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Abstract 49 

The Seismic Experiment for Interior Structure (SEIS) of the InSight mission to Mars, has been 50 

providing direct information on Martian interior structure and dynamics of that planet since it 51 

landed. Compared to seismic recordings on Earth, ground motion measurements acquired by SEIS 52 

on Mars are made under dramatically different ambient noise conditions, but include idiosyncratic 53 

signals that arise from coupling between different InSight sensors and spacecraft components. This 54 

work is to synthesize what is known about these signal types, illustrate how they can manifest in 55 

waveforms and noise correlations, and present pitfalls in structural interpretations based on 56 

standard seismic analysis methods. We show that glitches, a type of prominent transient signal, 57 

can produce artifacts in ambient noise correlations. Sustained signals that vary in frequency, such 58 

as lander modes which are affected by variations in temperature and wind conditions over the 59 

course of the Martian Sol, can also contaminate ambient noise results. Therefore, both types of 60 

signals have the potential to bias interpretation in terms of subsurface layering. We illustrate that 61 

signal processing in the presence of identified nonseismic signals must be informed by an 62 

understanding of the underlying physical processes in order for high fidelity waveforms of ground 63 

motion to be extracted. While the origins of most idiosyncratic signals are well understood, the 2.4 64 

Hz resonance remains debated and the literature does not contain an explanation of its fine spectral 65 

structure. Even though the selection of idiosyncratic signal types discussed in this paper may not 66 

be exhaustive, we provide guidance on best practices for enhancing the robustness of structural 67 

interpretations.   68 

 69 

Introduction 70 
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Measurements of ground vibrations recorded by seismometers enable imaging of our planet’s 71 

inaccessible interior and provide information about processes below and above its surface. 72 

Seismologists have developed many techniques for extracting structural signals from waveforms 73 

of ground vibrations, many of which require high fidelity recordings. Recently, methods based on 74 

autocorrelation have particularly grown in prominence (e.g. Ito & Shiomi, 2012; Gorbatov et al., 75 

2013; Pham & Tkalčić, 2017; Romero & Schimmel, 2018; Kim et al., 2019a). Modern broadband 76 

seismometers are designed to measure ground motions to a tenth of a typical atomic spacing 77 

between two bonded atoms. Because of this remarkable sensitivity, signals influenced by physical 78 

structures and processes in the subsurface are recorded alongside ground vibrations generated by 79 

unrelated processes, including ocean waves (e.g., Longuet-Higgins, 1950; Webb, 2007), wind (e.g., 80 

Dybing et al. 2019), earth tides (e.g., Martynov et al. 2020), cultural noise (e.g., Quiros et al., 2016; 81 

Lecocq et al., 2020), and even variations of the Earth’s magnetic field (e.g., Forbriger, 2007, Tape 82 

et al., 2020). 83 

The Seismic Experiment for Interior Structure (SEIS) contains two independent 3-84 

component seismometers, a miniature Short Period (SP) and a Very Broad Band (VBB) sensor 85 

(Lognonné et al., 2019). SEIS-VBB has greater sensitivity at low frequencies, equal to that of 86 

observatory-class instruments deployed on Earth (Lognonné et al., 2019), but the ambient noise 87 

level at frequencies of 0.2 - 1 Hz is approximately 500 times lower than the Earth’s microseismic 88 

noise (Lognonné et al., 2020). The VBB instrument is one of many electro-mechanical components 89 

of the spacecraft system of the InSight Mission (Banerdt et al., 2020) interconnected to the lander 90 

which also includes the Heat Flow and Physical Properties Package (HP3, Spohn et al., 2018), a 91 

radio transponder to track rotation of Mars (Folkner et al., 2018), and other environmental 92 

monitoring sensors (Banfield et al., 2019). 93 
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Just as one may be able to hear a watch ticking in a quiet room, InSight’s seismic data 94 

permit us to “listen” to various sensors and the mechanical components of the spacecraft system 95 

“talking” to each other during the quiet period of the Martian day (roughly between 17:00 and 96 

22:00 Local Mean Solar Time, LMST for ½ the martian year centered around InSights’ summer). 97 

We can also hear signals due to winds (Suemoto et al., 2020; Charalambous et al., 2020; Stutzmann 98 

et al., 2021), as well as the lander itself. Due to the high sensitivity of the VBB seismometer, the 99 

complexities associated with the coupling of different lander components under relatively 100 

underexplored environmental conditions, and the low ambient noise levels, the seismic data being 101 

collected on the surface of Mars contains several idiosyncratic signals that are not normally found 102 

on seismometers on the Earth or the Moon (e.g., Latham et al., 1970) and more similar to signals 103 

from ocean bottom seismometers (e.g., Sutton et al. 1981; Stähler et al. 2016). Furthermore, there 104 

are other peculiarities in seismograms whose origin is not yet fully understood.  105 

Figure 1 presents an overview of the SEIS VBB ground vibration recordings during a typical 106 

Martian Sol (Sol 184, 2019-06-03UTC 06:00 – 2019-06-04UTC 08:00). In addition to the long 107 

period features associated with variations in wind conditions (Lognonné et al., 2020; Stutzmann 108 

et al., 2021), various types of short period resonances and other nonseismic signals are also 109 

apparent in both time and frequency domains (Fig. 1A-E). Based on the signal duration, two types 110 

of peculiar signals exist: transient and sustained signals (illustrated on both Figs. 1C and E). These 111 

idiosyncratic signals are routinely identified by the Marsquake Service (MQS, Clinton et al., 2018) 112 

who promptly checks all data arriving from Mars and can be further classified. 113 

Transient signals in SEIS data are described as follows: 114 

i) One of the most prominent and numerous types of transient signals is referred to as 115 

“glitch” that is represented by a step function in acceleration convolved with instrument 116 
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response (Scholz et al., 2020). The large majority of glitches are either due to (1) the 117 

relaxation of the suspension spring (causing glitches only on a single component) or (2) an 118 

internal deformation and subsequent tilting of the VBB sensor or the whole sensor 119 

assembly (causing multi-component glitches; e.g., Fig. 1H). The origin of such tilting 120 

remains debated and possible mechanisms are discussed in more detail by Scholz et al. 121 

(2020).  122 

ii) Glitches are often preceded by a high frequency precursor, referred to as “spike”; 123 

however, spikes can occur without glitches. These spike signals can have either the same 124 

or the opposite polarity as the glitches (e.g., Fig. 1H) and they are interpreted as arising 125 

from a step function in displacement (Scholz et al., 2020; Ceylan et al., 2020); 126 

iii) The third type of transient signal artifacts that are usually only visible at high 127 

frequencies (>10 Hz) are referred to as “donks” and are typically observed on all three 128 

components (e.g., inset, Fig. 1F). These are rarely visible in the continuous 20 sample per 129 

second (sps) data; 130 

Due to the large diurnal temperature variations on Mars (e.g., Banfield et al., 2020), 131 

the interconnected mechanical components of the InSight spacecraft periodically release 132 

thermoelastic stresses giving rise to these short duration signals recorded by the 133 

seismometer (Scholz et al., 2020; Ceylan et al., 2020). Compared to terrestrial settings, it 134 

is important to state that these glitches are neither fully randomly distributed in time, as in 135 

ageing seismometers (e.g., Wielandt, 2012), nor periodic, as in certain ocean-bottom 136 

seismometers (e.g., Stähler et al. 2016; Deen et al. 2017). 137 

 138 

Sustained signals in SEIS data are described as follows: 139 
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i) The lander modes – mechanical resonances of the InSight spacecraft system (e.g. 140 

Murdoch et al. 2018) – show up as several prominent peaks in the frequency domain (e.g., 141 

3.3 Hz, 4.1 Hz, 6.8 Hz, and 8.6 Hz; Fig. 1C and 1E). Observations from the short period 142 

(SP) seismometer on-deck of the lander and those from the Martian surface after 143 

deployment show consistent behavior of the lander modes, and have shown that their 144 

frequency varies with temperature and windspeed (Panning et al., 2020; Clinton et al., 2021; 145 

Dahmen et al., in review). This is similar to observations of resonant modes in ocean-146 

bottom seismometers (e.g., Trehu, 1985; Stähler et al. 2018); 147 

ii) A narrow-band sustained artifact at 1 Hz is referred to as a “tick” and can be seen in the 148 

frequency domain alongside its higher harmonics up to 6 Hz (Fig. 1I-J). This signal is due 149 

to electrical cross-talk produced by the SEIS temperature measurements where the EBOX 150 

on the lander interrogates the temperature sensors inside SEIS once every second (Ceylan 151 

et al., 2020; Zweifel et al., 2021); During the commissioning phase, the temperature sensors 152 

were sampling once every 10s resulting in tick noise at 0.1 Hz and the corresponding 153 

harmonics. For a schematic overview of the VBB and its subsystem configuration, see Fig. 154 

33 in Lognonné et al. (2019). 155 

iii) The sustained peculiarity showing a broad and complicated spectral peak near 2.4 Hz 156 

is simply referred to as the “2.4 Hz resonance.” Its energy (Fig. 1C and 1E) is more 157 

pronounced relative to background noise during the quiet period of the Martian Sol. The 158 

origin of the signal remains unclear and is being investigated under two working 159 

hypotheses: the resonance is either being generated by seismic energy reverberating within 160 

the subsurface structure beneath the lander (e.g., Giardini et al., 2020; Pan et al., 2020) or 161 



