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Block Elimination Distance1

Öznur Yaşar Diner2,3 Archontia C. Giannopoulou4 Giannos Stamoulis4,5

Dimitrios M. Thilikos6

Abstract

We introduce the parameter of block elimination distance as a measure of how close a graph
is to some particular graph class. Formally, given a graph class G, the class B(G) contains all
graphs whose blocks belong to G and the class A(G) contains all graphs where the removal of
a vertex creates a graph in G. Given a hereditary graph class G, we recursively define G(k)

so that G(0) = B(G) and, if k ≥ 1, G(k) = B(A(G(k−1))). The block elimination distance
of a graph G to a graph class G is the minimum k such that G ∈ G(k) and can be seen as an
analog of the elimination distance parameter, defined in [J. Bulian and A. Dawar. Algorithmica,
75(2):363–382, 2016], with the difference that connectivity is now replaced by biconnectivity. We
show that, for every non-trivial hereditary class G, the problem of deciding whether G ∈ G(k) is
NP-complete. We focus on the case where G is minor-closed and we study the minor obstruction
set of G(k) i.e., the minor-minimal graphs not in G(k). We prove that the size of the obstructions
of G(k) is upper bounded by some explicit function of k and the maximum size of a minor
obstruction of G. This implies that the problem of deciding whether G ∈ G(k) is constructively
fixed parameter tractable, when parameterized by k. Our results are based on a structural
characterization of the obstructions of B(G), relatively to the obstructions of G. Finally, we
give two graph operations that generate members of G(k) from members of G(k−1) and we prove
that this set of operations is complete for the class O of outerplanar graphs. This yields the
identification of all members O∩G(k), for every k ∈ N and every non-trivial minor-closed graph
class G.
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1 Introduction
Graph distance parameters are typically introduced as measures of “how close” is a graph G to
some given graph class G. One of the main motivating factors behind introducing such distance
parameters is the following. Let G be a graph class on which a computational problem Π is tractable
and let G(k) be the class of graphs with distance at most k from G, for some notion of distance.
Our aim is to exploit the “small” distance of the graphs in G(k) from G in order to extend the
tractability of Π in the graph class G(k). This approach on dealing with computational problems
is known as parameterization by distance from triviality [12]. Usually, a graph distance measure is
defined by minimizing the number of modification operations that can transform a graph G to a
graph in G.

The most classic modification operation is the apex extension of a graph class G, defined as
A(G) = {G | ∃v ∈ V (G) G\v ∈ G} and the associated parameter, the vertex-deletion distance of G
to G, is defined as min{k | G ∈ Ak(G)}. The vertex-deletion distance has been extensively studied.
Other, popular variants of modification operations involve edge removals/additions/contractions or
combinations of them [4,9, 11].

Elimination distance. Bulian and Dawar in [5, 6], introduced the elimination distance of G to
a class G as follows:

edG(G) =


0 G ∈ G
max{edG(C) | C ∈ cc(G)} if G 6∈ G and G is not connected
1 + min{edG(G \ v) | v ∈ V (G)} if G 6∈ G and G is connected

,

where by cc(G) we denote the connected components of G. Notice that the definition edG , apart
from vertex deletions, also involves the connected closure operation, defined as C(G) = {G | ∀C ∈
cc(G), C ∈ G}. Observe that edG(G) = 0 iff G ∈ G ∪ C(G), while, for k > 0, edG(G) ≤ k iff
G ∈ G′ ∪ C(G′), where G′ = A({G | edG(G) ≤ k − 1}). Therefore, edG can be seen as a non-
deterministic counterpart of the vertex-deletion operation where the operation C acts as the source
of non-determinism, that is, in each level of the recursion, the vertex deletion operation is applied
to each of the connected components of the current graph. A motivation of Bulian and Dawar in [5]
for introducing edG was the study of the Graph Isomorphism Problem. Indeed, it is easy to see
that there are constants cα and cκ such that if Graph Isomorphism can be solved in O(nc) time
in some graph class G, then it can be solved in time O(nc+cα) (resp. O(nc+cκ)) in the graph class
A(G) (resp. C(G)) (see [8,13,14]). This implies that Graph Isomorphism can be solved in nO(k)

steps in the class of graphs where edG is bounded by k. In [5], Bulian and Dawar improved this
implication for the class Gd of graphs of width at most d and proved that Graph Isomorphism
can be solved in f(k) · ncd time in the class {G | edGd(G) ≤ k} (here cd is a constant depending on
d). In other words, for every d, Graph Isomorphism is fixed parameter tractable (in short FPT),
when parameterized by edGd .

Computing the elimination distance. Typically, the algorithmic results on edG apply for
instantiations of G that are hereditary, i.e., the removal of a vertex of a graph in G results to a graph
that is again in G. Bulian and Dawar in [6] examined the case where G is minor-closed. One may
observe that containment in G is equivalent to the exclusion of the graphs in the minor-obstruction
set of G, that is the set obs(G) of the minor-minimal graphs not in G. Also the minor-closed property
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is invariant under the operations A and C, therefore the class {G | edG(G) ≤ k} is also minor-closed.
From the Robertson and Seymour theorem, obs({G | edG(G) ≤ k}) is finite, and this implies, using
the algorithmic results of [16,19], that for every minor-closed class G, deciding whether edG(G) ≤ k
is FPT (parameterized by k) by an algorithm that runs in f(k) · n2 time. While this approach
is not constructive in general, Bulian and Dawar in [6] proved that there is an algorithm that,
with input obs(G) and k, outputs the set obs({G | edG(G) ≤ k}). This makes the aforementioned
f(k) · n2-time algorithm constructive in the sense that the function f is computable. An explicit
estimation of this function f can be derived from the recent results in [20–22]. The computational
complexity of edG was also studied for different instantiations of G. In [18] Lindermayr, Siebertz,
and Vigny considered the class Gd of graphs of degree at most d. They proved that, given k, d, and
a planar graph G, deciding whether edGd(G) ≤ k is FPT (parameterized by k and d) by designing
an f(k, d) · nO(1) time algorithm. Also, in [2] the same result was proved without the planarity
restriction. Moreover, in [2], more general hereditary classes where considered: let F be some finite
set of graphs and let GF be the class of graphs excluding all graphs in F as induced subgraphs.
It was proved in [2] that for every such F the problem that, given some graph G and k, deciding
whether edGF (G) ≤ k is FPT (parameterized by k) by designing an f(k) ·ncd time algorithm, where
cd is a constant depending on d (see also [3] for earlier results).

Block elimination distance. We introduce a more general version of elimination distance where
the source of non-determinism is biconnectivity instead of connectivity. The recursive application
of the vertex deletion operation is now done on the blocks of the current graph instead of its
components. That way, the block elimination distance of a graph G to a graph class G is defined as

bedG(G) =


0 G ∈ G
max{bedG(B) | B ∈ bc(G)} if G 6∈ G and G is not biconnected
1 + min{bedG(G \ v) | v ∈ V (G)} if G 6∈ G and G is biconnected

,

where by bc(G) we denote the blocks of the graphG. We stress that the “source of non-determinism”
in the above definition is the biconnected closure operation, defined as B(G) = {G | ∀B ∈ bc(G), B ∈
G}.

Notice that the above parameter is more general than edG in the sense that it upper bounds edG
but it is not upper bounded by any function of edG : for instance, if G is a connected graph whose
blocks belong to G, it follows that bedG(G) = 0, while edG(G) can be arbitrarily big.1 Moreover,
bedG , can also serve as a measure for the distance to triviality in the same way as edG . For instance,
there is a constant cβ such that if Graph Isomorphism can be solved in O(nc) time in some graph
class G, then it can be solved in time O(nc+cβ ) in the graph class B(G) (using standard techniques,
see e.g., [8,13,14]). This implies that Graph Isomorphism can be solved in nO(k) steps in the class
of graphs where bedG is bounded by k. Clearly, all the problems studied so far on the elimination
distance have their counterpart for the block elimination distance and this is a relevant line of
research, as the new parameter is more general than its connected counterpart.

Our results. As a first step, we prove that if G is a non-trivial2 and hereditary class, then
deciding whether bedG(G) ≤ k is an NP-complete problem (Section 3). For our proof we certify

1It is easy to see that edG(G) is logarithmically lower-bounded by the maximum number of cut-vertices in a path
of G.

2A class is non-trivial if it contains at least one non-empty graph and is not the class of all graphs.
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yes-instances by using an alternative definition of bedG that is based on an (multi)-embedding of G
in a rooted forest (Section 2).

We next focus our study on the case where G is minor-closed (and non-trivial). As the operation
B maintains minor-closedness, it follows that the class G(k) := {G | bedG(G) ≤ k} is minor-closed
for every k, therefore for every minor-closed G, deciding whether G ∈ G(k) is FPT (parameterized by
k). Following the research line of [6], we make this result constructive by proving that it is possible
to bound the size of the obstructions of G(k) by some explicit function of k and the maximum size
of the obstructions of G. This bound is based on the results of [1, 21] (Section 4) and a structural
characterization of obs(B(G)), in terms of obs(G), implying that no obstruction of B(G) has size
that is more than twice the maximum size of an obstruction of G (Section 5).

In Section 6 we take a closer look of the obstructions of G(k). We give two graph operations,
called parallel join and triangular gluing, that generate members of G(k) from members of G(k−1).
This yields that the number of obstructions of G(k) is at least doubly exponential on k. Moreover,
we prove that this set of operations is complete for the class O of outerplanar graphs. This implies
the complete identification of O ∩ G(k), for every k ∈ N and every non-trivial minor-closed graph
class G. This yields that the number of obstructions of G(k) is at least doubly exponential on k.

