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Stability properties of dissipative evolution equations with

nonautonomous and nonlinear damping

Serge Nicaise∗

October 21, 2021

Abstract

In this paper, we obtain some stability results of (abstract) dissipative evolution equations
with a nonautonomous and nonlinear damping using the exponential stability of the retrograde
problem with a linear and autonomous feedback and a comparison principle. We then illustrate
our abstract statements for different concrete examples, where new results are achieved. In a
preliminary step, we prove some well-posedness results for some nonlinear and nonautonomous
evolution equations.

AMS (MOS) subject classification: 35L90, 93D15
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1 Introduction

Stability of evolution equations of hyperbolic type with linear or nonlinear autonomous feedbacks
has been the object of many works. Let us quote the stability of the wave equation [29, 30, 32,
33, 35, 40, 64], of the elastodynamic system [1, 8, 18, 19, 20, 22, 36, 61], of the Petrovsky system
[17, 33, 34], of Mawxell’s system [5, 15, 31, 54, 59] or combination of them [13, 25, 53], see also
the references cited in the aforementioned works. On the contrary the case of nonautonomous
damping is less considered in the literature, let us quote [14, 23, 45, 46, 47, 49, 50, 51, 60] for the
wave equation and [6, 7] for the Lamé systems.

In the nonautonomous case, even if some similarities appear in the long time behavior of the
solution, the proof is always made for each particular examples. Hence, our main idea is to treat the
stability of (abstract) evolution equations of hyperbolic type with nonautonomous and nonlinear
damping by adapting an approach that was successfully used in the autonomous case in [52, 54],
namely use Liu’s principle and a comparison principle that goes back to [39] and was improved in
[14]. Liu’s principle consists in estimating the energy of the direct system by some terms related to
the feedbacks using a retrograde system with final data equal to the final data of the direct system.
These terms are then estimated using the exponential stability of the inverse (retrograde) problem
with a linear feedback (based on Russell’s principle) and a comparison principle. This principle
consists in estimating the energy of the systems by the solution of a nonlinear and nonautonomous
ODE. Furthermore, our goal is to present an abstract setting leading to the stability of the abstract
(non linear and non autonous) system as soon as the retrograde linear and autonomous system
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is exponentially stable. Our setting is chosen as large as possible to include all examples of the
aforementioned papers concerning nonautonomous damping and allowing new applications. The
strength of our approach lies in the fact that the stability results (with general feedbacks) are only
based on the exponential stability of the retrograde system with a linear and autonomous feedback,
property that may be checked for an explicit problem by different techniques, like the multiplier
method, microlocal analysis or any method entering in a linear framework (like nonharmonic
analysis for instance). We further illustrate our approach by considering different examples for
which new stability results are obtained. Many other examples, like the Petrovsky system or the
thermoelastic system, may be treated using the exponential stability of the retrograde system with
a linear and autonomous feedback, we do not present them for the sake of shortness.

Let us notice that existence results for evolution equations of hyperbolic type with nonlinear
and nonautonomous feedbacks are no fully direct, because the domain of the operator may depend
on the time variable. Hence, in a preliminary step, we prove a well-posedness result for a class of
nonlinear and nonautonomous evolution equations, extending a result from [26] and then specializes
it to evolution equations of hyperbolic type.

The paper is organized as follows: in section 2 we give a well posedness result for nonlinear and
nonautonomous evolution equations. In Section 3, we use this result to obtain some well posedness
results for nonlinear and nonautonomous evolution equations of hyperbolic type. Section 4 is
devoted to the stability results for a class of nonautonomous and nonlinear feedbacks adapting
Liu’s principle. Finally in section 5 different illustrative examples are treated.

2 Well-posedness of nonlinear nonautonomous evolution equa-

tions

All examples that we will present below can be reduced to a nonlinear evolution equation in a
Hilbert space X of the form

{

dU
dt (t) +A(t)U(t) = 0, in X ,
U(0) = U0,

where U is the unknown, U0 ∈ X and A(t) is a (single-valued) nonlinear operators on X . A general
theory of such equations with linear operators A(t) has been developed using semigroup theory
in [28, 27, 58] for instance. For nonlinear operators A(t) similar results exist but for maximal
quasi-monotone operators A(t) (for one inner product independent of t), see [26, 12, 16, 42] or for
maximal monotone operators A(t) for a time-dependent inner product depending “smoothly" on t,
see [55]. For our systems we need a variant of such results for maximal quasi-monotone operators
A(t) for a time-dependent inner product depending “smoothly" on t (see Remarks 4 and 5 in [26]).
More precisely the next result holds.

Theorem 2.1 Let X be a Hilbert space. For a fixed T > 0 and any t ∈ [0, T ] we assume that there
exists an inner product (·, ·)t on X depending “smoothly" on t in the following sense: there exists
c > 0 such that

(2.1)
d

dt
(u, u)t ≤ 2c(u, u)t, ∀u ∈ X, t ∈ [0, T ].

Furthermore, assume that
(i) For all t ∈ [0, T ], A(t) is single-valued and is a maximal quasi-monotone operator for the inner
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product (·, ·)t, in other words, there exists a non negative real number ω (independent of t ∈ [0, T ])
such that A(t) + ωI is a maximal monotone operator for the inner product (·, ·)t,
(ii) the domain D(A(t)) = D of A(t) is independent of t, for all t ∈ [0, T ],
(iii) there exists a positive constant L such that

(2.2) ‖A(t)u−A(s)u‖ ≤ L|t− s|(1 + ‖u‖+ ‖A(s)u‖), ∀u ∈ D, s, t ∈ [0, T ],

where for shortness ‖ · ‖0 is denoted by ‖ · ‖. Then for all a ∈ D the Cauchy problem

(2.3)

{

du
dt (t) +A(t)u(t) = 0, for 0 ≤ t ≤ T ,
u(0) = a,

has a unique solution u ∈ C([0, T ];X) such that u(t) belongs to D for all t ∈ [0, T ], its strong
derivative du

dt (t) = −A(t)u(t) exists and is continuous except at a countable number of points t.

Note that the condition (2.1) and Gronwall’s inequality imply that

(2.4) ‖u‖t ≤ ec|t−s|‖u‖s, ∀u ∈ X, s, t ∈ [0, T ].

This estimate implies in particular that the norms ‖ · ‖t are equivalent and gives the variation of
the norm ‖ · ‖t with respect to t.

Remark 2.2 In the linear case the conditions (2.1) and (i) to (iii) imply that the triplet {A,X,D}
forms a CD-system in the sense of [28, 27].

Proof. The proof is fully similar to the one in [26]; so, we only give its main steps. First we
recall that A(t) + ωI is a monotone operator for the inner product (·, ·)t if and only if

(2.5) ℜ(A(t)u −A(t)v + ω(u− v), u− v)t ≥ 0, ∀u, v ∈ D,

or equivalently (see [26, Lemma 1.1])

‖(1 + αω)(u − v) + α(A(t)u −A(t)v)t ≥ ‖u− v‖t, ∀u, v ∈ D,α > 0.

By dividing this estimate by 1 + αω and setting λ = α
1+αω (that is clearly < ω−1 if ω > 0), this is

equivalent to

(2.6) ‖u− v + λ(A(t)u −A(t)v)t ≥ (1− λω)‖u− v‖t, ∀u, v ∈ D,λ > 0 such that λω < 1.

Hence, we can apply Lemmas 1.1 and 1.2 of [12] to A(t) for the norm t. In particular for all n ∈ N

such that n > ω, I+ n−1A(t) is invertible and if we set

Jn(t) = (I+ n−1A(t))−1, An(t) = A(t)Jn(t), ∀n ∈ N such that n > ω,

then the following estimates hold

‖Jn(t)x− Jn(t)y‖t ≤ (1− n−1ω)−1‖x− y‖t, ∀x, y ∈ X,

‖An(t)x −An(t)y‖t ≤ n(1 + (1− n−1ω)−1)‖x− y‖t, ∀x, y ∈ X,

‖An(t)x‖t ≤ (1− n−1ω)−1‖A(t)x‖t, ∀x ∈ D.
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Using (2.4), they are equivalent to

‖Jn(t)x − Jn(t)y‖ ≤ (1 − n−1ω)−1e2cT‖x− y‖, ∀x, y ∈ X,(2.7)

‖An(t)x−An(t)y‖ ≤ n(1 + (1− n−1ω)−1)e2cT ‖x− y‖, ∀x, y ∈ X,(2.8)

‖An(t)x‖ ≤ (1− n−1ω)−1e2cT ‖A(t)x‖, ∀x ∈ D,(2.9)

that respectively correspond to the estimates (2.4) and (2.5) of [26] and are valid for all n ∈ N

such that n > ω. As the factor (1− n−1ω)−1e2cT is uniformly bounded in n as n goes to infinity,
Lemmas 2.4 and 2.5 from [26] remain valid. Furthermore, by the estimate (2.9) and our assumption
(2.2), we have (see the proof of Lemma 4.1 from [26])
(2.10)
‖An(t)x−An(s)x‖ ≤ (1−n−1ω)−1e2cTL|t−s|(1+‖u‖+(1+n−1)‖An(s)u‖), ∀u ∈ D, s, t ∈ [0, T ], n > ω,

that corresponds to the estimate (4.2) of [26]. Since D is dense in X , this estimate shows that
An(t) is Lipschitz continuous in t for all x ∈ X , while (2.8) means that the map x → A(t)x is
Lipschitz continuous for a fixed t ∈ [0, T ], uniformly in x and t. Thus the approximated problem

(2.11)

{

dun

dt (t) +An(t)un(t) = 0, for 0 ≤ t ≤ T ,
un(0) = a,

has a unique solution un ∈ C1([0, T ];X) for all a ∈ X . We now show that the statements of
Lemma 4.2 of [26] hold if a ∈ D, namely there exists a positive constant K (that depends on c, ω,
T , and ‖a‖+ ‖A(0)a‖ but not on n) such that

‖un(t)‖ ≤ K, ∀t ∈ [0, T ], n > ω,(2.12)

‖u′n(t)‖ = ‖An(t)un(t)‖ ≤ K, ∀t ∈ [0, T ], n > ω,(2.13)

where for shortness we write dun

dt = u′n. Indeed for t ∈ [0, T ), let us fix h in [0, T − t] and set
xn(t) := un(t+ h)− un(t). As xn is differentiable in t and usng (2.1), we have

2‖xn(t)‖t
d

dt
‖xn(t)‖t =

d

dt
‖xn(t)‖2t ≤ 2c‖xn(t)‖2t + 2ℜ(x′n(t), xn(t))t.

Using (2.11), we get

‖xn(t)‖t
d

dt
‖xn(t)‖t ≤ c‖xn(t)‖2t −ℜ(An(t+ h)un(t+ h)−An(t)un(t), xn(t))t

≤ c‖xn(t)‖2t −ℜ(An(t+ h)un(t+ h)−An(t+ h)un(t), xn(t))t

− ℜ(An(t+ h)un(t)−An(t)un(t), xn(t))t.

