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Abstract 

Classification is a first-line tool for understanding the main characteristics of a natural system’s response. 

We propose a new classification of karst systems hydrological functioning that is based on spring discharge 

time series and takes profit of spring discharge databases to encompass the high diversity of karst 

hydrological functioning. It discriminates six different classes based on three relevant indicators of karst 

hydrological functioning.  

A core dataset made of 10 karst systems was first considered for the set-up of the classification. The spring 

discharge time series were investigated according to recession curves, statistical and signal analyses to 

identify relevant indicators of hydrological functioning. The selection of the most relevant indicators and the 

proposal of the classification were based on multivariate analyses. The classification was then tested on 

spring discharge time series of 78 karst systems located worldwide. 

All the systems homogeneously spread among the six proposed classes, which highlights the relevance of 

the approach and the representativeness of the various classes of hydrological functioning. Results from the 

proposed methodology were finally discussed to explore its limitations and define guidelines for its 

application.  
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Abbreviations 

SNO KARST: Service National d’Observation du Karst 

PNRGC: Parc Naturel Régional des Grands Causses 

DREAL: Direction Régionale de l’Environnement, de l’Agriculture et du Logement 

WoKaS: World Karst Spring hydrograph 

CV: Coefficient of Variation 

SVC: Spring Variability Coefficient 

QS: Specific Discharge 

MRC: Master Recession Curve 

ME: Memory Effect 

RT: Regulation Time 

SBB: Spectral Band Breadth 

NSE: Nash-Sutcliffe Efficiency 

PCA: Principal Component Analysis 

PC1-PC3: First to Third Principal Component 

kmax: Maximum k value over all the recession analysed 

αmean: Mean α value over all the recession analysed 

IR: i Range (corresponding to imax – imin) 

C1-C6: Class 1 to 6 

FL: Full-Length 

Y1-Y6: Year 1 to 6  
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1 Introduction 

10% of the world’s population is dependent on karst water resources for drinking water (Stevanović, 2018). 

Karst systems are underground entities that drain recharge water over a catchment towards a main outlet. The 

water is drained through conduits, fractures and matrix, which originate from the dissolution of the calcite 

deposits by acidic water from the surface. Understanding the functioning of these complex and heterogeneous 

systems is therefore a major challenge for long-term water resource management. Over the past century, 

different methods have been developed to analyse hydrological time series, and subsequently characterize 

the functioning of karst systems. These methods can be considered as a preliminary step in the development 

and design of hydrological models of karst functioning for sustainable water resource management.  

Classification has been widely used in surface hydrology to characterize hydrosystems. Although the three-

dimensional properties of aquifers generate an additional complexity, some authors proposed different 

methodologies to classify them based on geological, morphological and hydrological functioning analyses 

(Heath, 1982; Dahl et al., 2007; Heudorfer et al., 2019). In many cases however, these classifications fail to 

address the complexity of karst systems, which are strongly heterogeneous and correspond to a wide diversity 

of hydrological functioning. For these reasons, many authors worked on classifications specific to karst 

systems, either based on geological and morphological analyses (Mylroie, 1984; Waltham and Fookes, 2003; 

Jouves et al., 2017; Veress, 2020), hydrological response analyses (Mangin, 1975; Mangin, 1984; Soulios, 

1991; Bonacci, 1993; Kullman, 2000; Flora, 2004; Springer et al., 2008; Rashed, 2012; Malík and Vojtková, 

2012) or even karst groundwater microbiological analyses (Sinreich et al., 2013).  

The spring discharge of a karst system is considered as a base information in karst hydrogeology. It results 

from the combination of flows from the different compartments of the hydrosystem (soil, epikarst, 

unsaturated and saturated zones). The widely increased development of karst spring discharge monitoring 

offers the opportunity to study the relations between discharge and hydrological functioning in depth. Some 

authors proposed classifications of karst systems based on the analysis of spring discharge time series, either 

with visual interpretations (Soulios, 1991; Bonacci, 1993), by calculating indicators of functioning (Mangin, 

1975; Mangin, 1984; Flora, 2004; Springer et al., 2008; Rashed, 2012) or by interpreting the parameters of 

recession models (Mangin, 1975; Kullman, 2000; Malík and Vojtková, 2012). 

However, the aforementioned classifications have been developed by analysing only few karst systems or 

without considering the high diversity of karst hydrological functioning. Therefore, diversity in karst systems 

physical properties and hydrological functioning is not fully considered, which impairs the relevance of these 

classifications and raises the need for a more generic approach. This work aims to provide a new classification 

of karst systems hydrological functioning with the following key features: (i) a clear methodological basis, 

(ii) the analysis of a wide diversity of karst systems representative of contrasted hydrodynamics behaviours, 

(iii) an approach being relevant worldwide and in a scarce-data context (i.e. sites where there is little 

knowledge of the system, or only discharge monitoring for a few years). 

In this paper, we took advantage of the recent release of spring discharge time series in databases such as the 

French SNO KARST (Jourde et al., 2018) or the WoKaS database (Olarinoye et al., 2020) to propose a new 

classification of karst systems hydrological functioning. The typology describes a system where one single 

hydrodynamic response to precipitation impulse is expected. The aim of the classification is to characterize 

the hydrological functioning of a system, but not to decorrelate the factors that influence the functioning. The 

paper is organized as follows. In Section 2, we define the general characteristics of the karst systems 

considered in this study. Section 3 presents the various tools and analyses considered for the characterization 

of karst systems hydrological functioning. The most relevant indicators of karst hydrodynamics are identified 

and presented in Section 4, using the discharge time series of 10 well-known karst systems that cover a wide 

range of hydrological functioning. Section 5 is devoted to multivariate analyses that are considered for the 

proposal of the new classification described in Section 6. The discussion in Section 7 aims to evaluate the 

relevance of the proposed approach applied to 78 karst systems and to highlight some of its limitations. 

Section 8 gives the conclusions.  
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2 General characteristics of the karst systems considered in this study 

This section presents the data we used to develop and test the classification, which involve in two different 

datasets: (i) a core dataset for the assessment of the most relevant indicators of functioning and the design of 

the classification, and (ii) a complementary dataset for assessing the most efficient recession model, testing 

the classification and identifying its strength and limitations. 

2.1 Core dataset 

To ensure the quality of the study and its relevance to the problem, we performed spring selection on the 

basis of three criteria: (i) quality of the hydrodynamic monitoring, which is function of time-step, 

instrumentation, measurement uncertainty and length of the time series, (ii) diversity of the hydrological 

functioning among the karst systems, meaning that the final dataset should cover a wide range of hydrological 

functioning (e.g. related to dimensions of the catchment, rainfall, degree of karstification, hydrological 

functioning, etc.) and (iii) existing knowledge from prior studies, to ensure that the classification is consistent 

with the actual knowledge on system functioning.  

 

Figure 1 : Details about the complementary dataset, regarding (A) climate (Köppen-Geiger classification), (B) countries and (C) 

quality of the time series. (D) is the legend for the different abbreviations. 

We selected 10 karst systems (Table 1), located in France. We retrieved data from several organizations: The 

French Karst National Observatory Service (SNO KARST), the Parc Naturel Régional des Grands Causses 

(PNRGC), Suez, and the DREAL of Bourgogne Franche-Comté. Selected systems have been the subject of 

several comprehensive studies based of methods such as geology, cartography, field observations, tracing, 

geochemistry, time series analysis and modelling. 
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Table 1: General characteristics of the selected karst system (Mangin, 1975; Moussu, 2011; Blavoux et al., 1992; Bakalowicz and 

Ricard, 1994; Maréchal et al., 2006; Cholet, 2017; Lorette et al., 2018) and their associated discharge time series. 

System 

Köppen-Geiger 

climate 

classification 

Catchment 

area 

Length of the 

discharge  

time series 

Time step of the discharge  

time series 

  (km²) (year)  

Aliou Cfb 12 45 Daily 

Baget Cfb 13 47.5 Daily 

Durzon Csb 117 9 Daily 

Esperelle Cfb 91 8 Daily 

F-de-Nîmes Csa 45 18.8 Daily 

F-de-Vaucluse Csa 1115 52.2 Daily 

Lods Cfb 35 6.4 Daily 

Mouline Cfb 32 9 Daily 

Mouthe Dfb 50 7.3 Daily 

Toulon Cfb 100 5.5 Daily 

2.2 Complementary dataset 

In order to check the relevance of the method and its capacity to differentiate karst systems functioning, the 

classification resulting from the analysis of the aforementioned well-known karst systems was tested on a 

complementary dataset of 68 karst systems with different characteristics (e.g. dimensions of the catchment, 

meteorological regime, climate, and karstification degree). We worked with springs discharge time series of 

23 French karst systems coming from a database provided by the French state (Banque Hydro) and took the 

other 45 from the WoKaS (World Karst Spring hydrograph) database, which provides details of over 400 

karst systems worldwide (Olarinoye et al. 2020). 