The paper concludes in Section 7 with some further observations and open problems.

2 Definitions and preliminary results
Sets and integers. We denote by N the set of non-negative integers. Given two integers p and
q, the set [p, q] refers to the set of every integer r such that p ≤ r ≤ q. For an integer p ≥ 1, we set
[p] = [1, p] and N≥p = N \ [0, p − 1]. For a set S, we denote by 2S the set of all subsets of S and,
given an integer r ∈ [|S|], we denote by

(S
r

)
the set of all subsets of S of size r. If S is a collection

of objects where the operation ∪ is defined, then we denote ⋃⋃⋃⋃⋃⋃⋃⋃⋃S = ⋃
X∈S X. Given two sets A,B

and a function f : A→ B, for every X ⊆ A we use f(X) to denote the set {f(x) | x ∈ X}.

Basic concepts on graphs. All graphs considered in this paper are undirected, finite, and
without loops or multiple edges. We use V (G) and E(G) for the sets of vertices and edges of
G, respectively. For simplicity, an edge {x, y} of G is denoted by xy or yx. We say that H is a
subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a set of vertices S ⊆ V (G), we denote
by G[S] = (S,E(G) ∩

(S
2
)
) the subgraph of G induced by the vertices from S. We also define

G \ S = G[V (G) \ S]; we write G \ v instead of G \ {v} for a single vertex set. We say that the
graph H is an induced subgraph of a graph G if H = G[S] for some S ⊆ V (G). Given e ∈ E(G),
we also denote G \ e = (V (G), E(G) \ {e}). For a vertex v, we define the set of its neighbors in
G by NG(v) = {u | vu ∈ E(G)} and degG(v) = |NG(v)| denotes the degree of v in G. A vertex
v of G is called isolated if degG(v) = 0. Given two graphs G1 and G2 we denote their disjoint
union by G1 + G2. A graph G is connected if for every two vertices u and v, G contains a path
whose end-vertices are u and v and it is biconnected if for every two vertices u and v, G contains
a cycle containing the vertices u and v. A (bi)connected component of G is a subgraph of G that
is maximally (bi)connected. We denote by cc(G) the set of all connected components of G. A
cut-vertex of a graph G is a vertex x ∈ V (G) such that |cc(G)| < |cc(G \ v)|. A bridge of a graph
G is a connected subgraph on two vertices x, y and the edge e = xy such that |cc(G)| < |cc(G \ e)|.
A block of a graph is either an isolated vertex, or a bridge of G, or a biconnected component of G.
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We also denote by bc(G) the set of all blocks of G and we say that a graph G is a block-graph if
bc(G) = {G}.

We use the term graph class (or simply class) for any set of graphs (this set might be finite or
infinite). We say that a graph class is non-trivial if it contains at least one non-empty graph and
does not contain all graphs. We say that a class G is hereditary if every induced subgraph of a
graph in G belongs also to G. Notice that both operations A and B maintain the property of being
non-trivial and hereditary. We denote by E the class of the edgeless graphs.

Some observations. In this paper we consider only classes that are non-trivial and hereditary.
This implies that G ⊆ A(G). Notice that this assumption is necessary as {K1} * A({K1}) =
{K2} ({K1} is non-hereditary) and {K0} * A({K0}) = {K1} ({K0} is not non-trivial). Also the
hereditarity of G implies that G ⊆ B(G) and hereditarity is necessary for this as, for example,
{P3} * B({P3}) = {K0}. However, G ⊆ B(G) also holds for the two finite classes that are not
non-trivial, i.e., B({}) = {K0} and B({K0}) = {K0}. We also exclude the class of all graphs as, in
this case, A and B do not generate new classes.

Given a k ∈ N, we define G(k) = {G | bedG(G) ≤ k}. Observe that, according to the definition
of bedG , G(0) = G ∪ B(G) while, for k > 0, G(k) = A(G(k−1)) ∪ B(A(G(k−1))). This, together with
the fact that G ⊆ B(G) implies that

G(k) =
k times︷ ︸︸ ︷

B(A(· · · B(A(B(G))) · · · )). (1)

Observe also that for every non-trivial and hereditary class G, B(G) = B(B(G)). This implies that
bedG and bedB(G) are the same parameter.

An alternative definition. A rooted forest is a pair (F,R) where F is an acyclic graph and
R ⊆ V (F ) such that each connected component of F contains exactly one vertex of R, its root.
A vertex t ∈ V (F ) is a leaf of F if either t ∈ R and degF (t) = 0 or t 6∈ R and degF (t) = 1. We
use L(F,R) in order to denote the leaves of (F,R). Given t, t′ ∈ V (F ) we say that t ≤F,R t′ if
there is a path from t′ to some root in R that contains t. If neither t ≤F,R t′ nor t′ ≤F,R t then we
say that t and t′ are incomparable in (F,R). A (F,R)-antichain is a non-empty set C of pairwise
incomparable vertices of F . An (F,R)-antichain is non-trivial if it contains at least two elements.

Given a vertex t ∈ V (F ), we define its descendants in (F,R) as the set dF,R(t) = {t′ ∈ V (F ) |
t ≤F,R t′}. The children of a vertex q ∈ V (F ) in (F,R) are the descendants of q in (F,R) that are
adjacent to q in F. The depth of a rooted forest (F,R) is the maximum number of vertices in a path
between a leaf and the root of the connected component of F where this leaf belongs.

Let G be a non-trivial hereditary class and let G be a graph. Let (F,R, τ) be a triple consisting
of a rooted forest F whose root set is R and a function τ : V (G) → 2V (F ). Given a vertex set
S ⊆ V (F ), we set τ−1(S) = {v ∈ V (G) | τ(v) ∩ S 6= ∅}. Also, for every t ∈ V (F ), we define
Gt = G[τ−1(dF,R(t))].

We say that a triple (F,R, τ) is a G-block tree layout of G if the following hold:

(1) for every v ∈ V (G), τ(v) is an (F,R)-antichain,

(2) for every t ∈ V (T ), Gt is a block-graph,

(3) if t 6∈ L(F,R), then |τ−1({t})| = 1 and Gt 6∈ G or ,
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(4) if t ∈ L(F,R), then Gt ∈ G and

(5) for every non-trivial (F,R)-antichain C, the graph ⋃⋃⋃⋃⋃⋃⋃⋃⋃{Gt | t ∈ C} is not biconnected.
The depth of the G-block tree layout (F,R, τ) is equal to the depth of the rooted forest (F,R).

Lemma 1 (?). Let G be a non-trivial hereditary class and let G be a graph. Then the minimum
depth of a G-block tree layout of G is equal to bedG(G)− 1.

Proof. Assume that (F,R, τ) is a G-block tree of depth k + 1 ≥ 1. We use induction on k. Notice
first that if k = 0, then V (F ) = L(F,R) = R. From (2) and (5), bc(G) = {Gr | r ∈ R}. From (4),
for every r ∈ R, Gr ∈ G, therefore G ∈ B(G) = G(0).

Suppose now that k ≥ 1 and consider some r ∈ R. If r ∈ L(F,R), then, because of (4),
Gr ∈ G ⊆ G(k−1) ⊆ A(G(k−1)). Suppose now that r 6∈ L(F,R). Then, from (3), |τ−1({r})| = 1 and
we define vr so that τ−1({r}) = {vr}. We also setG−r = Gr\vr. Let Fr = F [dF,R(r)]\r, Rr = NF (r),
and τr = {(v, τ(v) ∩ V (Fr)) | v ∈ V (G−r )} and observe that (Fr, Rr, τr) is a G-block tree layout of
G−r of depth k − 1. By the induction hypothesis G−r ∈ G(k−1), therefore Gr ∈ A(G(k−1)). Recall
now that R is an (F,R)-antichain, therefore from (2) and (5), we have that bc(G) = {Gr | r ∈ R}.
This together with the fact that for all r ∈ R, G−r ∈ G(k−1) imply that G ∈ B(A(G(k−1))), therefore,
G ∈ G(k).

Suppose now that G ∈ G(k) for some k ≥ 0. Again we use induction on k. In case k = 0,
observe that G ∈ B(G), therefore every block of G belongs to G. We consider a rooted forest (F,R)
consisting of isolated vertices, one, say RB, for each block B of G. We also set up a function
τ : V (G) → 2V (F ) such that, for each vertex v of G, τ(v) = {RB | v ∈ V (B)}. Observe that
(F,R, τ) is a G-block tree layout of G of depth 1.

Suppose now that k ≥ 1 and letB ∈ bc(G). AsG ∈ G(k), it follows thatB ∈ A(G(k−1)), therefore
B contains a vertex aB such that B− = B\aB ∈ G(k−1). From the induction hypothesis, B− has a G-
block tree layout (FB− , RB− , τB−) of depth k. We use (FB− , RB− , τB−) for all B ∈ bc(G) in order to
construct a G-block tree layout (F,R, τ) of G as follows. F is constructed by first taking the disjoint
union of all forests in {FB− | B ∈ bc(G)} then adding one new root vertex rB for each B ∈ bc(G)
and, finally, making rB adjacent with all the vertices of RB− . We also set R = {rB | B ∈ bc(G)}.
For the construction of τ , if v ∈ {B− | B ∈ bc(G)}, then τ(v) = ⋃⋃⋃⋃⋃⋃⋃⋃⋃

{τB−(v) | B ∈ bc(G)} and if
v ∈ {aB | B ∈ bc(G)}, then τ(v) = {RB− | v ∈ B}. The result follows, as (F,R, τ) has depth
k + 1.

