6ũ 3 ũ9 ū9 + ũ3 9 + 3 ū2 3 ũ9 + 3 ū3 ū2 9 , (26a) fnl 
,9 = N k nl ũ3 3 + 6ũ 3 ū3 ũ9 + 3ũ 3 ū2 9 + 3ũ 2 9 ū9 + 3 ū2 3 ū9 . (26b) 

Numerical validation

In this section, a numerical example is presented to verify the nonlinear evaluation forces procedure presented Section 2. A thorough analysis of the same example will be provided in Section 5.

Presentation of the test case

The cyclic structure considered in this paper is represented in Figure 3. It is a phenomenological model of a bladed disk. A similar model has been previously used in [START_REF] Joannin | A nonlinear component mode synthesis method for the computation of steady-state vibrations in non-conservative systems[END_REF] with friction nonlinearity.

The nonlinear effects here represent a large displacement of the tip of the blade. The tip (m 1 ) is excited. The external force follows a three diameter (h ex = 3) traveling (see Equation ( 24)) or a standing (see Equation ( 25)) wave pattern. Equation [START_REF] Malatkar | Steady-state dynamics of a linear structure weakly coupled to an essentially nonlinear oscillator[END_REF] gives the expression of the force for the first blade. f a is taken equal to 12.5 N in this example. Most of the figures in the result section illustrate the displacement of the tip (except when explicitly said otherwise).

m 1 m 2 m 3 m 4 m 5 f ext,0 (t) f ext,1 (t)
Sector 0 Figure 4 presents the frequencies of the system considered for each nodal diameter. This frequency/diameter graph is typical of a real bladed disk. A veering zone is obtained around the fifth nodal diameter. For such zones, studies have shown that specific nonlinear phenomena can occur [START_REF] Lacarbonara | Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems[END_REF]. As explained in Section 2.4, an energy transfer between the third and ninth nodal diameters is expected. Table 3 provides the values of the frequencies for the third and ninth nodal diameters. Although commensurable frequencies are not a requirement [START_REF] Georgiades | Modal Analysis of a Nonlinear Periodic Structure with Cyclic Symmetry[END_REF], we observe that an 1:1 internal resonance may occur as f3,1 ≈ f9,1 as well as an 1:3 internal resonance because f9,2 ≈ 3 f3,1 .

In this notation fi,j is the j-th natural frequency of the i-th nodal diameter. Obviously, many other energy transfers may occur between other diameters and modes due to a high modal density; however in the following only the case described in Section 2.4 is considered: the coupling between ũ3 and ũ9 . Therefore we consider only the resolution of the following equation: 

   M3 ü3 + C3 u3 + K3 ũ3 + fnl,3 = fext,3 , M9 ü9 + C9 u9 + K9 ũ9 + fnl,9 = 0 (27) 

Numerical solution procedure

The Harmonic Balance Method (HBM) with a pseudo arc-length continuation scheme [START_REF] Peeters | Nonlinear normal modes, part ii: Toward a practical computation using numerical continuation techniques[END_REF][START_REF] Krack | Vibration prediction of bladed disks coupled by friction joints[END_REF] is used to solve for the periodic steady-state solution of the problem presented in Equation ( 27).

The HBM is a Galerkin procedure where the solution ũk is assumed to be of the form

155 ũk (t) = N h n=-N h c k,n e inωt , (28) 
where N h is the number of harmonics considered in the Fourier expansion and c k,n are the complex frequency (Fourier) coefficients. Substituting (28) in (27) yields

           N N h n=-N h K3 + inω C3 -(nω) 2 M3 c 3,n e inωt + fnl,3 = fext,3 , N N h n=-N h K9 + inω C9 -(nω) 2 M9 c 9,n e inωt + fnl,9 = 0. (29) 
Projecting each equation on the orthogonal basis e imωt m∈ -N h ,N h with the following scalar product,

f, g = 1 T T 0 f (t) ḡ (t) dt, (30) 
with f and g two functions, and T the period of the fundamental frequency T = 2π ω , gives

   N K3 + imω C3 -(mω) 2 M3 c 3,m + fnl,3 , e imωt = fext,3 , e imωt . N K9 + imω C9 -(mω) 2 M9 c 9,m + fnl,9 , e imωt = 0. ( 31 
)
The evaluation of the right-hand side of ( 31) is trivial because the external force is harmonic and will not be discussed. However the evaluation of the projection of the spectral nonlinear forces in the frequency domain requires further details. Beforehand, notice that fnl,k is a known quantity thanks to [START_REF] Joannin | A nonlinear component mode synthesis method for the computation of steady-state vibrations in non-conservative systems[END_REF]. Without this formula, the nonlinear forces would need to be evaluated for the full system before being projected to the cyclic domain, which is time-consuming. With the HBM (and the projection on the frequency domain) a similar problem arises: how to evaluate the cyclic nonlinear forces from the time domain to the frequency domain?

