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Nonlinear Vibration of Rotating
Corotational Two-Dimensional
Beams With Large Displacement
In  this  paper,  the  nonlinear  vibrations of  rotating  beams  with  large  displacements  are 
investigated  by  the  use  of  the  co-rotational  (C-R)  finite  element  method.  In  the  C-R 
approach, the full motion is decomposed into a rigid body part and a pure deformational 
part by introducing a local coordinate system attached to the element. The originality we 
propose in this study is to derive its formulation in a rotating reference frame and include 
both centrifugal and gyroscopic effects. The nonlinear governing equations are obtained 
from Lagrange’s equations using a consistent expression for the kinetic energy. With this 
formulation,  the  spin-stiffening  effect  from  geometrical  nonlinearities  due  to  large  dis-
placements is accurately handled. The proposed approach is then applied to several types 
of mechanical analysis (static large deformation, modal analysis at different spin speeds, 
and transient analysis after an impulsive force) to verify its accuracy and demonstrate its 
efficiency. 

1 Introduction

Flexible beams are widely used in many applications of turbo-
machinery, for instance, in turbine vane [1], or helicopter blade
and wind propellers [2,3]. In recent years, the turbomachines man-
ufacturers went toward even faster, larger, and lighter structure
designs. Thus, these structures do not only have greater centrifu-
gal forces and Coriolis effects but also often undergo larger dis-
placements. This may explain why the study of rotating beams
dynamics has drawn a lot of attention in the literature. However,
the number of studies in which both geometrical nonlinearity and
centrifugal force effects are taken into consideration is limited.
The first geometrically nonlinear finite element rotating beam
model was proposed by Bauchau and Hong [3]. Much later, the p-
version finite element method was devised to investigate the non-
linear vibration of rotating beam [2]. The spectral finite element
method was also introduced [4] to study the nonlinear vibration
from impulse excitation. Subsequently, the nonlinear normal
modes and harmonic balance methods were applied to study non-
linear forced vibration of rotating beams [1,5]. However, all the
aforementioned rotating beam models are dedicated and limited to
moderate amplitude vibration. Recently, the geometrical nonlinear
co-rotational formulation has demonstrated its great efficiency in
very large displacement dynamic analysis, with the particularity
to use the formulation of a consistent mass matrix instead of a
constant mass matrix [6]. The consistent mass matrix allows tak-
ing the rigid body motion into consideration. To the authors’
knowledge, the full consistent geometrical nonlinear co-rotational
formulations of rotating beams are not reported, to this day, in the
literature, and this is the main consideration of this paper.

The C-R approach has been widely used to solve static prob-
lems with very large displacements [7,8]. Its key concept is to sep-
arate the full global motion of the structure into a rigid body
motion and a pure deformational part, via the introduction of local
attached co-rotated frames. Furthermore, by extracting the pure

deformational part, the strain energy of the structure can be eval-
uated directly using a small strain hypothesis. It means that sev-
eral existing linear finite element models can be re-used with the
C-R approach. The fact that the C-R approach is element inde-
pendent is a well-known property. An overview of the C-R
approach can be found in Ref. [9].

Two main contributions are developed in the current study. The
first one is that we consider both centrifugal and gyroscopic
effects in the consistent C-R dynamic formulation in order to
introduce the dynamic C-R formulation into turbomachinery mod-
eling. The second main objective of the current work is to formu-
late the equations of motion of the structure in its rotating
reference frame. The procedure employed is to derive the inertia
nodal forces and deformational nodal forces from Lagrange’s
equations using exact expression of kinetic and strain energies.
The analytical mass, Coriolis, tangent dynamic stiffness, and tan-
gent elastic stiffness matrices are also derived by differentiating
the inertia and deformational nodal forces. To validate the pro-
posed formulation and demonstrate its time efficiency, different
simulations are performed and compared with literature or com-
mercial finite element software (ANSYS). We investigate the
static large deformation due to centrifugal force, the free vibration
of a rotating beam around a prestressed deformation, very large
transient vibrations, and the effect of an impulsive force on a
rotating beam. It is expected that the proposed approach offers
substantial computation time saving compared to ANSYS by
using a smaller number of elements.