3 NP-completeness
We consider the following family of problems, each defined by some non-trivial and hereditary
graph class G. We say that a class G is polynomially decidable if there exists an algorithm that,
given an n-vertex graph G, decides whether G ∈ G in polynomial, on n, time.

Block Elimination Distance to G (G-BED)
Instance: A graph G and a non-negative integer k.
Question: Is the block elimination distance of G to G at most k?

Lemma 2 (?). For every polynomially decidable, non-trivial, and hereditary graph class G, the
problem G-BED is NP-complete.
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Proof. Given a graph G and a non-negative integer k and using Lemma 1, we certify that
bedG(G) ≤ k by a G-block tree layout (F,R, τ) of G of depth at most k + 1. This, together
with the fact that G is polynomially decidable, implies that G-BED belongs to NP.

We next prove that G-BED is NP-hard. Our first step is to prove that E-BED is NP-hard.
Notice that, in this case, conditions (2) and (4) of the definition of a E-block tree layout imply that
if t ∈ L(F,R) then Gt = K1. This, in turn, implies that {τ(v) | v ∈ V (G)} is a partition of V (F ).

We present a reduction to E-BED from the following NP-hard problem:

Balanced Complete Bipartite Subgraph (BCBS)
Instance: A bipartite graph G with partition V1, V2 and a positive integer k.
Question: Are there Wi ⊆ Vi, i ∈ [2], such that G[W1 ∪ W2] is a complete
bipartite graph and |W1| = |W2| = k?

Let G be a bipartite graph with partition V1, V2. Let n = |V (G)|, ξ = 2n − 4k, and k′ =
2n+ ξ − 2k. Also keep in mind that 2ξ + 2k + 1 = k′ + 1. For each vertex v ∈ V (G), we consider
a new vertex v′ and we denote by V ′ this set of n new vertices (i.e., V ′ = {v′ | v ∈ V (G)}). We
consider the graph

G• = (V (G) ∪ V ′, E(G) ∪
⋃

{u,v}∈E(G)
({u, v′} ∪ {u′, v} ∪ {u′, v′})).

Then, we consider the graph G? obtained by G• after adding a set V̂ of ξ + 1 new vertices and
make them adjacent with all the vertices in V (G•). We set n? = |V (G?)| and we observe that
n? = 2n + ξ + 1. Also, for each i ∈ [2], we set V ′i = {v′ ∈ V ′ | v ∈ Vi} and V ?

i = Vi ∪ V ′i . In what
follows, we prove that (G, k) is a yes-instance of BCBS iff (G?, k′) is a yes-instance of E-BED. We
begin by proving that if (G, k) is a yes-instance of BCBS, then (G?, k′) is a yes-instance of E-BED.

Suppose that (G, k) is a yes-instance of BCBS. Therefore, there exist Wi ⊆ Vi, i ∈ [2] such
that G[W1 ∪ W2] is a complete bipartite graph and |Wi| = k, i ∈ [2]. For each i ∈ [2], we set
W ′i = {v′ ∈ V ′ | v ∈ Wi} and W ?

i = Wi ∪W ′i and we observe that the graph G•[W ?
1 ∪W ?

2 ] is a
complete bipartite graph whose parts areW ?

1 andW ?
2 , each of size 2k. We now aim to define a triple

(F,R, τ) that certifies that bedE(G?) ≤ k′. To define F , let P be an (r, q)-path of 2ξ + 1 vertices
and P1 (resp. P2) be an (a1, `1)-path (resp. (a2, `2)-path) of 2k vertices such that P , P1, and P2 are
pairwise vertex-disjoint. We set F to be the graph obtained from P ∪ P1 ∪ P2 by adding the edges
qa1 and qa2 and observe that F is a tree of depth 2ξ+ 2k+ 1 = k′+ 1. We now consider the triple
(F,R, τ), where R = {r} and τ is a function mapping each vertex of V̂ ∪ (V ?

1 \W ?
1 ) ∪ (V ?

2 \W ?
2 )

to a unique vertex of P and each vertex of W ?
i to a unique vertex of Pi, for i ∈ [2]. It is easy to

verify that τ satisfies the properties (1) to (5) of the definition of G-block tree layout, where G = E ,
and therefore, since (F,R, τ) has depth k′ + 1, by Lemma 1, we have that (F,R, τ) certifies that
bedE(G?) ≤ k′.

What remains now is to prove that if bedE(G?) ≤ k′, then (G, k) is a yes-instance of BCBS.
Towards this, we argue that the following holds.

Claim: There are sets Bi ⊆ V ?
i such that |Bi| ≥ 2k−1, i ∈ [2], and there is no edge between vertices

of B1 and B2 in G?.

Proof of Claim: Assume that the E-block tree layout (T,R, τ) certifies that bedE(G?) ≤ k′. Observe
that, since G? is connected, T is connected and R is a singleton. Let r ∈ V (T ) such that R = {r}.
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Keep in mind that T has depth at most k′ + 1. Let P be the (r, q)-path in T where only q has
degree more than two in T . Let C = τ−1(V (P )) ∩ (V ?

1 ∪ V ?
2 ) and Ai = V ?

i \C, i ∈ [2]. Notice that
|A1|+ |A2| = n? − ξ − |C| − 1, which implies that

|A1|+ |A2| = 2n− |C|. (2)

We set H to be the graph G?\τ−1(V (P )) and keep in mind that V (H) = A1∪A2∪(V̂ \τ−1(V (P )))
and H[Ai], i ∈ [2] is a complete graph.

The fact that q has at least two children in (T, r) implies thatH contains a cut-vertex. Moreover,
there exist H1, H2 ∈ bc(H) such that for each i ∈ [2], Hi contains the complete graph H[Ai] as a
subgraph. For each i ∈ [2], let Ti be the subtree of T induced by the vertices of τ(V (Hi)) and qi be
the depth of Ti. Since Hi contains the complete graph H[Ai] as a subgraph, we have that |Ai| ≤ qi.
Moreover, the fact that T has depth at most k′ + 1 implies that qi ≤ k′ + 1 − |V (P )|, i ∈ [2].
Therefore, for each i ∈ [2],

|Ai| ≤ k′ + 1− |V (P )|. (3)

Also, the fact that H contains a cut-vertex implies that there is at most one vertex of V̂ in V (H).
Thus, |τ−1(V (P ))∩ V̂ | ≥ ξ. We now distinguish two cases, depending whether V̂ \ τ−1(V (P )) 6= ∅,
or not.

Case 1: V̂ \ τ−1(V (P )) 6= ∅. In this case, we have that |V (P )| = |C| + ξ and therefore, by (3),
|Ai| ≤ 2n− |C| − 2k + 1, i ∈ [2]. This, together with (2), implies that |Ai| ≥ 2k − 1, i ∈ [2]. Let w
be the (unique) vertex in V̂ \ τ−1(V (P )) and observe that, since w is adjacent to every vertex in
A1 ∪A2, w is a cut-vertex of H. This, in turn, implies that there is no edge in G? between vertices
of A1 and A2. Thus, in this case, the claim holds for Bi = Ai, i ∈ [2].

Case 2: V̂ \ τ−1(V (P )) = ∅. Notice that the fact that V̂ \ τ−1(V (P )) = ∅ implies that |V (P )| =
|C| + ξ + 1. Therefore, by (3), |Ai| ≤ 2n − |C| − 2k, i ∈ [2]. This together with (2) imply that
|Ai| ≥ 2k, i ∈ [2]. Let z be a cut-vertex of H and suppose that z ∈ A1. The fact that z is a
cut-vertex of H implies that A1 \ z and A2 are two subsets of V ?

1 and V ?
2 respectively such that

there is no edge, in G?, between the vertices of A1 \ z and A2. Thus, since |A1 \ {z}| ≥ 2k− 1 and
|A2| ≥ 2k, in this case, the claim holds for B1 = A1 \ {z} and B2 = A2. �

Following the Claim, there are sets Bi ⊆ V ?
i such that |Bi| ≥ 2k − 1, i ∈ [2] and there is no

edge between the vertices of B1 and B2 in G?. For every i ∈ [2], since |Bi| ≥ 2k − 1, there is a set
Qi of at least k vertices such that Qi ⊆ V (G) or Qi ⊆ V ′. In the former case, we set Wi = Qi,
while, in the latter case, we set Wi = {v ∈ V (G) | v′ ∈ Qi}. Therefore, Wi, i ∈ [2], is a subset of
V (G) of size at least k. Since Qi ⊆ Bi, i ∈ [2], the fact that there is no edge between the vertices
of B1 and B2 in G? implies that there is no edge edge between the vertices in Q1 and Q2. This, in
turn, implies that there is no edge in G? between W1 and W2, since otherwise, an edge uv ∈ E(G?)
between W1 and W2 would imply the existence of the edges uv′, u′v, and u′v′ in G?, and at least
one of them should be between vertices of Q1 and Q2, a contradiction. Thus, since there is no edge
in G? between W1 and W2, Wi, i ∈ [2] induces a complete graph in Q?, and G? = G•, it holds that
G[W1 ∪W2] is a complete bipartite graph. Hence, (W1,W2) certifies that (G, k) is a yes-instance
of BCBS.