A first method, similar to Section 2, is conceivable: replacing Equation (28) into Equation [START_REF] Joannin | A nonlinear component mode synthesis method for the computation of steady-state vibrations in non-conservative systems[END_REF] gives the spectral nonlinear forces as a function of the frequency coefficients c k (similar to Equation ( 14)). Then projecting these forces on the harmonic basis, e imωt m∈ -N h ,N h , yields the spectral forces in the frequency domain (equal to the term fnl,k , e imωt ). More details of this method (which is an adaptation of the formulation of Section 2 for the frequency domain) is presented in Appendix C. The main advantage of this approach is that it provides an exact evaluation of the spectral nonlinear forces in the frequency domain. Its drawback is the complexity of the associated algorithm which would need to be used in parallel with the HBM.

A possible second method is the well-known numerical procedure named Alternating Frequency Time (AFT), developed by Cameron and Griffin [START_REF] Cameron | An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems[END_REF]. From the Fourier coefficients, the spectral displacement is computed in the time domain with Equation (28), then the spectral nonlinear forces are evaluated in the time domain through Equation ( 19), before being finally projected to the frequency domain. This method enables fast and accurate results (provided the time discretization in the Fourier transform and the number of harmonics are sufficiently large).

In the rest of the paper, the AFT procedure is used as it presents a good compromise between efficiency and accuracy. The system of Equation ( 27) is solved with the HBM and N h = 11 harmonics. Due to the cubic nonlinearity, only odd harmonics are expected to respond in the primary branch [START_REF] Malatkar | Steady-state dynamics of a linear structure weakly coupled to an essentially nonlinear oscillator[END_REF]. Nevertheless, as a bifurcation analysis [START_REF] Seydel | Practical Bifurcation and Stability Analysis, 3rd Edition[END_REF] is conducted along with a branch switching [START_REF] Xie | Bifurcation tracking by Harmonic Balance Method for performance tuning of nonlinear dynamical systems[END_REF] algorithm, all harmonics need to be considered. To get information on the stability, a Floquet analysis [START_REF] Floquet | Sur les équations différentielles linéaires à coefficients périodiques[END_REF] is also performed.

Validation results

Section 2 consisted of proposing a new method to evaluate solutions of a cyclic symmetric system with polynomial nonlinearities. Applying this method to the test case presented above led to the reduced system (27). In order to validate this new approach several steps are performed. Firstly the HBM is applied on the full system (for which two sectors are illustrated in Figure 3) and is compared to the resolution of the reduced system (27). Secondly a numerical time integration of the full system for the primary and bifurcated branches is performed. The initialization of the time marching scheme is taken equal to the HBM results of the reduced system with a small perturbation.

Only the results whose time integration was initialized on the stable branch are represented.

Note that the purpose of this section is to validate the method presented in Section 2; a more thorough analysis of the results will be provided in Section 5. Frequency (Hz) in Figure 5 and those are detailed next. The HBM resolution of the full system and the time integration results (computed up to the steady state) perfectly match the solution of the reduced system (27). Time integration initiated on the unstable solutions were also performed. Those are not represented in Figure 5 but validate the property of unstability of the periodic solution. The HBM was also employed on the full cylic system with the hypothesis that ũ has a traveling wave form [START_REF] Petrov | A Method for Use of Cyclic Symmetry Properties in Analysis of Nonlinear Multiharmonic Vibrations of Bladed Disks[END_REF]. This assumption implies that the term in e iωt only exists for ũ3 , the term in e 2iωt for ũ6

max (| ũ9 (t)|) (m)
(which is equal to 0 here), the term in e 3iωt only for ũ9 , and so on. This hypothesis recovers the correct result. Therefore for a traveling wave excitation, the displacement has indeed, in this case, a traveling wave form.

These results confirm the utility of the reduced model ( 27) obtained with the method presented in Section 2 for a traveling wave excitation. Although the excitation force is on the third nodal diameter, we observe that ũ9 has a non-negligeable amplitude. It shows that a transfer of energy between ũ3 and ũ9 has occured. This nonlinear phenomenon will be further analyzed with a multiple scales method in Section 4. Frequency (Hz) the stable, (respectively unstable), solution of the HBM result of the reduced system, ( ) represents the stable bifurcated branch of the reduced system, ( ) represents the HBM solution for the full system, ( ) denotes the solution of the reduced system with decoupled nonlinear forces, ( ), (respectively ( )), are the time integration results with an initialization on the main, (respectively bifurcated), branch of the reduced system.

max (| ũ9 (t)|) (m)
Similarly to Figure 5, Figure 6 represents the forced response for a standing wave excitation and aims to validate the reduced model. Several solution procedures were used and compared. Once again, the HBM applied on the full system and the time integration results agree very well with the reduced system. Notice that, for the same number of solutions points, the time computation for the HBM on the full system is 17 times larger than the HBM applied on the reduced system. The time integration was computed on both the main and bifurcated branches. As expected, this method recovers the stable solution of the reduced system. For better clarity of the figure, only the stable part of the bifurcated branch is represented. A decoupled analysis was also performed. Noticeably, it gives ũ9 equal to 0. This result does not match the ones found with a HBM full resolution and is therefore incorrect. From this observation, we understand the necessity to consider coupled equations such as Equation ( 27). Although it is not represented in Figure 6, the displacements ũ3 and ũ9 have a standing wave form. In terms of harmonics, it traduces, c -k = ck for k ∈ 0, 11 . As the excitation is a standing wave, this result is expected, and is analog to the result of the traveling wave case.