The quality of these 68 springs discharge time series is appreciated according to low (C2) to very good (A) 

quality discharge data (Figure 1C) as proposed in Olarinoye et al. (2020). The dataset is fairly well distributed 

throughout the world, with karst springs discharge from 17 countries (Figure 1B). The considered karst 

systems are located in various climatic conditions. According to Köppen-Geiger classification (Peel et al., 

2007), these climatic conditions correspond to 12 different climates, the temperate oceanic (Cfb) being the 

most represented (63.2%, Figure 1A). 

3 Presentation of the selected discharge time series analysis methods for 

the characterization of karst systems functioning 

The discharge is directly related to the recharge and the emptying of the capacitive function of a system, but 

also depend on the system geometry and hydrodynamic properties (Malík, 2015). This section provides 

details about four methods for analysing discharge time series and the indicators that can be retrieved from 

these methods to characterize the functioning of a karst system. 

3.1 Statistical analyses 

Statistical indicators of discharge time series provide basic information about the overall functioning of a 

system. The most common are the mean, minimum, maximum, standard deviation, and the various quantiles. 

The mean interannual discharge depends on both the dimensions of the catchment and the mean recharge; it 

can therefore be used to assess the dimensions of a system. The observed minimum and maximum discharges 

make it possible to understand the flow amplitude. However, significant uncertainty related to the 

extrapolation of extreme discharges at springs is associated with this indicator. 

The comparison between various karst systems is facilitated when using nondimensionalized indicators, such 

as the coefficient of variation (CV), which is the ratio between the standard deviation and the mean of the 

discharge time series. Netopil (1971) proposed the calculation of a “characteristic discharge”, which is the 

ratio between the 0.9 quantile (discharge value that is exceeded 10% of the time) and the 0.1 quantile. This 
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“characteristic discharge” was referred to as spring variability coefficient (SVC) in Stevanović (2015). The 

SVC is less affected by extreme values. The specific discharge (QS) corresponds to the ratio between the 

mean interannual discharge and the catchment area. It allows assessing karst hydrodynamics with an implicit 

consideration of the dimensions of the catchment. However, the area information is not always available and 

also depends on the quality of hydrogeological studies over the catchment of interest. 

3.2 Recession curves analysis 

The hydrograph of a flood recession corresponds to the period when the discharge gradually decreases as 

water is not replenished (Toebes and Strang, 1964). It is possible to distinguish two regimes: (i) the influenced 

(quickflow) regime, which corresponds to the period when the discharge is influenced by the rapid infiltration 

of water into conduits in the unsaturated zone; and (ii) the non-influenced (baseflow) regime, which begins 

when rapid infiltration ends, and corresponds to the draining of the saturated zone and less transmissive 

compartments of the system (Mangin, 1975). In the literature, analysis of recession curves is mainly used to 

estimate groundwater reserves (Drogue, 1972; Forkasiewicz and Paloc, 1967; Mangin, 1975), determine the 

hydrodynamic parameters of the aquifer (Mangin, 1975), and provide information on flows, drainage, and 

karstification degree (Drogue, 1972; Mangin, 1975; Kullman, 2000; Malik, 2006; Kresic, 2007; Malík and 

Vojtková, 2012). The karstification degree is an indicator of the karst maturity of a system, which is directly 

related to groundwater recharge, storage capacity, spring discharge dynamics and system connectivity. 

Numerous models for the analysis of recession curves of discharge time series have been proposed (Table 

2). Boussinesq (1877) and Maillet (1905) made the first proposals. Horton (1933) and Barnes (1939) then 

developed recession models based on Maillet’s equation. Coutagne (1948) proposed an equation that 

simulates the discharge from a reservoir. Padilla et al. (1994) highlighted that Coutagne’s equation struggles 

to reproduce the recession curves of karst systems, and thus introduced a new parameter Qc. This later 

parameter corresponds either to the discharge from poorly transmissive zones of the aquifer, or to the 

discharge from aquitards outside the karst system; it may also have no physical meaning. Drogue (1972) 

proposed to approach the whole recession curve with a hyperbolic function. Mangin (1975) developed a two-

equation recession model, representative of the influenced and non-influenced regimes. Kullman (2000) 

approached recession curves by fitting a model based on a linear equation (Kullman, 1983) for influenced 

regime, and Maillet’s equation for non-influenced regime.  Based on Kullman work, Malík and Vojtková 

(2012) proposed a classification of karst systems functioning according to the number of equations required 

to model the recession and the values of the parameters. Other authors (Samani and Ebrahimi, 1996; Griffiths 

and Clausen, 1997; Ladouche et al., 2006) proposed models inspired by the aforementioned models. We did 

not consider physical-based models as we do not have any information on reservoir geometry. Further details 

about empirical, physical-based models and recession curve analysis can be found in Fiorillo (2014). 

In this study, we wanted to assess the variability of the hydrological response of the karst systems, which is 

only possible when accounting for different recession periods. For this reason, we dismissed the use of a 

Master Recession Curve (MRC) which aims to overcome the problem of recession variation by combining 

several recession curves into one and only. 

The Mangin’s model has been widely used to characterize karst systems, mainly because the author proposed 

a classification based on two indicators derived from the parameters of the model equation. The parameter α 

is assumed to characterize the draining of the capacitive function of the karst system, which corresponds in 

most cases to flow from the saturated zone. In case of a low karstification degree, α can be affected by flows 

occurring in the unsaturated zone, which may induce a lag in the response in the non-influenced regime 

(Mudarra and Andreo, 2011). The indicator k is strongly linked to the α recession coefficient of the first 

component of the Mangin model (Table 2), which is applied only on the non-influenced regime. The indicator 

k is thus focused on the slow depletion of the aquifer and assumed to characterize the ability of a system to 

store and return recharge water. It is calculated with the following equation: 

𝑘 =  
𝑉𝐷𝑌𝑁

𝑉𝑎𝑛
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Table 2: Summary of the main models developed to analyse recession curves, corresponding equations and comment on their most 

appropriate usage. Qt (L3T-1) is the discharge at time t (T), Q0 (L3T-1) the discharge at t=0 (T), α the recession coefficient (T-1), n (-) 

a constant, Qc (L3T-1) a constant discharge, QR0 (L3T-1) the baseflow extrapolated at t=0, q0 (L3T-1) the influenced discharge 

corresponding to the difference between Q0 and QR0, η (T-1) a constant characterizing the speed of infiltration (η = 1/ti, with ti (T) 

being the duration of the influenced stage), ε (T-1) a constant characterizing the concavity of the influenced part of the recession curve 

and β (T-1) a recession coefficient for the turbulent flow. L and T are the dimensions for the base quantities of length and time, 

respectively. 

Model Equation Comment 

Boussinesq (1903) 𝑄𝑡 =
𝑄0

(1 + 𝛼𝑡)2
 

- Non-influenced stage 

- Surface water 

Maillet (1905) 𝑄𝑡 = 𝑄0ⅇ−𝛼𝑡
 

- Non-influenced stage 

- Surface water 

Horton (1933) 𝑄𝑡 = 𝑄0ⅇ−𝛼𝑡𝑛
 

- More suitable to surface 

water 

Barnes (1939) 𝑄𝑡 = ∑ 𝑄0ⅇ−𝛼𝑖𝑡

𝑘

𝑖=1

 
- More suitable to surface 

water 

Coutagne (1948) 𝑄𝑡 = 𝑄0[1 + (𝑛 − 1)𝛼𝑡]
𝑛

(1−𝑛) 
- Suitable for karst systems 

Padilla et al. (1994) 𝑄𝑡 = (𝑄0 − 𝑄𝑐)[1 + (𝑛 − 1)𝛼𝑡]
𝑛

(1−𝑛) + 𝑄𝑐  

- Suitable for karst systems 

- Qc strengthens Coutagne 

model 

Drogue (1972) 𝑄𝑡 =
𝑄0

(1 + 𝛼𝑡)𝑛
 - Suitable for karst systems 

Mangin (1975) 𝑄𝑡 = 𝑄𝑅0ⅇ−𝛼𝑡 + 𝑞0

1 − 𝜂𝑡

1 + 𝜀𝑡
 

- Suitable for karst systems 

- Associated classification 

Kullman (2000) 𝑄𝑡 = ∑ 𝑄0𝑖ⅇ−𝛼𝑖𝑡

𝑘

𝑖=1

+ ∑ (
1

2
+

|1 − 𝛽𝑗𝑡|

2(1 − 𝛽𝑗𝑡)
) 𝑄0𝑗(1 − 𝛽𝑗𝑡)

𝑘

𝑗=1

 
- Suitable for karst systems 

- Associated classification 

With VDYN the dynamic volume and Van the interannual mean yearly volume of water discharged at the spring. 