8 

by resonances of the lander solar panels (for a schematic of the solar panel configuration, 162 

see Fig. 1 in Ceylan et al., 2020).  163 

 164 

The aim of this work is to illustrate how these idiosyncrasies of Martian seismic data can manifest 165 

in waveforms and noise correlograms, and to provide guidance for making robust structural 166 

interpretation. Because the spectral content of these transient and sustained signals spans the range 167 

of frequencies used by diverse seismological techniques for structural interpretations, extra 168 

scrutiny of data is needed when computing noise correlograms (e.g., Compaire et al., 2021; 169 

Schimmel et al., 2021), receiver functions (e.g., Knapmeyer-Endrun et al., 2021) or identifying 170 

seismic phases from marsquakes (e.g., Khan et al. 2021; Stähler et al., 2021). Without this added 171 

scrutiny, interpretation of Martian structure from the regolith through crustal and mantle layering 172 

to core structure could be impeded. The manuscript is organized into five sections called pitfalls, 173 

each of which outline the overall characteristics of a particular waveform artifact, and how they 174 

can potentially contaminate the data and hence lead to an inaccurate interpretation of the Martian 175 

structure. 176 

  177 

Pitfall 1: Effect of Glitches 178 

Several methods have been devised to remove glitches from raw SEIS-VBB data. The performance 179 

of these methods is reliable and sensitive down to 10-8 m/s in amplitude (see Scholz et al., 2020 180 

for different glitch removal algorithms). To illustrate how glitches manifest in the SEIS-VBB data 181 

and how these signals manifest themselves in a standard ambient noise processing framework, we 182 

preprocess continuous recordings of the ambient noise on Mars between February and July, 2019. 183 

We take the raw 20 sps UVW channels from SEIS-VBB, remove the instrument transfer function 184 

through spectral division, and rotate to ZNE components. The three-component data is then 185 
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segmented into a total of 1051 two-hour-long records. We then apply a “deglitching” algorithm to 186 

obtain three types of datasets: 1) vertical component data which only contains identified glitch 187 

signals (Fig. 2); 2) raw vertical component data with glitches; 3) vertical component data with 188 

glitches removed. 189 

A first step in standard seismic data processing involves removal of the seismometer’s 190 

transfer function which converts the raw counts into a physical unit of ground motion. When this 191 

operation is performed on a glitch waveform, two potential issues may occur. First, because the 192 

glitch in the raw data represents a step function in acceleration caused by tilts, treating it  as a 193 

translational motion is inappropriate. This is because the glitch signal in the SEIS-VBB data 194 

converted to either velocity or displacement by the subsequent integration of the acceleration step 195 

would lead to a ramp in velocity or a parabola in displacement which of course are nonphysical 196 

because a linearly increasing velocity with time would imply that the SEIS system would have left 197 

the surface of mars shortly after the glitch occurred. For this reason, we label the velocity and 198 

displacement traces in Fig 2D as pseudo velocity and pseudo displacement. Second, depending on 199 

the choice of the filter used while implementing instrument removal, processing artifacts can be 200 

generated. For example, the instrument-removed glitch in acceleration shown in Fig. 2D (dashed 201 

red) is the resulting signal processed by a commonly used module, ObsPy (Beyreuther et al., 2010) 202 

in the Python programming language. An acausal, zero-phase filter is applied here to the glitch by 203 

spectral division within a limited frequency band. This is a common but not necessarily optimal 204 

method because the instrument-removed glitch now shows a trend superimposed on the step 205 

function. If one wishes to retrieve the physically correct representation of the glitch in acceleration 206 

(Fig 2E), the response of the VBB system and its corresponding recursive filter constants (e.g., 207 

Wielandt and Streckeisen, 1982) need to be estimated more carefully (e.g., Kanamori and Rivera, 208 
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2008; Anderson and Lees, 2014) to preserve causality. Careful consideration of how standard 209 

signal processing flows can lead to waveform distortion in the presence of glitches is also 210 

highlighted in the strong motion literature (e.g., Boore and Bommer, 2005). 211 

Further signal analysis may involve identifying and removing the glitches. We use two 212 

approaches to identify glitches and compare their performance. In the first approach, we start by 213 

decimating the 20 sps vertical component data to 2 sps to improve the computational efficiency 214 

and minimize the spikes in the raw data (see Pitfall 2). For each 2-hour record (between February 215 

and July 2019), we identify peaks with a signal-to-noise ratio in their vicinity greater than 4. We 216 

then perform template matching by cross-correlating data segments around the times of the peaks 217 

with the response-removed (acausal) glitch template (e.g., blue, Fig. 2D). For peaks spaced closely 218 

in time, we use a series of templates. We define the signal as a glitch if the correlation coefficient 219 

exceeds 0.9 and mark it on the corresponding 20 Hz data (e.g., orange lines, Fig. 2B). The second 220 

approach (Scholz et al., 2020) also starts by decimating the data, but seeks to identify glitches 221 

directly from the UVW channels. Instrument response is removed to obtain accelerograms, so that 222 

the physical model for the glitches -- which manifest as steps in acceleration (e.g., Fig 2E) -- can 223 

be exploited for detection. A time-derivative of the accelerograms results in a spike at each glitch, 224 

which are identified when they exceed a threshold value. The latter approach is applied to 2-hour 225 

records with a different recording time span between March and September, 2019. Both 226 

deglitching methods removed the bulk of the glitch energy, but not all, and some overfitting occurs 227 

when threshold levels are set too low (see Fig. 2B). However, the conclusions regarding the effect 228 

of glitches on noise correlograms remained the same in either case.  229 

To estimate the percentage of contamination due to glitches present in our data, we 230 

compute the Hilbert envelope for each glitch-only record (e.g., orange, 2B), select amplitudes 231 
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larger than a threshold value set at 0.25% of the maximum, and generate a binary mask. We 232 

estimate that setting a lower threshold value would only result in <1% difference for the estimate 233 

of the percentage of contamination. We find that a significant portion of our data is affected by 234 

glitches (Fig. 2A). For each 2-hr segment, the percentage of contamination due to glitches 235 

coherently fluctuates with the Martian diurnal noise cycle (e.g., Lognonné et al., 2020) and the 236 

value increases up to 74% especially during the quiet period of the Martian Sol. Often 237 

contamination by glitches is consistently observed across the entire 2-hour span of our data and 238 

the percentage value periodically rises up to 37% (Fig. 2A). This implies that these temperature-239 

driven signals (Scholz, et al., 2020) may be stationary (e.g., Barkaoui et al., 2019) though a 240 

complete analysis on glitches is being hindered by the strong wind noise during the noisy period 241 

on Mars (daytime, Fig. 1; Fig. 2B). 242 

To assess the effect of acausal glitches on noise correlation functions, we compute 243 

autocorrelation functions (ACFs) using vertical component data that consists only of glitch signals 244 

identified between February – July, 2019 (i.e., Dataset 1). We apply 1-bit normalization to our data 245 

prior to autocorrelation, which is a standard way of implementing spectral whitening in analyses 246 

of ambient noise recordings on Earth (e.g., Shapiro et al., 2005). Following Deng and Levander 247 

(2020), we analyze our ACFs in two frequency ranges: high frequency (HF, 0.625 – 2.5 Hz) and 248 

low frequency (LF, 0.05 – 0.1 Hz).  249 

We find that individual ACFs produced by correlating each 2-hour glitch segment show 250 

many coherent arrivals in both HF and LF ACFs (Fig. 3). The timings of these arrivals are more 251 

pronounced in the ACF stacks as we sum all the individual ACFs performed in a phase-weighted 252 

fashion (Schimmel and Paulssen, 1997). As expected, the strongest arrivals in our ACF stacks 253 

originate from a glitch signal being correlated by itself. Because of the symmetrical shape of the 254 
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deconvolved glitch in velocity (blue, Fig. 2D), their corresponding signal widths and sidelobes 255 

give rise to a few stationary phases (e.g., Snieder, 2004) during the process of autocorrelation. For 256 

example, the 60s duration of the glitch signal (reciprocal in frequency ~ 0.0167 Hz) in pseudo-257 

velocity bandpass filtered between 0.01 – 8 Hz (see inset, Fig. 3C), produces coherent arrivals in 258 

the autocorrelation at lag-times ~30 and ~60s (Fig. 3A). Moreover, the detailed timings of these 259 

arrivals can vary and one may expect various other arrivals since the design of the pre-filter applied 260 

during the instrument removal process (Fig. 3A-B) can result in variations in apparent glitch 261 

duration. Additional arrivals may arise from systematics in the timing between glitches. But 262 

because similar pseudo-velocity glitches persist throughout the SEIS-VBB data and our 2-hour 263 

waveform segments are contaminated with those glitches up to 74% of the time (Fig. 2A), the 264 

glitch removal process is nevertheless critical to obtain robust ACFs. 265 

Recently, Deng and Levander (2020) used 2-hour segmented ambient noise records and 266 

computed ACFs (hereafter DL ACFs) for SEIS-VBB data. They use an ambient noise processing 267 

procedure that is well-established and commonly applied to data recorded on Earth (e.g., Sabra et 268 

al., 2005; Bensen et al., 2007; Lin et al., 2013; Kim et al., 2019b). To suppress glitches and tick 269 

noise in the data, they apply temporal balancing (e.g., Bensen et al., 2007) and two notch filters to 270 

reject signals around 1 and 2 Hz (see Pitfall 4).  The authors identify at least three major seismic 271 

boundaries of Mars from their resulting ACFs. These include two “crustal” phases (i.e., interpreted 272 

as P-wave and S-wave reflections from the Moho) observed in the vertical component SP ACFs 273 

and the two deeper phases (i.e., P-wave reflections from the olivine to wadsleyite phase transition 274 

and core-mantle boundary) in their LP counterparts (Deng and Levander, 2020). 275 

