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ABSTRACT

This paper investigates the dynamic behaviour of capacitive ring-based Coriolis Vibrating
Gyroscopes (CVGs) under severe shock conditions. A general analytical model is developed
for a multi-supported ring resonator by describing the in-plane ring response as a finite
sum of modes of a perfect ring and the electrostatic force as a Taylor series expansion. It
is shown that the supports can induce mode coupling and that mode coupling occurs when
the shock is severe and the electrostatic forces are nonlinear. The influence of electrostatic
nonlinearity is investigated by numerically simulating the governing equations of motion.
For the severe shock cases investigated, when the electrode gap reduces by ~ 60%, it is
found that three ring modes of vibration (16,260 and 360) and a 9th order force expansion
are needed to obtain converged results for the global shock behaviour. Numerical results
when the 20 mode is driven at resonance indicate that electrostatic nonlinearity introduces
mode coupling which has potential to reduce sensor performance under operating condi-
tions. Under some circumstances it is also found that severe shocks can cause the vibrating
response to jump to another stable state with much lower vibration amplitude. This beha-
viour is mainly a function of shock amplitude and rigid-body motion damping.

1. Introduction

Coriolis Vibrating Gyroscopic sensors (CVGs) are used to measure angular velocity (rate) of a body about a particular axis
based on the harmonic vibration response of a degenerate resonator subjected to Coriolis forces. Micro-engineered CVGs are
used increasingly in inertial guidance applications due to their small size and low cost, and on-going research is focused on
improving the accuracy of these Micro-Electro-Mechanical Systems (MEMS) for high performance applications. CVGs are
required to operate in increasingly harsh environmental conditions [1] and it is important to ensure external shock inputs
do not affect the accuracy of rate measurements made. For resonators operating in the linear regime, sensors based on axi-
symmetric resonators, such as rings and slotted discs [2], are advantageous because the in-plane flexural modes of vibration
occur in degenerate pairs and a shock input does not induce any coupling between modes [3]. However, under severe shock
inputs the resonator response is nonlinear and this advantage is lost. In practice, numerous sources of mechanical nonlin-
earity are present in resonators, but the dominant source of nonlinearity in state-of-the-art capacitive MEMS sensors is
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caused by electrostatic forces used to drive and sense the response of the resonator. Under normal operating conditions the
resonator vibrates with small amplitude causing the electrode gap size to vary by a small amount and ensuring the system
operates within the linear regime. However, under severe shock conditions the electrode gap size can vary significantly due
to large amplitude in-plane rigid body motions of the resonator, causing the electrostatic forces to vary nonlinearly.

The aim of this paper is to develop and apply an analytical model to quantify and understand the effect of nonlinear elec-
trostatic forces on the dynamic response and mode coupling in capacitive ring based CVGs under severe shock conditions.
Previous work [4,5] has investigated the effect of nonlinear electrostatic forces on mode coupling under pure shock condi-
tions. The model used to achieve this involved expressing the ring response in terms of the modes for an unsupported ring
and expanding the electrostatic force as a Taylor series. This approach is generalised here and used to investigate the influ-
ence of severe shocks when the ring is driven at resonance under normal operating conditions. The simulation results
obtained demonstrate the presence of mode coupling under severe shock conditions and suggest the possibility of jump phe-
nomenon when the ring is driven hard under particular conditions of shock amplitude and damping, which both have poten-
tial to diminish sensor performance momentarily.

The paper is structured as follows. Section 2 develops a model to describe the vibration response of the ring resonator
taking into account nonlinear electrostatic forces, including the presence of supports uniformly spaced around the ring cir-
cumference. This model generalises the model presented in [4] to any number of supports, investigates the influence of the
number of support legs on mode coupling, and confirms the so-called frequency splitting rules [6,7]. Section 3 presents a
systematic study into the nonlinear response of ring resonators under severe shock conditions for a device recently reported
in the literature [1]. The analysis includes convergence studies for the number of expansion terms and modes to accurately
model the nonlinear behaviour, time-history and spectrogram results to demonstrate the rich nonlinear dynamics and mode
coupling under severe shock conditions, and an investigation into the impact of using inner and outer electrodes. It is antic-
ipated that the model and results presented will guide future development of high performance capacitive CVGs.

2. Ring resonator modelling

In this section, a general linear mechanical model is developed for a supported ring resonator surrounded by capacitive
electrodes subjected to combined harmonic and shock excitations.

Different vibrating ring gyroscope designs are reported in the literature [1,4,8,9]. All designs consist of a ring resonator
supported by flexible support legs and surrounded by electrodes. The support legs can be fixed to a rigid base via a central
hub or externally to the ring, and are uniformly spaced around the ring circumference. Fig. 1 shows a schematic diagram of
the gyroscope that will be studied in detail in Section 3 in which the vibrating ring is surrounded by electrodes for driving
and sensing, and the ring is supported by legs connected to a fixed rigid hub. This device only includes electrodes outside the
ring, but the model will have the option to incorporate inner electrodes. In operation one of the in-plane ring 20-mode of the
resonator is driven into resonance and the device is subjected to external shock excitations. The resulting motion of the res-
onator causes the support legs to deform and the radial spacing between the ring and surrounding electrodes to change. The
in-plane ring motion is limited by the capacitor gap size, which is much smaller than the ring radial thickness. As the rigid
body displacement and elastic deformations of the ring are small, a linear model of the ring and supports is used to describe
the ring motion. No attempt is made to model ring-electrode contact.