2 Beam Kinemtaics

In this paper, the C-R finite element method is applied to the
rotating planar beam shown in Fig. 1. The flexible beam is
attached to a rigid hub of radius a, and is rotating with a constant
spin speed X. The beam has an uniform cross section and is made
of elastic isotropic material. The length of the beam is L, its width
b, and thickness h. The fixed reference frame (Galilean reference
frame) is indicated by �X; �Y; �Z

� �
. The rotating reference frame

named (X, Y, Z) is attached to the beam. Any vector Vr defined in
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the rotating reference frame can be expressed in the fixed refer-
ence frame (then noted Vf) by using the rotation matrix Tf

r

Vf ¼
cos Xtð Þ 0 sin Xtð Þ

0 1 0

�sin Xtð Þ 0 cos Xtð Þ

2
4

3
5Vr ¼ Tf

rVr (1)

The subscripts f and r represent, respectively, the fixed and rotat-
ing reference frames. The origin of �X; �Y; �Z

� �
coincides with the

origin of (X, Y, Z) and is noted O in Fig. 1. The beam axial axis
in the initial configuration coincides with the X-axis. If one arbi-
trary discretized C-R beam element is considered, its displace-
ment in the rotating reference frame is defined with

q ¼ UI VI UI UJ VJ UJ

� �T
(2)

where Ui, VI, and Ui (i being I or J) are, respectively, the nodal
axial displacement, the nodal transversal displacement and the
nodal cross section orientation. In the C-R formulation, there are
different ways in which local co-rotated frames can be defined
[7,10]. It can, for example, be the secant or the tangential co-
rotated frame. Depending on the beams properties, an appropriate
co-rotated frame can give a solution which converges to the refer-
ence solution obtained from total-Lagrange formulations [8]. The
local kinematic of a rotating beam using a secant co-rotated frame
XCR;YCRð Þ is illustrated in Fig. 1. The co-rotational axial axis

XCR is defined by connecting the two centers of the initial and
final cross section of the beam element in the current configura-
tion. The orientation of XCR can be parametrized by h. The co-
rotational lateral axis YCR is simply defined as perpendicular to
XCR. The full global displacement of a beam element is then
defined with two different set of parameters: 1. Rigid body
motion: UI;VI½ � and h; 2. Pure deformational motion:
�q ¼ �u �UI

�UJ

� �T
. The local nodal rotations �UI and �UJ (at end

I and J) with respect to the co-rotated reference are defined as

�UI ¼ UI � h �UJ ¼ UJ � h (3)

The local axial displacement �u is the difference between the cur-
rent length Ln and the initial length L0 of beam. In order to achieve
a better numerical conditioning, �u is expressed as

�u ¼ L2
n � L2

0

Ln þ L0

(4)

Ln and L0 in Eq. (4) can be expressed with the nodal coordinates
and nodal displacements

L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YJ � YIð Þ2 þ XJ � XIð Þ2

q
Ln ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VJ � VI þ YJ � YIð Þ2 þ UJ � UI þ XJ � XIð Þ2

q
(5)

In order not to be limited on the range of possible nodal rotation
of the element (Eq. (3)), the local nodal rotations can also be
calculated with

�UI ¼ arctan
sin UI cos h� cos UI sin h
cos UI cos hþ sin UI sin h

� �

�UJ ¼ arctan
sin UJ cos h� cos UJ sin h
cos UJ cos hþ sin UJ sin h

� � (6)

In this way, the range of h is extended from �p=2; p=2½ � to
�p; p½ �. In Eq. (6), the trigonometric functions sin h and cos h,

defining the orientation of the co-rotated local reference frame,
can be written as

sin h ¼ VJ � VI þ YJ � YI

Ln
cos h ¼ UJ � UI þ XJ � XI

Ln
(7)

Finally, the relationship between infinitesimal local nodal dis-
placements and global nodal displacements can be expressed by
differentiating Eqs. (3)–(7) as d�q ¼ Bdq and where the strain
matrix B is

B¼
b1

b2

b3

2
4

3
5¼ 1

Ln

�Ln cosh �Ln sinh 0 Ln cosh Ln sinh 0

�sinh cosh Ln sinh �cosh 0

�sinh cosh 0 sinh �cosh Ln

2
4

3
5

(8)

The equations in Eqs. (3)–(12) are standard C-R derivations,
which can be found in Refs. [6] and [11]. Some other important
differentiation relationships can also be formulated using the
aforementioned kinematic formulation (see Appendix A).