To assess how glitch contamination of actual ground vibrations recorded on Mars by SEIS-276 

VBB, might affect structural interpretation of ACFs like those analyzed by Deng and Levander 277 



13 

(2020), we also compute autocorrelations on raw and deglitched waveforms. We replicate both 278 

DL ACFs in HF and LF using raw 2-hour vertical component data (Dataset 2) followed by the 279 

ambient noise processing steps in Deng and Levander (2020) including a temporal balancing 280 

approach to suppress glitches. The phase-weighted stacks of the individual HF and LF DL ACFs 281 

show identical phases at ~11.5s and 21.0s and ~280s and ~375s, respectively as previously 282 

documented by those authors. Next, our replicated DL ACFs are benchmarked with another set of 283 

ACFs derived from the deglitched waveforms (Dataset 3) obtained by applying the additional 284 

glitch removal procedure. 285 

The two phases interpreted as “crustal” reflections are apparent in both HF ACF stacks: 286 

raw and glitch-removed data (blue and black, Fig. 4A). Observation of these phases in HF ACFs 287 

is also consistent with other noise correlation studies to within a time difference of less than 1s 288 

(Compaire et al., 2021; Schimmel et al., 2021; Knapmeyer-Endrun et al., 2021). On the other hand, 289 

the HF ACF stack based on our glitch-only waveforms (Dataset 1) did not contain such signals 290 

(orange, Fig. 4A). This implies that the duration and spacing of most of the glitches in our HF data 291 

stream are well beyond 30s, hence they do not produce spurious signals in the HF ACFs. We find 292 

that, surprisingly, these two crustal phases are insensitive to different preprocessing steps 293 

employed by Deng and Levander (2020) and this work so that all the HF ACFs produced with and 294 

without the data normalization steps (i.e., nonlinear temporal balancing and spectral whitening) 295 

have turned out to be virtually identical (Fig. 4C). Further implication for the structural 296 

interpretation of crustal phases will be further discussed along with Pitfall 5, the 2.4 Hz resonance. 297 

In contrast to the HF ACF stacks, the LF stacks are inconsistent across our three datasets 298 

regardless of the presence of glitches (Fig. 4B). While we successfully replicate the two 299 

conspicuous “deep” phases of the DL ACFs in the LF ACF stack using the raw data with glitches 300 
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(Dataset 2), the corresponding ACF stack resulting from the glitch-removed waveforms (Dataset 301 

3) fail to reproduce either of those phases. Instead, other later phases are present and they arrive 302 

after 375s which is an inconsistent observation relative to the DL LF ACF stack. This time the data 303 

normalization step, especially the nonlinear temporal balancing (Bensen et al., 2007), affected the 304 

outcome of the LF ACF stacks. Notably, the ~280s phase in DL LF ACF stack disappears without 305 

the application of data normalization in time (Fig. 4D). However, this first deep phase is clearly 306 

reproduced by applying the complete noise processing flow described in Deng and Levander (2020) 307 

with the dataset that only contains glitch signals (orange, Fig. 4B) (Dataset 1). Though relatively 308 

attenuated, the ~ 375s phase is weakly observable in the same LF ACF stack produced by glitches 309 

(orange, Fig. 4B). On the other hand, the LF ACF stack identically processed using a different 310 

glitch-removed noise dataset (2-hour records between March and September, 2019 with glitches 311 

identified and removed followed by Scholz et al., 2020) (green, Fig. 4B) verify our finding that 312 

the second deep phase is unstable and inconsistent across different datasets. Therefore, we 313 

conclude that glitches can substantially affect appearance of ACFs in the lag-time window 314 

corresponding to potential mantle transition zone and core reflections; structural interpretations of 315 

such deep reflections should be approached with a careful treatment of glitches. Note also, that 316 

reflections of interfaces deeper than the Moho have only been observed using noise correlation on 317 

Earth by stacking cross-correlations of thousands of station pairs (Lin et al. 2013; Retailleau et al., 318 

2020). On Mars, observation of such a phase is significantly less plausible, given its much lower 319 

ambient seismic excitation level, due to the lack of oceans or strong quakes. This example 320 

highlights the effect of Pitfall 1 - glitches. Without using properly deglitched waveforms collected 321 

by the InSight mission (e.g., Scholz et al., 2020), any result from a similar analysis can be heavily 322 

contaminated by glitch artifacts, which will depend on the specifics of glitch duration and 323 
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systematics in glitch separation time. These artifacts can bias interpretation of ACFs, whether the 324 

raw data contains ground vibration measurements due to ambient noise or various types of 325 

marsquake events. 326 

 327 

Pitfall 2: Spikes and donks 328 

As discussed above, glitches in the SEIS-VBB data are modeled as a step function in acceleration 329 

resulting from tilt of the sensor assembly. Similarly, spikes (or high frequency precursors to 330 

glitches) are modeled as the response to a simultaneous step in displacement, resulting from the 331 

associated small vertical movement whose amplitude is proportional to the distance from the tilt 332 

axis and the sensor. Indeed, this working hypothesis is directly employed when devising a method 333 

to remove glitches in the data stream (Scholz et al., 2020). Because spikes exist at higher 334 

frequencies (>1 Hz) than glitches and the majority of spikes are found simultaneously with the 335 

glitch onset, the simplest way to identify them is by leveraging existing glitch removal algorithms. 336 

Note, however, that many spikes can still occur independently, without being associated with 337 

glitches (e.g., Fig. 1H).  338 

Here, we carry out analysis similar to that presented in Pitfall 1 in order to explore the 339 

effect of spikes on ACFs. To identify spikes in the 1051 2-hour segments of vertical component 340 

data described in Pitfall 1, we filter the raw data above 1 Hz and correlate with the spike waveform. 341 

We then convolve with the acausal spike template as we retain the same processing procedures 342 

described in Pitfall 1 and construct a dataset which only comprises spike signals. Identified spikes 343 

are manually inspected. On average, each 2-hour record has 15 spikes, compared with 13 glitches. 344 

Many of the spikes thus corresponded to glitches as precursors. The LF ACF stacks derived from 345 

the spike-only data correlate highly with both ~280s and ~370s phases in DL LF ACF (Fig. 5). 346 
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When we repeat the analysis throwing out 10% of windows based on a manual inspection of 347 

identified spikes, the phases around ~280s and ~370s become even clearer. These prominent 348 

artifacts, close to phases reported by Deng and Levander (2020), result from clustering of spikes 349 

in time, and agree with the results of  Barkaoui et al. (2021) found that glitches and their associated 350 

spikes tend to appear in doublets, separated by 280s and 368s. Unlike spikes (or glitches), we lack 351 

a clear physics-based model for donks in order to devise a straightforward procedure to remove 352 

them. Moreover, to identify and document a complete list of donks in the data stream, a full span 353 

of continuous 100 sps, SP data is required. Because this is restricted by the available download 354 

bandwidth of SEIS, an alternate means of making reliable estimations is by utilizing the composite 355 

SP channel, Energy Short Term Average SP (ESTASP; Lognonné et al., 2019) under the 356 

assumption that each strong amplitude excursion corresponds to a donk (Compaire et al., 2021). 357 

Here, we calculate vertical component ESTASP data and identify donks (Fig. 1F and G) by 358 

applying a standard STA/LTA with identical parameters to those employed by Compaire et al. 359 

(2021).  360 

Figure 6 compares detected donks during the quiet hours of the Sol 184 divided into two 361 

records (e.g., morning vs. evening hours). The number of identified donks during the evening is 362 

substantially larger than the morning of Sol 184 (Fig. 6). During the noisy periods of the Martian 363 

Sol, the detection rate becomes even greater but difficult to verify the fidelity of those signals 364 

identified as donks because the background noise level is also significantly higher (Fig. 1F and G). 365 

A typical signal duration of donk is ~5s and the median timing between donk signals for Sol 184 366 

appears to be ~80s during the morning and ~60s during the evening (Fig. 6). Note that this median 367 

delay can be significantly shorter (~10s) during the evening for some Sols (Compaire et al., 2021). 368 

We notice the performance of detecting donks is strongly dependent on the choice of the 369 
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hyperparameters (filter range and length of STA/LTA windows) used in our processing. Further 370 

assessment of methods for detecting donks is warranted. 371 

Because the driving force behind the origin of spikes or donks (and glitches) is the large 372 

diurnal temperature variations on Mars, it is important to understand how such periodic behavior 373 

affects different mechanical components of the InSight lander and seismometer within each cycle 374 

which cause nonseismic arrivals in noise correlation functions. Unfortunately, effects on donks 375 

cannot be fully explored in this study due to the limitation of available data sampled higher than 376 