The ring is modelled as a thin, perfect ring having mean radius r, radial thickness h, axial length I, and cross-sectional area
A = hl. The in-plane ring displacement is expressed as the sum of in-plane rigid body and flexural mode shapes for a perfect
ring whose modes occur in degenerate pairs [3]. The support legs connecting the ring and base consist of thin beam (straight
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Fig. 1. Schematic view of the studied vibrating ring gyroscope [1].



or curved) structures, and are modelled as radial and tangential springs for the assumed range of ring deflections. For the
resonator shown in Fig. 1, the legs are arranged in pairs and the legs pair can be represented as a single leg having linear
radial and tangential springs. The inertia of the legs is modelled as point masses m,. The electrostatic forces associated with
electrodes located inside and outside the ring are modelled as parallel plate capacitors. The shock excitation is modelled as
base excitation and the equations of motion for the system are obtained using Lagrange’s equation.

In general, the absolute displacement z(0) of an element of the ring located at angle 0 can be expressed as:

z(0) =z, + Ru, (1)

where vector z(0) = [x y]" represents the absolute displacement of the element, vector z, = [x, y,]" represents the abso-
lute rigid body displacements of the ring centre, vector u = [w u]" represents the flexural displacements of the ring ele-
ment in radial (w) and tangential (u) directions, and rotation matrix R resolves the radial and tangential components
with the absolute displacement components. Assuming the ring is thin and in-extensible, such that w = —9u/90, and using
a Ritz approach, vector u is expressed in its most general form as:

u(0,t) = ¥ (0)A(t), (2)
where
el _ c051.19 sinnd -] 3)
—1/nsinn® 1/ncosnd .
and
A=l g ¢®] ..o Y (4)
wheren=1,2, ..., Nrand g}, g’ are pairs of generalised coordinates associated with orthogonal shape functions having n

nodal diameters - these shape functions are referred to as the nf-modes. Ny defines the number of generalised coordinate
pairs used to describe the flexural ring deformation in the Ritz approach, and will be referred to as the Ritz order of approx-
imation in what follows.

2.1. Kinetic energy
The kinetic energy of the ring is given by:
-1 / p31zdV, (5)
2 )y

where p is the material density and V the ring volume.
Using Eqgs. (1)-(5) it can be shown that the kinetic energy can be expressed as:

T= %hTMh, (6)

where vector h is equal to h = {;\ and mass matrix M is
b

(1 0 O 0 0 0 1 0]
01 0 0 0 01
0 0 58 0 0 0 00
0 0 0 5/8 0 0 00
Mem|& @ © i a (7)
+
00 O 0 ST% 0 00
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00 O 0 0 SNE 00
1 0 O 0 0 0 10
101 0 0 0 0 0 1]
where m, is the physical mass of the ring. It is convenient to express the mass matrix in the following compact form:
Mr Mhr ]
M = , 8
{MZ.- Ml (8)

where M, is a 2Ny x 2Ny diagonal matrix whose 2n’th and (2n — 1)’th entries are m,(n? + 1)/(2n?) i.e. the generalised mass
for the n0-mode and
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It is clear from Eqgs. (8) and (17) that for a perfect unsupported ring, the ring centre displacement only couples to the rigid
body motion of the ring described via generalised coordinates g\" and q\*

2.2. Ring strain energy

The strain energy in a thin, in-extensible ring is given by [10]:

2
El *w
U, :F/o <592 +w> do, (10)

where EI is the in-plane flexural rigidity of the ring.
Using the Ritz expansion of the radial component (Egs. (2)-(4)) in this equation, it can be shown that the strain energy can
be expressed as:

U, = %ATKrA, (11)

where K, is a 2Ny x 2Ny diagonal stiffness matrix whose 2n’th and (2n — 1)’th entries are EIT(n? — 1)2/r3 i.e. the generalised
ring stiffness for the ng-mode. For rigid body motions of the ring (n = 1), the ring stiffness is zero.

2.3. Support leg strain and kinetic energies

It is assumed there are N, identical supporting legs uniformly spaced around the ring circumference and each support leg
provides constant stiffness restoring forces in the radial and tangential directions and a point mass inertia. Numerical values
for the equivalent stiffnesses in the radial k; and tangential k; directions, and inertia m; can be obtained using the finite ele-
ment or alternative methods of analysis.

Using Eq. (2), the total strain energy in the support legs is given by:

ZUJ 1ATZKJA = %ATK,A (12)

j=1

where U{ and K{ are the strain energy and stiffness matrix respectively for the j'th support leg and:

i w(2T ke 07 -/2jn
K,fw(ﬁw){o I}W(Nﬁ ) (13)

Angle o defines the angular position of the last leg (case j = N;) relative to the reference frame used.

The properties of the total stiffness matrix K; depend on summing the terms in Eq. (12). It is shown in the Appendix A that
terms associated with the nf and pf-modes in the total stiffness matrix are not coupled provided that (n & p)/N, # integer.
For all other cases non-zero terms are present and the non-zero terms depend on angle o. A consequence of this is that the
total stiffness matrix is diagonal if and only if N < N;/2. However, recalling that N is the Ritz order of approximation, select-
ing Nk < N,;/2 ignores high order mode coupling introduced by the support legs.