Using (2.5) and (2.10), we obtain

‖xn(t)‖t
d

dt
‖xn(t)‖t ≤ (c+ ω)‖xn(t)‖2t

+ (1− n−1ω)−1e2cTLh(1 + ‖un(t)‖ + (1 + n−1)‖u′n(t)‖)‖xn(t)‖t,

Simplifying by ‖xn(t)‖t (see [26, p. 515]), we find

d

dt
‖xn(t)‖t ≤ (c+ ω)‖xn(t)‖t + (1− n−1ω)−1e2cTLh(1 + ‖un(t)‖+ (1 + n−1)‖u′n(t)‖).
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This estimate directly implies that

d

dt

(

e−(c+ω)t‖xn(t)‖t
)

≤ L1h(1 + ‖un(t)‖+ ‖u′n(t)‖),

for a positive constant L1 that depends on c, ω and T but is independent of n. Integrating this
estimate in (0, t), we find

e−(c+ω)t‖xn(t)‖t − ‖xn(0)‖0 ≤ L1h

∫ t

0

(1 + ‖un(s)‖+ ‖u′n(s)‖) ds.

By (2.4), we find

‖xn(t)‖ ≤ L2(‖xn(0)‖+ h

∫ t

0

(1 + ‖un(s)‖+ ‖u′n(s)‖) ds),

for a positive constant L2 that depends on c, ω and T but is independent of n. Dividing by h and
letting h goes to zero, we obtain

‖u′n(t)‖ ≤ L2(‖u′n(0)‖+
∫ t

0

(1 + ‖un(s)‖+ ‖u′n(s)‖) ds).

As u′n(0) = A(0)a and

un(t) = a+

∫ t

0

u′n(s) ds,

we find as in [26, p. 516] that

‖un(t)‖+ ‖u′n(t)‖ ≤ L3(1 +

∫ t

0

(‖un(s)‖+ ‖u′n(s)‖) ds),

for a positive constant L3 that depends on c, ω, T and ‖a‖+ ‖A(0)a‖ but is independent of n. By
Gronwall’s Lemma, we deduce that (2.12) and (2.13) hold.

We now show that the statements of Lemma 4.3 of [26] hold, namely for a ∈ D, the strong
limit u(t) = limn→∞ un(t) exists uniformly for t ∈ [0, T ] and u is Lipschitz continuous. Indeed for
all m,n ∈ N such that m,n > ω, we set xmn(t) = um(t)− un(t) and as before we have

d

dt
‖xmn(t)‖2t ≤ 2c‖xmn(t)‖2t + 2ℜ(x′mn(t), xmn(t))t.

Using (2.11) and (2.5), we find

d

dt
‖xmn(t)‖2t ≤ 2c‖xmn(t)‖2t + 2ω‖ymn(t)‖2t + 2ℜ(Am(t)xm(t)−An(t)xn(t), ymn(t)− xmn(t))t,

where ymn(t) = Jm(t)um(t)− Jn(t)un(t). By the triangle inequality, we then have

d

dt
‖xmn(t)‖2t ≤ 2(c+2ω)‖xmn(t)‖2t+4ω‖ymn(t)−xmn(t)‖2t+2ℜ(Amxm(t)−An(t)xn(t), ymn(t)−xmn(t))t,

Using the estimate (2.13) and (2.4), we arrive at

d

dt
‖xmn(t)‖2t ≤ 2(c+ 2ω)‖xmn(t)‖2t +K1‖ymn(t)− xmn(t)‖2 +K1‖ymn(t)− xmn(t)‖,
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for a positive constant K1 that depends on c, ω, T , and ‖a‖+‖A(0)a‖ but not on m,n. Obviously,
this is equivalent to

d

dt

(

e−2(c+2ω)t‖xmn(t)‖2t
)

≤ K1(‖ymn(t)− xmn(t)‖2 + ‖ymn(t)− xmn(t)‖),

and integrating it between (0, t), we find (as xmn(0) = 0)

e−2(c+2ω)t‖xmn(t)‖2t ≤ K1

∫ t

0

(‖ymn(s)− xmn(s)‖2 + ‖ymn(s)− xmn(s)‖) ds.

This finally leads to

‖xmn(t)‖2 ≤ e2(3c+2ω)TK1

∫ t

0

(‖ymn(s)− xmn(s)‖2 + ‖ymn(s)− xmn(s)‖ ds.

As

ymn(s)−xmn(s) = Jm(s)um(s)−um(s)+Jn(s)un(s)−un(s) = n−1An(s)un(s)−m−1Am(s)um(s),

by (2.13), we obtain
‖ymn(s)− xmn(s)‖ ≤ K(m−1 + n−1).

Inserting this estimate in the previous one, we arrive at

‖xmn(t)‖2 ≤ K2(m
−1 + n−1), ∀t ∈ [0, T ],

for a positive constant K2 that depends on c, ω, T , and ‖a‖ + ‖A(0)a‖ but not on m,n. Thus
the strong limit u(t) = limn→∞ un(t) exists uniformly in t ∈ [0, T ]. The Lipschitz continuity of u
follows from the uniform Lipschitz property of the un, that is consequence of (2.13).

The remainder of the proof is the same as in [26] since it is based on the properties proved
before.

Remark 2.3 Obviously, the previous Theorem remains valid if X is a real Hilbert space.

3 Abstract hyperbolic setting

In this section we describe a general abstract setting of hyperbolic type inspired from [52] that will
be used later on. It is motivated by the examples (and other ones) given in section 5 which all
enter in this setting.

3.1 General assumptions

Let us fix two real Hilbert spaces H, V with respective inner products (., .)H, (., .)V and such that V
is densely and continuously embedded into H. Identifying H with its dual H′ we have the standard
diagram

V →֒ H = H′ →֒ V ′.

The duality pairing between V ′ and V will be denoted by 〈·, ·〉, so that

〈u, v〉 = (u, v)H, ∀u, v ∈ H.
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We suppose that V is continuously embedded into a control space U , that is supposed to be in the
form

(3.1) U =

J
∏

j=1

Uj,

where for all j = 1, · · · , J ∈ N
⋆ := N \ {0}, Uj is a closed subspace of L2(Xj , µj)

Nj , with Nj ∈ N
⋆,

when Xj is a metric space, and (Xj ,Aj , µj) is a measure space such that µj(Xj) <∞.
For all j = 1, · · · , J , we suppose given a mapping αj ∈ C([0,∞) × Xj ; (0,∞)) and locally

Lipschitz with respect to the time variable, in the sense that for all T , there exist a positive
constant κ(T ) (that may depend on T ) such that

(3.2) |αj(t, x)− αj(t, x)| ≤ κ(T )|t− s|, ∀t ∈ [0, T ], x ∈ Xj ,

and a continuous mapping gj : RNj → R
Nj such that

(gj(x)− gj(y)) · (x− y) ≥ 0, ∀x, y ∈ R
Nj (monotonicity),(3.3)

gj(0) = 0,(3.4)

|gj(x)| ≤M(1 + |x|), ∀x ∈ R
Nj ,(3.5)

for some positive constant M .
We further define the (nonlinear) time-dependent operator B(t) from V into V ′ by

(3.6) 〈B(t)u, v〉 =
J
∑

j=1

∫

Xj

αj(t, xj)gj((IUu)j(xj)) · (IUv)j(xj) dµj(xj), ∀u, v ∈ V ,

where IU denotes the embedding from V to U and therefore, (IUu)j is the jth component of IUu.
We finally suppose given a bounded linear operator A1 from V into V ′ and consider the evolution

equation

(3.7)

{

dx
dt (t) + A1x(t) + B(t)x(t) = 0 in H, t ≥ 0,

x(0) = x0.

This system clearly involves the (nonlinear) and time-dependent operator AB(t) defined by

D(AB(t)) = {v ∈ V|(A1 +B(t))v ∈ H},(3.8)

AB(t) = (A1 +B(t))v, ∀v ∈ D(AB(t)).(3.9)

In its full generality, the domain of AB(t) depends on the time variable. Consequently we cannot
apply Theorem 2.1. Nevertheless there are two cases treated below for which this Theorem applies.
In both cases, if x0 ∈ D(AB(0)), we will show that a unique solution x exists with the following
properties:
(3.10)
{

x ∈ C([0,∞),H) is such that x(t) ∈ D(AB(t)), for all t ∈ [0,∞) and
x′(t) = −AB(t)x(t) exists in H and is continuous except at a countable number of points t.

Before going on let us show that under the additional assumption that

(3.11) 〈A1u, u〉 = 0, ∀u ∈ V ,
system (3.7) is dissipative.
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Lemma 3.1 Under the above assumptions, for all t ≥ 0, the operator AB(t) is monotone for the
natural inner product of H. namely

(3.12) (AB(t)u −AB(t)v, u − v)H = 〈B(t)u −B(t)v, u − v〉 ≥ 0, ∀u ∈ D(AB(t)).

Consequently if x is a solution of (3.7) with the regularity (3.10), its associated energy

(3.13) E(t) = 1

2
||x(t)||2H

is non-increasing; moreover, we have

E(S)− E(T ) =
∫ T

S

〈B(t)u(t), u(t)〉 dt, ∀0 ≤ S < T <∞,(3.14)

d

dt
E(t) = −〈B(t)u(t), u(t)〉 ≤ 0, for a. a. t ≥ 0.(3.15)

Proof. Let us first show that AB(t) is monotone. Indeed for any u, v ∈ D(AB(t)), by the definition
of AB(t) and the property (3.11), we have

(AB(t)u−AB(t)v, u− v)H = 〈A1(u− v), u − v〉
+〈B(t)u −B(t)v, u− v〉 = 〈B(t)u −B(t)v, u− v〉.

Finally by the definition of B(t) and then (3.3) and recalling that αj(t, x) > 0, we have

〈B(t)u −B(t)v, u − v〉

=

J
∑

j=1

∫

Xj

αj(t, xj) (gj((IUu)j(xj))− gj((IUv)j(xj))) · ((IUv)j(xj)− (IUv)j(xj)) dµj(xj)

≥ 0,

which proves (3.12).
For the second assertion it suffices to show (3.15) since (3.14) follows by integration between S

and T . By the regularity assumptions on x, we have

d

dt
E(t) = (x′(t), x(t))H = −(AB(t)u(t), u(t))H, for a. a.t ≥ 0,

by (3.7). By our assumption (3.4), we have AB(t)0 = 0 and consequently by (3.12), we get (3.15).

3.2 The “bounded” case

We here assume that H is continuously embedded into U . As we shall see below this assumption
implies that B(t) becomes a (nonlinear) operator from H into itself and therefore, the domain of
AB(t) does not depend on t anymore.

Theorem 3.2 In addition to the previous assumptions, assume that H is continuously embedded
into U , and that there exists a positive real number λ such that the range R(λI +AB(t)) is equal
to H. Then

(3.16) D(AB(t)) = D = {u ∈ V|A1u ∈ H}, ∀t ≥ 0,

and for any x0 ∈ D, problem (3.7) has a unique solution x satisfying (3.10).

8



Proof. We first show that (3.16) holds. Indeed as H is continuously embedded into U , the mapping
IU extends to a linear and continuous operator from H into U ; therefore, there exists a positive
constant C such that

(3.17) ‖IUu‖H ≤ C‖u‖H, ∀u ∈ H.

By our assumption (3.5) and the definition of B(t), we then have

|〈B(t)u, v〉| ≤M

J
∑

j=1

∫

Xj

αj(t, xj)(1 + |(IUu)j(xj)|)|IUv)j(xj | dµj(xj), ∀u, v ∈ V .

By the continuity property of αj(t, ·), Cauchy-Schwarz’s inequality and the estimate (3.17), we
obtain

|〈B(t)u, v〉| ≤ C(t)(1 + ‖u‖H)‖v‖H, ∀u, v ∈ V ,
where C(t) is a positive constant that depends on M,C, and t. As V is dense in H, for a fixed
u ∈ V , the linear mapping

V → R : v → 〈B(t)u, v〉,
can be extended to a linear and continuous form to the whole H. By the Riesz’s representation
theorem, there exists h(t) ∈ H such that

〈B(t)u, v〉 = (h(t), v)H, ∀v ∈ H.