The dynamic volume is calculated by integrating the exponential function: 

𝑉𝐷𝑌𝑁 = ∫ 𝑄𝑖ⅇ−𝛼𝑡𝑑𝑡 =
𝑄𝑖

𝛼

∞

0

 

With Qi the discharge at the time ti (ti being the time at which the flow is considered to be laminar and also 

the beginning of the non-influenced regime) and α the recession coefficient. In his work, Mangin (1975) 

suggested to characterize the capacity of dynamic storage with the maximum calculated VDYN, as it tends 

towards a stable value for a large number of analysed recession curves. The indicator i is used to characterize 

the capacity of a system to filter and attenuate the precipitation signal. It corresponds to the discharge 

attributed to the influenced regime (second component of the Mangin model, Table 2) two days after the 

flood peak. This discharge is expressed in relative proportion to the influenced discharge q0 and is calculated 

with the following equation: 

𝑖 =
1 − 2𝜂

1 + 2𝜀
 

With η a constant characterizing the speed of infiltration (η = 1/ti, with ti being the duration of the influenced 

stage) and ε a constant characterizing the concavity of the recession curve during the influenced stage. 

The classification initially proposed by Kullman (2000) and updated by Malík and Vojtková (2012) 

differentiate systems by their karstification degree. The methodology consists to reproduce a recession curve 

by fitting one to several equations (either exponential or linear) and calibrate the α and β parameters of each 

formula. The karstification degree is then deduced from a table based on the presence of different flow sub-
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regimes (i.e. the number and nature of the equations) and the value of the α and β parameters. It ranges from 

0.5 to 10 and is associated with a description of assumed structure of the system and karst groundwater 

circulation.  

3.3 Correlational and spectral analyses 

Correlational and spectral analyses are time series analyses that are used to study the frequency content of a 

signal (referred to as “simple analysis”) and relations between signals (referred to as “cross-analyses”) 

(Massei et al., 2006). The simple analysis consists of calculating the autocorrelation function of a signal and 

the corresponding spectrum (obtained using a Fourier transformation, the calculations are detailed in 

appendix A). The principle is to compare the signal with itself over an increasing time interval or shift 

(Jeannin and Sauter, 1998). The cross-analyses examine the transformation of the input signal into an output 

signal (Padilla and Pulido-Bosch, 1995). Signal analyses, mainly developed by Jenkins and Watts (1968), 

Hannan (2008), Brillinger (1975) and Box and Jenkins (1976), were first applied to karst hydrology by 

Mangin (1984). 

According to Mangin (1984), a karst system can be characterized by its response time to a unitary impulse 

(precipitation) and its inertia, which depends on both the volume of groundwater reserves and karstification 

degree of the karst system. 

Simple correlational and spectral analyses allow determining three indicators of karst hydrological 

functioning: (i) the memory effect (ME), which is the shift k for an autocorrelation coefficient rk of 0.2. It 

translates variation in discharge over time, and is directly related to the inertia of the karst system (Marsaud, 

1997); (ii) the regulation time (RT), which is the inverse of the bandwidth, i.e. the maximum ordinate of the 

spectrum divided by 2 (value of the integral of the function between 0 and +∞). It provides information on 

the duration of the influence of a unitary impulse (Larocque et al., 1998; Kovács, 2003), on the volume of 

groundwater reserves (Marsaud, 1997), and makes it possible to assess the overall organization of flows in 

the system (e.g., conduits, fractures, and cracks) (Jeannin and Sauter, 1998); (iii) the cut-off frequency or 

spectral band breadth (SBB), which corresponds to the frequency f at which the value of the spectrum sf 

becomes negligible. Beyond this frequency, the spectrum is equal to zero, and can be assimilated to noise 

(Jeannin and Sauter, 1998). The cut-off frequency provides information on the ability of the system to filter 

unitary pulses (Marsaud, 1997). The results provide a general idea of how a karst system works, with an 

emphasis on the inertia of the system and its capacity to attenuate the recharge signal. 

3.4 Analysis of classified discharges 

The analysis of classified discharges provides information on flow regimes within a system, based on 

discharge monitoring at the outlet of a karst system (Marsaud, 1997). Based on empirical observations, 

Mangin (1971) suggested that the distribution of discharges (or logarithm of discharges) from karst springs 

can be approximated by a half-normal Gaussian distribution (the calculations are detailed in appendix B). He 

concluded that the comparison between quantiles of measured discharges and quantiles given by the half-

normal distribution should follow a straight line. According to this theory, any discontinuities of the line 

(corresponding to an inflexion point) indicate inhomogeneity in the functioning of the system, below or above 

a certain range of discharge. Such changes can occur at low or high discharges, and may be positive or 

negative. The interpretation proposed by Mangin is based on an extremely strong hypothesis, which is that 

the statistical half-normal Gaussian distribution properly describes the distribution of discharges from karst 

springs under a “homogeneous functioning”. 

The method allows identifying particular events inherent in karst hydrology, e.g. overflow at outlet, leakage 

to another system, storage and emptying phenomena, time varying extent of the recharge catchment. It also 

allows assessing the quality of the gauging station (Grasso and Jeannin, 1994; Marsaud, 1997; Dörfliger, 

2010). 



 

9 

 

4 Analysis and selection of indicators of karst dynamics  

Analysis of discharge time series were performed for the 10 karst systems aforementioned (core dataset) 

based on methods detailed in Section 3, with the goal to select the most relevant indicators of karst systems 

hydrodynamics. 

4.1 Statistical indicators 

The results of the statistical analyses highlight the diversity of hydrological functioning of the core systems 

(Table 3). The mean discharge allows to distinguish systems with a low discharge (Aliou, Baget, Fontaine-

de-Nîmes, Mouline and Toulon), with a medium discharge (Durzon, Esperelle, Lods, and Mouthe), and with 

a large discharge (Fontaine-de-Vaucluse). Although the mean discharge is highly correlated with the 

dimensions of the catchment, it is also dependent of the precipitation and the hydrological functioning of the 

system. CV and SVC are highly correlated with a correlation coefficient R = 0.925 (p-value = 0.00012). Both 

can be related to the inertia of the system and allow to differentiate reactive systems (Aliou, Baget, Esperelle, 

Fontaine-de-Nîmes, Lods and Mouthe) from inertial systems (Durzon, Fontaine-de-Vaucluse, Mouline and 

Toulon). There is no evident relation between QS and the characteristics of the system. As the dimensions of 

the catchment are bypassed, we suppose that QS may be related to the karstification degree or the specific 

recharge (volume of water that goes to the aquifer, by unit area). As QS requires the knowledge about the 

area of the recharge catchment, which is either unknown or with high uncertainty, it is not retained as a 

relevant indicator for the classification. 

Table 3: Results of the statistical analyses for the core systems. 

System 
Mean 

discharge 

Minimum 

discharge 

Maximum 

discharge 
CV SVC QS 

 (m3.s-1) (m3.s-1) (m3.s-1) (%)  (mm.d-1) 

Aliou 0.45 0 28.91 190.4 32.1 3.20 

Baget 0.49 0.02 10.10 147.2 14.0 3.22 

Durzon 1.63 0.72 16.33 59.8 3.3 1.21 

Esperelle 1.11 0.16 14.50 139.8 11.8 1.05 

F-de-Nîmes (Fdn) 0.54 0 16.52 221.9 40.4 1.04 

F-de-Vaucluse (Fdv) 17.54 2.79 85 71.3 5.9 1.36 

Lods 1.01 0.15 8.54 127.2 19.6 2.48 

Mouline 0.51 0.19 3.15 45.7 2.6 1.37 

Mouthe 1.92 0.01 18.28 120.1 24.4 3.32 

Toulon 0.46 0.27 0.99 37.6 2.5 0.40 

4.2 Recession indicators 

The dynamics of a karst system can be either (i) at infra-day time scale, meaning that the system is reactive 

with fast variations in discharge of the order of an hour, or (ii) at daily time scale, meaning that the system 

has high inertia and changes in discharge can be assessed on a daily basis. A comparison of results issued 

from recession curves analysis performed on hourly and daily time series showed that, even for reactive karst 

systems, the daily time scale provides sufficient accuracy.  