20 sps, given the limited downlink bandwidth from InSight.  377 

 378 

Pitfall 3: Lander modes 379 

 In contrast to the transient artifacts such as glitches, donks, and spikes, resonant mechanical modes 380 

of the InSight lander, continuously excited by the wind, are observed and are the first type of 381 

sustained signal we will discuss. The lander modes manifest themselves in the frequency domain 382 

as distinct spectral peaks (Fig. 7). By analyzing data recorded by the SP seismometer on deck of 383 

the lander (Panning et al., 2020) prior to the deployment of SEIS instrument on the Martian surface, 384 

Dahmen et al. (in review) associate a total of five strong spectral peaks up to 10 Hz with resonant 385 

shaking of the lander and its components. Though these modes vary in frequency with temperature 386 

and wind, the modes are identified as 1.6 Hz, 3.3 Hz, 4.1 Hz, 6.8 Hz, 8.6 Hz (Fig. 7). Of these 387 

spectral peaks, the mode at 1.6 Hz in particular is only noticeable during evening / night hours 388 

(e.g., 22:00 - 05:00 LMST) when moderate wind exists mostly on the vertical component but 389 

becomes imperceptible either when the wind noise is high (e.g., during ~6 hours where the power 390 

spectra peak as shown in Fig. 7) or during the quiet hours (between 18:00 and 22:00 LMST) of the 391 

Martian sol. The rest of the lander modes at 3.3 Hz, 4.1 Hz, 6.8 Hz, and 8.6 Hz are much stronger 392 



18 

throughout the record and show a clear indication of variations in frequency during the noisy 393 

period as they become stable after 18:00 LMST (Fig. 7-8). Such strong variations of those spectral 394 

peaks are driven by temperature changes induced by wind on Mars (Clinton et al., 2021). There 395 

are other “temporary” modes that are intermittently observed at 2.7 Hz, 3.7 Hz, 5.3 Hz and a few 396 

more at higher frequencies (> 6Hz) throughout different periods of time in our records (Dahmen 397 

et al., in review). Note that while a few strong resonances above 10 Hz are also observed mainly 398 

on the SP seismometer, we will not discuss them here because they are above the Nyquist 399 

frequency of the acquisition of the SEIS-VBB data sampled at 20 Hz (see Dahmen et al., in review 400 

for more detail on lander modes). 401 

We quantitatively assess the effect of the lander modes and their frequency variations on 402 

the expected ACFs constructed from SEIS-VBB data. We start with the measurements of lander 403 

mode frequency, spectral width and amplitude made by Dahmen et al. (in review) for 7 Sols (185, 404 

225, 345, 425, 505, 585 and 625). Measurements of each quantity are averaged over the 7 Sols, 405 

and used to construct the representative power spectrum for each 30 minute window (with 70% 406 

overlap) of the Martian day, and are shown in Fig. 8A (alongside the tick signal discussed in the 407 

next section). Because of the weak visibility of the 8.6 Hz lander mode, its spectral width is 408 

estimated and set to the median width of the 6.8 Hz mode. The ACFs for each 30-minute window 409 

are given by the inverse Fourier Transform of these representative power spectra. The ACFs 410 

resulting from each solitary lander mode (Fig. 8B) oscillate and decay rapidly with lag-time, 411 

having negligible power at lag times greater than 4 s for all but the 3.3 Hz mode, which exhibits 412 

energy in the ACF out to 8 s lag time. 413 

  Because temperature and wind conditions vary systematically during the course of the 414 

Martian day, the lander mode frequencies also show systematic variations; as a result, the 415 
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oscillations in the ACFs also vary with time of day. When ACFs are stacked, either by simple 416 

summation or by more sophisticated means such as phase-weighted stacking, these variations 417 

produce a beating effect, and can give rise to coherent “arrivals” (Fig. 8B). These arrivals are 418 

particularly prominent when phase-weighted stacking is used. For the 3.3 Hz and 4.1 Hz lander 419 

modes, arrivals at ~5s and ~4s are observed, respectively; these could easily be misinterpreted as 420 

resulting from structural layering in the subsurface. Variations in frequency of the other lander 421 

modes (6.8 Hz and 8.6 Hz) are larger, and the resulting beating effect produces apparent arrivals 422 

at smaller lag times. 423 

  Suemoto et al. (2020) used 1-minute segmented ambient noise records and computed ACFs 424 

for SEIS-VBB data bandpass filtered between 5 - 7 Hz. The authors identified coherent arrivals at 425 

0.6 and 1.1s and interpreted them as lithological reflectors beneath the InSight lander. However, 426 

the timings of those arrivals coincide with the ACFs derived from one of the strongest lander 427 

modes at 6.8 Hz (Fig. 8B). This is also consistent with their polarization analysis of data > 2 Hz 428 

that showed a backazimuth dominantly pointing toward the direction of the lander (Suemoto et al., 429 

2020). Hence, the structural interpretation of 0.6s and 1.1s arrivals should be reassessed after 430 

eliminating the lander mode at 6.8 Hz.   431 

When all four lander modes are included in a potential autocorrelation analysis, their 432 

frequency variations due to temperature changes give rise to a complex ACF when stacked over 433 

the course of a Martian day (Fig. 8C). While the precise appearance of the ACFs resulting solely 434 

from the lander modes will depend on details such as the precise stacking scheme, relative 435 

weighting of signals during various times of day, and even seasonal variations, we find that they 436 

have largest signals in the first ~6 s of lag time. Therefore, structural interpretations of the first ~6s 437 
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of ACFs may be biased by the presence of signals due to lander modes and should be approached 438 

with caution.   439 

                                                   440 

Pitfall 4: Tick noise 441 

Periodic tick noise is the most consistent idiosyncratic signal recorded on the SEIS-VBB and SEIS-442 

SP instrument (Fig. 7A and 9). This electrical noise is generated due to the acquisition of 443 

temperature measurements, and the corresponding harmonics are visible up to 6 Hz during the 444 

quiet hours, with the strongest and weakest on the V and U channels, respectively (Fig. 7C). Note, 445 

however that these harmonics sometimes are observed beyond 10 Hz. See Zwifel et al. (in review) 446 

for a technical explanation of the origin of the tick noise. 447 

We superimpose the 7 Sol averaged spectral width and amplitude of the 1 Hz tick noise 448 

onto the lander mode measurements and compute theoretical ACFs following the same manner as 449 

described in the previous section. Unsurprisingly, we find that the ACFs and their stacks show a 450 

periodic 1s oscillation predominantly observed after ~ 6 s in addition to those arrivals in the first 451 

~6 s of lag time resulting from the combined effects of the four lander modes (Fig. 8C). 452 

An effective treatment of the tick noise has been devised and should be applied to the data 453 

preprocessing step prior to autocorrelation. Compaire et al. (2021) estimate tick noise waveforms 454 

on the U, V and W channels by stacking many waveforms segmented by nonoverlapping, 1s 455 

moving window during the quiet hours (e.g., 18:00 to 20:00, LMST) when the tick noise is the 456 

strongest. This approach provides a relatively stable estimate of the tick noise, as can be seen by 457 

the consistent tick pattern across 2-year long records (Fig. 9). After subtracting the estimated tick 458 

noise from the raw records, the 1 Hz energy and its overtones are effectively removed while 459 

retaining the background ambient noise data (Fig. 7B and D). Alternatively, a series of band-460 

rejection or notch filters (with relatively small fractional bandwidth; Schimmel et al., 2021), or a 461 
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comb filter can similarly remove the tick noise in order to avoid such potential contamination (e.g., 462 

Knapmeyer-Endrun et al., 2021).  463 

 464 

Pitfall 5: 2.4 Hz resonance 465 

The origin of 2.4 Hz resonance, which is visible on both SP and VBB data, remains debated. The 466 

overall bandwidth of this feature is the largest among all the sustained peculiarities discussed in 467 

the previous sections (Fig. 1 and 7). The 2.4 Hz resonance is persistent throughout the data, but 468 

since its amplitude does not strongly vary, it is most pronounced during the quiet periods. There 469 

is no indication of frequency shifts of the resonance due to changes in temperature (Dahmen et al., 470 

in review). Though its amplitude appears to slightly vary with temperature, this could result from 471 

the strong correlation between temperature and wind speed. All observed marsquakes with a 472 

spectrum extending to 2.4 Hz show an excitation at this frequency in excess of the noise 473 

amplification (Clinton et al., 2020; Compaire et al., 2021) (Fig. 10), unlike all other lander modes 474 

described in Pitfall 4. The spectral shape around the 2.4 Hz resonance typically shows a fine 475 

structure comprising several noticeable spectral peaks that are different for each component (also 476 

in contrast to all other observed modes) (Fig. 11). This spectral signature can easily percolate into 477 

the data processing procedure and ultimately dominate ACFs between 1 and 5 Hz derived from 478 

ambient noise or event coda which is presumably produced by marsquakes (Fig. 12A). 479 