We just proved that E-BED is NP-hard. Our next step is to reduce E-BED to G-BED for every
non-trivial hereditary class G. For this consider an instance (G, k) of E-BED and a graph Z as in
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Lemma 3. We construct the graph G∗ by considering |E(G)| copies of Z and identify each edge
of G with some edge of one of these copies. Notice that if there is a G-block tree layout (F,R, τ)
of G∗ of depth at most k + 1, then there is also one where all vertices of Z ′ that have not been
identified with vertices of G are mapped via τ to subsets of L(F,R). This implies that (G, k) is a
yes-instance of E-BED iff (G∗, k) is a yes-instance of G-BED, as required.

Notice that the proof of the above theorem is a (multi) reduction from the problem Balanced
Complete Bipartite Subgraph (BCBS). It is based on the alternative definition of block elim-
ination distance (Lemma 1) and has two parts. The first proves the NP-hardness of E-BED. The
second is a multi-reduction from E-BED to G-BED where the existence of the main gadget is based
on the following lemma.

Lemma 3 (?). Let G be a non-trivial hereditary class. Then there exists a graph Z with the
following properties: (1) Z is a block graph, (2) Z 6∈ B(G) and, (3) ∀v ∈ V (Z), Z \ v ∈ B(G).

Proof. Notice that every graph can be seen as an induced subgraph of a block-graph (just add
two new universal vertices). This, along with the hereditarity and the non-triviality of G implies
that there exists a block graph H that does not belong to G and, thus, neither belongs to B(G).
Among all induced subgraphs of H that are block graphs and not belonging to B(G), let Z be one
with minimum number of vertices. Clearly, Z satisfies the two first properties. Assume towards
a contradiction that there is some v ∈ V (Z) such that Z \ v is not biconnected and, moreover,
Z \ v 6∈ B(G). It follows that at least one, say B, of the blocks of Z \ v are not in G, and thus also
not in B(G). Notice that B is a proper induced subgraph of Z (and thus of H as well) that is a
block graph and does not belong to B(G), a contradiction to the minimality of the choice of Z.

We stress that the proof of the above lemma is not constructive in the sense that it does not
give any way to construct Z. However, if the non-trivial and hereditary class G is decidable, then
Z is effectively computable and this makes the proof of Lemma 2 constructive.

4 Elimination distance to minor-free graph classes
Minors and obstructions. The result of the contraction of an edge e = xy in a graph G is
the graph obtained from G after contracting e, that is the graph obtained from G \ {x, y} after
introducing a new vertex vxy and edges between vxy and NG({x, y}) \ {x, y}. It is denoted by G/e.
If H can be obtained from some subgraph of G after contracting edges, we say that H is a minor
of G and we denote it by H ≤ G. Given a set Q of graphs, we denote by excl(Q) the class of
all graphs excluding every graph in Q as a minor and by obs(Q) the class of all minor-minimal
graphs that do not belong to Q. Clearly, for every class G, G = excl(obs(G)). Also, according
to Roberson and Seymour theorem, for every minor-closed class G, obs(G) is finite. We call a
class essential if it is a finite minor-antichain that is non-empty and does not contain the graph
K0 or the graph K1. Notice that G is trivial iff obs(G) is essential. We call an essential class Z
biconnected if all graphs in obs(Z) are block-graphs. Given that Z is an essential graph class, we
define s(Z) = max{|V (G)| | G ∈ Z}.

It is easy to verify that the property of being non-trivial and minor-closed is invariant under both
operations A and B. The most simple example of a non-trivial minor-closed class is E ′ = {K0,K1}
where obs(E ′) = {K1 + K1}. Another simple example is the class of edgeless graphs E , where
obs(E) = {K2}. Notice that B(E ′) = E 6= E ′ while B(E) = E . In this example B(E ′) 6= E ′. The
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following easy observation clarifies which classes are invariants under the operation B and follows
from the fact that for every non-block graph G, all graphs in bc(G) are proper minors of G.
Observation 4. For every non-trivial minor-closed class G, B(G) = G iff obs(G) is biconnected.

Lemma 5 (?). For every non-trivial minor-closed class G and every k ∈ N, if Z ∈ obs(G(k)), then
(1) Z is biconnected and (2) every vertex of degree 2 in Z has adjacent neighbors.

Proof. (1) follows directly from Observation 4, Equation 1, and the fact that B(G) = B(B(G)).
For (2), we consider a biconnected graph G with an edge e = xy and the graph G+ obtained if

we remove e from G and add a new vertex v adjacent to x and y.
We claim that if G has a G-block tree layout of depth k, then the same holds for G+ as

well. As G is biconnected, we may assume that (T, {r}, τ) is a G-block tree layout where T is
a tree rooted on r. We use the notation Gt := G[τ−1(dT,{r}(t))], t ∈ V (T ). Let t ∈ V (T ) such
that Gt := G[τ−1(dT,{r}(t))] contains the edge e = xy and e is not contained in Gt′ for some
t′ ∈ dT,{r}(t) \ {t} (in case t is not a leaf of T ). Vertex t is unique due to condition (2) of G-block
tree layout and because of the fact that an edge cannot belong to two blocks of a graph. We
update the G-block tree layout (T, {r}, τ) by distinguishing three cases. If t is a leaf of T and
Gt is biconnected, then we define τ ′ = τ ∪ {(v, t)} and T ′ = T . If t is a leaf of T and Gt is not
biconnected, then Gt = ({x, y}, {xy}) and, in this case we define T ′ by adding a new vertex t′ in
T and we set τ ′ = τ \ {(t, {x, y})} ∪ {(t, {x, v}), (t′, {x, v})}. In case t is not a leaf of T , then one
of the endpoints, say x, of e should be mapped, via τ , to t. Then we define T ′ by adding a new
vertex t′ in T adjacent to t and we set τ ′ = τ ∪ {(t′, {y, v})}. In any of the above cases (T ′, {r}, τ ′)
is a G-block tree layout of G+ of depth k. This completes the proof of claim.

Suppose now that there is an obstruction Z of G(k) that contains some vertex v with two non-
adjacent neighbors x, y. As Z is an obstruction, is should be biconnected (by (1)), therefore, from
the above claim and Lemma 1, it follows that the graph Z ′ obtained by G after contracting the
edge vx also belongs to G(k), a contradiction to the fact that Z is an obstruction.

The next lemma is a direct corollary of Lemma 9. This lemma specifies the structure of the
obstructions of the block closure of every non-trivial minor-closed class and the proof is postponed
to Section 5.

Lemma 6. For every essential class Z, it holds that s(obs(B(excl(Z)))) ≤ 2s − 1, where s is the
maximum number of vertices of a graph in Z.

An interesting algorithmic consequence of Lemma 6 is the following. The proof is tedious as it
recycles standard techniques.

Lemma 7 (?). There is an explicit function f : N→ N and an algorithm that, given a finite class
Z, where s = s(Z), a n-vertex graph G, and an integer k, outputs whether bedexcl(Z)(G) ≤ k in
O(f(s, k)·n2) time. Moreover, if Z contains some planar graph, then the dependence of the running
time on n is linear.

Proof. Let s = s(Z), G = excl(Z), and Z(k) = obs(G(k)), for k ∈ N. According to the resent result
in [21] there is an explicit function f1 : N → N such that s(obs(A(G))) ≤ f1(k, s). This, together
with Lemma 6 and Equation 1, means that there is an explicit function f2 : N2 → N such that
s(obs(G(k))) ≤ f2(k, s). The function f2 along with the fact that the problem ΠG = {(G, k) | G ∈
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G(k)} is decidable (actually, as observed in Lemma 2, it is in NP), implies that the class Z(k) can
be constructed by an algorithm whose running time is some explicit function, say f3 : N2 → N, of
k and s. Recall now that G ∈ G(k) iff ∀Z ∈ Z(k), Z � G. Also because of the algorithmic results
in [16, 19], deciding whether a z-vertex graph Z is a minor of a n-vertex graph G can be done in
O(f4(z) · n2) time where f4 : N → N is some explicit function (here f4 is enormous, however, it
is indeed explicit – see [17, 19]). This means that, after the construction of Z(k) one may check
whether G ∈ G(k) in O(f3(k, s) + f4(f2(k, s)) · n2) time.

Suppose now that Z contains a planar graph. This, according to [7], implies that tw(G) = sO(1);
we use tw(G) for the maximum treewidth of a graph in G (here such a bound will always exist). It
is also easy to see that the treewidth of a non-empty graph is equal to the maximum treewidth of
its blocks. This implies that tw(B(G)) = tw(G). Also, the addition of a vertex does not increase
the treewidth of a graph by more than one. This implies that tw(A(G)) ≤ tw(G) + 1. Given
these two observations, and Equation 1, we obtain that tw(G(k)) = sO(1) + k. As deciding whether
tw(G) ≤ q can be done in O(f5(q) · n) steps for some (explicit) function f5 : N → N we may
assume that tw(G) = sO(1) + k. Recall that, according to Courcelle’s theorem, if Q is a class for
which there is a formula ϕ in monadic second order logic where G ∈ Q iff G |= ϕ then there is an
explicit function f6 : N2 → N and an algorithm that, given a graph G, can check whether G ∈ G in
O(f6(|ϕ|, tw(G))·n) time. Therefore, the second statement of the lemma follows if we give a formula
ϕk such that G ∈ G(k) iff G |= ϕk. This follows from the known fact that for every graph Z there
is a formula ϕZ such that Z ≤ G iff G |= ϕZ , therefore, G ∈ G(k) iff ∀Z ∈ Z(k), ¬(G |= ϕZ).

The next lemma permits us to assume that, in the definition of bedG , the class G can be chosen
so that obs(G) is biconnected and, moreover, such a G has an explicit obstruction characterization.