Figure 6 clearly validates the reduced model (27). A coupling between ũ3 and ũ9 is exhibited but no information about the nature of the coupling can be made yet. Many disparities between Figures 5 and6 are obtained although the only different input of these simulations is the type of excitation (different wave shapes). Figure 6 presents for instance many unstable zones, a stable bifurcated branch and a second peak at 226.3 Hz for ũ9 whose amplitude is much higher than ũ3 (whereas ũ3 was the excited nodal diameter).

In order to understand the dynamical specificities of the two simulations, further analyses of this example are proposed analytically in Section 4 and numerically in Section 5

These results confirm the method presented in Section 2 in which, through the evaluation of the nonlinear forces in the cyclic domain, a reduced model using only cyclic components was obtained.

This method enables fast computation but also gives a way to efficiently analyze the dynamics of the system. This will be the main focus for the rest of the paper.

Insight on the internal resonance via the multiple scales method

While Section 2 gave a particular condition for spatial coupling to occur: one nodal diameter can excite another diameter through relation [START_REF]NASTRAN cyclic symmetry capability[END_REF], Section 3 had for purpose to give numerical credit to this approach. The proposed approach gave perfect correlation with a full resolution of the system and this method will then be adopted for the rest of the article.

The spatial condition found in Equation ( 18) provides information about energy exchange but this condition is not sufficient to have an actual transfer of energy. To get an energy transfer, the modal frequencies of the mode of each of the nodal diameters involved in the coupling usually need to be nearly commensurable [START_REF] Nayfeh | Nonlinear Oscillations[END_REF]. Georgias et al [START_REF] Georgiades | Modal Analysis of a Nonlinear Periodic Structure with Cyclic Symmetry[END_REF] showed that this frequency condition is not always a requirement; however in the following study, we will focus on a transfer of energy where the frequencies are commensurable. Consider as a practical example, the system presented in Section 3.1 and illustrated in Figure 3.

The cyclic equations of motion expressed in (27), are projected into its modal form with only one mode for each nodal diameter. This projection gives    q3 + 2ξ 3 ω 3 q3 + ω 2 3 q 3 + α fnl,3 (αq 3 , βq 9 ) = α fext,3 , q9 + 2ξ 9 ω 9 q9 + ω 2 9 q 9 + β fnl,9 (αq 3 , βq 9 ) = 0,

where q 3 and q 9 are the complex generalized coordinates of the mode considered for the third and ninth nodal diameters, ξ 3 and ξ 9 are their damping ratios, ω 3 and ω 9 their natural frequencies and, α and β the modal coefficient associated with the modes.

The method of multiple scales [START_REF] Nayfeh | Nonlinear Oscillations[END_REF] is performed on this general set of equations in order to confront analytical results with those obtained in Section 3.

The different time scales T n = n t are defined. With a cubic nonlinearity, two time scales are studied: T 0 and T 2 as explained in [START_REF] Nayfeh | Nonlinear Oscillations[END_REF]. The different orders of magnitude are,

                 fext,3 = 3 f e , 2ξ 3 ω 3 = 2 2 µ 3 , 2ξ 9 ω 9 = 2 2 µ 9 , Ω = ω 3 + σ 1 2 , (33) (34) (35) (36) 
where Ω is the excitation frequency of fext,3 , σ 1 is a detuning parameter, is a small, dimensionless parameter and f e , µ 3 and µ 9 are the normalized excitation force and damping coefficients. The generalized coordinates are decomposed into,    q 3 = q 3,1 (T 0 , T 2 ) + 3 q 3,3 (T 0 , T 2 ) , q 9 = q 9,1 (T 0 , T 2 ) + 3 q 9,3 (T 0 , T 2 ) ,

The time derivative is obtained by the chain rule,

d dt = ∂ ∂T 0 + 2 ∂ ∂T 2
, and the system (32) is now solved for each order of . For the first order, we get:

       ∂ 2 q 31 ∂T 2 0 + ω 2 3 q 31 = 0, ∂ 2 q 91 ∂T 2 0 + ω 2 9 q 91 = 0, (38) 
which yields,

   q 31 = A 31 (T 2 ) e iω3T0 + A 32 (T 2 ) e -iω3T0 , q 91 = A 91 (T 2 ) e iω9T0 + A 92 (T 2 ) e -iω9T0 , (39) 
where A ij are complex functions of T 2 . For the order 3 , we have,

       ∂ 2 q 33 ∂T 2 0 + 2 ∂ 2 q 31 ∂T 0 ∂T 2 + 2µ 3 ∂q 31 ∂T 0 + ω 2 3 q 33 + αf nl,3 = αf e , ∂ 2 q 93 ∂T 2 0 + 2 ∂ 2 q 91 ∂T 0 ∂T 2 + 2µ 9 ∂q 91 ∂T 0 + ω 2 9 q 93 + βf nl,9 = 0, (40) 
where,    f nl,3 = 3α 3 q 2 3 q2 3 + 6αβ 2 q 3 q 9 q9 + β 3 q 3 9 + 3α 2 β q2 3 q 9 + 3αβ 2 q3 q2 9 , f nl,9 = α 3 q 3 3 + 6α 2 βq 3 q3 q 9 + 3αβ 2 q 3 q2 9 + 3β 3 q 2 9 q9 + 3α 2 β q2 3 q9 .