In other words, for u ∈ V , B(t)u can be identified with h(t) and therefore, (A1 + B(t))u ∈ H if
and only if A1u ∈ H, which proves (3.16).

By Lemma 3.1 and our additional assumption R(λI+AB(t)) = H, for some λ > 0, we deduce
that the assumption (i) of Theorem 2.1 holds.

Let us end up with the third assumption. Fix T > 0 and let u ∈ D, and t, s ∈ [0, T ], then we
clearly have

AB(t)u−AB(s)u = B(t)u−B(s)u.

Therefore, for any v ∈ H, by the definition of B(t) and our previous considerations, we may write

(AB(t)u −AB(s)u, v)H =

J
∑

j=1

∫

Xj

(αj(t, xj)− αj(s, xj))gj((IUu)j(xj)) · (IUv)j(xj) dµj(xj).

By our assumptions (3.2) to (3.5), we obtain

|(AB(t)u −AB(s)u, v)H| ≤ κ(T )|t− s|
J
∑

j=1

∫

Xj

gj((IUu)j(xj)) · (IUv)j(xj) dµj(xj)

≤ κ(T )|t− s|
J
∑

j=1

∫

Xj

(1 + |(IUu)j(xj)|) · (IUv)j(xj) dµj(xj).

Cauchy-Schwarz’s inequality and the estimate (3.17) allow to conclude that

|(AB(t)u −AB(s)u, v)H| ≤
√
2Cκ(T )|t− s|(

J
∑

j=1

µj(Xj) + C‖u‖H)‖v‖H).

9



Since this estimate is valid for all v ∈ H, this means that

‖AB(t)u −AB(s)u‖H ≤
√
2Cκ(T )|t− s|(

J
∑

j=1

µj(Xj) + C‖u‖H),

and proves that the assumption (iii) of Theorem 2.1 holds.
In conclusion by Theorem 2.1 for x0 ∈ D and any T > 0, there exists a unique solution

uT ∈ C([0, T ];H) of problem

(3.18)

{

dxT

dt (t) +A1xT (t) +B(t)xT (t) = 0 in H, t ∈ [0, T ],

xT (0) = x0,

such that xT (t) belongs to D for all t ∈ [0, T ], its strong derivative dxT

dt (t) = −A(t)xT (t) exists and
is continuous except at a countable number of points t. By uniqueness, for T ′ > T , the restriction
of xT ′ to [0, T ] coincides with xT . Therefore, a unique global solution x ∈ C([0,∞);H) of (3.7)
exists with the properties (3.10).

3.3 The “unbounded” case

Here we assume that the mappings αj do not depend on the xj variable and coincide, namely
there exists a mapping α ∈ C1([0,∞; (0,∞)) such that α′ is locally Lipschitz (in the sense that
for all T > 0, there exists a positive constant ν(T ) such that |α′(t) − α′(s)| ≤ ν(T )|t − s|, for all
s, t ∈ [0, T ]) such that

(3.19) αj(t, xj) = α(t), ∀xj ∈ Xj , t ≥ 0.

Due to (3.6), this means that B(t) = α(t)B1, where

(3.20) 〈B1u, v〉 =
J
∑

j=1

∫

Xj

gj((IUu)j(xj)) · (IUv)j(xj) dµj(xj), ∀u, v ∈ V .

Theorem 3.3 In addition to the assumptions made in subsection 3.1, assume that (3.19) holds,
that A1 + B1 is maximal quasi monotone with a dense domain in H, and that there exist two
mappings D ∈ C1([0,∞);L(H)) and D̃ ∈ C([0,∞);L(H)) such that D′ and D̃ are locally Lipschitz
and for all t ≥ 0, D(t) and D̃(t) are invertible, D(t)D̃(t) is symmetric positive definite and for all
T > 0, there exists a positve constant cT such that

(3.21) (D̃(t)−1D(t)−1x, x)H ≥ cT ‖x‖2H, ∀x ∈ H, ∀t ∈ [0, T ],

and finally

(3.22) (A1 + α(t)B1)D(t)−1 = D̃(t)(A1 +B1), ∀t ≥ 0.

Then for all x0 ∈ D(AB(0)), problem (3.7) has a unique solution x satisfying (3.10).

Proof. Assuming that the solution x of problem (3.7) exists and is smooth enough, we perform
the change of unknown

x̃(t) = D(t)x(t).
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Hence, as x̃′(t) = D′(t)x(t) +D(t)x′(t) and by (3.7) , we get

x̃′(t) = D′(t)D(t)−1x̃(t)−D(t)(A1 + α(t)B1)D(t)−1x̃(t).

With our assumption (3.22), we arrive at

(3.23) x̃′(t) = D′(t)D(t)−1x̃(t)−D(t)D̃(t)(A1 +B1)x̃(t).

This corresponds to (2.3) with the operator

A(t) = D(t)D̃(t)(A1 +B1)−D′(t)D(t)−1,

whose domain is clearly
D(A(t)) = D(A1 +B1),

and is independent of t, due to our assumptions on D(t) and D̃(t).
In order to apply Theorem 2.1 we introduce the time dependent inner product

(x, x̃)t = (D̃(t)−1D(t)−1x, x̃)H, ∀x, x̃ ∈ H.

Our assumptions on D and D̃ guarantee that it is indeed an inner product on H whose associated
norm is equivalent to the standard one, namely for a fixed T , we have

(3.24)
√
cT ‖x‖H ≤ ‖x‖t ≤ CT ‖x‖H, ∀x ∈ H,

for some positive constant CT , and that the property (2.1) also holds. From its definition, we
see that A(t) is quasi monotone for this inner product. Indeed from it definition, for any x, y ∈
D(A1 +B1), and t ∈ [0, T ], we have

(A(t)x−A(t)y, x−y)t = ((A1+B1)x−(A1+B1)y, x−y)H−(D̃(t)−1D(t)−1D′(t)D(t)−1(x−y), x−y)H.

Hence, as A1 +B1 is quasi monotone in H (i.e. A1 +B1 + ω1I is monotone for some ω1 ≥ 0), and
due to our assumptions on D and D̃, we then have

(A(t)x −A(t)y, x− y)t ≥ −ωT ‖x− y‖2H,

for some ωT > 0 (depending on T ). Due to the equivalence (3.24), we arrive at

(A(t)x −A(t)y, x − y)t ≥ −ωTC
2
T ‖x− y‖2t ,

which yields the quasi monotonicity of A(t). Let us now show the maximality property. Indeed
for λ > 0 large enough, we want to show that E(t) := λI +D(t)D̃(t)(A1 + B1) −D′(t)D(t)−1 is
surjective. But as D(t)D̃(t) is an isomorphism, this is equivalent to the surjectivity of E(t) :=
λ(D(t)D̃(t))−1+A1+B1−(D(t)D̃(t))−1D′(t)D(t)−1. Now we take advantage of Theorem 1 of [9] by
considering the previous operator as a perturbation of T1 := A1+B1+ω1I (that satisfies the assump-
tion of this Theorem). Due to the linearity of T2(t) := λ(D(t)D̃(t))−1−(D(t)D̃(t))−1D′(t)D(t)−1−
ω1I, it is clearly hemicontinous and due to the assumption (3.21), for λ > 0 large enough, T2(t) will
be monotone, bounded and coercive. Using the above Theorem, we deduce that E(t) = T1 + T2(t)
is surjective. In summary assumption (i) of Theorem 2.1 holds and it remains to check the as-
sumption (iii) of this Theorem. For that purpose, let us fix x ∈ D(A1 +B1) and s, t ∈ [0, T ], then
by definition we have

A(t)x− A(s)x = (D(t)D̃(t)−D(s)D̃(s))(A1 +B1)x+ (D′(s)D(s)−1 −D′(t)D(t)−1)x
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By the local Lipschitz property of D, D̃ and of the derivative of D, we get

‖A(t)x−A(s)x‖H ≤ K(T )|t− s|(‖(A1 +B1)x‖H + ‖x‖H).

We now transform

(A1 +B1)x = (D(s)D̃(s))−1(D(s)D̃(s)(A1 +B1)x−D′(s)D(s)−1) + (D(s)D̃(s))−1D′(s)D(s)−1x,

use the triangle inequality and use the continuity of D, D̃ and D′ to find

‖A(t)x−A(s)x‖H ≤ K1(T )|t− s|(‖A(s)x‖H + ‖x‖H).

for a positive constant K1(T ), which implies that (2.2) is valid.
In conclusion by Theorem 2.1, there exists a unique solution x̃ of (3.23) with initial condition

x̃(0) = D(0)x0 (that belongs to D(A1 +B1) by the assumption on x0) satisfying x̃ ∈ C([0,∞),H),
x(t) ∈ D(A1+B1), for all t ∈ [0,∞) and x′(t) = −A(t)x(t) exists in H and is continuous except at
a countable number of points t. Setting x(t) = D(t)−1x̃(t), we readily check that it is the unique
solution of problem (3.7) and that it satisfies (3.10).

4 Stability results in the nonlinear and nonautonomous case

Here we use Liu’s principle [43] and a comparison principle with a nonlinear and nonautonomous
ODE from [14] (see also [39]) to deduce decay rates of the energy using appropriate nonlinear and
nonautonomous feedbacks.

We first recall the comparison principle obtained in [14] (compare with [39, Theorem 2 and
Corollary 2])).

Theorem 4.1 Let β be a continuous mapping from [0,∞) to (0,∞) and p a strictly increasing
convex mapping from [0,+∞) to [0,+∞) such that p(0) = 0. Let E : [0,+∞) → [0,+∞) be a
non-increasing mapping satisfying

(4.1) β((n + 1)T )p(E(nT )) + E((n+ 1)T ) ≤ E(nT ), ∀n ∈ N,

for some T > 0. Then

(4.2) E(t) ≤ ψ−1

(∫ t

T

β(s) ds

)

, ∀t ≥ T,

where ψ is defined by

(4.3) ψ(x) =

∫ E(0)

x

1

p(s)
ds, ∀x > 0.

Proof. Let us shortly recall the proof from [14]. Since (4.2) trivially holds if E(0) = 0 (because in
such a case E(t) = 0, for all t ≥ 0), we can assume that E(0) > 0. First by [14, Lemma 4.2], the
next comparison principle holds

(4.4) E(t) ≤ S(t− T ), ∀t ≥ T,
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where S is the unique solution of the nonlinear and nonautonomous ODE

(4.5) S′(t) + β(t+ T )p(S(t)) = 0, ∀t ≥ 0, S(0) = E(0).

Such a solution exists and remains positive for all t > 0 due the Cauchy-Lipschitz Theorem (because
the assumptions on p garantee that it is locally Lipschitz in [0,∞)).

With the help of [14, Lemma 4.2/2.] (the properties on p guarantee that the assumption (24)
from [14] holds with m = p(1)−1), we deduce that

S(t) ≤ ψ−1

(∫ t

0

β(s+ T ) ds

)

, ∀t ≥ 0,

with ψ defined by (4.3) (and is meaningful because limx→0+ ψ(x) = +∞ reminding that p(x) ≤
p(1)x, for all x ∈ [0, 1]). This estimate combined with (4.4) yields the result.

Let us now recall Russell’s principle that yields an exact controllability result for the evolution
equation associated with the operator −A1 with controls in L2(]0, T [;U) provided A1 − IU gen-
erates a semigroup of contractions and −A1 − IU generates an exponentially stable semigroup of
contractions in H, see [52, Theorem 4.1].