Lemma 8 (?). For every essential class Z there is a biconnected essential class, in particular
the class Z ′ = obs(B(excl(Z))), such that bedexcl(Z) and bedexcl(Z′) are the same parameter and,
moreover, there is an explicit function f7 such that s(Z ′) ≤ f7(s(Z)).

Proof. Let G = excl(Z). From Observation 4 and the fact that B(G) = B(B(G)), obs(B(G)) is
biconnected. The same fact, together with (1), imply that the parameter bedG is the same as
bedB(G). The bound holds because of Lemma 6.

5 Structure of the obstructions for the biconnected closure
Minors. We start with an alternative definition of the minor relation. Let G and H be graphs
and let ρ : V (G)→ V (H) be a surjective mapping such that:

1. for every vertex v ∈ V (H), its codomain ρ−1(v) induces a connected graph G[ρ−1(v)],

2. for every edge {u, v} ∈ E(H), the graph G[ρ−1(u) ∪ ρ−1(v)] is connected, and

3. for every edge {u, v} ∈ E(G), either ρ(u) = ρ(v) or {ρ(u), ρ(v)} ∈ E(H).

We say that H is a contraction of G (via ρ) and for a vertex v ∈ V (H) we call the codomain ρ−1(v)
the model of v in G. A graph H is a minor of G if there exists a subgraph M of G and a surjective
function ρ : V (M)→ V (H) such that H is a contraction of M, via ρ.

In this section we prove our next result, which can be seen as the biconnected analog of [6,
Lemma 5] where the structure of obs(C(excl(Z))) is studied. The connected closure operation in [6]
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allows for a shorter less complicated proof, since also the structure of graphs in obs(C(excl(Z)))
is simpler. However, in our results, where the deal with the biconnected closure, richer structural
properties are revealed, resulting also in a more technical proof.

Lemma 9 (?). Let Z be a finite graph class. For every graph G ∈ obs(B(excl(Z))) there is a graph
H ∈ Z such that G can be transformed to H after a sequence of at most |bc(H)| − 1 edge deletions
and |bc(H)| − 1 edge contractions.

Proof. Let G ∈ obs(B(excl(Z))). We assume that |V (G)| ≥ 4, since otherwise the lemma holds
trivially. Since G ∈ obs(B(excl(Z))), G is biconnected and also, the fact that G /∈ B(excl(Z))
implies that there exists a graph H ∈ Z that is a minor of G. Moreover, since G is a minor-
minimal biconnected graph with the latter property, it holds that

no proper minor of G is biconnected and contains H as a minor. (?)

Let M be a (vertex-minimal and, subject to this, edge-minimal) subgraph of G such that there
exists a surjective function ρ : V (M)→ V (H) such that H is a contraction of M via ρ. As H is a
minor of G, we know that a pair (M,ρ) as above exists. We begin with the following claim.

Claim 1: G can be transformed to M after a sequence of at most |bc(H)| − 1 edge removals.

Proof of Claim 1: We will prove that V (M) = V (G) and |E(G) \ E(M)| ≤ |bc(M)| − 1. This,
together with the fact that |bc(M)| ≤ |bc(H)|, will imply Claim 1. To prove that V (M) = V (G)
observe that the existence of a vertex v ∈ V (G) \ V (M) implies that an edge e ∈ E(G) incident
to v can be either contracted or removed from G while maintaining biconnectivity and the fact
that it contains H as a minor, a contradiction to (?). We now set E := E(G) \ E(M) and we
prove that |E| ≤ |bc(M)| − 1 by induction on the number of blocks of M . First, notice that (?)
implies that every edge in E is between vertices of different blocks of M . This proves the base case
where |bc(M)| = 1. Suppose that |bc(M)| ≥ 2 and let B be a block of M that contains at most
one cut-vertex. By induction hypothesis, the edges in Ẽ := E ∩ E(⋃⋃⋃⋃⋃⋃⋃⋃⋃(bc(G) \ {B})) are at most
|bc(M)| − 2 and by (?), there is at most one edge between the vertices of B and ⋃⋃⋃⋃⋃⋃⋃⋃⋃(bc(G) \ {B}).
Therefore, there is at most one edge in E \ Ẽ, which implies that E ≤ |bc(M)| − 1. Hence, Claim
1 follows. �

We now prove the following. This, combined with Claim 1, completes the proof of the lemma.

Claim 2: M can be transformed to H after a sequence of at most |bc(H)| − 1 edge contractions.

Proof of Claim 2: For every v ∈ V (H), we set Xv = ρ−1(v). We will prove that∑
v∈V (H) |E(G[Xv])| ≤ |bc(H)| − 1, which implies the above Claim. We start with a series of

observations.
Observation 1: For every vertex v ∈ V (H), the graph G[Xv] is a tree. Indeed, notice that edge-
minimality of M implies that M [Xv] is a tree and (?) implies that E(G[Xv]) ⊆ E(M [Xv]).

Observation 2: For every vertex v ∈ V (H) and for every edge xy ∈ E(G[Xv]), G \ {x, y} is
disconnected. Indeed, if there was an edge e = xy ∈ E(G[Xv]) such that G \ {x, y} is connected,
then G/e would be biconnected, a contradiction to (?).

We now prove that for every vertex v ∈ V (H) that is not a cut-vertex of H, it holds that
|Xv| = 1. Suppose towards a contradiction that |Xv| ≥ 2. By Observation 1, G[Xv] is a tree and
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therefore, since |Xv| ≥ 2, there exists an edge e = xy ∈ E(G[Xv]). The fact that H \ v is connected
implies that M \Xv and, thus, G\Xv are also connected. Moreover, due to (?), every leaf of G[Xv]
is adjacent to a vertex of G \ Xv, which implies that G \ {x, y} is connected, a contradiction to
Observation 2.

Next, we argue that the following holds.
Subclaim: For every cut-vertex v of H it holds that |E(G[Xv])| ≤ |cc(G \Xv)| − 1.
Proof of Subclaim: Let v be a cut-vertex of H and let Q = {Q1, . . . , Qw} be the set cc(G \Xv). By
Observation 1, G[Xv] is a tree. For simplicity, we denote by T the graph G[Xv]. For every i ∈ [w],
we set Ti to be the maximum size subtree of T whose leaves are vertices of NG(Qi). We say that
an edge e = {x, y} ∈ E(T ) is small if there is an i ∈ [w] such that V (Ti) = {x, y}. Also, given a
tree T , the internal edges of T are the ones that are not adjacent to one of its leaves. We observe
that

1. for every e1, e2 ∈ E(T ), where |e1 ∩ e2| = 1, there is an i ∈ [w] such that e1, e2 ∈ E(Ti),

2. for every edge e ∈ E(T ), there are i, j ∈ [w], where i 6= j, such that e ∈ E(Ti) ∩ E(Tj), and

3. every edge of T that is either incident to a leaf of T or an internal edge of some Ti, is small.

The fact that G is biconnected implies (1) and (2). To see why (3) holds, let e = xy be an edge
of T such that either one of x, y is a leaf of T or e is an internal edge of some Ti, i ∈ [w] and suppose,
towards a contradiction, that e is not small, or, equivalently, for every j ∈ [w], |V (Tj)| ≥ 3. Then,
for every vertex w in V (G) \Xv there is a path connecting w with a vertex of T \ {x, y}. If e is an
internal edge of some Ti, every pair of vertices in T \ {x, y} is connected by a path in G \ {x, y},
while if e is incident to a leaf x of T , we distinguish two cases: if y has degree two then T \ {x, y}
is connected, while if y has degree at least three, then, by (1), for every pair e1, e2 of edges of
T incident to y, there is an i ∈ [w] such that e1, e2 ∈ E(Ti) and therefore every two vertices in
T \ {x, y} are connected by a path in G \ {x, y}. Therefore, in all cases, it holds that G \ {x, y} is
connected, a contradiction to Observation 2.

We assume that there is a non-leaf vertex r ∈ V (T ), since otherwise, Subclaim is directly
derived from (2). We consider the rooted tree (T, r). For every x ∈ V (T ), we consider the subtree
Tx = T [dT,r(x)] of T and we set tc(x) = |{i ∈ [w] | Ti ⊆ Tx and x is a leaf of Ti}|. Observe that
|E(T )| = |E(Tr)| and tc(r) ≤ w − 1, since, by (1), there is an i ∈ [w] such that r is an internal
vertex of Ti. To conclude the proof of the Subclaim, we prove, by induction on the depth of T ,
that for every x ∈ V (T ), |E(Tx)| ≤ tc(x). Due to (3), for every vertex x ∈ V (T ) that is incident
to a leaf of T , |E(Tx)| ≤ tc(x). Let Tx be a minimum subtree of T whose number of edges is more
than tc(x) and let {y1, . . . , ym},m ≥ 1 be the children of x in (T, r). Since Tx is minimal, for every
i ∈ [m], |E(Tyi)| ≤ tc(yi). Let i ∈ [m] such that yix is not small. Due to (1), there is a ji ∈ [w] such
that yi is an internal vertex of Tji and, due to (3), yix is not an internal edge of Tji , i.e., Tji ⊆ Tx
and x is a leaf of Tji . Thus, for every i ∈ [m], either yix is small, or there is a ji ∈ [w] such that
Tji ⊆ Tx and x is a leaf of Tji . Moreover, for every i, i′ ∈ [m], if i 6= i′, then ji 6= ji′ . This implies
that tc(x)−∑i∈[m] tc(yi) ≥ m. Thus, |E(Tx)| = m +∑

i∈[m] |E(Tyi)| ≤ m +∑
i∈[m] tc(yi) ≤ tc(x),

a contradiction to our initial assumption that |E(Tx)| > tc(x). Subclaim follows.
To conclude the proof of Claim 2, for every cut-vertex v of H, we set blocks(H, v) to be the

blocks of H that contain v. Observe that |cc(G \ Xv)| ≤ |blocks(H, v)|. We set cv(H) to be the
set of cut-vertices of H and we notice that ∑v∈cv(H) |E(G[Xv])| ≤

∑
v∈cv(H)(|cc(G \ Xv)| − 1) ≤
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∑
v∈cv(H)(|blocks(H, v)| − 1). The fact that ∑v∈cv(H)(|blocks(H, v)| − 1) ≤ |bc(H)| − 1 implies that∑
v∈cv(H) |E(G[Xv])| ≤ |bc(H)|−1. The latter together with the fact that for every vertex v ∈ V (H)

that is not a cut-vertex of H, it holds that |Xv| = 1 completes the proof of Claim 2. �

H G

Figure 1: Example of a graph H (on the left) and a graph G ∈ obs(B(excl(H))) (on the right)
such that G can be transformed to H after exactly |bc(H)| − 1 edge deletions and |bc(H)| − 1 edge
contractions.