We selected a total of 93 recession curves (Figure 2) from the overall time series of each system of the core 

dataset, with no distinction between seasonal or event-scale recessions, on the basis of the following 

conditions: (i) the peak flood discharge must be significantly high regarding the overall dynamics of the 

system. We suggest at least one tenth of the maximum discharge of the discharge time series, or greater than 

the interannual mean discharge. However, we do not exclude the eventuality of site-specific thresholds; (ii) 

there should be little or no disruption during the recession (e.g. precipitation leading to untimely peaks). In 

cases where the disruption was of short duration, data could be removed and replaced with a blank; and (iii) 

the recession must be complete, meaning it should include both the influenced regime and the entire non-

influenced regime (with some tolerance for high-inertia systems). In the specific case when karst spring 
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behaviour is influenced by a particular hydrological functioning (e.g. the activation of an overflow outlet) 

that appears on the recession curve as a bending point, our selection concerned only the last, unaffected part 

of the curve, including the end of the recession limb. This approach ensured that the models, which are not 

mean to fit curves with bending points other than the one between the influenced and non-influenced regime, 

were correctly calibrated. Information loss was relatively minor, as discharges that were excluded from the 

analysis only represented a tiny part of the overall flow. 

 

Figure 2 : Selected recession curves for each of the 10 karst systems. n corresponds to the number of recession curves identified over 

the available discharge time series of each spring (a total of 93 recession curves is considered). 

The bending point required for Mangin’s model (Mangin, 1975) was defined manually and corresponds to 

the time t when the non-influenced regime begins (when flow is considered as part of the non-influenced 

regime). 

Out of the 9 recession models presented in section 3.1.2, 4 models suit the study’s requirements (we identified 

them as relevant for karst hydrodynamics analysis but also easy to automate). They correspond to the models 
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from Drogue (1972), Coutagne (1948), Padilla et al. (1994) and Mangin (1975), and will be further referred 

as Hyperbolic, Coutagne, Padilla and Mangin models, respectively. We tested the 4 models by examining 

their performance in fitting all 390 observed recession curves of both core dataset and complementary dataset 

(Figure 3), and by performing a sensitivity analysis.  

 

Figure 3 : Comparison of the performance of the models with respect to observed discharge over all recessions of both core and 

complementary dataset: (A) Boxplot of relative errors for influenced and non-influenced flow regimes. (B) Boxplot of Nash-Sutcliffe 

Effiency (NSE). 

We found Hyperbolic, Padilla and Mangin models to be relatively successful in fitting the observed recession 

curves, although Padilla and Hyperbolic model significantly failed (NSE lower than 0) on 31 and 3 recession 

curves, respectively. This illustrates that Padilla and Hyperbolic models are not suitable for all the karst 

systems. The median relative error of Hyperbolic, Padilla and Mangin models are of 7.7%, 6.7% and 5.6%, 

respectively; with median NSE of 0.986, 0.989 and 0.995. Coutagne model showed a poor performance with 

a median relative error of 38% and a median NSE of 0.730. The sensitivity analyses revealed that Coutagne 

and Padilla models have equifinality issues for the parameters α and n, with only Qc having an optimum. On 

the other hand, the parameters of Hyperbolic and Mangin models have systematically an optimum. 

 

Figure 4 : Boxplot of the values of the indicators proposed by Mangin (1975) after analysing the spring discharge recession curves 

for each of the core systems: (A) i, (B) k, and (C) α. 

We selected Mangin model for the analysis of recession curves, as it provides a consistent and very good fit 

for all the recession curves (lowest NSE of 0.91), with a limited equifinality. Moreover, this model has been 

widely used for years and its indicators are well known by the community. Results show that these indicators 
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clearly differentiate among systems of the core dataset (Figure 4). The analysis of i values, which allow 

assessing the capacity of a system to filter and attenuate the precipitation signal, revealed a relationship 

between the value of this indicator, and the saturation state of the system (Figure 5), which corresponds to 

the volume of water stored in both the saturated and unsaturated zones. Variability in i can be a consequence 

of either (i) the volume of water already stored in the karst system when the recharge occurs (i.e. the influence 

of the saturation state on the system connectivity), but also (ii) the variability of the overall organization of 

flow and groundwater storage between matrix, fracture and conduits in the different compartments of the 

system. We therefore decided to take account of variability in i values (or lack thereof) as an additional 

information of karst system hydrological functioning, by including a new indicator based on the variance of 

i. 

 

Figure 5 : Variability in i for the core systems. The standardized ratio between the mean discharge of the month preceding the flood 

and the mean interannual discharge (Q1M) is used as a proxy of the saturation state of the system. 

As some systems have a small recession curves sample size (e.g. Toulon with only 2, Figure 2), a new 

indicator based on the standard deviation of i may be irrelevant. Therefore, we propose a new indicator IR 

based on the maximum and minimum i values observed on the recession curves sample: 

𝐼𝑅 = 𝑖𝑚𝑎𝑥 − 𝑖𝑚𝑖𝑛 

With imax and imin the maximum and minimum i values observed on the recession curves sample. 

4.3 Signal indicators 

The correlational and spectral analyses were performed with a sampling step of 1 day and a maximum offset 

m of 125 days, according to the suggestions of Mangin (1984) on short-term and long-term analyses. The 

short-term analysis can be performed on systems that have at least one continuous year of daily discharge 

recording. As the 10 core systems are all in the same climatic context according to the Köppen-Geiger climate 

classification, the starting date for the discharge time series was set as the beginning of the hydrological cycle 

(1 September) to consider the seasonality. 
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Table 4: Results of correlational and spectral simple analyses and interpretation of the classified discharges curve for the core systems. 

(A) Systems with no apparent, specific functioning; (B) systems in which the hydraulic or flow properties change beyond a certain 

discharge; (C) systems in which there is an activation of an overflow outlet, a discharge to another system, or a temporary storage of 

water that occur above a certain discharge. 

System 
ME 

(day) 

RT 

(day) 

SBB 

(day−1) 

Interpretation of the classified discharges curve 

Aliou 4.6 11.2 0.41 A 

Baget 17.6 24.4 0.34 A 

Durzon 49.9 41.4 0.24 A 

Esperelle 28.3 30.0 0.25 A 

F-de-Nîmes 18.9 17.8 0.33 B 

F-de-Vaucluse 81.4 67.8 0.13 B 

Lods 13.0 23.5 0.36 B, C 

Mouline 57.8 44.6 0.265 A 

Mouthe 7.9 11.7 0.415 C 

Toulon 101.8 86.1 0.08 B, C 

The results highlight the diversity of hydrological functioning of the core systems (Table 4). Aliou and 

Mouthe are very reactive systems that rapidly transfer a response proportional to the intensity and duration 

of unitary pulses (precipitation), with almost no dampening of the recharge signal. Because they exhibit a 

fast response to recharge events but are less reactive than the former, Baget, Fontaine-de-Nîmes and Lods 

are referred as low-inertia systems. Durzon, Esperelle and Mouline correspond to the category of medium-

inertia systems, which are able to filter a greater-or-lesser proportion of unitary pulses, and dampen the 

recharge signal. This category encompasses a wide variety of hydrological functioning, as the medium RT 

value may translate either (i) a medium inertia or (ii) a high variability of hydrological functioning with both 

high inertia and low inertia responses resulting in an average RT. Fontaine-de-Vaucluse and Toulon are 

considered as high-inertia systems, as they have a high filtration capacity and noticeably dampen the recharge 

signal. 

4.4 Indicators issued from the analysis of classified discharge 

Within the core dataset (Table 4), this analysis hints that there is no change in the hydrological functioning 

of 5 systems (Aliou, Baget, Durzon, Esperelle and Mouline), but that there might be hydraulic or flow 

properties changes beyond a certain discharge for 4 systems (Fontaine-de-Nîmes, Fontaine-de-Vaucluse, 

Lods and Toulon). For 4 other systems (Fontaine-de-Nîmes, Lods, Mouthe and Toulon), there might be an 

overflow outlet, discharge to another system or a temporary storage of water within the karst system when 

the discharge reaches a certain value. These interpretations are confirmed in the literature for Fontaine-de-

Nîmes (Maréchal et al., 2006), Fontaine-de-Vaucluse (Mangin, 1975), Lods, Mouthe (Cholet, 2017) and 

Toulon (Lorette et al., 2018).  

This analysis, whose interpretation requires prior knowledge of the system or field observations to be fully 

relevant, does not seem appropriate for the classification of karst systems. The method is based on a strong 

hypothesis that may not be suitable for all systems. Although some relevant indicators of functioning can be 

retrieved from this analysis (e.g. activation of an overflow outlet, flow to another system, …), the 

interpretation is overly influenced by (i) the quality of the discharge-water height relationship, and (ii) the 

subjective vision of the operator who is performing the analysis. Moreover, when there is poor or no prior 

knowledge of the functioning of a system, it is very difficult to identify the specific functioning behind a 

bending point on the curve (e.g. the difference between a bending point due to the activation of an overflow 

outlet, or due to uncertainties on ungauged discharges). Thus, we choose to not include the indicators of 

functioning retrieved from this analysis in the proposed methodology for the classification of karst system 

hydrological functioning. 
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5 Multivariate analyses 

The aim of this section is to gain insights into the dataset and the relations between indicators. We applied 

two unsupervised techniques on a dataset consisting of 9 variables and 10 observations. The observations 

correspond to the 10 core karst systems, and the variables are relevant quantitative indicators of functioning 

resulting from the application of the different methods of discharge time series analysis (excluding the 

indicators resulting from the analysis of classified discharge). The selected indicators are kmax, imean, IR, αmean, 

ME, RT, SBB, CV and SVC. Terms “max” and “mean” correspond to, respectively, maximum and average 

values of the indicator over all the recession analysed. 