Theorem 4.2 Assume that A1−IU generates a semigroup of contractions in H and that −A1−IU
generates a semigroup of contractions S(t) in H that is exponentially stable in the sense that there
exists two positive constants C and ω such that

(4.6) ‖S(t)x0‖H ≤ Ce−ωt‖x0‖H, ∀x0 ∈ H.

Then there exists T > 0 large enough, such that for any p0 ∈ H, there exists a control K ∈
L2((0, T );U) such that the solution p ∈ C([0, T ];H) of

(4.7)

{

∂p
∂t +A1p = K in V ′, t ∈ [0, T ],

p(T ) = p0,

satisfies

(4.8) p(0) = 0.

Furthermore, there exists a positive constant D > 1 depending only on T , and the constants C and
ω such that

(4.9)
∫ T

0

‖K(t)‖2U dt+
∫ T

0

‖IUp(t)‖2U dt ≤ 2D‖p0‖2H.

We now give the consequence of this result to our system (3.7) in three different cases of
functions αj : non-increasing with respect to t, non-decreasing with respect to t and oscillating
with respect to t. But first we give an energy estimate valid in all cases.

Lemma 4.3 Under the assumptions of Theorem 4.2, any solution x of (3.7) with the regularity
(3.10), satisfies

(4.10) E(T ) ≤ D





J
∑

j=1

∫ T

0

∫

Xj

{|(IUx(t))j(xj)|2 + αj(t, xj)
2|gj((IUx(t))j(xj))|2} dµj(xj) dt



 .
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Proof. Let x be the unique solution of (3.7) satisfying (3.10) and consider p the solution of problem
(4.7) and (4.8) with p0 = x(T ) ∈ H with T > 0 from Theorem 4.2. Owing to [52, Remark 4.2],
consider a sequence pǫ ∈ W 1,∞([0,∞),H) ∩ L∞([0,∞),V) of strong solution of (4.7) with final
data p0ǫ tending to p in C([0, T ],H) as ǫ goes to zero and satisfying

Kǫ → K in L2(]0, T [;U) as ǫ→ 0,(4.11)

IUpǫ → IUp in L2(]0, T [;U) as ǫ→ 0.(4.12)

By (3.7) and (4.7) we may write

〈∂tx+A1x+B(t)x, pǫ〉V′,V + 〈∂tpǫ +A1pǫ −Kǫ, x〉V′,V = 0, for a.a. t ∈ [0, T ].

As the assumption (3.11) yields

〈A1x, pǫ〉V′,V + 〈A1pǫ, x〉V′,V = 0,

the above identity reduces to

(∂tx, pǫ)H + (∂tpǫ, x)H + 〈B(t)x, pǫ〉V′,V − 〈Kǫ, x〉V′,V = 0, for a.a. t ∈ [0, T ].

Integrating this identity for t ∈ (0, T ), we get

(x(T ), pǫ(T ))H − (x(0), pǫ(0))H +

∫ T

0

(〈B(t)x, pǫ〉V′,V − 〈Kǫ, x〉V′,V) dt = 0.

By the definitions of Kǫ and B(t) we arrive at

(x(T ), pǫ(T ))H − (x(0), pǫ(0))H =

∫ T

0

(

(Kǫ, IUx)U

−
J
∑

j=1

∫

Xj

αj(t, xj)gj((IUx)j(xj)) · (IUpǫ)j(xj) dµj(xj)
)

dt.

Passing to the limit in ǫ and using the initial and final conditions on p, we obtain

2E(T ) =
∫ T

0



(K, IUx)U −
J
∑

j=1

∫

Xj

αj(t, xj)gj((IUx)j(xj)) · (IUp)j(xj) dµj(xj)



 dt.

Cauchy-Schwarz’s inequality leads finally to

2E(T ) ≤ ‖K‖L2(0,T ;U)‖IUx‖L2(0,T ;U)(4.13)

+ ‖IUp‖L2(0,T ;U)





J
∑

j=1

∫ T

0

∫

Xj

αj(t, xj)
2|gj((IUx)j(xj))|2 dµj(xj) dt





1/2

.

Using the estimate (4.9) (recalling that p0 = x(T )), we have

∫ T

0

‖K(t)‖2U dt+
∫ T

0

‖IUp(t)‖2U dt ≤ 4DE(T ).

Using this estimate in the previous one, we arrive at (4.10).
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Corollary 4.4 Under the assumptions of Theorem 4.2, any solution x of (3.7) with the regularity
(3.10), satisfies
(4.14)

E((n+ 1)T ) ≤ D
(

J
∑

j=1

∫ (n+1)T

nT

∫

Xj

{|(IUx(t))j(xj)|2 + αj(t, xj)
2|gj((IUx(t))j(xj))|2} dµj(xj) dt

)

,

for all n ∈ N.

Proof. We apply the previous Lemma to xn (instead of x) defined by

xn(t) = x(t+ nT ), ∀t ≥ 0,

that is still solution of (3.7) with the regularity (3.10), where the (nonlinear) and time-dependent
operator B is replaced by Bn(t) = B(t+ nT ). The estimate (4.10) applied to xn yields

E((n+1)T ) ≤ D
(

J
∑

j=1

∫ T

0

∫

Xj

{|(IUx(t+nT ))j(xj)|2+αj(t+nT, xj)
2|gj((IUx(t+nT ))j(xj))|2} dµj(xj) dt

)

,

that is nothing else than (4.14) by a simple change of variable.

4.1 The non-increasing case

Theorem 4.5 In addition to the previous assumptions on gj and αj , j = 1, · · · , J, suppose that gj
satisfies

gj(x) · x ≥ m|x|2, ∀x ∈ R
Nj : |x| ≥ 1,(4.15)

|x|2 + |gj(x)|2 ≤ G(gj(x) · x), ∀x ∈ R
Nj : |x| ≤ 1,(4.16)

for some positive constant m and a concave strictly increasing function G : [0,∞) → [0,∞) such
that G(0) = 0. Furthermore, we assume that for all j = 1, · · · , J and all xj ∈ Xj , the mapping

(4.17) αj(·, xj) : [0,∞) → (0,∞) : t→ αj(t, xj) is non-increasing,

(4.18) α̃ := max
1≤j≤J

sup
xj∈Xj

αj(0, xj) <∞,

and

(4.19) α(t) = min
1≤j≤J

inf
xj∈Xj

αj(t, xj) > 0, ∀t ∈ [0,∞).

Under the assumptions of Theorem 4.2, there exists c > 0 (depending on T , C, ω (from Theorem
4.2), maxj µj(Xj), α̃, M , and m) such that

(4.20) E(t) ≤ ψ−1

(

Tµ

∫ t

T

α(s) ds

)

, ∀t ≥ T,

for all solution x of (3.7) satisfying (3.10), where µ = minj µj(Xj), ψ is given by (4.3) with
p = h−1, and h defined by

(4.21) h(x) = c(x +G(x)), ∀x ≥ 0,
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Proof. Let x be the unique solution of (3.7) satisfying (3.10) and let n be an arbitrary nonnegative
integer. Using (4.14) and the definition of α̃, we get

(4.22) E((n+1)T ) ≤ C1

(

J
∑

j=1

∫ (n+1)T

nT

∫

Xj

{|(IUx)j(xj)|2+αj(t, xj)|gj((IUx)j(xj))|2} dµj(xj) dt
)

,

with C1 = Dmax{1, α̃}.
We now estimate the right-hand side of (4.22) as follows: For all j = 1, · · · , J , introduce

Σ+
j,n = {(x, t) ∈ Xj × (nT, (n+ 1)T ) : |(IUx)j(x, t)| > 1},(4.23)

Σ−
j,n = {(x, t) ∈ Xj × (nT, (n+ 1)T ) : |(IUx)j(x, t)| ≤ 1},(4.24)

and split up

∫ (n+1)T

nT

∫

Xj

{|(IUx)j(xj)|2 + αj(t, xj)|gj((IUx)j(xj))|2} dµj(xj) dt = I+j,n + I−j,n,

where

I+j,n :=

∫

Σ+

j,n

{|(IUx)j(xj)|2 + αj(t, xj)|gj((IUx)j(xj))|2} dµj(xj) dt,

I−j,n :=

∫

Σ−

j,n

{|(IUx)j(xj)|2 + αj(t, xj)|gj((IUx)j(xj))|2} dµj(xj) dt.

For the estimation of I+j,n, we first notice that the assumption (3.5) leads to

I+j,n ≤
∫

Σ+

j,n

(1 + 2Mαj(t, xj))|(IUx)j(xj)|2 dµj(xj) dt,

and by (4.15) and (4.18) we get

I+j,n ≤ m−1(1 + 2Mα̃)

∫

Σ+

j,n

(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt.

As αj(·, xj) is non-increasing, and using (4.18)-(4.19), we have

(4.25) 1 ≤ αj(t, xj)

αj((n+ 1)T, xj)
≤ αj(t, xj)

α((n+ 1)T )
, ∀xj ∈ Xj , t ∈ [nT, (n+ 1)T ],

which allows to obtain

(4.26) I+j,n ≤ m−1(1 + 2Mα̃)α((n+ 1)T )−1

∫

Σ+

j,n

αj(t, xj)(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt.

Since (3.3) and (3.4) yield

(4.27) gj(x) · x ≥ 0, ∀x ∈ R
Nj ,
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and since αj(t, xj) > 0 for all t and xj ∈ Xj, we have
∫

Σ+

j,n

αj(t, xj)(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt(4.28)

≤
∫ (n+1)T

nT

∫

Xj

αj(t, xj)(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt ≤ (E(nT )− E((n+ 1)T )),

this last estimate following from (3.14). Using this estimate in (4.26), we arrive at

(4.29) I+j,n ≤ c1α((n + 1)T )−1(E(nT )− E((n+ 1)T )),

for some positive constant c1 depending only on α̃, M and m.
Similarly by the assumption (4.16) and the monotonicity of G and α we have

I−j,n ≤ max{1, α̃}
∫

Σ−

j,n

G((IUx)j(xj) · gj((IUx)j(xj))) dµj(xj)dt

≤ max{1, α̃}
∫ (n+1)T

nT

∫

Xj

G((IUx)j(xj) · gj((IUx)j(xj))) dµj(xj)dt.

Jensen’s inequality then yields

I−j,n ≤ max{1, α̃}Tµj(Xj)G

(

1

Tµj(Xj)

∫ (n+1)T

nT

∫

Xj

(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt

)

.

As G is strictly increasing and again using (4.25), we obtain

I−j,n ≤ KG

(

1

Tµj(Xj)α((n + 1)T )

∫ (n+1)T

nT

∫

Xj

αj(t, xj)(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt

)

,

where K = max{1, α̃}T maxj µj(Xj). By (3.14), we arrive at

(4.30) I−j,n ≤ KG

(E(nT )− E((n+ 1)T )

Tµj(Xj)α((n+ 1)T )

)

.

The estimates (4.29) and (4.30) into the estimate (4.22) and the monotonicity of G give

E((n + 1)T ) ≤ c2

{E(nT )− E((n+ 1)T )

Tµα((n+ 1)T )
+G

(E(nT )− E((n+ 1)T )

Tµα((n+ 1)T )

)}

,

for some positive constant c2 (depending on T , C, ω (from Theorem 4.2), maxj µj(Xj), α̃, M and
m), recalling that µ = minj µj(Xj). As (4.18)-(4.19) imply that α((n+1)T ) ≤ α̃, this finally leads
to

E(nT ) = E(nT )− E((n+ 1)T ) + E((n+ 1)T )

≤ max{µT α̃, c2}
{E(nT )− E((n+ 1)T )

Tµα((n+ 1)T )
+G

(E(nT )− E((n+ 1)T )

Tµα((n+ 1)T )

)}

.