Here, we take hourly-summed HF ACFs derived from glitch-removed data, and compute 480 

their corresponding normalized spectra to examine the variations associated with fine spectral 481 

features of the 2.4 Hz resonance (Fig. 11A). Though small variations exist across individual spectra 482 

of hourly stacked ACFs, the overall spectral shape largely remains unchanged and can be 483 

approximated by several gaussian peaks whose central frequencies fit our data: 2.15 Hz, 2.22 Hz, 484 
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2.25 Hz, 2.31 Hz, 2.34 Hz, 2.38 Hz, 2.405 Hz, 2.43 Hz, 2.475 Hz, and 2.51 Hz (Fig. 11B). While 485 

elevated energy associated with the 2.4 Hz resonance may extend up to ~2.8 Hz (see Compaire et 486 

al., 2021), peaks above 2.51 Hz are relatively weaker and are not explicitly modeled in our analysis 487 

(Fig. 11B). We find two strong spectral peaks that are stationary and ubiquitously observed 488 

between 2.30 and 2.45 Hz during the quiet hours but their shapes become substantially subdued 489 

when background noise increases as the winds pick up (Fig. 11C-D). These two peaks at 2.35 Hz 490 

and 2.38 Hz are also coherently excited by most of the HF, VF, and 2.4 Hz marsquake events (Fig. 491 

11E), which also amplify power across the 2.4 Hz more broadly. Intriguingly, a strong spectral 492 

peak appears ~2.33 Hz in the marsquake records, but is not seen in the ambient noise during quiet 493 

or noisy hours. Similarly, excitation of a peak near 2.5 Hz seen in marsquake records, may 494 

represent a shift to lower frequency of a nearby peak seen in the ambient noise data during quiet 495 

hours. The rest of the spectral peaks are relatively stable across different hours of the Martian Sol 496 

regardless of the disturbance by the wind noise (Fig. 11C-D). A detailed analysis of similarities 497 

and differences between fine structure of the 2.4 Hz resonance as seen in ambient noise and 498 

marsquake records is, however, beyond the scope of this work.  499 

While some authors favor including the 2.4 Hz resonance in their structural analysis (e.g., 500 

Compaire et al., 2021), using ambient noise signals during quiet hours of the Martian Sol, others 501 

opt to exclude it from the analysis. Schimmel et al., (2021) explore the data largely outside the 2.4 502 

Hz resonance, compensating for the reduction of signal by broadening the bandwidth used to 503 

obtain the ACFs. A key observation to note here is that the crustal phases seen at ~11.5s and 21.0s 504 

(discussed in Pitfall 1) are ubiquitous on all HF ACFs produced with or without energy near the 505 

2.4 Hz resonance (Fig. 12A). Crustal structure inferred from independent analysis based on 506 

receiver functions supports the interpretation of the ~11.5s and 21.0s phases in terms of two-way 507 
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travel times of P waves within crustal layers (Lognonné et al., 2020; Knapmeyer-Endrun et al., 508 

2021). On the other hand, the HF ACFs computed including the 2.4 Hz resonance are characterized 509 

by a beating effect arising from the fine structure of the broad 2.4 Hz resonance. Notably, such 510 

ACFs can be successfully modeled by summing decaying cosines corresponding to the nine 511 

frequencies identified in Figure 11. If we assume each of those peaks, 𝑖, can be modeled by a 512 

Gaussian centered on angular frequency 𝜔# of standard deviation 𝜎, each Gaussian contributes to 513 

the ACF given by the inverse transform (taking into account the symmetric negative frequency 514 

contribution) i.e., 515 

 516 

𝐴𝐶𝐹 =	*𝑎#√2𝜎 exp(−0.25𝜎6𝑡6) cos	(𝜔#𝑡)
<

#

 517 

 518 

where 𝑎# are the peak amplitudes, and 𝑡 is time. The model explains ~90% of the variance of the 519 

ACF data with 𝜎 = 0.076	radians/sec (Fig. 12C). Thus, structural inferences based on phases the 520 

SP ACFs besides the ~11.5 and 21.0 s peaks should be informed by considerations regarding the 521 

origin of the 2.4 Hz resonance (e.g., Fig. 12B). 522 

 523 

Recommendations and conclusions: 524 

This work summarizes idiosyncratic signals observed in the ambient seismic recordings of the 525 

VBB seismometer on Mars and illustrates how they can manifest when researchers carry out 526 

standard data processing procedures that are commonly applied to data acquired on Earth. We also 527 

find that such signals can similarly affect the processing of marsquake waveforms. Therefore, a 528 
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careful examination is required during each data processing step to avoid making incorrect 529 

structural inferences based on potentially compromised data.  530 

Based on the analyses presented here, we recommend the following best practices for 531 

avoiding spurious signals and biases in interpretations:  532 

Without using properly deglitched waveforms collected by the InSight mission, any result 533 

from an ambient noise analysis can be heavily contaminated by glitch artifacts, which will depend 534 

on the specifics of glitch duration and systematics in glitch separation time. These artifacts can 535 

bias interpretation of ACFs, whether the raw data contains ground vibration measurements due to 536 

ambient noise or various types of marsquake events. For example, two strong phases in the LF 537 

ACFs interpreted as P-wave reflections from the olivine to wadsleyite phase transition and core-538 

mantle boundary of Mars suggested by Deng and Levander (2020) are substantially affected by 539 

the presence of glitches. To obtain high fidelity waveforms with minimized contamination by 540 

glitches, we recommend a glitch removal procedure informed by the underlying physical process 541 

of how the glitch signal is being generated. 542 

Like glitches, spikes can also generate artifacts in ACFs and ultimately lead to biased 543 

structural interpretation. While most spikes can be removed because they can be identified 544 

alongside glitches, donks are too unpredictable in their timing and not reproducible enough in their 545 

signal shape to be reliably identified and removed.  Fortunately, they are predominantly observed 546 

beyond the Nyquist frequency of the SEIS-VBB acquired at 20 sps (Lognonné et al., 2019). Hence, 547 

one could effectively minimize donks compromising the data by restricting the frequency range of 548 

the data below 10 Hz. 549 

 For analyzing data above 1 Hz, effects of various lander modes should be fully accounted 550 

for,as their stability varies throughout the course of the Martian Sol. Because their frequencies and 551 
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amplitudes fluctuate due to variations in temperature and wind conditions on Mars, respectively, 552 

the lander modes should be identified in both time and frequency domain simultaneously with a 553 

proper tracking approach calibrated against temperature and wind measurements. Notably, the 554 

frequency range of the SP ACFs produced by Suemoto et al. (2020) contains one of the strongest 555 

lander modes at 6.8 Hz. Our analysis shows how observed spectral width and amplitude of the 6.8 556 

Hz mode itself can produce artifacts in ACFs whose lag times are comparable to those interpreted 557 

in Suemoto et al. (2020). One should also note that there are other temporary modes that are less 558 

frequently observed, and potential seasonal variations on the corresponding frequencies should be 559 

further investigated. 560 

 The repeating 1 Hz pattern and its overtones due to the tick noise is relatively 561 

straightforward to address when processing SEIS data. As we illustrate in Pitfall 4, the most 562 

effective approach is to estimate the tick noise waveform during the quiet hours using continuous 563 

waveforms (preferably without gaps) then remove it from the raw data. Importantly, because 564 

temperature measurements -- and, therefore, tick timing -- are controlled by the digitizer clock not 565 

by the local on-board time from the AC master clock, tick noise removal is encouraged to be 566 

applied before correcting for digitizer clock drift (Zweifel et al., 2021).  567 

Signals of debated origin, such as the 2.4 Hz resonance, can also affect structural inferences 568 

we may extract from data that contains this energy (e.g., Fig. 12B). All of the SP ACFs derived 569 

from either ambient noise data during quiet hours of the Martian Sol or marsquake coda waveforms 570 

show strong 2.4 Hz resonance (Compaire et al., 2021; Knapmeyer-Endrun et al., 2021). This 2.4 571 

Hz resonance may be related to structural resonance due to a near-subsurface layer (Giardini et al., 572 

2020; Pan et al., 2020; van Driel et al. 2021), mechanical noise related to the lander, or both.  573 
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The peculiarities identified in the SEIS data can also be found in seismic data collected on 574 

Earth and the Moon. For example, Wilson et al. (2017) documented transient pulses embedded in 575 

data from a range of broadband sensors installed at stations of the Global Seismographic Network 576 

(GSN) which may have been generated by micro-tilt of the sensors due to thermal instability of 577 

the environment. Similar temperature-driven artifacts manifested in data from the Apollo 578 

seismometers accompanying sudden tilts of the instrument resulting from large temperature 579 

variations and insufficient thermal insulation (e.g., Nakamura, 2003). Often, sustained signals 580 

associated with strong resonances may hinder robust structural interpretation are also observed in 581 

various terrestrial datasets, such as the strumming of head-buoy cable from ocean-bottom 582 

seismometers (e.g., Stähler et al. 2018) or coupling and decoupling of poles used to anchor 583 

seismometers deployed in Greenland (e.g., see Appendix C in Carmichael, 2013). The 584 

considerations in treating transient and sustained signals presented in this work can therefore be 585 

useful for ensuring reliable structural inferences in these analogous situations on Earth and the 586 

Moon. The pitfalls we discuss in the main text are not an exhaustive list. We have only explored a 587 

subset of those transient and sustained signals that are most easily noticeable in SEIS-VBB data 588 

stream. For example, additional lander modes are strongly observed beyond 10 Hz and these 589 

modes should be fully understood before exploring the waveform data collected at 100 sps as we 590 

study structures at finer scale. To obtain more detailed information as well as the guidance for 591 

eliminating each kind of idiosyncratic signal in the InSight data, we suggest readers make use of 592 

the articles referred to in the descriptions of each Pitfall. We advise our readers to be cautious 593 

about yet unidentified peculiarities which may still exist in data and be sure to properly address 594 

those that are identified as a first step when conducting an analysis in Martian seismology.  595 