5.1 Principal component analysis 
5.1.1 Principle 

Principal component analysis (PCA) is a multivariate method that aims to reduce the dimensions of an 

observation space by producing “principal components”, which are linear combinations of initial variables 

of a dataset that retains the most possible variation. Principal components are uncorrelated with each other 

(i.e. orthogonal to the previous one) and are ordered according to the amount of variance explained by the 

combination (Everitt and Hothorn, 2011). The results of a PCA can be seen as a small number of new 

variables that contains most of the information of a large number of initial variables. The interpretation of a 

principal component is realized by looking at the correlation between initial variables and the component, 

i.e. assessing the contribution of each variable. This analysis provides information on trends in the dataset 

and allows identifying eventual complementarity between initial variables.  

5.1.2 Results 

The results of the PCA are presented as a biplot of the first factorial plane (Figure 6), which explains 87.9% 

of the total variance of the dataset.  

The first principal component (PC1) is strongly correlated with all indicators except IR: (i) kmax informs about 

the capacity of dynamic storage, (ii) imean, ME, RT and SBB are related to the capacity to attenuate the 

precipitation signal, (iii) αmean characterizes the draining dynamic of the capacitive function and (iv) CV and 

SVC are about flow dynamics. Together, these indicators can be seen as characterizing the inertia of a system, 

which would correspond to the first principal component (PC1, 73.4% of variance explained). The second 

principal component (PC2, 14.5% of variance explained) is mainly correlated with IR and thus would reflect 

the variability of the hydrological response of a system. The third principal component (PC3, 5.8% of 

variance explained) is most correlated with αmean, which characterizes the draining dynamic of the capacitive 

function of a system. 

It is worth mentioning that the high correlation between several input parameters (e.g. CV and SVC) may 

have a substantial effect on the PCA results, particularly on the variance explained by the principal 

components (i.e. PC2 and PC3 could have had a higher variance), by overemphasizing the contribution of 

redundant indicators. 

Systems from the core dataset are mostly scattered along PC1 with rather inertial systems on the positive part 

(e.g. Fontaine-de-Vaucluse, Toulon) and reactive systems on the negative part (e.g. Aliou, Mouthe), and to 

a lesser extent along PC2 with “highly variable hydrological response” systems on the positive part (e.g. 

Esperelle, Durzon, Mouline) and “more regular, steady hydrological response” systems on the negative part 

(e.g. Fontaine-de-Vaucluse, Toulon). 
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Figure 6 : Biplot of the first two principal components PC1 and PC2 resulting from the PCA performed on the dataset (9 variables 

for 10 observations). The points correspond to the PC1 and PC2 scores of each observation (i.e. karst systems). The arrows represent 

the correlation of the variables (i.e. indicators of functioning) with PC1 and PC2. The brown circle indicates the theoretical maximum 

extent of the arrows. Clusters (colours) are referring to the results of the hierarchical clustering performed on the dataset (see section 

5.2). 

5.2 Clustering 
5.2.1 Principle 

The purpose of data clustering is to identify clusters that contain observations or objects with similar 

characteristics (Jain et al., 1999; Govender and Sivakumar, 2020). Clustering analysis can be used to identify 

archetypes, and offer a better understanding of the structure within a dataset (Halkidi, 2001). This technique 

is considered unsupervised, because it is not based on predefined classes or examples that would give an idea 

of the structure of the dataset (Berry and Linoff, 1996). 

We selected a Ward hierarchical clustering method for performing the analysis, which consists of a 

succession of binary fusions that minimize between-cluster variance until one cluster remains (Murtagh, 

2014). The Ward distance is equal to (Tufféry, 2011): 

𝐷(𝐴, 𝐵) =
𝑑(𝑎, 𝑏)2

𝑛𝐴
−1 + 𝑛𝐵

−1 

With D the Ward distance between two clusters A and B that have centers of gravity a and b and frequencies 

nA and nB. The analysis was realized with standardized data and Euclidean distance as measure of 

dissimilarity, which is calculated with the following equation: 
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𝑑𝑒𝑢𝑐(𝑥, 𝑦) = [∑(𝑥𝑗 − 𝑦𝑗)
2

𝑑

𝑗=1

]

1
2

 

With d the distance between two points x and y of a d-dimensional dataset, and xi and yi the values of the jth 

attribute of x and y, respectively (Gan et al., 2007).  

This method is suitable for clusters of different sizes and shapes and provides a graphical representation 

(dendrogram) which helps for understanding the clusters structure and how they are connected. The main 

advantages over a non-hierarchical method are (i) that it is not necessary to know the number of clusters prior 

to the analysis, and (ii) that the results do not depend on the choice of initial clusters (Tufféry, 2011).  

A way to assess whether a variable is relevant to characterize a cluster is to realize a value-test or v-test 

(Lebart et al., 1984). For a given quantitative variable, it involves in comparing the mean x̅k for this variable 

of a particular cluster k to the overall mean X̅, with the formula: 

𝑣 =
𝑥𝑘̅̅ ̅ − �̅�

√
𝑠2

𝑛𝑘
(

𝑁 − 𝑛𝑘
𝑁 − 1

)

 

With v the result of the test, s² the overall standard deviation, N the total number of observations and nk the 

number of observations in the cluster k. A value of |v| greater than 1.96 corresponds to a p-value less than 

0.05, which rejects the following hypothesis: the mean of the particular cluster is equal to the overall mean 

(Lebart et al., 1984). In this case, the variable is relevant to describe the group of observations in the cluster. 

5.2.2 Results 

Results are presented as a dendrogram. Four relevant clusters (corresponding to two majors clusters) have 

been identified (Figure 7). There is a great similarity between clusters and PCA results (Figure 6). 

A v-test was performed to assess the indicators that best characterize each cluster (Appendix C, Table C1). 

The major clusters A and B are differentiated on the basis of the following indicators: kmax, ME, CV, RT, imean, 

SBB, SVC and αmean (in order of importance), which are related to the capacity of dynamic storage and inertia 

of a system. According to the sign of the v-test results, cluster A includes reactive systems, with low to 

medium capacity of dynamic storage and cluster B includes inertial systems, with higher capacity of dynamic 

storage. The systems from cluster 1 are characterized by a high αmean value, corresponding to a fast draining 

of the capacitive function. None of the indicators clearly characterize the systems in cluster 2. The systems 

in cluster 3 are characterized by a high IR value, corresponding to a high variability of the hydrological 

response. The systems in cluster 4 are characterized by very high RT, ME and imean and a very low SBB, 

corresponding to a high attenuation capacity of the precipitation signal. 
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Figure 7 : Dendrogram resulting from the Ward’s hierarchical clustering performed on the dataset (9 variables for 10 observations). 

The X-axis gives the distance between observations and/or clusters. The nodes (or vertical bars) indicate at which value two 

observations and/or clusters are merged. Four relevant clusters (1, 2, 3 and 4) are identified with different colours, and “major” 

clusters A and B correspond to the merging of clusters 1-2 and clusters 3-4, respectively. 

5.3 Confrontation of the results with the actual knowledge of the functioning of the systems 

PCA and clustering gave similar insight into the functioning of the 10 core karst systems. Two major clusters 

were identified (A and B, Figure 7): (i) cluster A is characterized by systems with a highly reactive 

functioning, which can be divided into two sub clusters (1 and 2) by looking at the draining dynamic of the 

capacitive function; (ii) cluster B is characterized by systems with inertial functioning, and can be divided 

into two sub clusters (3 and 4) by looking at the variability of the hydrological functioning (Figure 6, Figure 

7).  

The hydrological response of Aliou and Baget corresponds to well karstified systems (Mangin, 1984), which 

is consistent with their position in the major cluster A. The karst conduits network induces floods of short 

duration, that can have a high amplitude (Mangin, 1975), with a response time estimated to 7h after a 

precipitation event for Aliou and 14h for Baget (Sivelle et al., 2019). Sivelle et al. (2019) also found lower 

transfer coefficients for Baget in their reservoir modelling study. These results on the two systems support 

the difference between both clusters (1 for Aliou and 2 for Baget), as Aliou is characterized by a faster 

draining dynamic. 