With c = max{µT α̃, c2}, and the definition (4.21) of h, we have found that

E(nT ) ≤ h

(E(nT )− E((n+ 1)T )

Tµα((n+ 1)T )

)

,
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which can be equivalently written as

(4.31) Tµα((n+ 1)T )h−1(E(nT )) + E((n+ 1)T ) ≤ E(nT ).

Since this estimate is valid for all n ∈ N, we conclude by Theorem 4.1 with the choice β(t) = Tµα(t).

Note that the conditions (3.5) and (4.15) means that gj is linearly bounded at infinity; therefore,
the decay rate in (4.20) is guided by the behaviour of gj near zero and of the behavior of

∫ t

0 α(s) dx
as t goes to ∞. Since we are mainly interested in the influence of the time dependency on the decay
rate, we restrict ourselves to examples of functions gj that are linear, sublinear or superlinear near
0 (compare with subsection 3.2.1 and Example 1 of [14]).

Example 4.6 Suppose that gj satisfies (3.3) to (3.5) and (4.15) as well as

(4.32) x · gj(x) ≥ c0|x|p+1, |gj(x)| ≤ C0|x|γ , ∀|x| ≤ 1,

for some positive constants c0, C0, γ ∈ (0, 1] and p ≥ γ. Then gj satisfies (4.16) with G(x) = x
2

q+1

and q = p+1
γ − 1 (which is ≥ 1).

If p = γ = 1 (then q = 1), that corresponds to a linear behavior of gj near 0, we have G(x) = x

and, hence, h(x) = 2cx. Therefore, under the other assumptions of Theorem 4.5 we get the decay

E(t) ≤ KE(0)e−L
∫

t

0
α(s) ds, ∀t ≥ 0,

for some positive constants K and L, since ψ−1(t) = E(0)e− t
2c .

On the contrary if p + 1 > 2γ (corresponding to the sublinear case if p = 2 and to the

superlinear case if γ = 1 and p > 1), then we get the decay K(E(0))
(

∫ t

0 α(s) ds
)− 2γ

p+1−2γ

(since

ψ−1(t) is equivalent to t
2

1−q for t large), with K(E(0)) = K(1 + E(0)− p+1−2γ
2γ )−

2γ
p+1−2γ , with a

positive constant K.
Note that in both cases, the energy tends to zero as soon as

∫ t

0

α(s) ds → ∞, as t→ ∞.

In particular, if α(t) = 1
(1+t)σ , with σ > 0, in both cases, we get

E(t) ≤ K(E(0))t−r,

for some r > 0 (with K(E(0)) = KE(0) in the linear case) that, in the linear case, translates an
underdamped phenomenon.

A function g satisfying all these assumptions is given by

g(x) =

{

|x|γ−1x if |x| ≤ 1,
x if |x| ≥ 1,

for some γ ∈ (0, 1]. In that case (4.32) holds for p = γ.
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4.2 The non-decreasing case

Theorem 4.7 In addition to the assumptions on gj and αj , j = 1, · · · , J, from subsection 3.1,
suppose that gj satisfies (4.15) and (4.16) for some positive constant m and a concave strictly
increasing function G : [0,∞) → [0,∞) such that G(0) = 0 and satisfying the additional assumption

(4.33) ∃δ ≥ 2, CG > 0 : β2G(x) ≤ CGG(β
δx), ∀x, β ∈ (0,∞).

Furthermore, we assume that for all j = 1, · · · , J and all xj ∈ Xj , the mapping

(4.34) αj(·, xj) : [0,∞) → (0,∞) : t→ αj(t, xj) is non-decreasing,

and that for all t ∈ [0,∞)

(4.35) α(t) = max
1≤j≤J

sup
xj∈Xj

αj(t, xj) <∞,

and

(4.36) α(0) > 0,

so that the mapping
α : [0,∞) → (0,∞) : t→ α(t)

is non-decreasing. We finally suppose that there exists c0 ∈ (0, 1] such that

(4.37) c0α(t) ≤ αj(t, xj) ≤ α(t), ∀t ∈ [0,∞), xj ∈ Xj, j = 1, · · · , J.

Under the assumptions of Theorem 4.2, there exists c > 0 (depending on T , C, ω (from Theorem
4.2), maxj µj(Xj), α(0), c0, M , and m) such that

(4.38) E(t) ≤ ψ−1

(

Tµc0

∫ t

T

α(s− T )α(s)−δ ds

)

, ∀t ≥ T,

for all solution x of (3.7) satisfying (3.10), where µ = minj µj(Xj), ψ is given by (4.3) with
p = h−1, and h is defined by (4.21).

Proof. Let x be the unique solution of (3.7) satisfying (3.10) and let n be arbitrary nonnegative
integer. We estimate the right-hand side of (4.14) as follows: Using the sets Σ+

j,n and Σ−
j,n defined

by (4.23) and (4.24) respectively, we split up

∫ (n+1)T

nT

∫

Xj

{|(IUx)j(xj)|2 + αj(t, xj)
2|gj((IUx)j(xj))|2} dµj(xj) dt = I+j,n + I−j,n,

where

I+j,n :=

∫

Σ+

j,n

{|(IUx)j(xj)|2 + αj(t, xj)
2|gj((IUx)j(xj))|2} dµj(xj) dt,

I−j,n :=

∫

Σ−

j,n

{|(IUx)j(xj)|2 + αj(t, xj)
2|gj((IUx)j(xj))|2} dµj(xj) dt.
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For the estimation of I+j,n, we first notice that the assumptions (4.36) and (4.37) lead to

αj(t, xj) ≤ α((n + 1)T ), ∀t ∈ [nT, (n+ 1)T ],(4.39)

c0α(0) ≤ αj(t, xj), ∀t ≥ 0.(4.40)

Therefore, using the assumption (3.5) on gj, we have

I+j,n ≤ (
1

c20α(0)
2
+ 2M)α((n+ 1)T )

∫

Σ+

j,n

αj(t, xj)|(IUx)j(xj)|2 dµj(xj) dt,

and by (4.15) we get

I+j,n ≤ m−1(
1

c0α(0)
+ 2M)α((n+ 1)T )

∫

Σ+

j,n

αj(t, xj)|(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt.

Since the estimate (4.28) remains valid, we obtain

(4.41) I+j,n ≤ c1α((n+ 1)T )(E(nT )− E((n+ 1)T )),

for some positive constant c1 depending only on c0, α(0), M and m.
Let us go on with the estimation of I−j,n. First using (4.39)-(4.40), we may write

I−j,n ≤ C1α((n+ 1)T )2
∫

Σ−

j,n

{|(IUx)j(xj)|2 + |gj((IUx)j(xj))|2} dµj(xj) dt,

where C1 = max{ 1
c2
0
α(0)2

, 1}. Hence, by the assumption (4.16) and the monotonicity of G and the
positivity of αj , as before we have

I−j,n ≤ C1α((n+ 1)T )2
∫ (n+1)T

nT

∫

Xj

αj(t, xj)G((IUx)j(xj) · gj((IUx)j(xj))) dµj(xj)dt.

Jensen’s inequality then yields

I−j,n ≤ C1α((n + 1)T )2Tµj(Xj)G

(

1

Tµj(Xj)

∫ (n+1)T

nT

∫

Xj

(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt

)

.

Now (4.36) and (4.37) yield

c0α(nT ) ≤ αj(t, xj), ∀t ∈ [nT, (n+ 1)T ],

and since G is strictly increasing, we then obtain

I−j,n ≤ C2α((n+ 1)T )2G

(

1

Tµc0α(nT )

∫ (n+1)T

nT

∫

Xj

αj(t, xj)(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt

)

,

where C2 = C1T maxj µj(Xj). By (3.14), we arrive at

(4.42) I−j,n ≤ C2α((n+ 1)T )2G

(E(nT )− E((n+ 1)T )

Tµc0α(nT )

)

.
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At this stage, we take advantage of the property (4.33) to conclude that

(4.43) I−j,n ≤ C2G

(

α((n+ 1)T )δ(E(nT )− E((n+ 1)T ))

Tµc0α(nT )

)

.

The estimates (4.41) (as α((n + 1)T ) ≤ α((n+1)T )δ

α(0)δ−2α(nT ) because α is non-decreasing and δ ≥ 2)
and (4.43) into the estimate (4.14) give

E((n+1)T ) ≤ c2

{

α((n+ 1)T )δ(E(nT )− E((n+ 1)T ))

Tµc0α(nT )
+G

(

α((n + 1)T )δ(E(nT )− E((n+ 1)T ))

Tµc0α(nT )

)}

,

for some positive constant c2 (depending on T , maxj µj(Xj), c0, α(0), δ, C, ω, M and m). As the

non-decreasing property of α implies that α((n+1)T )δ

α(nT ) ≥ α(0)δ−1, this finally leads to

E(nT ) = E(nT )− E((n+ 1)T ) + E((n+ 1)T )

≤ c

{

α((n+ 1)T )δ(E(nT )− E((n+ 1)T ))

Tµc0α(0)
+G

(

α((n+ 1)T )δ(E(nT )− E((n+ 1)T ))

Tµc0α(0)

)}

,

where c = max{ Tµc0
α(0)δ−2 , c2}. By the definition (4.21) of h, we have found that

E(nT ) ≤ h

(

α((n+ 1)T )δ(E(nT )− E((n+ 1)T ))

Tµc0α(nT )

)

,

which can be equivalently written as

(4.44) Tµc0α(nT )α((n + 1)T )−δh−1(E(nT )) + E((n+ 1)T ) ≤ E(nT ).
Since this estimate is valid for all n ∈ N, we conclude by Theorem 4.1 with the choice β(t) =
Tµc0α(t− T )α(t)−δ.

Example 4.8 If gj satisfies the assumptions from Example 4.6, G is given by G(x) = x
2

q+1 and
q = p+1

γ − 1 ≥ 1; hence, it satisfies the assumption (4.33) with CG = 1 and δ = q + 1 = p+1
γ .

If p = γ = 1 (then q = 1), that corresponds to a linear behavior of gj near 0, we have G(x) = x

and, hence, h(x) = 2cx. Under the other assumptions of Theorem 4.7 we then get the decay

E(t) ≤ KE(0)e−L
∫

t
T
α(s−T )α(s)−2 ds, ∀t ≥ T,

for some positive constants K and L, since ψ−1(t) = E(0)e− t
2c .

On the contrary if p+1 > 2γ (corresponding to the sublinear case if p = 2 and to the superlinear

case if γ = 1 and p > 1), then we get the decay K(E(0))
(

∫ t

T α(s− T )α(s)−
p+1

γ ds
)− 2γ

p+1−2γ

(since

ψ−1(t) is equivalent to t
2

1−q for t large).
Note that in both cases, the energy tends to zero as soon as

∫ t

T

α(s− T )α(s)−δ ds→ ∞, as t→ ∞.