We stress that the bounds on the number of operations in Lemma 9 are tight in the sense that,
given a graph H, there is a graph G ∈ obs(B(excl({H}))) such that G can be transformed to H
after exactly |bc(H)|−1 edge deletions and |bc(H)|−1 edge contractions. For example, in Figure 1,
the graph H on the left has three blocks (i.e., |bc(H)| = 3), the graph G on the right is a graph in
obs(B(excl({H}))), and to transform G to H one has to remove the two grey edges and contract
the two red ones.

6 Outerplanar obstructions for block elimination distance
In this section we study the set obs(G(k)) for distinct instantiations of k and G. As a warm up, we
prove the following lemma.

Lemma 10 (?). obs(E(1)) = {K3} and obs(E(2)) consists of the graphs .

Proof. The fact that obs(E(1)) = {K3} follows because each block of an acyclic graph is a K2. Let
us name by Z1, Z2, and Z3 the three graphs in second part of the statement from left to right. It
is easy to verify, by inspection, that {Z1, Z2, Z3} ⊆ obs(E(2)). We assume, towards a contradiction,
that G ∈ obs(E(2)) \ {Z1, Z2, Z3}. Since G is biconnected (Lemma 5.(1)) and Z2 = K4 � G, then
by Dirac’s Theorem [10], there exist at least two non-adjacent vertices x and y of degree two in G.
From Lemma 5.(2), each of x and y should belong to a triangle, say Tx and Ty, and Tx, Ty cannot
be disjoint as, otherwise, because of its biconnectivity, G would contain Z3 as a minor. Let w be
a common neighbor of x and y. If G \ w contains a cycle C, then C should intersect both Tx and
Ty, otherwise, again by the biconnectivity, this would imply that Z3 ≤ G. But then T1 ∪ T2 ∪ C
contains Z1 as a minor, a contradiction. We conclude that G \ w is acyclic, therefore it belongs to
E(2), again a contradiction to the fact that G ∈ obs(E(2)) \ {Z1, Z2, Z3}.

Our objective is to generate obstructions of G(k+1) using obstructions of G(k). For this, we define
the following two operations. (See also Figure 2.)
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• Parallel join: Let G1 and G2 be graphs and let vi1, vi2 ∈ V (Gi), i ∈ [2]. We denote by
||(G1, v

1
1, v

1
2, G2, v

2
1, v

2
2) the graph obtained from the disjoint union of G1 and G2 after we add

the edges {v1
i , v

2
i }, i ∈ [2] and we call it the parallel join of G1 and G2 on (v1

1, v
1
2) and (v2

1, v
2
2).

• Triangular gluing: Let G1, G2, and G3 be graphs and let vi1, vi2 ∈ V (Gi), i ∈ [3]. We denote
by 4(G1, v

1
1, v

1
2, G2, v

2
1, v

2
2, G3, v

3
1, v

3
2) the graph obtained from the disjoint union of G1, G2,

and G3 after we identify the pairs v1
2 and v2

1, v2
2 and v3

1, and v3
2 and v1

1. We call this graph
the triangular gluing of G1, G2, and G3 on (v1

1, v
1
2), (v2

1, v
2
2), and (v3

1, v
3
2).

v1
1
v1

2

v2
1
v2

2

G1 G2 G1 G3

G2 v2
2 = v3

1

v1
1 = v3

2

v1
2 = v2

1

Figure 2: On the left side we see the graph resulting from the parallel join of the graphs G1 and
G2 on (v1

1, v
1
2) and (v2

1, v
2
2). On the right side we see the graph resulting from the triangular gluing

of the graphs G1, G2, and G3 on (v1
1, v

1
2), (v2

1, v
2
2), and (v3

1, v
3
2).

By the above constructions we can make the following observation.
Observation 11. Let G1, G2, and G3 be graphs and vi1, vi2 ∈ V (Gi), i ∈ [3]. If G1, G2, and G3 are
biconnected then so are the graphs ||(G1, v

1
1, v

1
2, G2, v

2
1, v

2
2) and 4(G1, v

1
1, v

1
2, G2, v

2
1, v

2
2, G3, v

3
1, v

3
2).

Lemma 12 (?). Let G be a non-trivial and minor-closed class and k ∈ N. If bedG(Gi) ≥ k + 1,
i ∈ [2], vi1, vi2 ∈ V (Gi), i ∈ [2], and the graph G = ||(G1, v

1
1, v

1
2, G2, v

2
1, v

2
2) is biconnected, then

bedG(G) ≥ k+ 2. Moreover, under the assumption that either G 6= E or k ≥ 1, the following holds:
if G1, G2 ∈ obs(G(k)) and vi1, vi2 ∈ V (Gi), i ∈ [2], then G ∈ obs(G(k+1)).

Proof of Lemma 12. Let G1 and G2 be two graphs such that bedG(Gi) ≥ k + 1, i ∈ [2], and
vi1, v

i
2 ∈ V (Gi), i ∈ [2]. We denote by G the graph ||(G1, v

1
1, v

1
2, G2, v

2
1, v

2
2). First, we prove that

bedG(G) ≥ k + 2. Indeed, assume to the contrary, that bedG(G) ≤ k + 1. Hence, there exists a
vertex v ∈ V (G) such that k + 1 ≥ 1 + bedG(G \ v) and therefore bedG(G \ v) ≤ k. Notice that
v is either a vertex of V (G1) or a vertex of V (G2). Without loss of generality, let v ∈ V (G2).
Then G1 ⊆ G \ v and thus, bedG(G1) ≤ bedG(G \ v) ≤ k. A contradiction to the hypothesis that
bedG(G1) ≥ k + 1.

We now prove that, if G1, G2 ∈ obs(G(k)) then G ∈ obs(G(k+1)). From Lemma 5.(1) and
the first part of the lemma it follows that bedG(G) ≥ k + 2. Therefore, in order to prove that
G ∈ obs(G(k+1)) it is enough to prove that, any vertex/edge deletion or edge contraction on G
decreases the parameter by 1. In particular, notice that it suffices to show that any edge deletion
or edge contraction decreases the parameter by 1. Let e ∈ E(G). Then either e ∈ E(G1) or
e ∈ E(G2) or e = {v1

i , v
2
i } for some i ∈ [2]. Let us first consider the case where e ∈ E(G1) (the case

where e ∈ E(G2) is symmetrical). We will prove that bedG(G \ e) ≤ k + 1 and bedG(G/e) ≤ k + 1.
Let G′ = G \ e and let v = v2

1 ∈ V (G2). Then bedG(G′) ≤ 1 + bedG(G′ \ v). Let H be a biconnected
component of G′ \ v. Notice that either H ⊆ G2 \ v or H ⊆ G1 \ e. Since G1 and G2 belong to
obs(G(k)), bedG(G1 \ e) ≤ k and bedG(G2 \ v) ≤ k. Therefore bedG(H) ≤ k. This implies that
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bedG(G′ \ v) ≤ k and thus bedG(G′) ≤ k + 1. Let now G′ = G/e and observe that the proof above
also argues that bedG(G′) ≤ k + 1, after replacing G1 \ e by G1/e.

Finally, we consider the case where e = v1
1v

2
1 (the case where e = v1

2v
2
2 is symmetrical). Let

G′ = G\e. Notice thatG′ is not biconnected and, moreover, its blocks are the graphsG1 andG2, and
the bridge B consisting of the edge v1

1v
2
1. Recall that G1, G2 ∈ obs(G(k)) and thus bedG(Gi) = k+1,

i ∈ [2]. Therefore, bedG(G′) = max{bedG(G1), bedG(G2), bedG(B)} = k+ 1. Let now G′ = G/e and
let v = v1

2. As before, notice that the graph G′ \ v is not biconnected. Moreover, if H is a block of
G′ \ v then either H = G2 or H ⊆ G1 \ v1

2. Again, we obtain that bedG(H) ≤ k+ 1. This concludes
the proof of the lemma.

Lemma 13 (?). Let G be a non-trivial and minor-closed class and k ∈ N. If bedG(Gi) ≥ k + 1,
i ∈ [3], vi1, vi2 ∈ V (Gi), i ∈ [3], and the graph G = 4(G1, v

1
1, v

1
2, G2, v

2
1, v

2
2, G3, v

3
1, v

3
2) is biconnected,

then bedG(G) ≥ k + 2. Moreover, if G1, G2, G3 ∈ obs(G(k)) and vi1, v
i
2 ∈ V (Gi), i ∈ [3], then

G ∈ obs(G(k+1)).