3 Beam Statics

In the C-R formulation, the local displacements field in the co-
rotated reference is interpolated by conventional shape functions.
Those shape functions depend on the type of element on which
the C-R process is applied. In this work, Euler–Bernoulli beam
elements are used. Hence, the local axial displacement u, the local
transverse displacement v, and the local rotation / in the
XCR;YCRð Þ frame are given by

u ¼ x

L0

�u v ¼ N1
�UI þ N2

�UJ / ¼ N3
�UI þ N4

�UJ (9)

where N1, N2, N3, and N4 are classical cubic Hermitian shape
functions of Euler–Bernoulli beam elements. The local strain
fields according to Euler–Bernoulli hypothesis are given by

e ¼ u0 ¼ �u

L0

j ¼ v00 ¼ /0 ¼ 6x=L2
0 � 4=L0

� �
�UI þ 6x=L2

0 � 2=L0

� �
�UJ (10)

The strain energy of an element is given by

Es ¼
ðL0

0

EA

2
e2 þ EIz

2
j2

� �
dx (11)

Fig. 1 Kinematics of rotating deformed beam: (a) global kine-
matics and (b) local kinematics



where EA and EIz are, respectively, the axial and flexural rigidity
of the beam. The local linear stiffness matrix is obtained as

�K ¼ Hessian Es; �qð Þ ¼

EA

L0

0 0

0
4EIz

L0

2EIz

L0

0
2EIz

L0

4EIz

L0

2
66666664

3
77777775

(12)

The local axial force �N and local end moments �MI and �MJ of the
beam are obtained with Eq. (12) and the local deformational
vector �q, the corresponding local elemental internal elastic force

vector can be given as �f E ¼ �N �MI
�MJ

� �T ¼ �K�q. Further-

more, as the virtual elastic force work is equivalent in both global
frame and local co-rotated reference frame, we have the
expression

dEs ¼ dqTfE ¼ d�qT�f E (13)

Applying Eq. (8) in Eq. (13) gives the expression of the global
internal elastic force vector fE as

fE ¼ BT�f E ¼ BT �K�q (14)

Finally, it is possible to formulate the expression of the global tan-
gent elastic matrix Ke by differentiating fE with respect to q and
applying the differential relation in Appendix A

Ke ¼
@fe

@q
¼ BT �KBþKN þKM (15)

where the geometric stiffness for local axial force KN and the geo-
metric stiffness for local end moments KM are given by

KN ¼
�N

Ln

sin2h � sin 2h
2

0 sin2h
sin 2h

2
0

cos2h 0
sin 2h

2
�cos2h 0

0 0 0 0

sin2h � sin 2h
2

0

cos2h 0

Sym: 0

2
66666666666664

3
77777777777775

KM ¼
�MI þ �MJ

L2
n

�sin 2h cos 2h 0 sin 2h �cos 2h 0

sin 2h 0 �cos 2h �sin 2h 0

0 0 0 0

�sin 2h cos 2h 0

sin 2h 0

Sym: 0

2
6666666664

3
7777777775

(16)

4 Beam Dynamics

The position vector of an arbitrary material point P with the
coordinates (x, y) in the element with respect to the rotating refer-
ence frame is given by (see Fig. 1)

OPr ¼ XI þ UIð ÞXþ YI þ VIð ÞYþ xþ u xð Þ � y/ xð Þ½ �
XCR þ v xð Þ þ y½ �YCR

(17)

where

XCR ¼ cos hXþ sin hY YCR ¼ �sin hXþ cos hY (18)

The position of the material point P under constant spin speed
with respect to the fixed reference frame is simply expressed by
using the rotation matrix Tf

r (see Eq. (1)) as OPf ¼ Tf
rOPr Hence,

the exact expression of the kinetic energy Ec for the beam element
is given by

Ec ¼
1

2
q
ð

_OP
T

f
_OPf

	 

dV (19)

The material point’s velocity vector _OPf is function of the time-

derivatives _h; _�UI , and _�UJ , which can all directly be expressed as
function of _q. The kinetic energy, then function of q, _q, and �q, is
calculated by analytically integrating Eq. (19) in which all the
second-order terms are kept, unlike other C-R formulations
[6,12]. The kinetic energy takes the following form:

Ec ¼
1

2
_qTM _q þ 1

2
qTKXqþ FT

Xqþ ENL þ Ecte (20)

It contains five terms classified in different orders of _q and q. Full
derivation of each of these terms is given in Appendix A. For
each term, the Lagrange’s equation is applied to calculate the
internal inertial force vector

f
ið Þ

I ¼
d

dt

@E ið Þ
c

@ _q

 !
� @E ið Þ

c

@q
(21)