In particular, if α(t) = (1 + t)σ, with 0 < σ ≤ 1
δ−1 = γ

p+1−γ , in both cases, we get

E(t) ≤ K(E(0))t−r,

for some r > 0, that, in the linear case, translates an overdamping phenomenon.
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4.3 The oscillating case

Theorem 4.9 In addition to the assumptions on gj and αj , j = 1, · · · , J, from subsection 3.1,
suppose that gj satisfies (4.15) and (4.16) for some positive constant m and a concave strictly
increasing function G : [0,∞) → [0,∞) such that G(0) = 0 Furthermore, we assume that there
exists two positive constants α0 and α̃ such that

(4.45) α0 ≤ αj(t, xj) ≤ α̃, ∀t ∈ [0,∞), xj ∈ Xj , j = 1, · · · , J.

Under the assumptions of Theorem 4.2, there exists c > 0 (depending on T , C, ω (from Theorem
4.2), maxj µj(Xj), α̃, α0, M , and m) such that

(4.46) E(t) ≤ ψ−1 (Tµα0(t− T )) , ∀t ≥ T,

for all solution x of (3.7) satisfying (3.10), where µ = minj µj(Xj), ψ is given by (4.3) with
p = h−1, and h defined by (4.21).

Proof. Let x be the unique solution of (3.7) satisfying (3.10) and let n be arbitrary nonnegative
integer. Using (4.14) and the assumption (4.45), we get

(4.47) E((n+ 1)T ) ≤ C1

(

J
∑

j=1

∫ (n+1)T

nT

∫

Xj

{|(IUx)j(xj)|2 + |gj((IUx)j(xj))|2} dµj(xj) dt
)

,

with C1 = Dmax{1, α̃2}.
We now estimate the right-hand side of (4.47) as follows: Using the sets Σ+

j,n and Σ−
j,n from

(4.23) and (4.24), we split up

∫ (n+1)T

nT

∫

Xj

{|(IUx)j(xj)|2 + |gj((IUx)j(xj))|2} dµj(xj) dt = I+j,n + I−j,n,

where

I+j,n :=

∫

Σ+

j,n

{|(IUx)j(xj)|2 + |gj((IUx)j(xj))|2} dµj(xj) dt,

I−j,n :=

∫

Σ−

j,n

{|(IUx)j(xj)|2 + αj(t, xj)
2|gj((IUx)j(xj))|2} dµj(xj) dt.

For the estimation of I+j,n, we first notice that the assumption (3.5) leads to

I+j,n ≤ (1 + 2M)

∫

Σ+

j,n

(|(IUx)j(xj)|2 dµj(xj) dt,

and by (4.15) and (4.18) we get

I+j,n ≤ m−1(1 + 2M)

∫

Σ+

j,n

(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt.

By the assumption (4.45), we directly obtain

I+j,n ≤ m−1(1 + 2M)α−1
0

∫

Σ+

j,n

αj(t, xj)(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt.
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By (4.28), we arrive at

(4.48) I+j,n ≤ m−1(1 + 2M)α−1
0 (E(nT )− E((n+ 1)T )).

Similarly by the assumption (4.16) and the monotonicity of G and α we have

I−j,n ≤
∫ (n+1)T

nT

∫

Xj

G((IUx)j(xj) · gj((IUx)j(xj))) dµj(xj)dt.

Jensen’s inequality then yields

I−j,n ≤ Tµj(Xj)G

(

1

Tµj(Xj)

∫ (n+1)T

nT

∫

Xj

(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt

)

.

As G is strictly increasing and again using (4.45), we obtain

I−j,n ≤ Tµj(Xj)G

(

1

Tµj(Xj)α0

∫ (n+1)T

nT

∫

Xj

αj(t, xj)(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt

)

.

By (3.14), we arrive at

(4.49) I−j,n ≤ Tµj(Xj)G

(E(nT )− E((n+ 1)T )

Tµj(Xj)α0

)

.

The estimates (4.48) and (4.49) into the estimate (4.22) and the monotonicity of G give

E((n + 1)T ) ≤ c2

{E(nT )− E((n+ 1)T )

Tµα0
+G

(E(nT )− E((n+ 1)T )

Tµα0

)}

,

for some positive constant c2 (depending on T , C, ω (from Theorem 4.2), maxj µj(Xj), α̃, α0, M
and m). Hence,

E(nT ) = E(nT )− E((n+ 1)T ) + E((n+ 1)T )

≤ max{Tµα0, c2}
{E(nT )− E((n + 1)T )

Tµα0
+G

(E(nT )− E((n + 1)T )

Tµα0

)}

.

With c = max{Tµα0, c2}, and the definition (4.21) of h, we have found that

Tµα0h
−1(E(nT )) + E((n+ 1)T ) ≤ E(nT ).

Since this estimate is valid for all n ∈ N, we conclude by Theorem 4.1 with the choice β(t) = Tµα0.

Example 4.10 If gj satisfies the assumptions from Example 4.6, then in the linear case (i.e., if
p = γ = 1) we get the exponential decay decay

E(t) ≤ KE(0)e−Lt, ∀t ≥ 0,

for some positive constants K and L. On the contrary if p + 1 > 2γ, then we get the decay
K(E(0))t− 2γ

p+1−2γ . In both cases, the decay rate is the same as the one of the autonomous case.
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5 Illustrative examples

5.1 Second order evolution equations

Some examples given below enter in the following framework: Let H and V be two real separable
Hilbert spaces such that V is densely and continuously embedded into H . Define the linear operator
A2 from V into V ′ by

(5.1) 〈A2u, v〉V ′−V = (u, v)V , ∀u, v ∈ V,

and suppose given a (nonlinear) and time-dependent mapping B2(t) from V into V ′ as follows: We
assume that V is continuously embedded into a control space U in the form (3.1) with the same
assumptions on Uj , j = 1, · · · , J . Similarly, we suppose given mappings gj and αj satisfying the
same assumptions than in subsection 3.1. We then define the (nonlinear) operator B2(t) from V

into V ′ by

(5.2) 〈B2(t)u, v〉 =
J
∑

j=1

∫

Xj

αj(t, x)gj((JUu)j(xj)) · (JUv)j(xj) dµj(xj), ∀u, v ∈ V,

where JU denotes the embedding from V to U (hence, (JUu)j is the jth component of JUu).
With these data, we consider the second order evolution equation

(5.3)

{

d2u
dt2 (t) +A2u(t) +B2(t)

du
dt (t) = 0 in H, t ≥ 0,

u(0) = u0,
du
dt (0) = u1.

This system is reduced to the first order system (3.7) using the standard argument of reduction
of order: setting H = V ×H , V = V × V with their natural inner products,

x = (u, v)⊤,

with v = du
dt and introducing the operators

(5.4) A1x = (−v,A2u)
⊤, B(t)x = (0, B2(t)v)

⊤.

Note that B(t) is indeed in the form (3.6) with IU (u, v)⊤ = JUv, for all (u, v)⊤ ∈ V × V .
With this definition, we see that x is solution of (3.7), assuming that u exists and is sufficiently

regular. But in its full generality, the domain of AB(t) is time-dependent; so, again we distinguish
between two cases.

Before going on, let us notice that the above operator A1 trivially satisfies (3.11) due to (5.1).
Consequently the (nonlinear) operator AB(t) = A1x + B(t) corresponding to (5.4) satisfies all
assumptions of subsection 3.1.

Let us finally remark that Theorem 6.1 of [52] shows that A1 − IU and −A1 − IU generates a
C0-semigroup of contractions in H.

5.1.1 The bounded case

Theorem 5.1 In addition to the above assumptions, if we assume that H is continuously embedded
into the control space U , then for all (u0, u1) ∈ D(A2) × V problem (5.3) has a unique solution
u ∈ C([0,∞), V )∩C1([0,∞), H) such that its second derivative u′′(t) = −A2u(t)−B2(t)u

′(t) exists
and is continuous in H, except at a countable number of points t.
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Proof. We show that AB(t) = A1x + B(t) satisfies the assumptions of Theorem 3.2. First as
H = V ×H , it is clearly embedded into U as H →֒ U and that D(AB(t)) = D(A2) × V . Hence,
it suffices to show that there exists a positive real number λ such that R(λI + AB(t)) = H. But
this properties is proved in [52, Theorem 6.1] for λ = 1. We then conclude by Theorem 3.2 that
for any (u0, u1) ∈ D(A2)× V , there exists a unique solution x of (3.7) with the properties (3.10).
We now come back to the original system by noticing that x(t) = (u(t), v(t))⊤ satisfies

(u′(t), v′(t))⊤ = (v(t),−A2u(t)−B2(t)v(t))
⊤, ∀t ≥ 0.

Hence, u ∈ C1([0,∞), H), v = u′ and the second components of the above identity yields u′′(t) =
−A2u(t)−B2(t)u

′(t).
The proof is complete.

5.1.2 The unbounded case

Here in order to avoid the time-dependency of the domain of AB(t), we suppose that the mappings
αj satisfies (3.19) for some α ∈ C([0,∞), (0,∞)). In such a case, the operator B2(t) defined in
(5.4) will be in the form B(t) = α(t)B1, where B1(u, v)

⊤ = (0, B2v)
⊤, with (compare with (3.20))

(5.5) 〈B2u, v〉 =
J
∑

j=1

∫

Xj

gj((JUu)j(xj)) · (JUv)j(xj) dµj(xj), ∀u, v ∈ V.

Under the previous assumptions on A2 and B2, with the help of Theorem 3.3 we can prove the
next existence result for problem (5.3).

Theorem 5.2 In addition to the above assumptions, we assume that the mappings αj satisfies
(3.19) for some α ∈ C1([0,∞), (0,∞) such that α′ is locally Lipschitz. Then for all (u0, u1) ∈
V × V such that A2u0 + α(0)B2u1 ∈ H, problem (5.3) has a unique solution u ∈ C([0,∞), V ) ∩
C1([0,∞), H) such that its second derivative u′′(t) = −A2u(t)−α(t)B2u

′(t) exists and is continuous
in H, except at a countable number of points t.

Proof. We first recall that x = (u, v)⊤ is solution of (3.7) with A1 and B(t) from (5.4) (and
B2(t) = α(t)B2) if and only if

u′(t) = v(t),

v′(t) = −A2u(t)− α(t)v(t).

We now perform the following change of unknowns (assuming that u, v exists and are sufficiently
regular)

(5.6) ũ(t) = α(t)−1u(t), ṽ(t) = v(t).

Then setting x̃ = (ũ(t), ṽ(t))⊤, we see that it satisfies

(5.7) x̃′ =

(

−α(t)−2α′(t)u(t) + α(t)−1v(t)
−(A2u(t) + α(t)B2v(t))

)

=

(

α(t)−1(−α′(t)ũ(t) + ṽ(t)
−α(t)(A2ũ(t) +B2ṽ(t))

)

.

This means that as operator D(t) ∈ L(H), we here choose

(5.8) D(t)(u, v)⊤ = (α(t)−1u, v)⊤, ∀(u, v)⊤ ∈ V ×H.
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From the previous identity (5.7), we see that the assumption (3.22) holds with

(5.9) D̃(t)(u, v)⊤ = (u, α(t)v)⊤, ∀(u, v)⊤ ∈ V ×H.

From the assumptions on α and their definitions, we readily check that all other assumptions
from Theorem 3.3 on D and D̃ are satisfied. Finally Theorem 6.1 of [52] (since B2 defined above
satisfies the assumption of this Theorem) guarantees that A1 + B1 is maximal monotone and has
a dense domain in H. In conclusion, by Theorem 3.3, if (u0, u1) ∈ D(AB(0)) (or equivalently if
(u0, u1) ∈ V ×V is such that A2u0+α(0)B2u1 ∈ H), there exists a unique solution x of (3.7) with
the properties (3.10).