(41)

In the following section, two different cases of excitation (standing and traveling wave) are applied to study the nonlinear dynamics and the possibility of a 1:1 internal resonance. The 1:3 internal resonance is studied using the same approach in Appendix B. The main results will be summarized in Section 4.2.

For a 1:1 internal resonance, σ 2 the second detuning parameter is defined as

ω 9 = ω 3 + σ 2 2 . ( 42 
)
This definition will be used for the development of the solvability conditions detailed later.

Analysis of a 1:1 internal resonance 4.1.1. Case of a traveling wave excitation

Let us consider the excitation as a traveling wave (24), which gives

f e = f a e iΩt , (43) 
with f a is a complex scalar. The assumption that the generalised coordinates have the same form as the force has been verified numerically in Section 3 and is thus adopted here. Therefore Equation ( 39) is simplified in

   q 31 = A 3 (T 2 ) e iω3T0 , q 91 = A 9 (T 2 ) e iω9T0 . ( 44 
)
Note that A 31 and A 91 in (39) are renamed here A 3 and A 9 to simplify the notations.

Replacing q 31 and q 91 by (44) in the system (40), the following solvability conditions are computed:

   -2iω 3 A 3 + µ 3 A 3 -α 3α 3 A 2 3 Ā3 + 6αβ 2 A 3 A 9 Ā9 + αf a e iσ1T2 = 0, -2iω 9 A 9 + µ 9 A 9 -β 6α 2 βA 3 Ā3 A 9 + 3β 3 A 2 9 Ā9 = 0, ( 45 
)
where A i denotes the derivative of A i with respect to T 2 . A 3 and A 9 are written into their polar

270 form,      A 3 = 1 2 a 3 (T 2 ) e iΘ3(T2) , A 9 = 1 2 a 9 (T 2 ) e iΘ9(T2) . (46) 
Introducing the variable,

γ 1 = σ 1 T 2 -Θ 3 , (47) 
replacing A 3 and A 9 by (46) in Equation ( 45) and considering a periodic motion (a 3 = a 9 = γ 1 = 0), the solvability conditions yield (by distinguishing the real and imaginay parts)

                   -a 3 σ 1 ω 3 = - 3αa 3 8 α 3 a 2 3 + 2β 2 a 2 9 + αf a cos (γ 1 ) , -a 9 Θ 9 ω 9 = - 3βa 9 8 2α 2 βa 2 3 + β 3 a 2 9 , ω 3 µ 3 a 3 = αf a sin (γ 1 ) , ω 9 µ 9 a 9 = 0. ( 48 
) (49) (50) (51) 
For a traveling wave excitation, a 9 and Θ 9 are always equal to 0 due to Equation ( 51) and ( 49)

and hence there is no 1:1 internal resonance. Obviously the third nodal diameter responds and 275 a 3 = αf a sin (γ 1 ) ω 3 µ 3 . For further development on the term q 3,3 , please refer to [START_REF] Lacarbonara | Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems[END_REF].

These analytical results are in perfect agreement with the numerical results presented in Figure 5.

Indeed in Figure 5, the assumption of a traveling wave displacement gave the same result as the reduced system (27). For such a displacement the term e iωt is only present for ũ3 . ũ9 , observed in Figure 5, has therefore no e iωt term. It means that the amplitude of ũ9 does not come from a 1:1 internal resonance. Analytical calculations on the case of a 1:3 internal resonance, presented in Appendix B, are in accordance with the results of Figure 5.

Case of a standing wave excitation

Let consider the excitation as a standing wave (25):

f e = f a e iΩt + fa e -iΩt , (52) 
The generalized coordinates are assumed to have the same form as the force, hence (39) can be simplified in

   q 31 = A 3 (T 2 ) e iω3T0 + Ā3 (T 2 ) e -iω3T0 , q 91 = A 9 (T 2 ) e iω9T0 + Ā9 (T 2 ) e -iω9T0 . (53) 
This assumption has already been verified in Section 3 and is adopted. Note that under this form, the quantities are real and the system (41) can be thus simplified in    f nl,3 = 3α 3 q 3 31 + 9αβ 2 q 31 q 2 91 + 3α 2 βq 2 31 q 91 + β 3 q 3 91 f nl,9 = α 3 q 3 31 + 9α 2 βq 2 31 q 91 + 3αβ 2 q 31 q 2 91 + 3β 3 q 3 91 .

(54)

Replacing q 31 and q 91 by (53) in the system (40), the solvability conditions are computed

               -2iω 3 A 3 + µ 3 A 3 -α 9α 3 A 2 3 Ā3 + 9αβ 2 Ā3 A 2 9 e 2iσ2T2 + 18αβ 2 A 3 A 9 Ā9 +3α 2 βA 2 3 Ā9 e -iσ2T2 + 6α 2 βA 3 Ā3 A 9 e iσ2T2 + 3β 3 A 2 9 Ā9 e iσ2T2 + αf a e iσ1T2 = 0, -2iω 9 A 9 + µ 9 A 9 -β 3α 3 A 2 3 Ā3 e -iσ2T2 + 3αβ 2 Ā3 A 2 9 e iσ2T2 +6αβ 2 A 3 A 9 Ā9 e -iσ2T2 + 9α 2 βA 2 3 Ā9 e -2iσ2T2 + 18α 2 βA 3 Ā3 A 9 + 9β 3 A 2 9 Ā9 = 0. ( 55 
)
In a similar manner as performed for a traveling wave excitation, the variables