The mass matrix Md , the gyroscopic matrix Cd , and the tangent
stiffness matrix Md , corresponding to the different terms of the
kinetic energy, are also derived analytically for a rotating beam
element with very large displacement and given by

M
ið Þ

d ¼
@f

ið Þ
I

@€q
C

ið Þ
d ¼

@f
ið Þ

I

@ _q
K

ið Þ
d ¼

@f
ið Þ

I

@q
(22)

Finally, the nonlinear equation of motion for the rotating C-R
beam element with applied load vector p writes as

f I €q; _q; qð Þ þ fE qð Þ ¼ p (23)

And f I ¼
P5

i¼1 f
ið Þ

I . The corresponding tangent matrices for the
full equation of motion can be formulated as

~M ¼
X5

i¼1

M
ið Þ

d
~C ¼

X5

i¼1

C
ið Þ

d
~K ¼ Ke þ

X5

i¼1

K
ið Þ

d (24)

In the case of free vibration, the equations of motion can be sim-
ply formulated as

~M€q þ ~C _q þ ~Kq ¼ 0 (25)

5 Numerical Application

In this section, several examples are presented to test the static
and dynamic behavior of the proposed rotating C-R beam formu-
lation. The equations of motion (23) are solved using implicit
time-stepping algorithm [12]. A damping matrix equal to 10�4

times the linear elastic stiffness matrix is used. Characteristics of
the beam used in the following simulations are given in Table 1.

Table 1 Properties of the simulated beam

L (m) b (m) h (m) q (kg/m3) E (Gpa)

10 0.3 0.6 7850 210



The beam has a rectangular cross section (width b and
thickness h).

6 Static Large Deformation Analysis

In order to demonstrate the behavior of the element in highly
nonlinear cases, we simulate the bending of the beam in a rotating
reference frame. A bending moment M is applied at the free end
of the beam around the Z-axis. In classical beam theory, when the
spin speed is null, the curvature after bending will be uniform for
the whole beam due to EIzj ¼ M. Thus, the uniform straight
beam will be bent into a full circle under the critical moment
Mcr ¼ 2pEIz=L0 [13,14].

The beam is discretized into 5 elements and its deformation is
plotted in Fig. 2(a) for five different values (0:2Mcr; 0:4Mcr;
0:6Mcr; 0:8Mcr, and Mcr) of applied moments. With the proposed
C-R element, the final solution can be achieved by directly apply-
ing the full Mcr. As shown, the rotation angle of the free end is
exactly 2p at the final configuration. A similar numerical applica-
tion using co-rotational formulation was reported by Crisfield
[15]. The main difference with the current approach lies in the
order of interpolation of the shape functions (linear in Ref. [15]
and cubic here). With the absolute-nodal-coordinate-based beam
element proposed by Omar and Shabana [16], the minimum num-
ber of elements was 16 to achieve a full circle.

When the spin speed is nonzero, the internal centrifugal force
can also eventually lead to large static deformations. In the partic-
ular case of constant spin speed and a static analysis, the equations
of motion for large deformation become

f I €q ¼ 0; _q ¼ 0;qXð Þ þ fE qXð Þ ¼ p (26)

The results are shown in Fig. 2(b) for different dimensionless spin

speeds (g ¼ 0; 2; 4; 6; 8; 10, with g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qAL4

0X
2=EIz

q
). Under the

combination of centrifugal force and tip-end moment, the beam is
stiffened and has smaller deflection when spin speeds increases.
To the authors’ knowledge, this kind of analysis (a rotating beam
subjected to large deformation by a static tip moment) cannot be
found in the literature and qualitative comparison with previous
research is impossible.

7 Modal Analysis

Numerical applications in Sec. 6 demonstrate that the proposed
C-R model can accurately simulate large deformation in statics.
Next, we perform a modal analysis for different constant spin
speeds around the prestressed state. The static deformation qX due
to centrifugal force is calculated by solving Eq. (26). Substituting
the initial deformation qX into Eq. (24) gives the eigenvalue prob-
lem related to Eq. (25) with the matrices

~MX ¼
X4

i¼1

M
ið Þ

d qXð Þ ~CX ¼
X4

i¼1

C
ið Þ

d qXð Þ

~KX ¼ Ke qXð Þ þ
X4

i¼1

K
ið Þ

d qXð Þ (27)

The dimensionless natural frequencies c ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qAL4

0=EIz

p
obtained after simulation are presented in Table 2.