To demonstrate these properties, consider the case when N; is even and Nz = N;/2. In this case the total stiffness matrix
can be expressed as follows:

K, 0
Ki,
K= : 7 (14)
0 Kin, 25,2
where:
B (ke + k) 0
o N
Kiny = [ 0 N (k, + ) forne[1,53-1]
Nk, cos? ™ + 4 sin” <N, . 4"f> cos ™ sin M (15)
Ky = , forn="1

1l
272 (ler - 4—"[) cos™* sin™* Nk, sin® M 4 % ‘“‘f cos? N



With the exception of the last two rows and columns, the matrix K; is diagonal with terms occurring in equal pairs and all
terms independent of «. In contrast the last two rows and columns, which correspond to the case when n = N,/2, depend on
o and have non-zero off-diagonal terms and unequal diagonal terms (even when o = 0). A consequence of this is that the
natural frequencies for the nf-modes of a ring with attached supports will split when n = N;/2. This is consistent with
the so-called splitting rules [6,7] which indicate that frequency splits occur when 2n/N; is an integer. The vibrating gyro-
scope shown in Fig. 1 has eight supports (N, = 8) and operates in the 20-mode (n = 2), and so the number of supports does
not split the 260 frequencies. However, using eight supports will split the 460,860,120, ... modes.

An example illustrating when non-zero coupling terms occur in the total stiffness matrix is shown in Fig. 2 for the case
when N; = 9, Nr = 11 and o # 0. Each cell represents the calculated value in the total stiffness matrix — white cells indicate
zero values, shaded/coloured cells indicate non-zero values. The presence of coupling is clear. For example, the (n =)16 and
(p =)86-modes, the (n =)40 and (p =)56-modes, and the (n =)260 and (p =)116-modes all couple because (n + p)/N, are inte-
gers. Along the “main” diagonal, the stiffness values occur in equal pairs, except when n = 9 when the support legs induce fre-
quency splitting. In practice the presence of coupling when n is not equal to p is expected to have a much smaller influence on
frequency splitting than when n is equal to p. This is because the frequencies for different modes of unsupported rings are nor-
mally well separated. For this reason, these terms are neglected in simulation studies performed later. Similar reasoning can be
used to determine the overall mass matrix including support leg inertia. The total kinetic energy in the support legs is given by:
1 i { M, My, ] :

T, = h
727 |M}, Nmil,,

(16)
where M; is a 2Ny x 2N matrix having the same structure as K; and whose first diagonal terms have the same form as Eq.
(15) but with k, and k, replaced by m,. These terms are simply equal to N;m;(n? + 1)/(2n?) for n < N;/2. All of the M, terms
can be found by using the same replacement in the Appendix A. The coupling effect of the support masses on the kinetic
energy is defined by:

(17)

I,
MbI:Nlml{ o2 }

02(n—1)x2

2.4. Electrostatic energy

As the mean radius of the electrodes is normally large compared to the nominal capacitor gap size, the electrode
capacitors are approximated as parallel plate capacitors. The voltages applied across the inner and outer capacitors are

1 [} 1 1
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Fig. 2. Illustration of stiffness matrix K; showing the position of non-zero values, with N, =9 and Nz = 11.



denoted V; and V, respectively, and the electrostatic energy stored by a differential element of the parallel plate capacitor is

given by:

€0€V?
2d

where € is the relative permittivity of the ring material, €, is the absolute permittivity, V is the electrical potential across the

electrode-ring capacitor, d is the gap size between the capacitor and the ring, and dAc is the differential capacitor area. The

gap size between the inner or outer capacitors and the ring depends of the nominal gap size (denoted d,) and the radial dis-
placement w(6), such that:

d = dy = w(0). (19)

dE, = dA., (18)

Substituting Eq. (19) in Eq. (18) and expanding the denominator of the resulting equation as a Taylor series in terms of
w/d, gives:

€€V I k(w)"
dE. = 1) (=) dA. 20
2d, k:O( ) i (20)

where N7 is the number of terms used in the Taylor series expansion.

The differential capacitor area dAc is defined as either Ir; d0 for the inner capacitor or Ir, d0 for the outer capacitor, where r;
and r, are the inner and outer mean radii of the capacitor respectively. Neighbouring electrodes are normally separated from
each other by circumferential gaps to help isolate the electrodes and allow space for the support legs. These gaps are small
compared to the span of the electrodes and can be neglected [5]. This assumption allows the electrodes to be merged
together to form one continuous electrode around the complete ring circumference. The electrostatic energy stored by
the inner or outer capacitors is obtained by integrating (20) around the circumference of the ring. The total electrostatic
energy is obtained by summing the energy from both electrodes and results in:

V24 (-D'rVE oo
E.=A Z(T)/o w! d6> (21)

with

€€l

AE:Z—dg

(22)

Using the Ritz expansion of the radial displacement (Eqs 2)—(4)), Eq. (21) provides a polynomial expansion for the elec-
trostatic energy in terms of generalised coordinates g, g’ up to order Nr.

2.5. Equation of motion

Lagrange’s equation is used to determine the equation of motion of the supported ring resonator:

d (oT oU,+U;) OE.
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dt <6qj> aq; aq; (23)
Using the results developed earlier, the equation of motion can be written as:

(M + MpA + (K, + K+ K)A + Fyy = Fp. (24)

In this expression, F, = — (M, + Mp;)Zp represents the base excitation force applied to the central ring hub, indicating that
for a perfect unsupported ring, the ring centre displacement resulting from an applied shock only couples to the rigid body
motion of the ring. The first two entries of this vector are equal to —(m, + N;m;)Z, and all other entries are zero. F, represents
the nonlinear electrostatic force and is a polynomial function of A. This term arises from differentiating E. with respect to

generalised coordinates g\, g, i.e.:

N k(roV2+(-DfrV?)  am g .
—Acy = El [ wkT cos 0 do

Ny s
_AEZM fZT[ Wk 1 s]n]@dg




The linear electrostatic stiffness terms have been separated from the nonlinear electrostatic terms and are incorporated in
the linear stiffness matrix K.. The linear terms are evaluated by setting k = 2 in (21) to yield diagonal matrix:

2 ey
K. = —ZnAer"V”d%‘v'l. (26)

g

The linear electrostatic forces provided by the outer and inner capacitors change the total stiffness of the system by apply-
ing a softening effect (K, is a negative definite matrix). This softening effect increases as the electrode voltages increase, and
the overall stiffness matrix of the system can become negative, making the system unstable, if the voltage is sufficiently
large.Some observations regarding the nonlinear electrostatic force are:

« If the electrode voltages are chosen such that r,V2 = r;V?, all even power terms in the generalised coordinates (i.e. k odd)
in Eq. (25) cancel out, thereby eliminating some coupling mechanisms.

o Different terms in the nonlinear electrostatic force expansion exhibit softening or hardening behaviour (e.g. hardening
occurs when r;V? > r,V2).

o The expression developed for the nonlinear electrostatic force can be expanded analytically, but becomes cumbersome as
the number of terms in the Taylor series expansion Ny increases and the Ritz order of approximation Ny increases. Sym-
bolic calculation software can be used without much difficulty to generate high order terms and evaluate the required
integral terms.

Equation of motion (24) is rewritten by pre-multiplying by matrix (M, + M;)"' and including a modal damping matrix D
to give:

IA+ DA+ QA +Fy — [‘g"} (27)

In this expression, matrix Q defines the undamped linear natural frequencies (including linear electrostatic effects) of
the modes provided the stiffness (K;) and mass (M;) matrices associated with the supports are diagonal - this occurs if
the number of modes included in the model is relatively low (Ng < N;/2) or the linear coupling is simply neglected
because it is small. For the device shown in Fig. 1, which will be analyzed later, the stiffness and mass matrices contain
coupling terms for the 460,860,120, ... modes. However, this coupling can be avoided by selecting support leg angle o = 0.
Coupling also exists between different mode pairs, as discussed in the previous section (see Fig. 2). For example, cou-
pling exists between 30 and 50-modes and this coupling cannot be eliminated by selecting a particular value of «. This
coupling is neglected in the current study on the basis that it will be weak and to simplify the analysis. The damping
matrix D is normally assumed to be diagonal and contains terms w,/Q,, where Q, is the quality factor (or Q-factor) and
w, is the undamped natural frequency for each mode. F,, defines the influence of the nonlinear electrostatic forces
including any coupling between generalised coordinates. In summary, the equation of motion for the nf-mode can be
expressed as:

. Wy .
G’ + . G+ @y 4 Fugo) = Fexgo (28)
n
Similarly, the equation of motion for the companion nd orthogonal mode is obtained by replacing g\’ by g in (28). The
external forces Fextqm and Fextq(2> correspond to the external base excitation forces applied to the ring and only excite the
1 1

10-modes. Additional sources of excitation can be applied directly to the generalised coordinates. For example, harmonic
forces are assumed to be applied to one of the 26-modes in later studies by setting Fext,m = cos ot to replicate standard
2

operating conditions for a Coriolis vibrating ring based gyroscope.
The nonlinear term qum depends on the modal mass for the n™ mode. For the purpose of simplicity, the contribution

from support leg inertia on this nonlinear term has been neglected in later numerical simulations. This simplification will
have a small influence on the amplitude of the nonlinear force but the general behaviour illustrated in Section 3 will be
unaffected.

In Eq. (28), the electrostatic force provides the only source of nonlinearity. Under standard operating conditions, Fy
can be neglected on the basis that the displacement of the ring is small compared to the gap size. However, in this
study severe shock conditions are investigated which induce ring displacement in the order of the nominal gap size,
and it is necessary to model the nonlinear electrostatic forces. As described earlier, the nonlinearity is expressed in
power series form and the level of approximation depends on the number of terms used in the Taylor expansion Nr.
The polynomial order of the nonlinear force is Nr — 1 and including these nonlinear forces introduces a physical mech-
anism for mode coupling to occur. Depending on the selected value of Nr, coupling can occur between several gener-
alised coordinates.



3. Shock simulations
3.1. Simulation data

Numerical results are presented here for a recently reported device, manufactured and tested by Yoon et al. [1]. The
dimensions of the ring are: mean radius r = 1.5 mm, radial thickness h = 18 pum, and axial length [ = 150 pm. The nominal
gap between capacitor and ring is d; = 10 um. The material properties are: Young’s modulus E = 150 GPa and density
p = 2330 kg/m>. The ring is supported by 8 pairs of legs. Using Eq. (28), the stiffnesses of the legs are accounted for within
the natural frequencies w,. These frequencies were obtained from a modal analysis of the resonator using a commercial
Finite Element (FE) software package and the results are presented in Table 1. The electrostatic forces are quite weak and
in practice make only a small modification to the frequencies. On this basis it is justifiable to neglect their contribution to
the linear frequencies. The natural frequency calculated for the 20-mode (i.e. @,) is in agreement with the results presented
in [1]. The mode shapes obtained from the FE analysis for n < 3 are shown in Fig. 3. Mode n = 1 describes the 16 ring rigid
body motion, whilst the other modes (n = 2,n = 3) describe the 26 and 36 flexural modes of the ring. The frequencies cal-
culated for the 40 and 50-modes are provided. There are two 40 frequencies because the eight support legs split the 40 fre-
quencies. In simulations, the high-frequency 40-mode is used as it aligns with the support legs and satisfies the o =0
condition. In practice, the modal analysis produces an assortment of leg dominated modes in addition to the 16-mode,
but these modes are not considered in the current model (28).