γ 1 = σ 1 T 2 -Θ 3 , γ 2 = Θ 9 -Θ 3 + σ 2 T 2 , (56) 
(57) are first introduced. Then the polar form of A 3 and A 9 from (46) are substituted into (55) and a periodic motion is considered (a 3 = a 9 = γ 1 = γ 2 = 0). We finally obtain

                                                     -a 3 σ 1 ω 3 = - 3α 8 3α 3 a 3 3 + 3αβ 2 a 3 a 2 9 (2 + cos (2γ 2 )) + cos (γ 2 ) α 2 βa 2 3 a 9 + β 3 a 3 9 + αf a cos (γ 1 ) , -a 9 (σ 1 -σ 2 ) ω 9 = - 3β 8 3β 3 a 3 9 + 3α 2 βa 2 3 a 9 (2 + cos (2γ 2 )) + cos (γ 2 ) αβ 2 a 3 a 2 9 + α 3 a 3 3 , ω 3 µ 3 a 3 = - 3αβa 9 8 3αβa 2 3 sin (2γ 2 ) + α 2 a 2 3 sin (γ 2 ) + β 2 a 2 9 sin (γ 2 ) + αf a sin (γ 1 ) , ω 9 µ 9 a 9 = 3βαa 3 8 3αβa 3 a 9 sin (2γ 2 ) + α 2 a 2 3 sin (γ 2 ) + β 2 a 2 9 sin (γ 2 ) . ( 58 
) (59) (60) (61) 
Consider the decoupled case where a 3 = 0 and a 9 = 0, then Equations ( 59) and ( 61) are removed and we obtain the solvability equation of the traveling case (see Equations ( 48) and ( 50)). Consider now the coupled case, then Equations ( 60) and (61) give

ω 3 µ 3 a 2 3 -αf a sin (γ 1 ) + ω 9 µ 9 a 2 9 = 0. ( 62 
)
Based on Equation (62), we may have a 9 = 0 while exciting the third nodal diameter. Therefore a 1:1 internal resonance may occur for a standing wave excitation. Appendix B will demonstrate that a 1:3 internal resonance can also take place. These analytical results give information about the nature of the coupling presented in Figure 6. However, at the present state, we cannot identify which internal resonances take place. This uncertainty will be cleared in the next section with 295 additional numerical results.

Main results summary

The multiple scales method has provided many results which are summarized below. For a traveling waves excitation, no 1:1 internal resonance appears between the third and ninth nodal diameters; however a 1:3 internal resonance may occur. This result is consistant with the assumption 300 of a traveling wave displacement [START_REF] Petrov | A Method for Use of Cyclic Symmetry Properties in Analysis of Nonlinear Multiharmonic Vibrations of Bladed Disks[END_REF] and has been shown numerically in Figure 5. For a standing wave excitation, we may obtain 1:1 and 1:3 internal resonances. Therefore the development of a standing wave facilitates the appearance of an energy transfer between nodal diameters.

A physical interpretation of the differences found in both analytical developments could be that a standing wave remains in the same place on the structure and thus facilitates the creation of waves for different nodal diameters. On the other hand, a traveling wave moves and "breaks" any other wave which may arise.

Numerical analysis

Section 2 proposed a new method to compute the solution of a cyclic structure with polynomial nonlinearities. This method was verified numerically in Section 3 before being employed with the multiple scales method. This analytical analysis provided insights on the internal resonances that occur in the system and also demonstrated that the nonlinear phenomena are extremely different if the excitation (for a given nodal diameter) is traveling or standing.

The purpose of this section is to compare the analytical approach (see Section 4) with a numerical one. With this in mind, the HBM is employed along with a bifurcation algorithm to analyze the system presented in Section 3. For a traveling wave excitation, the 1:3 internal resonance was already observed (see Figure 5) and analyzed (hypothesis of a traveling wave displacement in Figure 5 along with the multiple scales analysis). However for the standing wave excitation, the multiple scales mehod demonstrated that two internal resonances may appear (a 1:1 and 1:3) but it is still unclear from Figure 6 which nonlinear phenomena occur. Therefore, this section will focus on the analysis of a standing wave excitation applied on the test case described in Section 3.

To facilitate the analysis of the different couplings presented in this section, the nonlinear uncoupled forced response is first provided. By uncoupled, we mean that if the excitation is on the third nodal diameter then the system will only reply on ũ3 and hence the nonlinear force will only depend on ũ3 . Three modes will be considered: the first mode (at 218.54 Hz) for the third nodal diameter and the first (at 226.08 Hz) and second (at 681.36 Hz) modes for the ninth nodal diameter. Figure 4 depicts the frequencies of the different nodal diameters. Figure 7 represents the displacement of the first sector for each mode of interest. Figures 7b,7d and 7f illustrate the displacement of each DOF as a function of time over one period at the frequency for which the maximum of the uncoupled nonlinear response is attained. Each modal displacement, may be involved in the nonlinear coupling, and the displacements of Figure 7 will be used as a reference for the analysis of the coupled system. For some particular frequencies, the deformed shape of the coupled system will be provided and compared to the uncoupled modal displacements to identify which modes are involved and hence which internal resonance occurs. ) relate to the displacement of the first, second, third, fourth and fifth DOF (see Figure 3).