They are in good agreement with published results [17,18]. The
difference percentage is less than 0.1% using 5 C-R elements for
the first three modes. Figure 3 illustrates the normalized ratio (the
ratio between the natural frequency obtained via the proposed
model and the one used as Ref. [18]) as a function of the number
of elements, for different modes and different spin speeds. The
large centrifugal-stressed deformation is successfully taken into
consideration and the C-R formulation solution converges to ana-
lytical Refs. [17 and 18] whatever the spin speeds.

8 Transient Analysis

In the next simulation, the beam is subjected to a sinusoidal tip
force p ¼ F0 sin xetð ÞY. F0 is equal to 10 MN, and the excitation
frequency is xe ¼ 50 rad=s. The forcing amplitude is chosen very
high so as to create a very large amplitude of vibration. The spin
speed is zero.

As shown in Figs. 4(a) and 4(b), a good consistency is obtained
between the reference solutions (ANSYS simulation with 50
BEAM189 elements—elements based on total-Lagrangian (T-L)
formulation) and the proposed model (only 5 C-R elements). Our

Fig. 2 Static large deformation analysis: (a) Cantilever beam
under different tip moment (0, 0.2Mcr, 0.4Mcr, 0.6Mcr, 0.8Mcr, and
Mcr) and (b) rolled-up rotating cantilever beam with different
spin speed (g 5 0, 2, 4, 6, 8, 10)

Table 2 Dimensionless frequencies c under different spin
speeds

g First mode Second mode Third mode

0 Proposed model 3.51600 22.03450 61.69720
Ref. [17] 3.51602 22.03449 61.69721
Ref. [18] 3.51602 22.03480 61.70490

2 Proposed model 4.13730 22.61490 62.27320
Ref. [17] 4.13732 22.61492 62.27318
Ref. [18] 4.13733 22.61530 62.28080

4 Proposed model 5.58500 24.27340 63.96680
Ref. [17] 5.58500 24.27335 63.96676
Ref. [18] 5.58503 24.27370 63.97420

8 Proposed model 9.25680 29.99540 70.29300
Ref. [17] 9.25684 29.99532 70.29296
Ref. [18] 9.25694 29.99590 70.30020



approach offers a reduction by ten of the number of elements for a
similar precision on a very large amplitude of vibration and with a
substantial time saving (proposed model: 69 s, ANSYS simula-
tion: 180 s).

9 Response After an Impulsive Force

In addition to a harmonic forcing, another interesting source of
excitation is short duration impact pulses. A practical example in

turbomachinery application is the debris ingestion. In this section,
the impulse excitation on a rotating beam is analyzed using the
proposed approach. The impulsive force occurs at t¼ 1 s and has
the form of a half sine with a 0.005 s period and 10 MN amplitude.
It is applied on the free-end of the beam. The vertical tip displace-
ment responses under three different spin speeds are shown in
Fig. 5. When spin speed increases, spin-stiffening effects reduce
the amplitude of vibration.

10 Conclusion

A Co-Rotational finite element model for a rotating beam is
proposed. The full nonlinear equations of motion are derived ana-
lytically. It was demonstrated that the proposed model can simu-
late very large static deformations using a small number of
elements. The computation time efficiency and accuracy of the
approach were proved by comparison with reference solutions (lit-
erature and commercial FE software) for very large amplitude
vibrations. Besides, the large initial deformations coming from
the centrifugal force are correctly taken into account and this has
been verified by performing modal analysis for different spin
speeds. The proposed C-R rotating beam model is able to simulate
the dynamics of turbomachines in the geometrical nonlinear con-
figuration, be it for static, modal, or transient analysis in the event
of accidental condition. In this contribution, the proposed method
is limited to planar motion in a rotating reference frame. One may
consider in further work to construct the three-dimensional C-R
rotating beam model.