To simulate the dynamics of the gyroscope using Eq. (28), the damping for each mode is required and these are specified
in (28) as Q-factors. The Q-factors used in the simulations are presented in Table 1 and were obtained as explained below.
The rigid body motion Q-value is often difficult to estimate because it depends on the bond connecting the central hub to the
device and thermoelastic damping. In numerical simulations, a range of values of Q,is used. The 20-mode Q-value was mea-
sured experimentally in [1] and the same value is kept within the simulations. The Q-values for the other flexural modes
were not presented in [1] and so were calculated based on the assumption that thermoelastic damping is the only source
of dissipation. The values presented in Table 1 were calculated using Zener’s theory [11]. Using this approach it can be shown
[12] that the Q-factor of each ring mode can be calculated using:

11 Ve 1
Q QVitVi QV,+Vy
where Q, and Q, are respectively the Q-factors for the ring and legs considered independently (see Eq. (30)), V; and V., are

respectively the energy stored in the support legs and the ring for the mode considered - these quantities are obtain from an
FE model of the undamped system. Q, and Q, are given by [12]:

(29)

2
1+ (‘Crl (l)i)
Q= (30)
M
Table 1
Undamped natural frequencies and associated Q-factors for the first five ring modes.
Mode number Frequency (kHz) Q-factor

10 11.2 between 5,000 and 180,000
20 15.8 64,700 from [1]
30 22.0 170,000 (estimated)
40 25.7,36.3 180,000, 80,000 (estimated)
50 59.2 50,000 (estimated)

() (b) (c)

Fig. 3. Undeformed shape and deformed mode shape of the ring gyroscope for (a) n =1, (b) n=2 and (c) n = 3.



where w; is the fundamental undamped natural frequency of the supported ring for the mode considered, 7., and Ay are
respectively the effective relaxation time and relaxation strength defined as:

C,h’ EoT,
L= and Ay =210

km? C,

. (31)

Here h,, is either the radial ring thickness (h, = 18 um) or the leg width (h; = 10 um); C, = pC, (with C, = 700] kg 1K~ ! the
specific heat for silicon) is the specific heat capacity at constant volume; k = 130 W m~! K~! is the thermal conductivity for
silicon; o = 2.6 x 107% K~ is the coefficient of thermal expansion for silicon; Ty = 300 K is the reference temperature.

The applied shock corresponds to an imposed acceleration of the base of the sensor and is accounted for in the definition
of Z, in Eq. (27). In the model it is represented as an applied external force on the 10 rigid body mode and will be referred to
as Fs later. The applied shock is assumed to be a half-sine pulse [13] and is applied along the o = 0 direction to eliminate any
coupling in the stiffness matrix. As such, acceleration 2, is expressed as:

.. {FS
Zp =

{Assin% for t < T,
o} -

0 fort>T, |, (32)
0

where A and T are respectively the amplitude and duration time of the applied shock. Throughout the following study, T is
chosen to be one tenth of the period of the 20-mode. In severe shock conditions, the amplitude of the shock can be very high
and for the device analyzed the maximum amplitude considered is 10,000 g (a shock of 15,000 g was applied by Yoon et al. in
[1] but the shock duration was not mentioned) which causes the ring-electrode gap to reduce to approximately 60% of its
nominal value. For higher levels of deformation the so-called "pull-in” phenomenon [14] is likely to occur, in which the ring
would be pulled into contact with the electrode. The developed model focuses on investigating the dynamic behaviour under
nonlinear electrostatic forcing and does not consider contact with the electrode.

The nonlinear coupling terms provide the only means of coupling the generalised coordinates. By aligning the external
forcing with o = 0, there is no coupling with the orthogonal companion modes g{?. This halves the number of generalised

coordinates that need to be included in the equations of motion, and in what follows only generalised coordinates g, cor-
responding to the nf-mode, are considered without their orthogonal companion. To simplify notation, superscript (1) will be
removed and the generalised coordinates considered will be referred to as g,,.

Except when stated otherwise, the inner electrode is deactivated (V; = 0) in below simulations.

3.2. Preliminary study: influence of the nonlinear force order

As the applied shock considered is severe (A; = 10,000 g), strong nonlinear effects are expected and the order of the Tay-
lor series expansion (20) must be considered carefully to correctly predict these nonlinear effects. Initially a convergence
study is performed to show the influence of using a different number of terms in the Taylor series expansion for the nonlin-
ear electrostatic force.

Fig. 4 shows the backbone curve for the nonlinear 10-mode calculated using different values for the number of terms of Ny
in the Taylor expansion. A nonlinear mode is defined as a harmonic solution of the underlying autonomous conservative sys-
tem of Eq. (27):

IA+QA+F, =0 (33)

The Harmonic Balance Method (HBM) is employed to calculate the nonlinear mode (see [15] for a detailed explanation how
to compute nonlinear modes). Non trivial solutions of Eq. (33) are sought in the form of a Fourier ansatz:

Ny
A(t) =@+ > (@ cos(kot) + by sin(kot)), (34)

k=1

where N, is the number of harmonics retained. Inserting Eq. (34) into (33) and evaluating Fourier-Galerkin projections with
respect to the base functions gives rise to a system of nonlinear algebraic equations with unknowns ay,a,, b, and w
(k € [1,Np]). To determine the nonlinear 10-mode, this system of equations is solved by an arc-length continuation scheme
[16] initiated with the linear frequency w; and a small value of A.