The first modes of the third and ninth nodal diameters (given in Figure 7b and 7d) show inphase displacement between the first and second DOFs with a large amplitude compared to others DOFs. On the other hand, the second mode of the ninth nodal diameter (illustrated in Figure 7f)

shows out-of-phase displacement between the first and second DOFs and negligible amplitude for the other DOFs. Therefore to identify whether a 1:1 or a 1:3 internal resonance is taking place between the third and ninth nodal diameters, it will be sufficient to retrieve the motion of the first sector along the ninth nodal diameter and observe if the first and second DOFs are in-phase or out-of-phase. For square 1 (around 227.8 Hz), the displacement of the solution is represented in Figure 9a 355 and 9b. The displacements are nearly the same as Figure 7b (DOFs 1 and 2 are in-phase for ũ3 ) and 7f (there are three periods and DOFs 1 and 2 are out-of-phase for ũ9 ). Therefore this stable solution, retrieved from the bifurcated branch, exibits a quasi pure 1:3 internal resonance. This behaviour is different from the solution of the second square (around 227.5 Hz), whose displacements are represented in Figures 9c and9d. Indeed the displacements are really close to Figures 7b and7d (DOFs 1 and 2 are in-phase for ũ3 ) with a negligeable third harmonic. We conclude that this solution shows a 1:1 internal resonance. Notice that the amplitude of ũ9 is two times greater than ũ3 although only the third nodal diameter is directly excited by the standing force. This solution is stable and hence such a problematic phenomenon can occur in real structures. The solution of the third square (around 229 Hz) is represented in Figures 9e and9f and partially combines the two displacements described above: the main enevelop shows that the first and second DOFs are in phase similarly to the modes shapes described in Figure 7b and 7d; however a third harmonic is also present. For ũ3 , the third harmonic is non-negligeable and comes either from a 1:3 internal resonance between the first and third modes of the third nodal diameter or a 1:1 internal resonance between the second mode of the ninth nodal diameter and the third mode of the third nodal diameter. This internal resonance was not detailed in the paper for brevity. It could have however been anticipated from Table 3 because f3,3 ≈ 3 f3,1 and f3,3 ≈ f9,2 .

The nonlinear phenomena predicted with the multiple scales analysis are numerically observed for the standing wave excitation by comparing the displacements illustrated in Figure 7 and Figure 9.

The coupling gives rise to a high amplitude for ũ9 and justifies the need of a robust method to detect efficiently these phenomena. As obtained via the multiple scales method, a 1:1 internal resonance appear around 226.5 Hz.

For f a = 7.5 N, the phenomenon is slightly present while for f a = 12.5 N, it is fully formed. 

Conclusion

This paper studied the forced response of cyclic symmetric structures with polynomial nonlinearities. An efficient method to compute the nonlinear forces on the spectral domain is proposed and allows to write the equations of motion in the reduced cyclic domain. The main step of the method is a selection of some specific nodal diameters (provided by a given condition) to solve the problem directly in the spectral domain. This method was validated and was then adopted for this study.

We have demonstrated that this new formulation could be used efficiently with numerical and analytical methods to obtain the solution of the system as well as some understanding of the nonlinear phenomena occuring in the structure. It can be used to retrieve the main and bifurcated branches of solutions and to recover internal resonances. The simulation has raised interesting mechanical problems due to the transfer of energy. We have shown that although the structure is excited on a given nodal diameter, another one may respond with a higher amplitude. The proposed method enables to examine such problematics while offering a substantial computational time saving compared to studying the full system (without spectral condition).

Further studies will be conducted for additional coupling, especially close to a veering area, which is a typical zone for the appearence of coupled nonlinear phenomena. The authors also intend to study the presented method for mistuned systems. A traveling wave in mistuned structures usually gives rise to standing wave displacements that, as we have seen, may facilitate the creation of internal resonances.

B. Multiple scales method for the 1:3 internal resonance case

Section 4 presented the method of the multiple scales for a 1:1 internal resonance. These results are completed, in this appendix, with a 1:3 internal resonance. This nonlinear phenomena has been exhibited for both a traveling wave and a standing wave excitations (see Figures 5 and6).
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The 1:3 internal resonance has been well-studied in the litterature: for instance in [START_REF] Nayfeh | Nonlinear Oscillations[END_REF] and [START_REF] Lacarbonara | Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems[END_REF] to name a few. For such internal resonances, the second detuning parameter is defined as, We retrieve exactly the same result as Nayfeh [START_REF] Nayfeh | Nonlinear Oscillations[END_REF] adapted to our case. These equations are really close to the solvability conditions obtained for the traveling wave excitation (only the coefficients of some terms differ). The main conclusion that can be drawn here is that a 1:3 internal resonance may occur with a traveling wave excitation.

ω 9 = 3ω 3 + σ 2 2 . ( B 
C. Exact procedure to evaluate polynomial nonlinear forces for the HBM Two methods were proposed in Section 3 to evaluate the frequency coefficients of spectral nonlinear forces. The method adopted in the article was the AFT procedure [START_REF] Cameron | An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems[END_REF] but a more accurate method is presented here and is adapted from the development presented in Section 2.