Proof of Lemma 13. Let G1, G2, and G3 be three graphs such that bedG(Gi) ≥ k + 1, i ∈ [3].
We denote by G the graph 4(G1, v

1
1, v

1
2, G2, v

2
1, v

2
2, G3, v

3
1, v

3
2) and prove that bedG(G) ≥ k + 2.

Indeed, assume to the contrary, that bedG(G) ≤ k + 1. Hence, there exists a vertex v ∈ V (G)
such that k + 1 ≥ 1 + bedG(G \ v) and therefore bedG(G \ v) ≤ k. Notice that there exists i ∈ [3]
such that v /∈ V (Gi). Without loss of generality, let v /∈ V (G2). Then G1 ⊆ G \ v and thus,
bedG(G1) ≤ bedG(G \ v) ≤ k. A contradiction to the hypothesis that bedG(G1) ≥ k + 1.

We now prove that if G1, G2, G3 ∈ obs(G(k)) then G ∈ obs(G(k+1)). The first part of the lemma,
combined with Lemma 5.(1), proves that bedG(G) ≥ k + 2. Hence, it is enough to prove that any
vertex/edge deletion or edge contraction on G decreases the parameter by 1. In particular, notice
that it suffices to show that any edge deletion or edge contraction decreases the parameter by 1. Let
e ∈ E(G). Then e ∈ E(Gi) for some i ∈ [3]. Without loss of generality, we assume that e ∈ E(G3).
Recall that the vertices v1

2 ∈ V (G1) and v2
1 ∈ V (G2) have been identified in G. We denote them

by v.
Let G′ = G \ e. We will prove that bedG(G′) ≤ k + 1. We distinguish two cases according to

whether G′ is biconnected. Let us first assume that G′ is not biconnected. It follows that if H is a
block of G′ then either H ⊆ Gi for some i ∈ [2], or H ⊆ G3 \ e ⊆ G3. Since Gi ∈ obs(G(k)), i ∈ [3],
it holds that bedG(Gi) = k + 1 and hence bedG(H) ≤ k + 1, for every block H of G′. Moreover,
from the definition, bedG(G′) = max{bedG(H) | H is a block of G′}. Thus, bedG(G′) ≤ k + 1.

Let us now assume that G′ is biconnected. Then, bedG(G′) ≤ 1 + bedG(G′ \ v). Observe that
G′ \ v is not biconnected. Moreover, if H is a block of G′ \ v then either H ⊆ Gi \ v, for some
i ∈ [2], or H ⊆ G3 \ e. Observe that since Gi ∈ obs(G(k)), i ∈ [3] it holds that bedG(Gi \ v) ≤ k,
i ∈ [2], and bedG(G3 \ e) ≤ k. Thus, bedG(H) ≤ k, for any block H of G′ \ v. Therefore,
bedG(G′) ≤ 1 + bedG(G′ \ v) ≤ 1 + max{bedG(H) | H is a block of G′ \ v} ≤ 1 + k. This concludes
the proof that the removal of any edge from G decreases the parameter by 1.

To conclude, observe that the above arguments hold for the case that we consider edge contrac-
tions instead of deletions, if we replace G′ \ e by G′/e and G3 \ e by G3/e.

Lemma 12 and Lemma 13 imply that the set ⋃i≥0 obs(G(i)) is closed under the parallel join and
the triangular gluing operations.

The following is also a consequence of Lemma 12 and Lemma 13.
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Lemma 14. Let G be a non-trivial and minor-closed graph class and k ∈ N. Let also G, G1,
G2, and G3 be graphs and vi1, vi2 ∈ V (Gi), i ∈ [3]. If G = 4(G1, v

1
1, v

1
2, G2, v

2
1, v

2
2, G3, v

3
1, v

3
2) (or

G = ||(G1, v
1
1, v

1
2, G2, v

2
1, v

2
2)) and G ∈ obs(G(k+1)) then Gi ∈ obs(G(k)) for all i ∈ [3] (or i ∈ [2]).

We denote by O the class of all outerplanar graphs. We claim that O∩⋃i≥1 obs(G(i)) is complete
under these two operations. In particular we prove the following:

Lemma 15 (?). Let G be a non-trivial and minor-closed class. For every k ∈ N≥1 and for every
graph G ∈ obs(G(k+1)) ∩ O, there are

• either two graphs G1 and G2 of obs(G(k)) ∩ O and vi1, v
i
2 ∈ V (Gi), i ∈ [2], such that G =

||(G1, v
1
1, v

1
2, G2, v

2
1, v

2
2) or

• three graphs G1, G2 and G3 of obs(G(k)) ∩ O and vi1, v
i
2 ∈ V (Gi), i ∈ [3], such that G =

4(G1, v
1
1, v

1
2, G2, v

2
1, v

2
2, G2, v

3
1, v

3
2).

Before we begin the proof of Lemma 15 we need a series of definitions.
Let A be a subset of the plane R2. We define int(A) to be the interior of A, cl(A) its closure

and bd(A) = cl(A) \ int(A) its border. Given a plane graph Γ (that is a graph embedded in R2),
we denote its faces by F (Γ), that is, F (Γ) is the set of the connected components of R2 \ Γ (in the
operation R2 \ Γ we treat Γ as the set of points of R2 corresponding to its vertices and its edges).
Observe that R2 \ Γ contains exactly one unbounded face, which we call outer face and denote it
by fo. All other faces are called inner faces. For every f ∈ F (Γ) we denote by BΓ(f) the graph
induced by the vertices and edges of Γ whose embeddings are subsets of bd(f) and we call it the
boundary of f .

Let Γ be a fixed outerplanar embedding of an outerplanar graph G. Thus, all vertices of G
belong to BΓ(fo). Let Γ∗ be the graph obtained from Γ in the following way. Its vertex set is the
set

V (Γ∗) = {vf | f ∈ F (Γ) \ fo} ∪ {ve | e ∈ E(BΓ(fo))}.

That is, Γ∗ contains a vertex for every inner face of Γ and a vertex for every edge of Γ that belongs
to the graph induced by the boundary of its outer face. Moreover, its edge set is

E(Γ∗) = {vf1vf2 | f1 6= f2 and E(BΓ(f1)) ∩ E(BΓ(f2)) 6= ∅} ∪ {vfve | e ∈ E(BΓ(f))},

that is, two vertices are connected by an edge if one of the two following holds: Either both
vertices correspond to distinct inner faces whose boundary graphs share an edge or one of the
vertices corresponds to an inner face that shares an edge with the outer face and the other vertex
corresponds to that edge. We call an edge of Γ∗ that contains a vertex ve, for some e ∈ E(Γ) (and
in particular e ∈ BΓ(fo)), marginal. Otherwise, we call it internal. Finally, we call Γ∗ the weak
dual of Γ. The parameter bedG on embedded graphs Γ is defined as the parameter bedG on the
underlying combinatorial graph G.

The following observation is folklore and we skip its proof.
Observation 16. If Γ is an outerplanar embedding of a graph then Γ∗ is a tree. Moreover, all of its
leaves belong to marginal edges and each marginal edge contains a leaf of T .

Let e = vf1vf2 be an internal edge of Γ∗. Let ef1,f2 denote the edge in E(BΓ(f1)) ∩E(BΓ(f2)).
By construction, ef1,f2 /∈ E(BΓ(fo)). This implies that the endpoints of ef1,f2 form a separator of
Γ. Let Γ′e,f1

,Γ′e,f2
be the connected components of Γ \ ef1,f2 such that Γ′e,fi ∩BΓ(fi) 6= ∅ (here, we
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interpret ef1,f2 as the vertex set containing the endpoints of the edge ef1,f2). We denote by Γe,fi
the embedded graph induced by V (Γ′fi) ∪ ef1,f2 (where, again, we interpret ef1,f2 as the vertex set
containing the endpoints of the edge ef1,f2).

We now proceed with the proof of Lemma 15.

Proof of Lemma 15. Let G be an outerplanar graph such that G ∈ obs(G(k+1)). Since G ∈
obs(G(k+1)), from Lemma 5.(1), G is biconnected and thus has a unique outerplanar embedding on
the plane. We denote its unique embedding by Γ. Let Γ∗ be the weak dual of Γ. From Observa-
tion 16, Γ∗ is a tree. We orient the edges of Γ∗ in the following way. The marginal edges are oriented
away from their incident leaf. Let e = vf1vf2 be an internal edge of Γ∗. If bedG(Γf1) > bedG(Γf2),
we orient the edge towards vf1 . Symmetrically, if bedG(Γf2) > bedG(Γf1), we orient the edge to-
wards vf2 . We call these edges unidirectional. Otherwise, we orient the edge in both directions and
call it bidirectional.

We will use the oriented tree to prove that G can be decomposed in one of the two ways stated
in the lemma. Towards this, we prove the following claims.

Claim 1: For every internal edge e = vf1vf2 , it holds that bedG(Γe,fi) ≤ k + 1, i ∈ [2]. Moreover, if
e is bidirectional then bedG(Γe,f1) = bedG(Γe,f2) = k+ 1 and if e is unidirectional oriented from vf1

to vf2 then bedG(Γe,f1) ≤ k.