At low energy levels (low amplitude), the natural frequency of the nonlinear mode is equal to the linear natural frequency
(11.2 kHz for the 10-mode). However as the energy in the system increases, or in our case as the 16 vibration increases, the
natural frequency decreases. This corresponds to a global softening effect induced by the nonlinear electrostatic forces.

The advantage of studying nonlinear modes is that they show how the loci of the maximum response changes under har-
monic forcing. This is depicted in Fig. 4 by frequency response functions (FRFs) plotted on top of the nonlinear modes. FRFs of
the system for Ny = 4 - dashed lines, and Ny = 10 - dotted lines, are illustrated. These forced responses were obtained using
arbitrary (but equal) forcing amplitudes to demonstrate that the bent peak follows the nonlinear modes. It is clear that
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Fig. 4. Nonlinear normal mode g, for different values of Nr.

depending on the Nr-value, the response, be it forced or free, is different. Convergence for a maximum amplitude of approx-
imately 6 pm (corresponding to the 60% gap size displacement under applied severe shock) is obtained for Ny > 10.

In the following simulations, the number of terms in the Taylor series will be selected to be Ny = 10, corresponding to a
polynomial nonlinear force of order 9.

3.3. Free response after shock: influence of the number of modes

In the first set of simulations, the resonator is considered to be at rest initially and is then subjected to a 10,000 g shock on
g, at t = 0 as defined in Eq. (32). The amplitude of the shock is large and causes the ring-electrode gap to reduce to approx-
imately 60% of its nominal value.

Fig. 5 illustrates the radial displacement (defined in Eq. (2)) as a function of time for different Ritz orders of approximation
Nr. For clarity, only the positive envelope of the response time-history is plotted to illustrate the global behaviour of the
response over several seconds. The envelope was calculated by identifying local maxima in short duration windows of
the multi-frequency time-history and then manually combining and refining these maxima to achieve maxima points that
encapsulate the global response behaviour. A sample showing the time response and positive envelope is illustrated as an
embedded figure in Fig. 5 for a zoom on the Ny = 5 simulation. The results in Fig. 5 show that the radial displacement envel-
ope after shock is accurately simulated using the first 3-modes of vibration (rigid body motion and 26 and 36 flexural modes).
The main reason for this is that the modal amplitude decreases quickly as the mode number increases and the g, response
dominates the response amplitude. For Ny = 5, direct linear coupling between the g5 and g, coordinates caused by the extra-
diagonal terms in K; and M; matrices has been neglected.

Fig. 6 shows the positive envelope for modal amplitude g5 calculated with Nz = 5 together with a sample showing the
time response and positive envelope for a zoom on the simulation. The results show a non-smooth behaviour and a rapid
increase in amplitude at t ~ 0.28 s. To fully understand this singularity in the response, it is instructive to consider the evo-
lution of the frequencies contained in the response over time. This is achieved by computing the spectrogram of the modal
displacements. To calculate the spectrograms, the time-varying response is segmented into short periods and an FFT-based
spectral estimate is performed over sliding windows [17]. The color and shades of the spectrograms encode frequency power
levels. Dark color indicates frequency content with higher power, and a strong line (or ray) indicates for instance the exis-
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Fig. 6. Shock simulations with structure initially at rest. Positive envelope of the modal displacement g5 calculated with Ng = 5.

tence of a particular frequency and shows its evolution over time. Figs. 7 and 8 show spectrograms for the g, and ¢s
responses, respectively.

In Fig. 7, the spectrum of the response contains different rays, namely its fundamental natural frequency w; (around 11
kHz) and harmonics and combination of harmonics (for instance w; — w5, 3wy, W1 + ;,, etc.). The complexity of the spec-
trum is well known to be a consequence of nonlinear effects. The zoom shows how @, slowly increases over time from
10.6 kHz to 11.2 kHz as amplitude q, decays. This behavour is caused by the softening effect of the nonlinear forces which
also explains the increase in frequency over time of combinations of harmonics.

Fig. 8 shows even richer dynamics. In addition to the different harmonics or combination of harmonics, there is clear evi-
dence of modal interaction at t ~ 0.3 s and w ~ 60 kHz. This modal interaction occurs when ws = 2w + w, + w3 and creates
an additional means of mode coupling. This energy exchange induces a peak in the g5 response (see Fig. 6), but as the ampli-
tude is relatively small compared to the amplitude of q,, the peak is not visible in the global response of Fig. 5. Depending on
the resonator dimensions, additional modal interactions are expected to occur.
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Fig. 8. Shock simulations with structure initially at rest. Spectrogram of the g response calculated with N = 5.

3.4. Forced harmonic response with applied shock

Under operating conditions, one of the 20-modes of a vibrating gyroscope is driven at resonance and the response of the
companion 20-mode is measured to provide a measure of the angular rate [18]. In this section the conditions when an
applied shock significantly affects the forced vibration of the 20-mode via inter-modal coupling are investigated when there
is no applied rate.

A constant amplitude harmonic force is applied to the 20-mode i.e. Fex;,, = Ae COs wt where o is the excitation frequency.

Fig. 9 plots the amplitude of g, against excitation frequency  near its linear resonant frequency. The excitation amplitude A,
has been chosen such that the drive amplitude g, is approximately 4% of the nominal gap size (~ 0.4 um) and three modes
(Ng = 3) are sufficient to characterize the global dynamics, see Section 3.3. In a way similar to the calculation of the nonlinear
mode (see Section 3.2), the nonlinear response curve was found using a Harmonic Balance Method (HBM) that solves directly
for the harmonic steady-state solutions, combined with an alternating frequency-time procedure (AFT) [19] to compute the
projection of the nonlinear forces in the frequency domain, and arc-length continuation techniques [16] to follow a contin-
uous branch of solution as the excitation frequency varies. Due to the presence of nonlinearity, the system presents two
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Fig. 9. Frequency response function around the 20-mode for a linear (continuous line) and nonlinear (dashed line) model.

stable solutions over some frequency ranges, the top and bottom branches on Fig. 9. The results illustrate the softening beha-
viour of the nonlinear forces.