While section 2 allows to compute the nonlinear forces directly in the cyclic domain without having to compute them in the physical (full structure) domain, this section computes the nonlinear forces directly in the frequency domain without having to use the temporal domain.
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Consider one of the terms of the spectral nonlinear forces ( 19), To solve (C.4), an algorithm must first be created to compute T m . For example, consider the first term fnl,3 in (26a), 3ũ 2 3 ū3 . Applying the procedure to this term with N h = 3 gives (for a
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 1 Figure 1: Representation of a cyclic structure.

Figure 2 :

 2 Figure 2: Coupling between the third and ninth nodal diameters.
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 325 Figure 3: Representation of the test case
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 4 Figure 4: Natural frequencies of each nodal diameter (red circles represent the modes of interest).
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 5 Figure 5: Frequency response function under a traveling wave excitation. (), (respectively ( )), represents the stable, (respectively unstable), solution of the HBM result of the reduced system, ( ) represents the HBM solution for the full system, ( ) denotes the solution with the hypothesis of a traveling wave solution[START_REF] Petrov | A Method for Use of Cyclic Symmetry Properties in Analysis of Nonlinear Multiharmonic Vibrations of Bladed Disks[END_REF], ( ) are the time integration results.

Figure 5

 5 Figure 5 represents the spectral components ũ3 and ũ9 taken at the tip of the blade as a

Figure 6 :

 6 Figure 6: Frequency response function under a standing wave excitation. ( ), (respectively ( )), represents

  Displacement of ũ3 at the peak of 7a as a function of time over one period. The box inset illustrates the displacement of each DOF shape at a given time. Forced response ũ9 around f9,1.

  Displacement of ũ9 at the peak of 7c as a function of time. Displacement of ũ9 at the peak of 7e as a function of time.

Figure 7 :

 7 Figure 7: Frequency response function (on the left side figures) and time displacement of the first sector over one period (on the right figures); ( ) correspond to the solutions for which the time displacement is illustrated; ( ),( ), ( ), ( ), () relate to the displacement of the first, second, third, fourth and fifth DOF (see Figure3).

Figure 7 Figure 8 :

 78 Figure 7 represents the displacement of each sector for each mode of interest. The displacement of the DOFs for the first mode of the third and ninth nodal diameters are given in Figure 7b and 7d.For these modes, the first and second DOFs are in-phase and have a large amplitude compared to other DOFs. For the second mode of the ninth nodal diameter illustrated in Figure7f, the first and second DOFs are out-of-phase. The other DOFs have a negligeable amplitude. Therefore to identify whether a 1:1 or a 1:3 internal resonance is taking place between the third and ninth nodal diameters, it will be sufficient to retrieve the motion of the first sector along the ninth nodal diameter and observe if the first and second DOFs are in-phase or out-of-phase.

Figure 8

 8 Figure 8 represents the amplitude of ũ3 and ũ9 for the coupled reduced system (27) and completes Figure6with the full (stable and unstable) bifurcated branches. For the three numbered blue squares of Figure8the displacement of the first sector along the third and ninth nodal diameters is represented in Figure9. Each of these squares represent stable solutions of the system.

  Displacement of ũ9 for square 3.

Figure 9 :

 9 Figure 9: ũ3 and ũ9 time displacements at different excitation states (blue squares of Figure 8). The lines denote the displacement of each DOF as explained in Figure 7.

Figure 10

 10 Figure 10 represents the compliance response for a standing wave excitation along the third nodal diameter for different values of external force. For each level of force, cyclic fold bifurcated points (turning points) are obtained around 218-219 Hz and give two solutions, one stable (the bifurcated branch) and the other unstable (the primary branch). The primary branch returns to a stable state around 221 Hz before becoming once more unstable close to 225 Hz; Floquet multipliers indicate Neimark-Sacker bifurcation points which may yield a quasi-periodic regime. Many bifurcations points are also present for the bifurcated branch and illustrate the complex dynamics occuring in cyclic structures with polynomial nonlinearities.