Appendix A: Differentiation Expressions

The following differentiation relationships can be obtained with
Eqs. (7) and (8):

dh ¼ zT

Ln
dq db2 ¼ db3 ¼

rzT þ zrT

L2
n

dq

d
zT

Ln

� �
¼ � rzT þ zrT

L2
n

dq (A1)

where

r ¼ �cos h �sin h 0 cos h sin h 0
� �T

z ¼ sin h �cos h 0 �sin h cos h 0
� �T

(A2)

Fig. 3 Convergence analysis for C-R formulation

Fig. 4 Large amplitude vibration of cantilever beam: (a) verti-
cal displacement and (b) horizontal displacement

Fig. 5 Vertical tip response to an impulsive force



Besides, another important differentiation relation on the rigid
body rotation matrix is

@

@h
T ¼ D 0

0 D

� �
T ¼ DhT D ¼

0 1 0

�1 0 0

0 0 0

2
4

3
5 (A3)

Appendix B: Details on the Formulation of the Beam

Dynamics

The total kinetic energy, written in Eq. (20), is the sum of five
terms. The derivation of each term of this energy is given next.
The last term Ecte of the total kinetic energy is constant so has no
contribution in the Lagrange’s equation.

B.1 Quadratic Terms in Global Velocity

The first part of the kinetic energy which contains quadratic
terms in velocity is

E 1ð Þ
c ¼

1

2
_qTTTMlT _q (B1)

where Ml is the local co-rotated mass matrix and T is the rigid
body rotation matrix

T ¼ Tg 0

0 Tg

� �
; Tg ¼

cos h sin h 0

�sin h cos h 0

0 0 1

2
4

3
5 (B2)

Ml can further be divided into the constant local co-rotated mass
matrix Ml

cte which contains constant values and the nonlinear geo-
metrical local mass matrix Ml

NL which is function of �UI and �UI

Ml ¼Ml
cte þMl

NL (B3)

where the local co-rotated mass matrix is given by

Ml
cte ¼

M 1ð Þ
cte 0 0 M 1ð Þ

cte=2 0 0

M 2ð Þ
cte M 3ð Þ

cte 0 M 4ð Þ
cte M 5ð Þ

cte

M 6ð Þ
cte 0 �M 5ð Þ

cte M 7ð Þ
cte

M 1ð Þ
cte 0 0

M 2ð Þ
cte �M 3ð Þ

cte

sym: M 6ð Þ
cte

2
6666666666666664

3
7777777777777775

(B4)

and

M 1ð Þ
cte ¼ qAL0=3

M 2ð Þ
cte ¼ qAL013=35þ qIz6= 5L0ð Þ

M 3ð Þ
cte ¼ qAL2

011=210� qIz=10

M 4ð Þ
cte ¼ qAL09=70� qIz6= 5L0ð Þ

M 5ð Þ
cte ¼ �qAL2

013=420þ qIz=10

M 6ð Þ
cte ¼ qAL3

0=105þ qIzL014=105

M 7ð Þ
cte ¼ �qAL3

0=140� qIzL0=30

and the nonlinear geometrical local mass matrix Ml
NL is given by

Ml
NL ¼

0 M 1ð Þ
NL 0 0 �M 1ð Þ

NL 0

M 2ð Þ
NL 0 M 3ð Þ

NL �M 2ð Þ
NL 0

0 0 0 0

0 �M 3ð Þ
NL 0

M 2ð Þ
NL 0

sym: 0

2
6666666666664

3
7777777777775
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where

M 1ð Þ
NL ¼ qAL0

�UI=20� �UJ=30
� �

M 2ð Þ
NL ¼ qAL0

�U
2

I =105þ �U
2

J=105� �UI
�UJ=70

	 

þ qIz=L0 2�U

2

I =15þ 2�U
2

J=15� �UI
�UI=15

	 

M 3ð Þ

NL ¼ qAL0
�UI=30� �UJ=20
� �

The local co-rotated mass matrix Ml
cte is equivalent to the mass

matrix of linear Rayleigh beam [19] element in which the
Euler–Bernoulli hypothesis [20] is considered. The general mass
matrix M is function of h, �UI , and �UJ . Hereafter, Lagrange’s
equation is applied to obtain the corresponding internal inertial
force vector

f
1ð Þ

I ¼ f
11ð Þ

I þ f
12ð Þ

I (B6)

The first part of the right-hand side of Eq. (B6) is given as

f
11ð Þ

I ¼ d

dt

@E 1ð Þ
c

@ _q

 !
¼M€q þ d

dt
TTMlT
� �

_q ¼ d

dt
TTMlT
� �

¼M€q þ @M

@h
dh
dt
þ @M

@ �UI

d�UI

dt
þ @M

@ �UJ

d�UJ

dt

(B7)