In the following simulation case studies, the 20-mode only is driven at a frequency close to the peak of the nonlinear res-
onance (the actual frequency corresponds to the marker shown in Fig. 9, w ~ 15.7983 kHz). Initially the system is main-
tained at its top stable branch solution (g, ~ 0.39 um). A shock is then applied to the 16-mode, at t =0s. The shock
causes the ring to vibrate as a rigid body but also influences the flexural vibration of the 20-mode because of the coupling
provided by the nonlinear electrostatic forces. Time-histories of the positive envelopes for the modal displacements are plot-
ted in Figs. 10-13. The results presented are for particular cases using different values of shock excitation amplitude (A;) and
16 damping (Q;). The details for the individual cases are as follows:

Case 1. For this case the shock amplitude is relatively small (A; = 2,000 g) and 10 damping low (Q; = 120,000), and the
results are shown in Fig. 10. After a short transient response of approximately 7 s, the system returns to its initial conditions
where g, is at its top stable branch (round marker in Fig. 9). g, shows a slow exponential decay from damping.

Case 2. In this case the shock amplitude is large (A; = 10,000 g) and the damping low (Q; = 120,000). Due to the
increased shock amplitude, which increases the ring deformation to 55% of its nominal gap size, the choice of Nr-value is
important to achieve convergence, see Section 3.2. The results are shown in Fig. 11, where it can be seen that g, displays
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Fig. 10. Positive envelope of the modal displacements as a function of time after a small shock - Case 1.
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Fig. 12. Positive envelope of the modal displacements as a function of time for a severe shock but with high damping - Case 3.

particularly interesting dynamic behaviour. After an initial transient response (up to approximately 5 s), g, appears to sta-
bilise on its bottom branch g, ~ 0.03 pum (yellow cross marker of Fig. 9). However, while g, displacement slowly decays due
to damping, g, returns to its initial condition on the top stable branch.

Case 3. In this case the shock amplitude is large (A; = 10,000 g as in Case 2) but the damping on the 10-mode is increased
by a factor of 3 (Q; = 40,000). The results are shown in Fig. 12. It can be see that increasing the damping reduces the g,
displacement more rapidly so it is negligible at around 7 s. Also, after an initial transient g, stabilises and remains on the
bottom stable branch. These results demonstrate the jump phenomenon from one branch to the other, as depicted by the
arrow in Fig. 9.

Case 4. In this case the conditions necessary to cause the jump phenomenon observed in Case 3 are investigated by vary-
ing Q;. As in Case 3, the shock amplitude is large but Q; is varied from 5,000 to 180,000. The results for the 26 response only
are shown in Fig. 13. These results confirm the previous findings where the g, solution jumps to the bottom branch when the
damping is high (low Q;-value) but returns to the top branch after a sufficient stabilisation time when the damping is low
(high Q;-value).
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Fig. 13. Positive envelope of the g, modal displacement as a function of time for a severe shock and different values of damping - Case 4.

The main conclusion drawn from this case studies is that for particular values of shock amplitude and damping the sys-
tem exhibits jump behaviour from the high amplitude resonant driving state to a much lower amplitude. Even if the 20 drive
amplitude is maintained initially, a shock applied to the rigid body 10-mode can cause the ring amplitude to reduce sud-
denly. The jump phenomenon is caused by coupling between modes of vibration created by nonlinear effects that are nor-
mally not accounted for at the design stage. Furthermore, it has been shown that the abrupt jump down only occurs for high
16 damping levels, which are often considered to be desirable as they quickly damp the rigid body motion. In practical appli-
cations, a control system may be used to maintain the 20 drive response amplitude. In this case it is likely that the shock
would reduce the drive response amplitude momentarily before eventually returning to the required steady-state amplitude.

3.5. Influence of the inner electrode
In all previous simulations, the inner voltage was set equal to 0 to simulate ring resonators with outer electrodes only. To

gain some understanding of the benefits or otherwise of using inner as well as outer electrodes, it is necessary to reconsider
the equations of motion. With the assumption that Nz = 2, and N7 = 5, the equations of motion (28) can be expressed as:

G1 + g g1 + 01q; +0q19; — BG4 (7 +2G3) + 7q192(497 +3G3) = Fs
{ Gy + 2, + 030, + 20— $0,(a3 + 26) + LR +9g8) =0 2
with:
3(rVi -1 VIAm _3(rVi 4 ViAT _ 5u
(m, +8m)d, (m, +8my)d; 6

In this expression, there is no harmonic forcing applied to the 20-mode.

As mentioned in Section 2.5, imposing the condition r;V? = r,V? causes all of the even order terms in the nonlinear force
expression to cancel out and eliminates some coupling mechanisms. Under these conditions the nonlinear force terms only
include odd order terms and the above equation simplifies to:

{ G1 + g1 + 03q; — fq1(q +2g3) = F;s

i} . (36)
Gy + g2 G + 34, — 2 P45(q5 +2G3) =0

These equations indicate that if the system has zero initial conditions when the shock is applied, there is no coupling
between g, and g, and g, = O is the solution to Eq. (36) for all values of t and all F;. This means that a shock applied to
g, will not excite q,. Simulation results for this case are shown in Fig. 14 and were obtained using Nz = 3 and Ny = 10. These
results confirm that the applied shock does not produce any g, response for a more general form of equations. This phe-
nomenon of "no coupling when the inner and outer voltages are symmetric” was previously mentioned in [4].