1 Figure 10 : 5 N

 1105 Figure 10: Compliance for different amplitudes of excitation; the full lines represent stable solutions while dotted line represent unstable solutions; ( ), ( ) and ( ) represent the main branch of solutions for external forces of amplitude 12.5 N, 7.5 N and 2.5 N. Bifurcated branches are represented with ( ), ( ) and ( ) for forces of 12.5 N, 7.5 N and 2.5 N. The markers ( ), ( ) denote cyclic fold and Neimark-Sacker bifurcation points.
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 113112329223991239999823333329933993299919 Case of a traveling wave excitationSimilar to Section 4.1.1, consider the case of a traveling wave excitation, thus the relation (44) holds true. The solvability conditions are modified and give   -2iω 3 A 3 + µ 3 A 3α 3α 3 A 2 3 Ā3 + 6αβ 2 Ā3 A 9 Ā9 + 3α 2 β Ā2 3 A 9 e iσ2T2 + αf a e iσ1T2 = 0, -2iω 9 A 9 + µ 9 A 9β α 3 A 3 3 e -iσ2T2 + 6α 2 βA 3 Ā3 A 9 + 3β 3A and A 9 by their polar form (46), introducing the variables γ 3Θ 3 + σ 2 T and considering a periodic motion (a 3 = a 9 = γ 1 = γ 2 = 0), we finally obtain (by 430 distinguishing the real and imaginay parts)                       -a 3 σ 1 ω 3 = -3α 2 αβa 3 a 9 cos (γ 2 ) + αf a cos (γ 1 ) , sin (γ 2 ) + αf a sin (γ 1 ) ,Similar to the result of Section 4.1.2, there may be coupling between the third and ninth nodal diameter for a traveling wave excitation due to a 1:3 internal resonance (see Equation (B.8)). These results are similar to the ones presented in Nayfeh[START_REF] Nayfeh | Nonlinear Oscillations[END_REF].This theoretical result gives credit to the large peak of ũ9 observed in Figure5. Case of a standing wave excitation Conisder a standing wave excitation, Equations (53) are maintained but the solvability condition is modified into, Ā9 + 3α 2 β Ā2 3 A 9 e iσ2T2 + αf a e iσ1T2 = 0,-2iω 9 A 9 + µ 9 A 9β α 3 A 3 1 e -iσ2T2 +18α 2 βA 3 Ā3 A 9 + 9β 3 A 2 and A 9 are written into their polar form just as presented in (46). Substituting the expression (46) of A 3 and A 9 into (B.2), and considering a periodic motion (a 3 = a 9 = γ 1 = 0), we finally obtain (by distinguishing the real and imaginay parts),                        cos (γ 2 ) + αf a cos (γ 1 ) -a 9 ω 9 (3σ 1σ 2 ) = -3β 8 sin (γ 2 ) + αf a sin (γ

(c 1 )c 2 M3 c 3

 123 km)∈Sq ũk1 ũk2 ...ũ kp . Replacing each spectral displacement by their Fourier representation (see (28)) yields ũk1 ũk2 ...ũ kp = n1 c n2 ...c np e iωt(n1+n2+...+np) Using the scalar product defined in (30) and projecting the term (C.1) on e imωt (with m ∈ -N h , N h ) gives ũk1 ũk2 ...ũ kp , e imωt = 1 T n1 c n2 ...c np e iωt(n1+n2+...+np-m) c n1 c n2 ...c np , (C.2)where T m represents the entire set of solution ofn 1 + n 2 + ... + n q = m (C.3) and (n m ) = (n m,1 , n m,2 , ...n m,q ) is a solution belonging to T m . As a practical example, the HBM is now employed on Equation (29) and each term is projected on e imωt m∈ -N h ,N h . For a spectral component k ∈ 0, K and a harmonic m ∈ -N h , N h K3 + imω C3 -(mω) ,m + k nl (km)∈S3   (nm)∈Tm c k1,n1 c k2,n2 ...c kq,nq c k1,n1 c k2,n2 ...c kq,nq

Table 1 :

 1 Numerical values for the different masses, in kg

	Parts	k 10 6 N m -1	c N s m -1
	Tip/Ground	0.1	0
	Tip/Middle	2	1.3
	Middle/Foot	1	0.7
	Foot/Disk	40	26.7
	Disk/Boundary	50	33.3
	Disk/Ground	0.6	0.4

Table 2 :

 2 Numerical values for the different spring stiffnesses and dampers

Table 3 :

 3 Natural frequencies for the third and ninth nodal diameters, in (Hz)
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Appendix

A. From complex to real spectral components All the theoretical results and calculations have been realized using complex numbers. Most people in the community are used to expressing cyclic symmetric problems using real numbers. Therefore derivations to transfer the complex results into their real form are proposed in this 415 appendix. It also allows the authors to justify some simplifications made in Section 2.

Decomposing the spectral component (ũ k ) k∈ 0,N -1 into their real and imaginary parts and replacing it into Equation [START_REF] Joannin | Nonlinear Modal Analysis of Mistuned Periodic Structures Subjected to Dry Friction[END_REF] gives

The terms ũR,k and ũI,k represent the real and imaginary parts of ũk (ũ R,

The sums of Equation (A.1) is split into two parts (from 1 to K and from K + 1 to N -1) and the following change of variables m = Nk is introduced. This gives

As α = 2π N , we have N αj = 2πj. Using classical trigonometric relations, we retrieve cos ((Nm) jα) = cos (m jα)

sin ((Nm) jα) =sin (m jα)

Replacing these relations into (A.2) and renaming k = m:

The displacement of a sector j must be real, thus the imaginary part of the previous equation is equal to 0. It yields N equations for N unknowns (ũ I,0 , ũI,1 + ũI,N-1 , ũR,1 -ũR,N-1 and ũI, N

2

).
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The determinant of such a system is not-zero, hence, we retrieve the relations,

It gives the following remarkable result

Replacing this Equation in (A.4),

where (-1) j ũR, N 2 only exist if N is even. By defining the following relations,

the classical cyclic formulation, expressed for instance in [START_REF] Floquet | Sur les équations différentielles linéaires à coefficients périodiques[END_REF], in the real space is recovered,

projection on the first harmonic m = 1) One of the main difficulties when employing this algorithm along the HBM method is for the evaluation of the jacobien for the Newton-Raphson solver. The AFT approach is in practice much more straightfoward.