 596 
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Data and Resources: 597 

The InSight seismic waveform data are available from the IPGP Datacenter, IRIS-DMC (InSight 598 

Mars SEIS Data Service, 2019) and NASA PDS (http://psd.nasa.gov/). The data are produced and 599 

visualized with Python and Matlab scripts, some of which can be obtained from the GitHub 600 

repository: https://github.com/UMD-InSight/InSight-seismic-data-downloader. 601 
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 996 

Figure 1. Seismic ambient noise recordings at Mars. (A) Raw unfiltered ground vibration 997 

measurements on U, V, and W channels of SEIS-VBB during Sol 184 (2019-06-03UTC 06:00 – 998 
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2019-06-04UTC 08:00), (B) the timings of identified glitches on each channel, and (C) the 999 

spectrogram of the U component record, showing a clear change in power spectra density (PSD) 1000 

due to diurnal wind noise at Mars (between 18:00 and 22:00 Local Mean Solar Time, LMST). 1001 

Notably, various nonseismic energy manifests in the data along with the real ground shaking 1002 

measured on the surface of Mars. See main text for details and characteristics on those 1003 

idiosyncratic signals. (D) Vertical component waveform in acceleration and (E) its corresponding 1004 

spectrogram after rotating the raw UVW channels and removing the instrument response. (F) A 1005 

composite SP channel (computed on the spacecraft and continuously transmitted) Energy Short 1006 

Term Average SP (ESTASP) vertical component data and (G) the timings of identified donks. This 1007 

ESTASP serves as a reliable estimate for quality assurance of the SP data since retrieving a full 1008 

span of continuous SP data is restricted by the data acquisition of SEIS. See Pitfall 2 for more 1009 

details on ESTASP. Inset shows an example of donk waveforms from SP data. (H) Waveform 1010 

samples of a typical glitch. Glitches in data are often preceded by a high-frequency precursor (or 1011 

the spike). (I) time-averaged tick noise recorded on U, V, and W channels. . Here, waveforms of 1012 

the tick noise are estimated by segmenting the raw data during quiet hours of the Martian Sol into 1013 

non-overlapping, 1s records, then average for each component. (J) Power spectral density (PSD) 1014 

of our data in (A). Energy associated with the tick noise and its overtones as well as other lander 1015 

modes are apparent across different spectral peaks (see more details in Fig. 7C). 1016 

 1017 

Figure 2. Distribution of identified glitches on the vertical component of SEIS-VBB data. (A) 1018 

Distribution of identified glitches by template matching on the vertical component of SEIS-VBB 1019 

data (the first approach described in main text) recorded during February - July, 2019. Ambient 1020 

noise waveform data is segmented into a total of 1051, 2-hour records. (B) The comparison of 2-1021 
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hour long raw vertical component data vs. glitch-only data recorded during quiet and noisy periods 1022 

of the Martian Sol. Waveforms plotted correspond to the records marked by orange lines in (A). 1023 

(C) A typical raw glitch waveform in counts, and (D) pseudo physical units after naive (i.e., zero-1024 

phase as opposed to a procedure which preserves causality) instrument response removal. Here, 1025 

output waveforms are normalized to its peak amplitude. Note that application of the commonly-1026 

used instrument response removal built-in within the Obspy Python module, generates nonphysical 1027 

waveform shapes. See more details in Pitfall 1. (E) A properly deconvolved glitch waveform 1028 

should appear as a step function in acceleration, as it does upon instrument response removal 1029 

following Kanamori and Rivera, (2008) (green) and Anderson and Lees (2014) (black), to estimate 1030 

the response of the VBB system (e.g., Wielandt and Streckeisen, 1982).  1031 

 1032 

Figure 3. Autocorrelation functions (ACFs) of glitch-only waveforms. (A) Individual ACFs 1033 

computed based on 2-hour long records that only contain identified glitches (e.g., orange, Fig. 2B). 1034 

Both HF and LF ACFs are considered in two frequency ranges of 0.625 - 2.5 (left panels) Hz and 1035 

0.05 - 0.1 Hz (right panels), respectively. Black traces are ACF stacks by a phase weighted stacking. 1036 

White vertical lines indicate the timing of interpreted phases in Deng and Levander (2020). (B) 1037 

Same as (A) but using a different vertical component dataset (March - September, 2019) of the 2-1038 

hour long records only containing identified glitches following Scholz et al. (2020). (C) 1039 

Normalized amplitude spectra of the ACF stacks in (A-B). The inset shows a typical shape of the 1040 

acausal glitch (e.g., Fig. 2D) found in each dataset. *Note this glitch signal in velocity is 1041 

nonphysical and has a distinctive shape due to an implementation of acausal filtering during 1042 

instrument removal. The difference in frequency of the larger spectral peaks (i.e., 0.0167 Hz) gives 1043 

rise to coherent arrivals that can be observed on both HF and LF ACFs, and corresponds to the 1044 
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apparent duration of the dominant glitch signal (i.e. 60s) . Timings of coherent ACF arrivals also 1045 

depend on the shape of sidelobes and input parameters for a prefilter (e.g., orange, inset). Because 1046 

not all acausal glitch signals have identical signal duration, multiple arrivals in ACFs can 1047 

simultaneously be generated. 1048 

 1049 

Figure 4. Comparison of the ACF stacks with different datasets obtained in our analysis. (A) 1050 

Phase weighted stacks of HF and (B) LF ACFs based on 2-hour long raw vertical component data 1051 

between February and July, 2019 (blue, Dataset 2), data with glitches identified and removed 1052 

(black, Dataset 3), and data with only identified glitch signals (orange, Dataset 1). Each set of 1053 

ACFs are computed following the data processing procedure in Deng and Levander (2020), so 1054 

ACF stacks in blue are replicas of the ACFs shown in Deng and Levander (2020). The ACF stacks 1055 

in green are similarly obtained using a different set of 2-hour long records between March and 1056 

September, 2019 where glitches are removed by the procedure followed by Scholz et al. (2020). 1057 

(C) Comparison of the phase weighted stacks of HF and (D) LF ACFs using the Dataset 1 omitting 1058 

various normalization steps employed by Deng and Levander (2020): temporal balancing (b1), 1059 

spectral whitening (b2), and both (b3). NB: Abbreviation on each trace in (C-D) denotes, TB = 1060 

temporal balancing and SW = spectral whitening. 1061 

 1062 

Figure 5. Effect of spikes in the ACF stacks.  1063 

Phase weighted stacks of LF ACFs based on 2-hour long vertical component data between 1064 

February and July, 2019 (blue) compared to those computed using only signals of detected spikes 1065 

(orange). Each set of ACFs is computed following  the data processing procedure in Deng and 1066 

Levander (2020). Spikes were detected in 1049 out of 1051 traces, and manually inspected to 1067 
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discard outliers, yielding spike-only ACFs with 1001 and 963 traces. Correlation coefficients 1068 

between our spike-only LF ACF and DL LF ACF are computed around ~280s and ~375s phases 1069 

(in shaded region) and shown on the right. 1070 

 1071 

Figure 6. ESTASP amplitudes and distribution of the identified donks during quiet hours of 1072 

Sol 184. ESTASP amplitudes and the timings associated with identified donks during the quiet 1073 

hours of Sol 184, exclusively processed with data shown in Fig. 1F from (A) the first 16200s and 1074 

(B) from 66000s to the end of the record. Donk signals are identified with a standard algorithm of 1075 

STA/LTA a window length of 1s and 25s on each ESTASP channel. Data outside these time ranges 1076 

are extremely noisy due to strong diurnal wind stresses hence it is difficult to verify the fidelity of 1077 

identified donks and it requires a full span of complete SP data. 1078 

 1079 

Figure 7. Comparison of the spectrograms of the ambient noise recording with and without 1080 

the tick noise removal. (A) Spectrograms of the raw ambient noise data recorded on U, V, and W 1081 

components during one day of Sol 184. White dashed box indicates observed tick noise at 1 Hz. 1082 

(B) Same as (A) but after applying a tick noise removal procedure. For each channel, the tick noise 1083 

waveform is estimated exclusively taking data recorded during the quiet hours (e.g., Fig. 1I) then 1084 

subtracted from raw data following Compaire et al. (2021). (C) Comparison of the PSD for U, V, 1085 

and W components during noisy vs. quiet hours. The tick noise at 1 Hz is strongly observed for 1086 

both noisy and quiet hours. Notice during quiet hours however the corresponding harmonics are 1087 

visible up to 6 Hz in the Sol 184 record. Given our understanding of the root cause of the tick noise 1088 

we expect that these harmonics also exist above 10Hz. (D) Same as (C) but after applying a tick 1089 

noise removal procedure described in Pitfall 4.    1090 
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 1091 