In the remainder of this section Ω is a bounded domain of Rn, n ≥ 1 with a Lipschitz boundary
Γ. Some restrictions will be specified later on when they will be necessary. We further denote by
ν the unit outward normal vector along Γ.

5.2 Nonlinear and nonautonomous stabilization of the wave equation

5.2.1 Interior damping

Consider the wave equation with interior damping and Dirichlet boundary condition

(5.10)



















∂2t u−∆u+ σ
∑J

j=1 αj(t, ·)gj(∂tu) = 0 in Q := Ω×]0,+∞[,

u = 0 on Σ := Γ×]0,+∞[,

u(0) = u0, ∂tu(0) = u1 in Ω,

where σ is a non-negative function that belongs to L∞(Ω) such that that there exists a positive
constant σ0 such that

(5.11) σ ≥ σ0 on O,

for some open and non empty subset O of the the support Xσ of σ. For all j = 1, · · · , J , the
functions αj and gj satisfy the assumptions of subsection 3.1 with Uj = L2(Xj), Xj being an open
and non empty subset of Xσ such that

(5.12) Xj ∩Xk = ∅, for j 6= k, and ∪J
j=1 X̄j = Xσ.

The stability of this problem in the autonomous case, namely for αj = 1, was extensively
studied in the litterature, let us cite the papers [21, 32, 41, 44, 48, 63] and the references cited there.
Both papers are restricted to some particular choices of σ and gj leading to some exponential or
polynomial decay rates of the energy of the solution of (5.10). On the contrary the nonautonomous
case is less considered in the literature and with the exception of [50] all papers concern interior
damping acting on the whole domain (i.e. σ = 1), see [14, 23, 45, 46, 47, 49, 51, 60]. Using the
results of the previous section, and under the assumption that the autonomous linear system is
exponentially stable, we obtain new decay results for a large class of functions gj and αj .

The first point is that problem (5.10) enters in the framework of problem (5.3) from subsection
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5.1 once we take

H = L2(Ω),

V = H1
0 (Ω),

(u, v)V =

∫

Ω

∇u · ∇v dx, ∀u, v ∈ V,

〈B2(t)u, v〉V ′−V =

J
∑

j=1

∫

Xj

αj(t, x)σ(x)fj(u(x))v(x) dx, ∀u, v ∈ V.

Let us notice that the inner product (·, ·)V induces a norm on V equivalent to the usual one due
to Poincaré inequality. Furthermore, the condition (3.5) allows to show that B2(t) is well-defined
from V to V ′.

As L2(Ω) is clearly embedded into U =
∏J

j=1 L
2(Xj) (that is clearly identical with L2(Xσ)),

the assumptions of Theorem 5.1 are satisfied and therefore, there exists a unique solution u of
(5.10) such that (u, u′)⊤ satisfies (3.10).

In order to deduce some stability results for our system (5.10) with the help of Theorem 4.5
we need that −A1 − IU generates an exponentially stable semigroup in H, with the control space
U = L2(Xσ). This property is equivalent to the exponential decay of the solution of the autonous
and linear problem

(5.13)



















∂2t u−∆u+ σ∂tu = 0 in Q := Ω×]0,+∞[,

u = 0 on Σ,

u(0) = u0, ∂tu(0) = u1 in Ω.

Note that the exponential stability of (5.13) holds in many different situations, see [21, 63] in
the case of a C2 boundary and O being a neighborhood of

(5.14) Γ+ := {x ∈ Γ : (x− x0) · ν(x) > 0},

for some x0 ∈ R
n, or [41] in the case of a domain Ω with an analytical boundary, σ smooth and

O satisfying a geometrical control condition. Note that in the case d = 1, this assumption is valid
as soon as O contains an open interval of Ω, see [21, Exemple 1]. Moreover, if the linear damping
acts on the whole domain, namely if σ = 1 in (5.13) a simple spectral analysis shows that (5.13) is
exponentially stable without any assumption on the regularity of the boundary of Ω. In all these
situations, if gj and αj satisfy the additional assumptions of Theorem 4.5, 4.7 or 4.9, then the
energy of our system will satisfy (4.20), (4.38) or (4.46). This allows to recover and extend some
results from [60, 51, 49, 23, 14, 45, 46, 47]. Particular cases not covered by the previous references
are the case when we have only a local damping, namely Xσ 6= Ω̄, and/or a factor α(t) piecewise
variables, for instance

αj(t, x) = αj(t), ∀x ∈ Xj .
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5.2.2 Boundary damping

Consider the wave equation with a boundary damping

(5.15)



























∂2t u−∆u = 0 in Q := Ω×]0,+∞[,

u = 0 on Σ0 := Γ0×]0,+∞[,

∂νu+ au+ α(t)k(x)g(∂tu) = 0 on Σ1 := Γ1×]0,+∞[,

u(0) = u0, ∂tu(0) = u1 in Ω,

where Γ0 is an open subset of Γ, Γ1 = Γ \ Γ̄0, a, k ∈ L∞(Γ1) are two non negative real-valued
functions. The function g is a non-decreasing continuous function from R into itself such that
g(0) = 0 and satisfying (3.5), while the function α ∈ C1([0,∞; (0,∞)) and α′ is locally Lipschitz.

For the sake of simplicity we suppose that

(5.16) either Γ0 is not empty or a 6≡ 0.

As previously, the stability of this problem in the autonomous case, namely for α = 1, was
extensively studied in the litterature, let us cite the papers [4, 10, 11, 29, 30, 33, 35, 37, 40, 62, 64]
and the references cited there. Both papers are restricted to some particular choices of Γ0, a, and
g leading to some exponential or polynomial decay rates of the energy of the solution of (5.10). On
the other hand to the best of our knowledge the nonautonomous case is only considered in [50].
Using the results of the previous section, and under the assumption that the autonomous linear
system is exponentially stable, we obtain new decay results for a large class of functions g and α.

As before problem (5.15) enters in the framework of problem (5.3) from subsection 5.1 once we
take:

H = L2(Ω),

V = {v ∈ H1(Ω)|v = 0 on Γ0},

(u, v)V =

∫

Ω

∇u · ∇v dx+

∫

Γ1

au · v dσ, ∀u, v ∈ V,

U = L2(Γ1),

〈B2(t)u, v〉V ′−V = α(t)

∫

Γ1

k(x)g(u(x))v(x) dσ(x), ∀u, v ∈ V.

Let us remark that the assumption (5.16) implies that the inner product (·, ·)V induces a norm
on V equivalent to the usual one, while our condition (3.5) implies that B2(t) is well-defined.

We readily check that these assumptions guarantee that B2(t) fulfils all the assumptions of
Theorem 5.2; hence, (5.15) has a unique solution u such that (u, u′)⊤ satisfies (3.10).

In order to take advantage of Theorem 4.5 we need that −A1 − IU generates an exponentially
stable semigroup in H. For this particular example this property is equivalent to the exponential
decay of the solution of the autonous and linear problem

(5.17)



























∂2t u−∆u = 0 in Q := Ω×]0,+∞[,

u = 0 on Σ0 := Γ0×]0,+∞[,

∂νu+ au+ k∂tu = 0 on Σ1 := Γ1×]0,+∞[,

u(0) = u0, ∂tu(0) = u1 in Ω.
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The exponential stability of (5.17) was obtained in many different situations, let us quote
[11, 10], where a = 0, k ∈ L∞(Γ1) such that

(5.18) k ≥ k0 on Γ1,

for some positive constant k0 and under the assumptions that

m · ν ≤ 0 on Γ0,(5.19)

m · ν ≥ γ > 0 on Γ1,(5.20)

where γ is a positive constant and m is the standard multiplier defined by

(5.21) m(x) = x− x0, ∀x ∈ R
n,

for some point x0 ∈ R
n.

This result was generalized in [37, 62] to a more general class of multipliersm ∈ C2(Ω̄) for which
the matrix (∂jmi+∂imj)1≤i,j≤n is uniformly positive definite in Ω̄ but still under the assumptions
a = 0, k ∈ L∞(Γ1) satisfying (5.18) and the geometrical constraints (5.19)-(5.20).

Let us observe that conditions (5.19)-(5.20) force to have

(5.22) Γ̄0 ∩ Γ̄1 = ∅.

This constraint has been removed in [40] since condition (5.20) has been removed, while the other
conditions from [37, 62] remain. Alternatively, in [35, 38], the choice k = mν (with m in the form
(5.21) and then as in [37, 62]) allows to replace the condition (5.20) by

m · ν > 0 on Γ1,

under the conditions a = 0 and Γ0 non empty, see also [29, 48] for the case a 6≡ 0.
Let us finally notice that microlocal analysis arguments from [4] allow to suppress the condi-

tion (5.19) if Γ is analytic, the condition (5.22) holds, a and k are smooth, and Γ1 satisfies the
geometrical control condition that it must meet each ray in a nondiffractive point.

Since in [50], it is assumed that a = 0, k = 1, that (5.19)-(5.20) hold with m in the form (5.21)
and that (5.22) holds, Theorems 4.5, 4.7 and 4.9 allow to improve significantly the result from [50]
by obtaining different decay rates of the solution of system (5.15) with appropriated choices of α
and g using the above mentioned results about the exponential decay of system (5.17).

5.2.3 Pointwise interior damping

In this subsection, we conisder the large time behavior of the solution of a homogenous string
equation with a homogenous Dirichlet boundary condition at the left end and a Neuman boundary
condition at the right end subject to a time-dependent and nonlinear pointwise interior actuator.
More precisely, we condider the problem

(5.23)







∂2t u− ∂2xu+ α(t)g(∂tu) δξ = 0 in (0, π)× R,

u(0, t) = ∂xu(π, t) = 0, t > 0,
u(·, 0) = u0, ∂tu(·, 0) = u1 in (0, π),

where ξ is a fixed point of (0, π), the functions g is a non-decreasing continuous function from R

into itself such that g(0) = 0 and satisfying (3.5), and the function α ∈ C1([0,∞; (0,∞)) is such
that α′ is locally Lipschitz.
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The stability of this problem in the autonomous and linear case, namely for α = g = 1 was
considered in [2] (see also [3]), and to the best of our knowledge, the case of a nonautonomous and
nonlinear pointwise damping has not been analyzed.

Let us notice that problem (5.23) enters in the framework of problem (5.3) from subsection 5.1
once we take:

H = L2(0, π),

V = {v ∈ H1(0, π)|v(0) = 0},

(u, v)V =

∫ π

0

uxvx dx, ∀u, v ∈ V,

U = R,

〈B2(t)u, v〉V ′−V = α(t)g(u(ξ))v(ξ), ∀u, v ∈ V.

These assumptions guarantee that B2(t) fulfils all the assumptions of Theorem 5.2; hence,
(5.23) has a unique solution u such that (u, u′)⊤ satisfies (3.10).

As Theorem 1.2 of [2] guarantees the exponential decay of the solution of (5.23) with α = g = 1
if ξ

π = p
q with p ∈ N

∗ odd and q ∈ N
∗, we can apply Theorem 4.5, 4.7 or 4.9 to obtain different

decay rates of the solution of system (5.23) under this assumption on ξ and if α and g satisfy the
additional assumptions from Theorem 4.5, 4.7 or 4.9.

5.3 Nonlinear and nonautonomous stabilization of the elastodynamic

system

With the notation of the above subsubsection 5.2.2, we consider the following elastodynamic sys-
tem:

(5.24)



























∂2t u−∇σ(u) + σ
∑J

j=1 αj(t, ·)gj(∂tu) = 0 in Q,

u = 0 on Σ0,

σ(u) · ν + au+ kg(∂tu) = 0 on Σ1,

u(0) = u0, ∂tu(0) = u1 in Ω.