For the case when the initial conditions for g, are non-zero, like those considered in Section 3.4 where the 26-mode is
harmonically excited, the shock produces some coupling between generalised coordinates. Simulation results illustrating
this behaviour are shown in Fig. 15. The results show the positive envelopes of the modal displacements after the applied
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effect.

shock with a harmonic forcing applied to g,. It can be seen that g, varies after the shock is applied and shows a jump beha-
viour similar to those illustrated in Fig. 13. A nonlinear modal interaction between g, and g5 is also seen at approximately
t = 0.1 s when there is a sudden increase in g5 and decrease in g, indicating the transfer of vibrational energy from nonlinear
coupling between ¢, and g;.

4. Conclusions

A mathematical model has been developed and used to investigate the dynamic behaviour of ring resonators under severe
shock conditions and nonlinear electrostatic forcing. The model describes the ring response in terms of the modes of a per-
fect ring and indicates that the nonlinear electrostatic forces induce mode coupling.

The nonlinear electrostatic force was approximated using a Taylor series expansion and a study was performed to inves-
tigate the order of approximation required to achieve converged results. For the severe shocks considered, when the elec-



trode gap reduces by ~ 60%, it is necessary to use a 9th order approximation of the nonlinear electrostatic force and three
modes of flexural vibration (160,20 and 30) to achieve converged results for the global shock behaviour. Only three modes are
required because the ring natural frequencies are well separated from each other; higher order modal responses decay
quickly; and, there is no linear coupling between the first ring modes. Electrostatic nonlinearity introduces coupling between
the modes such that a shock which principally excites the rigid body mode produces flexural vibration of the ring and
induces coupling between the 10 and other modes. Under severe shock conditions the sensor performance deteriorates com-
pared to the linear case (without coupling). Furthermore, under operating conditions when the 20 mode is driven at reso-
nance, it was demonstrated that it is possible for an applied shock to cause the vibrating response to jump to another
stable state with much lower vibrating amplitude. The occurrence of this phenomenon is mainly a function of shock ampli-
tude and rigid-body motion damping and is likely to reduce sensor performance momentarily. Finally, by incorporating both
inner and outer electrodes, the electrostatic restoring force can be made symmetric. This removes some coupling mecha-
nisms between modes, but does not remove all couplings if the shock occurs when the resonator is vibrating.

A detailed analysis (bifurcation condition and stability studies) could be performed to more fully understand the complex
dynamics created by the nonlinear electrostatic force. Experimental measurements on CVG devices under severe shock con-
ditions are also required to validate the findings and to further investigate the conditions when the jump phenomenon
occurs. It is anticipated that the model and results presented will guide future development of high performance capacitive
CVGs.
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Appendix A
K{ is composed of K{n_p matrices (size [2 x 2]) at rows (2n—1,2n) and columns (2p — 1,2p), with 1 <n < N and
1 <p < Ng.
K= I, 37)

One introduces here an angle « that defines the position of the last leg with respect to the global frame. This angle can be
arbitrarily taken. Substituting ‘l’(zfv—f + oc) by its value (3) in (13) gives:

” keale + Mals kak — Kal (38)

" kel —kdl kedd+%al,
with:

; 2njm 2pjT
J — —_J -

al. = cos ( N; + noc) cos ( N; + po (39)

al. = sin 2r1i+ o | sin @Jr o (40)
ss N, N, p

al, = cos @ch sin @4’ o (41)
s Nl NI p

al. = sin 2nm +no. | cos pjm + pa (42)

N[ Nl

In order to calculate the total strain energy (12), one needs to calculate Y-} af, S, @, " a® and Y-}, ax. This deriva-
tion follows.

N, N, . .
j;aj“ = ]; cos (2:% + noc) cos (211;# +p<x>

_%i[cos (WWL (n+p)oc> + cos (Wﬂ' (n—p)oc)} (43)
p



Utilising the fact that:

()=
)
o
wv
N
N
K
S
+
=
S~
Il

{N, cosno if n/N, ez
0 otherwise.

Mcos(n—p)o  if (n—p)/NyeZand (n+p)/N, ¢ Z
iaq _J S cos(n+p)a  if (n—p)/N; ¢ Z and (n+p)/N, € Z (45)
4 ! N;cosnocospa if (n—p)/N;eZ and (n+p)/N, €7

0 otherwise.

A similar reasoning can be performed for Z]'.\':’ 1G5, Z]'.\':’ 165, and Z]N:’ 16. The value of each sum depends of some conditions

on the row and column number (n and p respectively). These are summaries below.

> Condition on p and n
(n—p)/N ez (n—p)/N, ¢ Z (n—p)/N ez otherwise
and (n+p)/N, ¢ Z and (n+p)/N, ez and (n+p)/N, ez
position in K; positive diag. negative diag. intersection of diag. everywhere else
Zj'.\’:‘1a]?f Nicos(n —p)a Nicos(n + p)a N cos no: cos po 0
Zj\’;lajs N cos(n — p)a —Nicos(n + p)a Njsinna sin pa 0
PN —Nisin(n - p)a Nsin(n+ p)a N cos nasin pa 0
SN ax Nsin(n — p)a Nsin(n+p)a N sinnoccos pa 0
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