Cross-correlational analyses between precipitation and discharge performed by Cholet (2017) on Lods and 

Mouthe systems showed low response times (17h and 10h, respectively) and high peak values (0.3 and 0.41, 

respectively), which are characteristics of a very reactive functioning. On Mouthe system, the higher draining 

dynamic of the capacitive function (cluster 1) is consistent with both the lower response time and higher peak 

value of the cross-correlation function than the ones obtained on Lods system (cluster 2). 

Fontaine-de-Nîmes is a reactive karst system with a moderate degree of karstification (Maréchal et al., 2006). 

The hydrological response is fast due to a high infiltration rate and a fast water transfer in a well-developed 

conduits network (Maréchal et al., 2008), which corresponds to the characteristics of cluster A. Fleury et al. 
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(2013) found that the draining of the saturated zone was slow, which is consistent with the position of the 

system in cluster 2.  

Esperelle karst system is described as significantly fractured (Moussu, 2011), and characterized by both a 

high impulse response height and dampened recession (Pinault et al., 2001). This description is consistent 

with the one of cluster 2, which consists of reactive systems with moderate draining of the capacitive 

function. 

Durzon, Mouline, Fontaine-de-Vaucluse and Toulon systems are included in the cluster B. Mouline is 

considered as a complex karst system, with long response times despite presence of flush flow effect that 

induces a quick transfer during winter (Pinault et al., 2001). Although there is no explanation for quick 

transfer in Durzon system, we can suppose that its functioning is similar to Mouline as it is located in the 

same area. The existence of both slow and fast dynamics on these systems depending on recharge event 

and/or geometrical structure highlights a high variability of hydrological functioning, which is characteristic 

of cluster 3. Fontaine-de-Vaucluse and Toulon are differentiated in another cluster (cluster 4) due to the low 

variability of their hydrological functioning. The high inertia and homogeneous response of the Fontaine-

Vaucluse system can be explained by the thickness of the non-saturated zone (800 m in average) and the 

large area of its catchment, estimated to be about 1160 km2 (Ollivier et al., 2019). The Toulon system, defined 

as a complex karst system by Lorette et al. (2018), is a multi-layer system with the discharge of an 

unconfined, fractured and karstified aquifer that is permanently fed by another confined aquifer. This 

continuous alimentation can explain the mostly homogeneous response of the system. 
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6 Proposal of a classification of karst systems hydrological functioning 

In this section, we first present the classification based on the results of multivariate analyses. The 

classification is then applied on both core and complementary datasets to assess the relevance of the 

approach, regarding (i) the coherence with the well-known hydrological functioning of the karst systems in 

the core dataset, and (ii) the distribution of karst systems among the different classes from a worldwide 

perspective. 

6.1 Classification of karst systems according to various types of hydrological 

functioning 

The exploration realized with PCA and clustering confirmed the expected relations between the functioning 

of karst systems and indicator values. In both methods, karst systems are first differentiated from two main 

aspects: their capacity of dynamic storage and their capacity to attenuate the precipitation signal. The former 

is expressed through kmax and the latter through imean, RT, ME and SBB (n.b. the absolute values of the Pearson 

correlation coefficients of each pair are greater than 0.85, suggesting strong correlations). We chose the 

indicator RT to characterize the capacity to attenuate the precipitation signal (further referred as global 

inertia, as it considers the overall organization of flows in the system, the shape and the dimensions of the 

catchment and the saturation state of the system). Indeed, this indicator is more relevant than (i) imean, which 

is biased by the number of available recession curves, and (ii) ME and SBB because their assessments are 

somehow questionable as they rely on an arbitrary threshold and a subjective evaluation, respectively. A 

second element of differentiation between karst systems is the draining dynamic of the capacitive function 

of a system with the αmean indicator. In this case, the mean of α values seems relevant due to the relatively 

low amplitude of the values for a given system (Figure 4C). A third element of differentiation between 

systems is the variability of the hydrological response by quantifying the variability of i with the IR indicator.  

 

Figure 8 : Flowchart for the classification of karst systems based on three indicators issued from the recession curves analysis. 

The proposed classification thus relies on the following three main characteristics of the hydrological 

functioning: (i) the capacity of dynamic storage, (ii) the draining dynamic of the capacitive function, and (iii) 

the variability of the hydrological response. These characteristics are assessed using (i) kmax, (ii) αmean, and 

(iii) IR indicators, respectively. Based on these 3 distinct characteristics of hydrodynamic behaviour, six 

classes are proposed to discriminate the hydrological functioning of karst systems (Table 5, Figure 8): (i) C1: 
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Poor capacity of dynamic storage, with fast draining of the capacitive function and substantial variability of 

hydrological functioning; (ii) C2: Poor capacity of dynamic storage, with fast draining of the capacitive 

function and low variability of hydrological functioning; (iii) C3: Poor capacity of dynamic storage, with 

moderate draining of the capacitive function and substantial variability of hydrological functioning; (iv) C4: 

Poor capacity of dynamic storage, with moderate draining of the capacitive function and low variability of 

hydrological functioning; (v) C5: Noticeable capacity of dynamic storage, with slow draining of the 

capacitive function and substantial variability of hydrological functioning; and (vi) C6: Noticeable capacity 

of dynamic storage, with slow draining of the capacitive function and low variability of hydrological 

functioning. 

Table 5: Characterization of the karst systems hydrological functioning for the six defined classes, in terms of capacity of dynamic 

storage, draining dynamic of the capacitive function, and variability of the hydrological response, with the corresponding indicator 

values. 

Class Capacity of dynamic storage 
Draining dynamic of the 

capacitive function 

Variability of the 

hydrological response 
kmax αmean IR 

C1 Very low to medium Fast Medium to high ≤0.4 ≥0.03 ≥0.25 

C2 Very low to medium Fast Low to medium ≤0.4 ≥0.03 <0.25 

C3 Very low to medium Moderate  Medium to high ≤0.4 <0.03 ≥0.25 

C4 Very low to medium Moderate Low to medium ≤0.4 <0.03 <0.25 

C5 Medium to high Moderate to slow Medium to high >0.4 <0.03 ≥0.25 

C6 Medium to high Moderate to slow Low to medium >0.4 <0.03 <0.25 

We chose to not include the indicator RT in the classification methodology, as it seems that the global inertia 

of a karst system is relatively independent of its main characteristics of functioning, especially for systems 

in C3, C4, C5, and C6 (Figure 9B). 

The proposed classification is based on recession parameters derived from Mangin’s model for recession 

simulation. This model gave good simulations results over the 78 catchments considered in this study. 

However, the good performance of this model should be checked before any use of the classification over 

other systems. To gain insights into the functioning of such systems, we recommend the operators to make 

use of correlational and spectral analyses, or analysis of classified discharges, which can already give relevant 

information about global inertia and functioning of a system. 

6.2 Application of the proposed methodology to 78 karst systems 

The classification was applied on the complementary dataset presented in 2.2 and composed of 68 karst 

systems, plus the 10 core systems for a total of 78 karst systems (Figure 9A).  

The most represented class is C3, which represents systems with a very low to medium capacity of dynamic 

storage, a moderate to slow draining of the capacitive function and a medium to high variability of the 

hydrological response. About 74% of the systems are characterized with a very low to medium capacity of 

dynamic storage (C1, C2, C3 and C4), 26% have a fast draining of their capacitive function (C1 and C2) and 

67% have a medium to high variability of the hydrological response (C1, C3 and C5). 

RT was calculated for each system (except for 1 system in C3 and 4 systems in C2 with too much gaps in the 

time series), with means of 19.5, 13.9, 31.8, 41.4, 43.8 and 46.3 days for, respectively, C1, C2, C3, C4, C5 

and C6 (Figure 9B). The small increase of RT throughout the classes is consistent given the functioning 

description of each class (C1 being the most reactive and C6 the most inertial). The smaller mean in C2 is 

related to the structure of the classification: a high IR in C3 and C5 means that the hydrological response can 

be more reactive than expected, whereas in C1 it means that the hydrological response can be more inertial 

than expected. It results in a higher RT mean in C1 (over C2) as it includes systems with potential inertial 

responses. Finally, we observed that RT is biased for systems with long dry periods (Saint-Pierre or Lez 

systems, the latter being under anthropic influence), thus it is suggested to not calculate this indicator for 

these systems. 
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The systems are spread across all classes and types of hydrological functioning. It means that, even applied 

on a wider dataset, there is a relative representativeness of all classes and types of hydrological functioning. 

The spread of the 10 core systems between the six classes somehow confirms the respect of the second criteria 

for spring selection (diversity of the hydrological functioning among the karst systems, see section 2.1) and 

the relevance of the proposed classification. 

 

 

Figure 9 : Results of the classification for the systems in the core and complementary datasets. (A) The 6 classes are depicted on the 

x-axis and the number of systems by class on the y-axis. The colour is related to the capacity of dynamic storage, the outline is related 

to the draining dynamic of the capacitive function and the pattern is related to the variability of the hydrological response. (B) On 

the right-upper side, the boxplot shows the distribution of RT among the systems. 