As usual u(x, t) is the displacement field at the point x ∈ Ω at time t and σ(u) = (σij(u))
n
i,j=1

is the stress tensor given by (here and in the sequel we shall use the summation convention for
repeated indices)

σij(u) = aijklǫkl(u),

where ǫ(u) = (ǫij(u))
n
i,j=1 is the strain tensor given by

ǫij(u) =
1

2
(
∂ui

∂xj
+
∂uj

∂xi
),

and the tensor (aijkl)i,j,k,l=1,··· ,n is made of W 1,∞(Ω) entries such that

aijkl = ajikl = aklij ,

and satisfying the ellipticity condition

aijklǫijǫkl ≥ αǫijǫij ,
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for every symmetric tensor (ǫij) and some α > 0. Hereabove and below ∇σ(u) is the vector field
defined by

∇σ(u) = (∂jσij(u))
n
i=1.

Finally a and k are two nonnegative real number. As before we assume that

(5.25) gj = 0, ∀j = 1, · · · , J or Γ1 = ∅.

This last assumption means that we stabilizate our system either by a boundary feedback or by
an internal feedback with only Dirichlet boundary conditions. In case of a boundary damping, we
also suppose that (5.16) holds.

In case of an internal feedback, as in subsubsection 5.2.1, σ is a non-negative function that
belongs to L∞(Ω) satisfying (5.11) for some open and non empty subset O of the the support Xσ

of σ. For all j = 1, · · · , J , the functions αj and gj satisfy the assumptions of subsection 3.1 with
Uj = L2(Xj)

n, Xj being an open and non empty subset of Xσ such that (5.12) holds.
In case of a boundary feedback, the functions α and g satisfy the assumptions of subsection

3.1 with U = L2(Γ1)
n and suppose, moreover, that α ∈ C1([0,∞; (0,∞)) is such that α′ is locally

Lipschitz.
The stability of the system (5.24) was considered in [1, 8, 18, 19, 20, 22, 36, 61] in the

autonomous case under some particular hypotheses on Γ0, Γ1, a, gj and g leading to expo-
nential or polynomial decay of the energy of the solution of (5.24). The nonautonomous case
with internal feedback and for the Lamé system (corresponding to n = 3 and to the choice
aijkl = λδijδkl + µ(δikδjl + δilδjk), where λ and µ are positive constants, called Lamé parame-
ters) was treated in [6, 7].

As in the above subsection, problem (5.24) may be expressed in the form (5.3) from subsection
5.1 with the choices:

H = L2(Ω)n,

V = {v ∈ H1(Ω)n|v = 0 on Γ0},

(u, v)V =

∫

Ω

σij(u)ǫij(v) dx + a

∫

Γ1

u · v dσ, ∀u, v ∈ V,

and

〈B2(t)u, v〉V ′−V =

J
∑

j=1

∫

Xj

αj(t, x)σ(x)fj(u(x)) · v(x) dx, ∀u, v ∈ V,

in case of an interior damping and

〈B2(t)u, v〉V ′−V = α(t)

∫

Γ1

g(u) · v dσ, ∀u, v ∈ V,

otherwise.
In the case of an interior damping (resp. boundary damping), all the assumptions of Theorem

5.1 (resp. Theorem 5.2) are satisfied and therefore, we have a unique solution u of (5.24) such that
(u, u′)⊤ satisfies (3.10).

For stability results of (5.24), we need to check that −A1−IU generates an exponentially stable
semigroup in V ×H , where the control space U is defined by

U = L2(Xσ)
n if Γ1 = ∅,

U = L2(Γ1)
n if gj = 0, ∀j = 1, · · · , J.
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As before, this is equivalent to the exponential decay of the autonomous and linear system (5.24),
i.e. corresponding to Γ1 = ∅, αj = 1 and gj(s) = s in the first case and to gj = 0, α = 1 and
g(s) = s in the second case.

In the first case (i. e., Γ1 = ∅), this exponential decay was proved in [20, Theorem 1.1] (see
also [18] for the case Xσ = Ω) under the assumptions that O is a neighborhood of Γ+ defined by
(5.14). Hence, in the setting of one of these papers, under the additional assumptions on αj and gj
from Theorem 4.5, 4.7 or 4.9, different decay rates of the solution of system (5.24) (with Γ1 = ∅)
are available.

In the second case (i.e., gj = 0, for all j = 1, · · · , J), the exponential decay of the autonomous
and linear system (5.24) was proved in [1, 8, 22, 36] under some geometric assumptions. In the
setting of one of these papers, we then obtain different decay rates of the solution of system (5.24)
(with gj = 0, for all j = 1, · · · , J) if g and α satisfy the assumptions from Theorem 4.5, 4.7 or 4.9.

5.4 Nonlinear and nonautonomous stabilization of Maxwell’s equations

We consider Maxwell’s equations in Ω ⊂ R
3 with a smooth boundary with either a nonlinear

and nonautonomous internal feedback or a nonlinear and nonautonomous boundary feedback. To
the best of our knowledge, the analysis of Maxwell’s system with nonautonomous and nonlinear
damping has not been analyzed.

To clarify the presentation, we treat these two cases separately.

5.4.1 Interior damping

Here we consider the problem

(5.26)



























ε∂E∂t − curlH + σ
∑J

j=1 αj(t, ·)gj(E) = 0 in Q,

µ∂H
∂t + curlE = 0 in Q,

div (µH) = 0 in Q,
E × ν = 0, H · ν = 0 on Σ := Γ×]0,+∞[,
E(0) = E0, H(0) = H0 in Ω.

As usual ǫ and µ are real, positive functions of class C1(Ω̄), while σ is a non-negative function that
belongs to L∞(Ω) satisfying (5.11) for some open and non empty subset O of the the support Xσ

of σ. For all j = 1, · · · , J , the functions αj and gj satisfy the assumptions of subsection 3.1 with
Uj = L2(Xj)

3, Xj being an open subset of Ω such that (5.12) holds.
The stability of this system was studied in [56, 57, 59] with a linear and autonomous feedback

gj(E) = E and αj = 1, where some exponential decay results were obtained under some constraints
on ǫ, µ and σ. The nonlinear and autonomous case was treated in [52].

Contrary to the above examples this system is not a second order system but it enters in the

32



setting of (3.7) once we set

H = L2(Ω)3 × Ĵ(Ω, µ),

Ĵ(Ω, µ) = {H ∈ L2(Ω)3 : div(µH) = 0 in Ω, H · ν = 0 on Γ},

((E,H), (E′, H ′))H =

∫

Ω

(ǫE ·E′ + µH ·H ′) dx, ∀(E,H), (E′, H ′) ∈ H,

V = V × Ĵ(Ω, µ),

V = {E ∈ L2(Ω)3 : curlE ∈ L2(Ω)3, E × ν = 0 on Γ},

〈A1(E,H), (E′, H ′)〉 =

∫

Ω

(curlE ·H ′ −H · curlE′) dx, ∀(E,H), (E′, H ′) ∈ V ,

〈B(t)(E,H), (E′, H ′)〉 =

J
∑

j=1

∫

Ω

αj(t, x)gj(E) ·E′ dx, ∀(E,H), (E′, H ′) ∈ V .

As H is continuously embedded into U = L2(Ω)3 × {0} (with IU (E,H)⊤ = (E, 0)⊤), AB(t) =
A1+B(t) satisfies (3.16). Furthermore, one readily checks (as in [15, §3]) that A1+B(t) is maximal
monotone for the inner product (·, ·)H, since the bilinear form

∫

Ω

(µ−1 curlE · curlE′ + ǫE · E′) dx

is clearly coercive on V . Hence, by Theorem 5.1 system (5.26) has a unique solution (E,H)⊤ of
(5.26) satisfying (3.10).

As before ±A1 − IU generates an exponentially stable semigroup in H if and only if system
(5.26) with a linear and autonomous feedback is exponentially stable. As Theorems 5.1 and 5.5 of
[59] (resp. Theorem 4.1 of [56] and Remark 5.2 of [57]) imply that such an exponential stability
holds if ε and µ are constant (resp. sufficiently smooth) and under some conditions on O, we may
conclude some decays of the solution of (5.26) in the setting of one of these papers, as soon as gj
and αj satisfy the additional assumptions from Theorem 4.5, 4.7 or 4.9.

5.4.2 Boundary damping

Let us go on with Maxwell’s equations with a nonlinear and non autonous boundary feedback

(5.27)



























ε∂E∂t − curlH = 0 in Q := Γ×]0,+∞[,

µ∂H
∂t + curlE = 0 in Q,

div (εE) = div (µH) = 0 in Q,
H × ν + α(t)g(E × ν)× ν = 0 on Σ := Γ×]0,+∞[,
E(0) = E0, H(0) = H0 in Ω,

where the functions α and g satisfy the assumptions of subsection 3.1 with U = L2(Γ)3 and
α ∈ C1([0,∞; (0,∞)) is such that α′ is locally Lipschitz.

The autonomous case was studied in [5, 15, 24, 31, 33, 54, 55, 59], where different decay rates
are avalaible under different conditions on ǫ, µ and Γ and appropriated assumptions on g.

33



Let us now show that (5.27) enters in the framework of subsection 3.3 if we take (see [54, §2])

H = J(Ω, ε)× J(Ω, µ),

J(Ω, µ) = {H ∈ L2(Ω)3 : div(µH) = 0 in Ω},

((E,H), (E′, H ′))H =

∫

Ω

(ǫE · E′ + µH ·H ′) dx,

V = V × J(Ω, µ), ∀(E,H), (E′, H ′) ∈ H,
V = {E ∈ J(Ω, ε) : curlE ∈ L2(Ω)3, E × ν ∈ L2(Γ)3},
U = L2(Γ)3,

〈A1(E,H), (E′, H ′)〉 =

∫

Ω

(curlE ·H ′ −H · curlE′) dx, ∀(E,H), (E′, H ′) ∈ V ,

B(t) = α(t)B1,

〈B1(E,H), (E′, H ′)〉 =

∫

Γ

g(E × ν) · (E′ × ν) dσ(x), ∀(E,H), (E′, H ′) ∈ V .

Note first that B(t) is well-defined with the embedding IU (E,H)⊤ = E × ν, while by its
definition A1 directly satisfies (3.11). Hence, all assumptions of subsection 3.1 are satisfied. Now
in order to apply Theorem 3.3, for all t ≥ 0, we introduce the bounded linear operators D(t) and
D̃ from H into itself by

D(t)(E,H)⊤ = (E,α(t)−1H)⊤, D̃(t)(E,H)⊤ = (α(t)E,H)⊤

that, due to the assumption on α, satisfy the requested regularity assumptions and the condition
(3.21) from Theorem 3.3. Furthermore, simple calculations shows that (3.22) holds. As Lemma
2.3 of [54] guarantees that the domain of A1 +B1 is dense in H and Lemma 2.3 of [54] shows that
A1 + B1 is maximal monotone in H, we can apply Theorem 3.3 to obtain the well posedness of
problem (5.27).

Here again ±A1 − IU generates an exponentially stable semigroup in H if and only if system
(5.27) with a linear and autonomous feedback is exponentially stable. Such a stability property
was obtained in many papers, let us quote [24, 31, 33, 59]. Hence, if system (5.27) with a linear
and autonomous feedback is exponentially stable and if additionally α and g satisfy the additional
assumptions from Theorem 4.5, 4.7 or 4.9, we may conclude some decays of the solution of (5.27).
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