Using Eqs. (8) and (A3) (in Appendix A) into Eq. (B7) gives

@M

@h
dh
dt
¼Mh

zT

Ln

_q

� �
@M

@ �UI

d�UI

dt
¼M�U I

b2 _qð Þ

@M

@ �UJ

d�UJ

dt
¼M�UJ

b3 _qð Þ (B8)

Thus, the expression of f
11ð Þ

I is given by

f
11ð Þ

I ¼M€q þ Mh
zT

Ln

_q

� �
þM�U I

b2 _qð Þ þM�UJ
b3 _qð Þ

� �
_q (B9)

The second part of the right-hand side of Eq. (B6) is first
expressed as

f
12ð Þ

I ¼ � @E 1ð Þ
c

@q
¼ � @E 1ð Þ

c

@h
@h
@q
þ @E 1ð Þ

c

@ �UI

@ �UI

@q
þ @E 1ð Þ

c

@ �UJ

@ �UJ

@q

" #
(B10)

In a similar manner, using Eqs. (8) and (B3) into Eq. (B10) gives

@E 1ð Þ
c

@h
@h
@q
¼ 1

2
_qTMh _q

z

Ln

� �
@E 1ð Þ

c

@ �UI

@ �UI

@q
¼ 1

2
_qTM�U I

_q bT
2

� �
@E 1ð Þ

c

@ �UJ

@ �UJ

@q
¼ 1

2
_qTM�UJ 

q_
�
b3

T
�

(B11)



Hence, the total inertial force vector for E 1ð Þ
c can be written as

f
1ð Þ

I ¼M€q þ Mh
zT

Ln

_q

� �
þM�U I

b2 _qð Þ þM�UJ
b3 _qð Þ

� �
_q

� 1

2
_qTMh _q

z

Ln

� �
þ 1

2
_qTM�U I

_q bT
2

� �
þ 1

2
_qTM�UJ

_q bT
2

� �" #

(B12)

With the earlier expression of f
1ð Þ

I and Eq. (22), it is possible to
derive analytically the expression of its corresponding tangent
dynamic matrices. First, mass matrix can be easily given as
M

1ð Þ
d ¼ @f

1ð Þ
I =@€q ¼M, and subsequently, the gyroscopic matrix

is given as

C
1ð Þ

d ¼
@f

1ð Þ
I

@ _q
¼ Mh

zT

Ln
_q

� �
þM�U I

b2 _qð Þ þM�UJ
b3 _qð Þ

� �

þ Mh _q
zT

Ln

� �
þM�U I

_qb2ð Þ þM�UJ
_qb3ð Þ

� �

� z

Ln
_qT

� �
Mh þ bT

2 _qT
� �

M�U I
þ bT

3 _qT
� �

M�UJ

� �
(B13)

At last, the tangent dynamic stiffness matrix associated with the
first term of the kinetic energy is obtained as

K
1ð Þ

d ¼Mh€q
zT

Ln
þM�U I

€qb2 þM�UJ
€qb3

þ zT

Ln

_qI6 b2 _qI6 b3 _qI6

� �
@Mh

@h
@Mh

@ �UI

@Mh

@ �UJ

@M�U I

@h

@M�U I

@ �UI

@M�U I

@ �UJ

@M�UJ

@h

@M�UJ

@ �UI

@M�UJ

@ �UJ

2
666666664

3
777777775

�
_q

zT

Ln

_qb2

_qb3

2
6664

3
7775� 1

2
_qT z

Ln

_qTbT
2 _qTbT

3

� �

�

@Mh

@h
@Mh

@ �UI

@Mh

@ �UJ

@M�U I

@h

@M�U I

@ �UI

@M�U I

@ �UJ

@M�UJ

@h

@M�UJ

@ �UI

@M�UJ

@ �UJ

2
666666664

3
777777775

_q
zT

Ln

_qb2

_qb3

2
6664

3
7775

þ M�U I
þM�UJ

�Mh
� �

_q _qT rzT þ zrT

L2
n

� 1

2
_qT M�U I

þM�UJ
�Mh

� �
_q

rzT þ zrT

L2
n

(B14)

where I6 is a 6� 6 identity matrix.