7 Discussion 

The aim of this section is to take a step back on the methodology by questioning some of its limitations and 

assessing their impact on the relevance of the classification. 

7.1 Influence of the length of the time series on the classification 

We performed a sensitivity analysis in order to assess the reliability of the classification regarding discharge 

time series of short length. For 9 systems of the 10 core systems (Toulon was not considered as there is only 

5 years of monitoring), we defined 7 scenarios that range from 1-year (Y1) to 7-years (Y7) length of the 
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discharge time series. The classification methodology was then applied on each scenario in order to compare 

the results to those obtained with the full-length (FL) discharge time series (Table 6). 

The accuracy of each indicator increases with the length of the time series (Figure 10). kmax is the most 

consistent with a steady decrease throughout the years in the deviation to the kmax value obtained for the full-

length time series (FL indicator). αmean becomes more stable and probably more reliable from Y5 even though 

it does not show any significant increase in precision for Y6 and Y7. IR is highly uncertain for the shorter 

time series (<Y4) but stabilizes from Y5 and become relevant for Y6 and Y7. 

 

Figure 10 : Boxplot of the mean relative error of each indicator across 9 core systems and for the different scenarios, regarding the 

indicators issued from the analysis of the full-length discharge time series. Each indicator on the x-axis is associated with 7 boxes 

that are sorted from shorter (left) to wider (right) length. 

Aliou, Baget, Durzon and Mouline were correctly classified from Y2 (Table 6), Esperelle and Mouthe from 

Y5 and Y6, respectively, while Fontaine-de-Nîmes, Fontaine-de-Vaucluse and Lods were not consistently 

classified at all. The results emphasize the benefits of long-term monitoring (as there are more chances of 

observing multiple flood events, as well as different meteorological conditions), but also highlight several 

limitations: 

• The classification is not reliable if only one recession curve is considered, as IR would be  

• When the indicator is close to the threshold, it can mislead the classification (e.g. Esperelle and 

Fontaine-de-Nîmes, for which the variability in αmean can be explained by either a highly variable or 

a complex hydrological functioning, respectively); 
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• As the maximum observed discharge Qmax can change over time, this can affect the recession curves 

selection, since only recessions with a peak flood discharge of at least one tenth of the maximum 

observed discharge are considered for the analysis (e.g. Fontaine-de-Nîmes with Qmax that went from 

8.2 to 16.5 m3.s-1 from Y1 to Y3);  

• As the mean interannual discharge Qmean may vary over years, this can induce an evolution of kmax 

value and thus modify the class of the karst system when the value is close to the threshold (e.g. 

Fontaine-de-Vaucluse, for which kmax oscillate around the 0.4 threshold with changes in Qmean during 

the years, despite being issued from the same recession curve). 

Table 6: Results of the classification performed on the different scenarios of discharge time series of different length (from 1 to 7 

years, Y1 to Y7). For each scenario, there are details about the results of indicators kmax, αmean, IR, the corresponding class, and the 

number of recession curves considered in the analysis. The full-length (FL) column corresponds to the results on the classification 

on the whole discharge time series. 

System Indicator Y1 Y2 Y3 Y4 Y5 Y6 Y7 FL 

Aliou 

kmax 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 

αmean 0.127 0.127 0.115 0.090 0.084 0.083 0.086 0.067 

IR 0.02 0.02 0.04 0.18 0.18 0.18 0.18 0.18 

Class 2 2 2 2 2 2 2 2 

R. num 2 2 3 6 7 8 10 12 

Baget 

kmax 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.08 

αmean 0.032 0.028 0.026 0.026 0.028 0.028 0.027 0.021 

IR / 0.07 0.07 0.07 0.09 0.09 0.13 0.23 

Class / 4 4 4 4 4 4 4 

R. num 1 2 3 3 5 6 7 13 

Durzon 

kmax 0.54 0.63 0.68 0.72 0.75 0.76 0.75 0.78 

αmean 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 

IR / 0.51 0.68 0.68 0.68 0.68 0.68 0.70 

Class / 5 5 5 5 5 5 5 

R. num 1 3 5 7 8 9 10 10 

Esperelle 

kmax 0.14 0.09 0.10 0.11 0.12 0.12 0.12 0.13 

αmean 0.030 0.034 0.034 0.034 0.029 0.029 0.027 0.022 

IR 0.55 0.57 0.57 0.57 0.57 0.57 0.57 0.62 

Class 3 1 1 1 3 3 3 3 

R. num 3 5 7 7 9 9 10 11 

F-de-

Nîmes 

kmax 0.01 0.06 0.04 0.04 0.05 0.05 0.05 0.09 

αmean 0.035 0.023 0.035 0.035 0.031 0.031 0.031 0.021 

IR / 0.36 0.21 0.21 0.25 0.25 0.25 0.25 

Class / 3 2 2 1 1 1 3 

R. num 1 2 2 2 3 3 3 6 

F-de-

Vaucluse 

kmax 0.38 0.35 0.37 0.41 0.35 0.35 0.37 0.40 

αmean 0.003 0.004 0.005 0.005 0.005 0.005 0.005 0.005 

IR / 0.10 0.10 0.10 0.13 0.13 0.13 0.14 

Class / 4 4 6 4 4 4 6 

R. num 1 2 3 4 5 6 7 9 

Lods 

kmax 0.03 0.08 0.09 0.08 0.08 0.08 0.07 0.09 

αmean 0.029 0.018 0.018 0.016 0.021 0.020 0.021 0.021 

IR / 0.02 0.02 0.18 0.18 0.22 0.22 0.28 

Class / 4 4 4 4 4 4 3 

R. num 1 3 3 6 7 10 10 11 

Mouline 

kmax 0.58 0.49 0.54 0.55 0.57 0.56 0.56 0.59 

αmean 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

IR / 0.43 0.58 0.59 0.59 0.59 0.59 0.60 

Class / 5 5 5 5 5 5 5 

R. num 1 3 6 7 8 8 8 9 

Mouthe 

kmax 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

αmean 0.060 0.060 0.064 0.064 0.064 0.061 0.061 0.059 

IR 0.08 0.11 0.11 0.11 0.11 0.25 0.25 0.33 

Class 2 2 2 2 2 1 1 1 

R. num 3 5 6 6 6 8 8 10 
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Based on these results, we suggest working with at least 3-years length discharge time series for the 

classification. These 3 years should be taken as a guideline and may differ notably depending on the system's 

dynamics. Indeed, very reactive systems may require only a few years for a definitive classification thanks 

to their high hydrodynamic variability, while the minimum length of the discharge time series required to 

reach satisfying classification may increase for very inertial systems. However, it remains appropriate to 

work with shorter time series when there is no alternative. Our analysis shows that 7 out of 9 systems are 

correctly or almost correctly classified at Y2 if we include those that are close to the threshold (Table 6). 

7.2 Evaluation of the distance between a system and other classes 

The uncertainties related to either (i) the length of the discharge time series, or (ii) the indicators that are 

close to the threshold, can be addressed by estimating the distance to the other classes. The distance Ds-C of 

a system s to an adjacent class C is measured with the following equation: 

𝐷𝑠−𝐶 =
|𝐼𝑡ℎ − 𝐼𝑐𝑎𝑙𝑐|

𝐼𝑡ℎ
 

Where Icalc corresponds to the calculated value of a given indicator and Ith corresponds to its threshold value. 

The indicator to consider in the calculation is the one that is critical for the class definition (i.e. corresponding 

to the junction in the flowchart). A distance D lower or equal to 0.1 (10%) can be considered as close to the 

threshold. As the distance increase, the system is not likely to be related with the involved class. 

 

Figure 11 : Distribution of the 78 systems according to each pair of indicators: (A) αmean vs. kmax, (B) IR vs. kmax, and (C) IR vs. αmean. 

The colours correspond to the different classes. 

In relation to the structure of the classification, there is no need to calculate the distance between classes 1-5 

and classes 2-6, as it is highly uncertain that a system has both a kmax higher than 0.4 and a αmean greater or 

equal than 0.03 (hatched area, Figure 11A). The formula allows for calculating the distance between (i) 

classes 1-2, 3-4 and 5-6 with IR, (ii) classes 1-3 and 2-4 with αmean, and (iii) classes 3-5 and 4-6 with kmax. 

The distance between diagonal classes can be calculated by applying the Pythagorean Theorem: 

𝐷𝑠−𝐶 = √𝐷𝑠−𝐶𝑥
2 + 𝐷𝑠−𝐶𝑦

2 

Where x and y correspond to two different classes. The formula allows for calculating distance between (i) 

classes 1-4 and 2-3 with αmean and IR (Figure 11C), and (ii) classes 3-6 and 4-5 with kmax and IR (Figure 11B). 