Figure 8. Identified lander modes and their effects on the ACFs. (A) Representative power 1092 

spectra of the strongest lander modes (e.g., 3.3 Hz, 4.1 Hz, 6.8 Hz, and 8.6 Hz) including the tick 1093 

noise at 1 Hz for the Martian Sol. Measurements of those lander mode frequencies, spectral widths 1094 

and amplitudes are averaged for 7 Sols (185, 225, 345, 425, 505, 585, and 625) taking 70% 1095 

overlapping 30-minute windows. Below, five panels show theoretical ACFs derived from 1096 

summing the inverse Fourier transform of the representative power spectra for the tick noise and 1097 

each solitary lander mode. (B) ACFs stacks for each lander mode shown in (A). Dashed black and 1098 

solid blue traces indicate the mean and phase-weighted ACFs, respectively. (C) Same as (A-B) but 1099 

incorporating all lander mode frequencies with and without the 1 Hz tick noise.  1100 

 1101 

Figure 9. Overview of tick noise throughout the InSight seismic data. Tick noise, as obtained 1102 

by stacking for each Sol the raw 20 sps data from 18:00 to 22:00 LMST on a 3s repeating window 1103 

for (A) VBB-BHU and (B) SP1 records, yields the tick pattern repeating three times. Loss of the 1104 

pattern between Sols 500 and 750  is due to the large amplitude ambient noise recorded during this 1105 

period. Apart from that, the tick pattern is very consistent. Because the tick noise has an 1106 

electromagnetic coupling origin, its amplitude in digital units is roughly proportional to the gain 1107 

of the sensor feedback, which is much larger on the VBB than on the SP (Lognonné et al., 2019). 1108 

 1109 

Figure 10. High frequency Marsquake waveforms and their corresponding normalized 1110 

spectra. (A) Average three-component envelopes aligned on P-arrival (t = 0s) from a total of 70 1111 

marsquakes from the high frequency family that include high frequency (HF), very high frequency 1112 

(VF), and the 2.4 Hz events, and the corresponding (B) vertical component waveforms. All MQS 1113 
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events with the event quality C or above are selected between Sol 128 and 500 (InSight Marsquake 1114 

Service, 2021) but those with noticeable glitches in the analysis window are removed. For each 1115 

event, we use a standard algorithm of STA/LTA triggering on the Hilbert envelope averaged across 1116 

components to pick the Pg- and Sg-arrivals. Both envelopes and waveforms are sorted by the travel 1117 

time between Sg and Pg picks. See van Driel et al. (2021) for more detailed analysis on these 1118 

events. (C) Normalized amplitude spectra for each individual event averaged across three-1119 

components and (D) the event sum based on different high frequency event types. 1120 

 1121 

Figure 11. Hourly stacked ACFs and the 2.4 Hz resonance. (A) Normalized spectra of hourly 1122 

summed SP ACFs using our glitch-removed records between February - July, 2019 (Dataset 2) 1123 

and the corresponding (B) modeled spectra estimated by ten gaussian pulses whose central 1124 

frequencies fit our data: 2.15 Hz, 2.22 Hz, 2.25 Hz, 2.31 Hz, 2.34 Hz, 2.38 Hz, 2.405 Hz, 2.43 Hz, 1125 

2.475 Hz, and 2.51 Hz. (C) Comparison of observed (line with a single color) vs. estimated mean 1126 

spectra (line with the same color scheme used for (A-B)) of HF ACFs during noisy and (D) quiet 1127 

hours during the Martian Sol. Gray lines indicate individual hourly spectra models in (B). (E) 1128 

Observed mean spectra of HF ACFs (C-D) and the three-component average event sum in Fig. 1129 

10D. 1130 

 1131 

Figure 12. Comparison of the HF ACF stacks in the literature and structural implications. 1132 

(A) The HF ACF stacks produced by various author groups in the literature. The first 5s of data is 1133 

removed due to various source effects. For each ACF, the five Pitfalls discussed in the main text 1134 

are either removed or treated differently prior to autocorrelation. NB: Labels used as table headers 1135 

denote, G = Glitches; S & D = Spikes and Donks; Tick = Tick noise; LMs = Lander modes; 2.4 1136 
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Hz = the 2.4 Hz resonance. Labels used for HF ACFs denote, *DL =  the replicated HF ACF stack 1137 

followed by Deng and Levander (2020) bandpass filtered between 1- 3 Hz; NC1 = ambient noise 1138 

HF ACF stack and NC2 = HF event family coda ACF stack in Compaire et al. (2021); BK1 = 1139 

ambient noise HF ACF stack and BK2 = HF event coda ACF stack in Knapmeyer-Endrun et al. 1140 

(2021) (see traces labeled as C3 and C1 in Fig. 3); MS = HF ACF stack in Schimmel et al. (2021). 1141 

(B) Two main working hypotheses on the origin of the 2.4 Hz resonance visible in the ACFs: 1142 

resonance generated by a subsurface structure of Mars and/or another unexplained mode related 1143 

to the lander. (C) Modeled ACF synthesized by summing nine decaying cosine functions whose 1144 

frequencies correspond to the spectral peaks observed in the 2.4 Hz resonance in Fig. 10 decaying 1145 

with a single attenuation parameter. ACF data (red) behind the synthetic ACF is the same plotted 1146 

as blue trace in (A). 1147 

 1148 

Figures 1149 
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Figure 1. Seismic ambient noise recordings at Mars. (A) Raw unfiltered ground vibration measurements on U, V, 1151 

and W channels of SEIS-VBB during Sol 184 (2019-06-03UTC 06:00 – 2019-06-04UTC 08:00), (B) the timings of 1152 

identified glitches on each channel, and (C) the spectrogram of the U component record, showing a clear change in 1153 

power spectra density (PSD) due to diurnal wind noise at Mars (between 18:00 and 22:00 Local Mean Solar Time, 1154 

LMST). Notably, various nonseismic energy manifests in the data along with the real ground shaking measured on 1155 

the surface of Mars. See main text for details and characteristics on those idiosyncratic signals. (D) Vertical component 1156 

waveform in acceleration and (E) its corresponding spectrogram after rotating the raw UVW channels and removing 1157 

the instrument response. (F) A composite SP channel (computed on the spacecraft and continuously transmitted) 1158 

Energy Short Term Average SP (ESTASP) vertical component data and (G) the timings of identified donks. This 1159 

ESTASP serves as a reliable estimate for quality assurance of the SP data since retrieving a full span of continuous 1160 

SP data is restricted by the data acquisition of SEIS. See Pitfall 2 for more details on ESTASP. Inset shows an example 1161 

of donk waveforms from SP data. (H) Waveform samples of a typical glitch. Glitches in data are often preceded by a 1162 

high-frequency precursor (or the spike). (I) time-averaged tick noise recorded on U, V, and W channels. . Here, 1163 

waveforms of the tick noise are estimated by segmenting the raw data during quiet hours of the Martian Sol into non-1164 

overlapping, 1s records, then average for each component. (J) Power spectral density (PSD) of our data in (A). Energy 1165 

associated with the tick noise and its overtones as well as other lander modes are apparent across different spectral 1166 

peaks (see more details in Fig. 7C). 1167 

 1168 
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 1169 

Figure 2. Distribution of identified glitches on the vertical component of SEIS-VBB data. (A) Distribution of 1170 

identified glitches by template matching on the vertical component of SEIS-VBB data (the first approach described in 1171 

main text) recorded during February - July, 2019. Ambient noise waveform data is segmented into a total of 1051, 2-1172 

hour records. (B) The comparison of 2-hour long raw vertical component data vs. glitch-only data recorded during 1173 
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quiet and noisy periods of the Martian Sol. Waveforms plotted correspond to the records marked by orange lines in 1174 

(A). (C) A typical raw glitch waveform in counts, and (D) pseudo physical units after naive (i.e., zero-phase as opposed 1175 

to a procedure which preserves causality) instrument response removal. Here, output waveforms are normalized to its 1176 

peak amplitude. Note that application of the commonly-used instrument response removal built-in within the Obspy 1177 

Python module, generates nonphysical waveform shapes. See more details in Pitfall 1. (E) A properly deconvolved 1178 

glitch waveform should appear as a step function in acceleration, as it does upon instrument response removal 1179 

following Kanamori and Rivera, (2008) (green) and Anderson and Lees (2014) (black), to estimate the response of 1180 

the VBB system (e.g., Wielandt and Streckeisen, 1982).  1181 

 1182 

 1183 

Figure 3. Autocorrelation functions (ACFs) of glitch-only waveforms. (A) Individual ACFs computed based on 2-1184 

hour long records that only contain identified glitches (e.g., orange, Fig. 2B). Both HF and LF ACFs are considered 1185 

in two frequency ranges of 0.625 - 2.5 (left panels) Hz and 0.05 - 0.1 Hz (right panels), respectively. Black traces are 1186 

ACF stacks by a phase weighted stacking. White vertical lines indicate the timing of interpreted phases in Deng and 1187 
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Levander (2020). (B) Same as (A) but using a different vertical component dataset (March - September, 2019) of the 1188 