B.2 Quadratic Terms in Global Displacement

The second part of the kinetic energy contains the quadratic
terms in global displacement. It is explicitly written as

E 2ð Þ
c ¼

1

2
qTKXq KX ¼ X2 qAL0

6

2 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 2 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775
(B15)

The corresponding internal inertial force vector obtained from
Lagrange’s equation is given by

f
2ð Þ

I ¼
d

dt

@E 2ð Þ
c

@ _q

 !
� @E 2ð Þ

c

@q
¼ �KXq (B16)

Thus, the relevant tangent dynamic matrices can be formulated as

M
2ð Þ

d ¼ @f
2ð Þ

I =@€q ¼ 0; C
2ð Þ

d ¼ @f
2ð Þ

I =@ _q ¼ 0 and K
2ð Þ

d ¼ @f
2ð Þ

I =
@q ¼ �KX.

B.3 Linear Terms in Global Displacement

The third part of kinetic energy gathers the first-order global
displacement vector

E 3ð Þ
c ¼ FT

Xq FX ¼
X2qAL0

60
FX;1 0 0 FX;2 0 0
� �T

(B17)

where FX is function of h, �UI , and �UJ

FX;1 ¼ 10 2XI þ XJð Þ þ L0 sin h 2�UJ � 3�UJð Þ
FX;2 ¼ 10 XI þ 2XJð Þ þ L0 sin h 3�UJ � 2�UJð Þ (B18)

Thus, the inertial force vector is given by

f
3ð Þ

I ¼
d

dt

@E 3ð Þ
c

@ _q

 !
� @E 3ð Þ

c

@q
¼�FX�qT Fh

X
z

Ln
þF

�U I

X bT
2 þF

�UJ

X bT
3

� �
(B19)

Subsequently, the corresponding tangent dynamic matrices are

M
3ð Þ

d ¼ @f
3ð Þ

I =@€q ¼ 0; C
3ð Þ

d ¼ @f
3ð Þ

I =@ _q ¼ 0 and

K
3ð Þ

d ¼
@f

4ð Þ
I

@q
�

z

Ln
bT

2 bT
3

� �
qT @Fh

X

@h
qT@Fh

X

@ �UI
qT @Fh

X

@ �UJ

qT
@F

�U I

X

@h
qT
@F

�U I

X

@ �UI
qT
@F

�U I

X

@ �UJ

qT
@F

�UJ

X

@h
qT
@F

�UJ

X

@ �UI
qT
@F

�UJ

X

@ �UJ

2
6666666664

3
7777777775

zT

Ln

b2

b3

2
66664

3
77775

(B20)

B.4 Zero-Order Terms in Global Displacement and

Velocity

The term ENL of the kinetic energy (20) is function of local dis-
placement vector �q only, while the last term Ecte is constant. ENL

is given by

ENL ¼ X2qIzL0 sin 2h=2� X2qL2
0AXI sin h�UI=20

þ X2qL2
0AXJ sin h�UJ=30� X2qL2

0AXI sin h�UI=30

þ X2qL2
0AXJ sin h�UI=20þ X2qIzL0

�U
2

I =15

þ X2qIzL0
�U

2

J=15þ X2qL3
0A�U

2

J=210

þ X2qL3
0A�U

2

I =210� X2qL3
0A sin h�UI

�UJ=140

� X2qIzL0 sin 2h�U
2

I =15� X2qIzL0 sin 2h�U
2

J=15

� X2qIzL0
�UI

�UJ=30� X2qIzL0 sin 2h�UI
�UJ=30

(B21)

The associated internal inertial force vector is

f
4ð Þ

I ¼
d

dt

@ENL

@ _q

� �
� @ENL

@q
¼ �Eh

NL

z

Ln
� E

�U I
NLbT

2 � E
�U I
NLbT

3 (B22)



Subsequently, the related tangent dynamic matrices are M
4ð Þ

d ¼
@f

4ð Þ
I =@€q ¼ 0; C

4ð Þ
d ¼ @f

4ð Þ
I =@ _q ¼ 0 and

K
4ð Þ

d ¼
@f

4ð Þ
I

@q
¼ � E

�U I
NL þ E

�UJ

NL � Eh
NL

	 

rzT þ zrT

L2
n

�
z

Ln
bT

2 bT
3

� �
@Eh

NL

@h
@Eh

NL

@ �UI

@Eh
NL

@ �UJ

@E
�U I
NL

@h
@E

�U I
NL

@ �UI

@E
�U I
NL

@ �UJ

@E
�UJ
NL

@h
@E

�UJ
NL

@ �UI

@E
�UJ
NL

@ �UJ

2
6666666664

3
7777777775

zT

Ln

b2

b3

2
6664

3
7775
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