These notions of distances can be more easily appreciated on the Figure 12, which shows the 3-dimensional 

distribution of the karst systems in the kmax, αmean and IR space. 
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Table 7: Distance to the other classes for the 10 core karst systems. 

System Class 
Distance to 

C1 C2 C3 C4 C5 C6 

Aliou C2 0.27 0 1.25 1.22 / / 

Baget C4 0.32 0.31 0.08 0 0.81 0.81 

Durzon C5 / / 0.95 2.04 0 1.81 

Esperelle C3 0.27 1.52 0 1.50 0.68 1.64 

F-de-Nîmes C3 0.30 0.30 0 0.01 0.76 0.76 

F-de-Vaucluse C6 / / 0.46 0.004 0.46 0 

Lods C3 0.31 0.33 0 0.13 0.78 0.80 

Mouline C5 / / 0.47 1.49 0 1.42 

Mouthe C1 0 0.31 0.98 1.03 / / 

Toulon C6 / / 1.48 1.43 0.39 0 

To complement the discussion in section 7.1 related to the “close to the threshold” systems, we calculated 

the distance to other classes for the 10 core karst systems (Table 7). The results highlight that (i) Baget is 

close to C3, (ii) Fontaine-de-Nîmes is close to C4 and (iii) Fontaine-de-Vaucluse is close to C4. Regarding 

the 78 systems, only 12 systems are close to a threshold with a distance to another class lower or equal than 

0.1. 

 

Figure 12 : 3D distribution of the 78 systems according to each indicator. The associated rectangles show the boundaries of each 

class. The colours correspond to the different classes. 

This distance measure allows reflecting on the classification results by highlighting potential threshold issues. 

Thus, we can tell if a system is clearly into a said class, or is close to one or two classes. 
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7.3 Beyond the classification 

Correlational, spectral and classified discharges analyses can be performed post-classification to really 

exploit the maximum of information that can be obtained by analysing the discharge time series, in order to 

get a deeper knowledge of the functioning of a system. 

We propose to use RT as an additional indicator to complement the above-described classification and to 

gain further insights into the global inertia of a karst system. We defined four ranges: (i) lower or equal than 

15 days; (ii) greater than 15 days and lower or equal than 30 days; (iii) greater than 30 days and lower or 

equal than 45 days; and (iv) greater than 45 days, which are referred as (i) low, (ii) medium, (iii) high, and 

(iv) very high global inertia, respectively. 

In a similar manner, we propose to perform the visual interpretation of the curve of classified discharges after 

the classification to have additional information about the presence or absence of major specific functioning. 

For example, HR_0020 system has a kmax of 0.07, an αmean of 0.021 day-1, and an IR of 0.34, corresponding 

to C3 (Appendix D). HR_0020 is thus described as a system with a very low to low capacity of dynamic 

storage, a fast draining of the capacitive function and a medium to high variability of the hydrological 

response. The regulation time of 15.5 days indicates that the system has a medium capacity to attenuate the 

precipitation signal (or medium global inertia). The bending point on the curve of classified discharges at 1.8 

m3.s-1 may be due to the activation of an overflow outlet, a discharge to another system, or a temporary 

storage of water. The one at 30 m3.s-1 may translate the same processes, but it is not excluded that it can be 

related to uncertainties on ungauged discharges. 

8 Conclusion 

Our objective was to propose a new classification of karst systems hydrological functioning based on the 

analysis of spring discharge time series that is representative of a wide diversity of karst systems. Several 

methods were considered to identify indicators of functioning. Multivariate analyses allowed the 

identification of relevant indicators that allow distinguishing the analysed karst systems. Three indicators 

were identified as the most relevant indicators and thus retained to characterize karst systems and propose a 

classification into six different types of hydrological functioning. The hydrological functioning of karst 

systems was distinguished according to their capacity of dynamic storage, the draining dynamic of their 

capacitive function and the variability of their hydrological functioning. The classification can be completed 

with two additional analyses to characterize the global inertia and highlight the presence or absence of major 

specific functioning.  

The challenge of developing a relevant classification was addressed (i) by considering a core dataset of karst 

systems with a high diversity of hydrological functioning, (ii) by selecting the most relevant indicators of 

hydrological functioning and proposing a classification based on multivariate analyses, and (iii) by testing 

the relevance of the classification on spring discharge time series of 78 karst systems located worldwide. 

As the methodology requires only spring discharge time series, which is the most common monitored data, 

and gives relevant results with only few years of monitoring, the classification can be used in scarce-data 

contexts. It can thus be seen as a modern tool for the classification of karst systems hydrological functioning, 

which provides researchers and stakeholders with a first insight into karst system functioning based on 

accessible and straightforward analyses. We emphasize that the proposed typology first aims to describe the 

hydrological functioning of a system where one single hydrodynamic response to precipitation impulse is 

expected, but remains useful even when two or more responses are observed. 

One perspective of this work would be to provide a database that allows both comparing the hydrological 

functioning of several karst systems and then proposing a link between the developed classification and the 
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design of lumped parameter models. Research perspectives include the study of the relation between 

classification and the relevant structures and parameters of models for rainfall-discharge simulation. 
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Appendices 

A. Calculation details for the correlational and spectral analyses 

The autocorrelation function rk is calculated with the following equation: 

𝑟𝑘 =
𝐶𝑘

𝐶0
 

With the autocovariance function Ck: 

𝐶𝑘 =
1

𝑛
∑(𝑥𝑖 − �̅�)(𝑥𝑖+𝑘 − �̅�)

𝑛−𝑘

1

 

With k the shift (0, 1, 2, …, m), n the length of the series, m the maximum shift possible (generally m < n/3), 

xi the ith element of the series, xi+t the (i+t)th element of the series and x̅ the mean of the series. The correlogram 

correspond to the plot of rk versus k. 

The spectrum sf is calculated with the following equation: 

𝑠𝑓 = 2 [1 + 2 ∑ 𝐷𝑘𝑟𝑘𝑐𝑜𝑠 (2𝜋𝑓𝑘)

𝑚

𝑘=1

] 

With f the frequency (f = j/2m for daily timestep), rk the autocorrelation function and Dk a weighting function 

(Tukey-Hanning window) to ensure that the estimated sf is not biaised (Mangin, 1984): 

𝐷𝑘 =
1 + 𝑐𝑜𝑠 (

𝜋𝑘
𝑚

)

2
 

The spectrum is represented on a plot of sf versus f.  

B. Calculation details for the analysis of classified discharges 

The procedure to obtain the curve of classified discharges involves in (i) the quantiles calculation of the 

empirical distribution function, (ii) the calculation of the corresponding variable from the reference 

distribution function, (iii) the graphical representation of the relation between the quantiles of the empirical 

and reference distribution functions, and (iv) the choice of the x-axis scale, either arithmetic or logarithmic 

(corresponding to a normal or log-normal adaptation of the reference distribution, respectively). 

The repartition function corresponding to the cumulative probability density regarding the standard normal 

distribution is: 

𝑃(𝑋 ≤ 𝑧) =
1

2
[1 + ⅇ𝑟𝑓 (

𝑧

√2
)] 

For a half-Gaussian distribution: 

𝑃(𝑋 ≤ 𝑧) = ⅇ𝑟𝑓 (
𝑧

√2
) 
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The observed discharges are plotted on the x-axis of the quantile-quantile plot. 

C. Results of the v-test applied on clusters A, B, 1, 2, 3 and 4. 

Table C.1: Results of the v-test applied on clusters A, B, 1, 2, 3 and 4, with values of each indicators of functioning. Bold entries 

highlight values for which the p-value is less than 0.05. The sign of the v-test value indicates if the mean of the cluster is lower or 

greater than the overall mean. 

Indicator of functioning 
v-test value 

Cluster A Cluster B Cluster 1 Cluster 2 Cluster 3 Cluster 4 

αmean 2.00 -2.00 2.65 -0.17 -1.18 -1.26 

kmax -2.59 2.59 -1.28 -1.55 1.58 1.59 

imean -2.33 2.33 -1.76 -0.89 0.63 2.22 

IR -0.57 0.57 -0.67 -0.02 2.15 -1.45 

CV 2.47 -2.47 0.95 1.69 -1.53 -1.50 

SVC 2.23 -2.23 1.42 1.07 -1.44 -1.30 

ME -2.54 2.54 -1.43 -1.37 0.71 2.41 

RT -2.39 2.39 -1.48 -1.18 0.43 2.50 

SBB 2.26 -2.26 1.75 0.83 -0.40 -2.37 
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D. Graphical summary of the typology of HR_0020 karst system (WoKaS database, 

Olarinoye et al., 2020) 

 

Figure D1 : Graphical summary of the typology of HR_0020 karst system (WoKaS database, Olarinoye et al., 2020). 

 