2-hour long records only containing identified glitches following Scholz et al. (2020). (C) Normalized amplitude 1189 

spectra of the ACF stacks in (A-B). The inset shows a typical shape of the acausal glitch (e.g., Fig. 2D) found in each 1190 

dataset. *Note this glitch signal in velocity is nonphysical and has a distinctive shape due to an implementation of 1191 

acausal filtering during instrument removal. The difference in frequency of the larger spectral peaks (i.e., 0.0167 Hz) 1192 

gives rise to coherent arrivals that can be observed on both HF and LF ACFs, and corresponds to the apparent duration 1193 

of the dominant glitch signal (i.e. 60s) . Timings of coherent ACF arrivals also depend on the shape of sidelobes and 1194 

input parameters for a prefilter (e.g., orange, inset). Because not all acausal glitch signals have identical signal duration, 1195 

multiple arrivals in ACFs can simultaneously be generated. 1196 

 1197 

 1198 

Figure 4. Comparison of the ACF stacks with different datasets obtained in our analysis. (A) Phase weighted 1199 

stacks of HF and (B) LF ACFs based on 2-hour long raw vertical component data between February and July, 2019 1200 

(blue, Dataset 2), data with glitches identified and removed (black, Dataset 3), and data with only identified glitch 1201 

signals (orange, Dataset 1). Each set of ACFs are computed following the data processing procedure in Deng and 1202 

Levander (2020), so ACF stacks in blue are replicas of the ACFs shown in Deng and Levander (2020). The ACF 1203 

stacks in green are similarly obtained using a different set of 2-hour long records between March and September, 2019 1204 

where glitches are removed by the procedure followed by Scholz et al. (2020). (C) Comparison of the phase weighted 1205 

stacks of HF and (D) LF ACFs using the Dataset 1 omitting various normalization steps employed by Deng and 1206 
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Levander (2020): temporal balancing (b1), spectral whitening (b2), and both (b3). Portions of the autocorrelation 1207 

affected by source time function are grayed out. NB: Abbreviation on each trace in (C-D) denotes, TB = temporal 1208 

balancing and SW = spectral whitening. 1209 

 1210 

 1211 

Figure 5. Effect of spikes in the ACF stacks.  1212 

Phase weighted stacks of LF ACFs based on 2-hour long vertical component data between February and July, 2019 1213 

(blue) compared to those computed using only signals of detected spikes (orange). Each set of ACFs is computed 1214 

following  the data processing procedure in Deng and Levander (2020). Spikes were detected in 1049 out of 1051 1215 

traces, and manually inspected to discard outliers, yielding spike-only ACFs with 1001 and 963 traces. Correlation 1216 

coefficients between our spike-only LF ACF and DL LF ACF are computed around ~280s and ~375s phases (in 1217 

shaded region) and shown on the right. Portions of the autocorrelation affected by source time function are grayed out.  1218 
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 1219 

Figure 6. ESTASP amplitudes and distribution of the identified donks during quiet hours of Sol 184. ESTASP 1220 

amplitudes and the timings associated with identified donks during the quiet hours of Sol 184, exclusively processed 1221 

with data shown in Fig. 1F from (A) the first 16200s and (B) from 66000s to the end of the record. Donk signals are 1222 

identified with a standard algorithm of STA/LTA a window length of 1s and 25s on each ESTASP channel. Data 1223 

outside these time ranges are extremely noisy due to strong diurnal wind stresses hence it is difficult to verify the 1224 

fidelity of identified donks and it requires a full span of complete SP data. 1225 

 1226 
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 1227 

Figure 7. Comparison of the spectrograms of the ambient noise recording with and without the tick noise 1228 

removal. (A) Spectrograms of the raw ambient noise data recorded on U, V, and W components during one day of 1229 

Sol 184. White dashed box indicates observed tick noise at 1 Hz. (B) Same as (A) but after applying a tick noise 1230 

removal procedure. For each channel, the tick noise waveform is estimated exclusively taking data recorded during 1231 

the quiet hours (e.g., Fig. 1I) then subtracted from raw data following Compaire et al. (2021). (C) Comparison of the 1232 

PSD for U, V, and W components during noisy vs. quiet hours. The tick noise at 1 Hz is strongly observed for both 1233 

noisy and quiet hours. Notice during quiet hours however the corresponding harmonics are visible up to 6 Hz in the 1234 

Sol 184 record. Given our understanding of the root cause of the tick noise we expect that these harmonics also exist 1235 

above 10Hz. (D) Same as (C) but after applying a tick noise removal procedure described in Pitfall 4.    1236 
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 1237 

 1238 

 1239 

Figure 8. Identified lander modes and their effects on the ACFs. (A) Representative power spectra of the strongest 1240 

lander modes (e.g., 3.3 Hz, 4.1 Hz, 6.8 Hz, and 8.6 Hz) including the tick noise at 1 Hz for the Martian Sol. 1241 

Measurements of those lander mode frequencies, spectral widths and amplitudes are averaged for 7 Sols (185, 225, 1242 
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345, 425, 505, 585, and 625) taking 70% overlapping 30-minute windows. Below, five panels show theoretical ACFs 1243 

derived from summing the inverse Fourier transform of the representative power spectra for the tick noise and each 1244 

solitary lander mode. (B) ACFs stacks for each lander mode shown in (A). Dashed black and solid blue traces indicate 1245 

the mean and phase-weighted ACFs, respectively. (C) Same as (A-B) but incorporating all lander mode frequencies 1246 

with and without the 1 Hz tick noise.  1247 

 1248 

 1249 

Figure 9. Overview of tick noise throughout the InSight seismic data. Tick noise, as obtained by stacking for each 1250 

Sol the raw 20 sps data from 18:00 to 22:00 LMST on a 3s repeating window for (A) VBB-BHU and (B) SP1 records, 1251 

yields the tick pattern repeating three times. Loss of the pattern between Sols 500 and 750  is due to the large amplitude 1252 

ambient noise recorded during this period. Apart from that, the tick pattern is very consistent. Because the tick noise 1253 

has an electromagnetic coupling origin, its amplitude in digital units is roughly proportional to the gain of the sensor 1254 

feedback, which is much larger on the VBB than on the SP (Lognonné et al., 2019). 1255 

 1256 

 1257 
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 1258 

Figure 10. High frequency Marsquake waveforms and their corresponding normalized spectra. (A) Average 1259 

three-component envelopes aligned on P-arrival (t = 0s) from a total of 70 marsquakes from the high frequency family 1260 

that include high frequency (HF), very high frequency (VF), and the 2.4 Hz events, and the corresponding (B) vertical 1261 

component waveforms. All MQS events with the event quality C or above are selected between Sol 128 and 500 1262 

(InSight Marsquake Service, 2021) but those with noticeable glitches in the analysis window are removed. For each 1263 

event, we use a standard algorithm of STA/LTA triggering on the Hilbert envelope averaged across components to 1264 

pick the Pg- and Sg-arrivals. Both envelopes and waveforms are sorted by the travel time between Sg and Pg picks. 1265 

See van Driel et al. (2021) for more detailed analysis on these events. (C) Normalized amplitude spectra for each 1266 



61 

individual event averaged across three-components and (D) the event sum based on different high frequency event 1267 

types. 1268 

 1269 

 1270 

Figure 11. Hourly stacked ACFs and the 2.4 Hz resonance. (A) Normalized spectra of hourly summed SP ACFs 1271 

using our glitch-removed records between February - July, 2019 (Dataset 2) and the corresponding (B) modeled 1272 

spectra estimated by ten gaussian pulses whose central frequencies fit our data: 2.15 Hz, 2.22 Hz, 2.25 Hz, 2.31 Hz, 1273 

2.34 Hz, 2.38 Hz, 2.405 Hz, 2.43 Hz, 2.475 Hz, and 2.51 Hz. (C) Comparison of observed (line with a single color) 1274 

vs. estimated mean spectra (line with the same color scheme used for (A-B)) of HF ACFs during noisy and (D) quiet 1275 

hours during the Martian Sol. Gray lines indicate individual hourly spectra models in (B). (E) Observed mean spectra 1276 

of HF ACFs (C-D) and the three-component average event sum in Fig. 10D. 1277 

 1278 

 1279 
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 1280 

Figure 12. Comparison of the HF ACF stacks in the literature and structural implications. (A) The HF ACF 1281 

stacks produced by various author groups in the literature. The first 5s of data is removed due to various source effects. 1282 

For each ACF, the five Pitfalls discussed in the main text are either removed or treated differently prior to 1283 

autocorrelation. NB: Labels used as table headers denote, G = Glitches; S & D = Spikes and Donks; Tick = Tick noise; 1284 

LMs = Lander modes; 2.4 Hz = the 2.4 Hz resonance. Labels used for HF ACFs denote, *DL =  the replicated HF 1285 

ACF stack followed by Deng and Levander (2020) bandpass filtered between 1- 3 Hz; NC1 = ambient noise HF ACF 1286 

stack and NC2 = HF event family coda ACF stack in Compaire et al. (2021); BK1 = ambient noise HF ACF stack and 1287 

BK2 = HF event coda ACF stack in Knapmeyer-Endrun et al. (2021) (see traces labeled as C3 and C1 in Fig. 3); MS 1288 

= HF ACF stack in Schimmel et al. (2021). (B) Two main working hypotheses on the origin of the 2.4 Hz resonance 1289 

visible in the ACFs: resonance generated by a subsurface structure of Mars and/or another unexplained mode related 1290 

to the lander. (C) Modeled ACF synthesized by summing nine decaying cosine functions whose frequencies 1291 

correspond to the spectral peaks observed in the 2.4 Hz resonance in Fig. 10 decaying with a single attenuation 1292 

parameter. ACF data (red) behind the synthetic ACF is the same plotted as blue trace in (A). 1293 