Proof of Claim 1: Indeed, both statements follow from the facts that Γfi is a proper subgraph of
G and G ∈ obs(G(k+1)). The first statement is straightforward. For the second statement, let us
assume first that bedG(Γe,f1) = bedG(Γe,f2) ≤ k. Let also uv be the common edge of the graphs
Γe,f1 and Γe,f2 . Observe then that if H is a block of the graph G \u then H is a subgraph of one of
the two graphs Γe,fi \ u, i ∈ [2]. This implies that bedG(H) ≤ bedG(Γe,fi \ u) ≤ bedG(Γe,fi) ≤ k, for
some i ∈ [2]. Hence, by definition, we get that bedG(G) ≤ k + 1, a contradiction to the hypothesis
that G ∈ obs(G(k+1)). �

Claim 2: There does not exists a vertex of Γ∗ incident to two distinct edges, such that both of
them are oriented away from it and at least one of them is unidirectional.

Proof of Claim 2: Indeed, let us assume that such a vertex exists and let e1 and e2 be two edges
oriented away from it and without loss of generality let e1 be the edge that is unidirectional. Notice
that the assumed vertex is an internal vertex of the tree Γ∗. We will denote it by vf . Moreover, by
definition of the orientations, the two distinct endpoints of e1 and e2 are also internal vertices of the
tree. We denote them by vf1 and vf2 , respectively. Notice that Γe2,f2 is a subgraph of Γe1,f and that
Γe1,f1 is a subgraph of Γe2,f . Therefore, bedG(Γe2,f2) ≤ bedG(Γe1,f ) and bedG(Γe1,f1) ≤ bedG(Γe2,f ).
Moreover, bedG(Γe1,f ) < bedG(Γe1,f1), since e1 is uniquely oriented towards f1. This implies that
bedG(Γe2,f2) < bedG(Γe2,f ), a contradiction to the assumption that e2 is oriented towards f2. This
completes the proof of the claim. �

Claim 3: There exists a bidirectional edge in Γ∗ (by construction, this edge is internal).

Proof of Claim 3: Assume, towards a contradiction, that all edges of Γ∗ have a unique direction.
Then Claim 2 implies that there exists a unique vertex in Γ∗ that is a sink, that is, all edges are
oriented towards it. It follows that this vertex is internal. Let us denote it by vf . Let us denote by
ei denote the internal edges incident to vf and vfi denote their other endpoints, i ∈ [x], where by
x we denote the number of internal edges incident to vf . Finally, let u ∈ BΓ∗(f), and notice that
if H is a block of Γ∗ \ u then H ⊆ Γei,fi \ u ⊆ Γei,fi for some i ∈ [x]. From Claim 1, we obtain

19



that bedG(H) ≤ bedG(Γei,fi) ≤ k, for some i ∈ [x]. From the definition of bedG we obtain that
bedG(Γ) ≤ k + 1, a contradiction to the hypothesis that G ∈ obs(G(k+1)). �

v

u

z1 w1

z2 w2

zp wq

Γe,f1 Γe,f2

v

u

w1

w2

wq

Γe,f2

v

u

w1

w2

wq

Γe,f2

Figure 3: In the left figure, the edge e′ = {u, v}, the subgraphs Γe,f1 and Γe,f2 and the cut-vertices
are depicted. In the central figure we see the form of the obstruction in Claims 5 and 6. In the
right figure we see the form of the obstruction in Claim 7.

We consider an internal bidirectional edge, say e = {vf1 , vf2}. Let e′ = {u, v} be the edge in
E(BΓ(f1)) ∩ E(BΓ(f2)). Observe that e′ belongs to the outer face of the graph Γe,fi and hence,
Γe,fi \ e′ is not, i ∈ [2]. Recall that Γe,f1 is outerplanar and let z1, z2, . . . , zp, p ≥ 1, denote the
cut-vertices of Γe,f1 \ e′ according to the order they appear on the outer face of Γe,f1 \ e′ when
traversing it from v to u. Let also Γ1

i , i ∈ [p+ 1], denote the blocks that contain the vertices zi−1
and zi, where z0 = v and zp+1 = u. Similarly, let also w1, w2, wq, q ≥ 1 denote the cut-vertices of
Γe,f2 \ e′ according to the order they appear on the outer face of Γe,f2 \ {u, v} when traversing it
from v to u. Let also Γ2

i , i ∈ [q+ 1], denote the blocks that contain the vertices wi−1 and wi, where
w0 = v and wp+1 = u. The blocks Γ1

i ,Γ2
j , i ∈ [p + 1], j ∈ [q + 1] that do not contain v or u are

called free. (See Figure 3)

Claim 4: It holds that bedG(H) = k + 1 for some H ∈ {Γ1
i ,Γ2

j | i ∈ [p+ 1], j ∈ [q + 1]}.

Proof of Claim 4: Towards a contradiction assume that bedG(H) ≤ k for every H ∈ {Γ1
i ,Γ2

j | i ∈
[p+ 1], j ∈ [q + 1]}. Notice that every block B of Γ \ u is a subgraph of some block Γ1

i , i ∈ [p+ 1],
or Γ2

j , j ∈ [q+ 1], and therefore, bedG(B) ≤ k. Then, from the definition of bedG , bedG(Γ) ≤ k+ 1,
a contradiction to the hypothesis that Γ ∈ obs(G(k+1)). �

Claim 5: If there exists a free block H ∈ {Γ1
i ,Γ2

j | i ∈ [p+ 1], j ∈ [q+ 1]} such that bedG(H) = k+ 1
then the Lemma holds.

Proof of Claim 5: Indeed without loss of generality let H = Γ1
i0 for some i0 ∈ [p+1]. Let us consider

the graph obtained by contracting all vertices of Γe,f1 except for V (Γ1
i0) and {u, v}. Observe then

that the resulting graph Γ′ can be expressed as the parallel join of Γ1
i0 and bedG(Γe,f2) in the

following way: Γ′ = ||(Γ1
i0 , zi0−1, zi0 ,Γe,f2 , v, u). From Claim 1, since e is bidirectional, we obtain

that bedG(Γe,f2) = k + 1. Moreover, since bedG(Γ1
i0) = k + 1, from Lemma 12, we obtain that

bedG(Γ′) = k + 2. As Γ ∈ obs(G(k+1)) and Γ′ is a minor of Γ, it follows that Γ′ = Γ. From
Lemma 14, Γ1

i0 , Γe,f2 ∈ obs(G(k)) and this indeed proves the statement of the Lemma. �

Therefore, from now on we will assume that if H ∈ {Γ1
i ,Γ2

j | i ∈ [p + 1], j ∈ [q + 1]} and
bedG(H) = k + 1 then H is not free, that is, H contains u or v.

Claim 6: If all blocks H ∈ {Γ1
i ,Γ2

j | i ∈ [p + 1], j ∈ [q + 1]} for which bedG(H) = k + 1 contain v,
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then the Lemma holds. Symmetrically, if all blocks H ∈ {Γ1
i ,Γ2

j | i ∈ [p+ 1], j ∈ [q + 1]} for which
bedG(H) = k + 1 contain u, then the Lemma holds.
Proof of Claim 6: Observe that the only blocks that contain v are Γ1

1 and Γ2
1. Moreover, for

any other block B of Γ \ u, it holds that bedG(B) ≤ k. Since Γ ∈ obs(G(k+1)), it follows that
bedG(Γ \ u) = k + 1. From the above discussion and the definition of bedG , we obtain that there
exists a block D of Γ \ u for which bedG(D) = k + 1 and D ⊆ Γ1

1 \ v or D ⊆ Γ2
1 \ v. Without loss

of generality let us assume that D ⊆ Γ1
1 \ v. (The case where D ⊆ Γ2

1 \ v is symmetrical). Let v1
denote the neighbor of v in Γef1

that is also a neighbor of v in the graph BΓ(fo). Observe also
that u /∈ V (D). Let Γ′ be the graph obtained after we contract all blocks of Γe,f1 except for the
block Γ1

1 to the edge z1u and remove all edges that contain v in E(Γ1
1) apart from the edge v1v.

Then Γ′ can be expressed as the parallel join of the graphs Γ1
1 \ v and Γe,f2 in the following way:

Γ′ = ||(Γ1
1, v1, z1,Γe,f2 , v, u). From Lemma 12, we obtain that bedG(Γ′) = k+ 2. As Γ′ is a minor of

Γ and Γ ∈ obs(G(k+1)), it follows that Γ′ = Γ. Moreover, from Lemma 14, Γ1
1 \ v and Γe,f2 belong

to obs(G(k)). Then indeed the Lemma holds and this concludes the proof of the claim. �
Claim 7: If there exist two blocks H,H ′ ∈ {Γ1

i ,Γ2
j | i ∈ [p+ 1], j ∈ [q + 1]} such that H contains v,

H ′ contains u, and bedG(H) = bedG(H ′) = k + 1 then the Lemma holds.
Proof of Claim 7: We first examine the case whereH = Γ1

1 andH ′ = Γ1
p+1. (The case whereH = Γ2

1
and H ′ = Γ2

q+1 is symmetrical.) Let Γ′ be the graph obtained from Γ after contracting the vertices
of all blocks Γ1

2, . . . ,Γ1
p into a new vertex y. Observe that Γ′ can be expressed as triangular gluing

of Γ1
1, Γ1

p+1, and Γe,f2 in the following way: Γ′ = 4(Γ1
1, v, y,Γ1

p+1, y, u,Γe,f2 , u, v). From Claim 1,
we obtain that bedG(Γe,f2) = k + 1. Hence, from Lemma 13, it follows that bedG(Γ′) ≥ k + 2. As
Γ ∈ obs(G(k+1)) and Γ′ is a minor of Γ, it follows that Γ′ = Γ. From Lemma 14, we obtain that
the graphs Γ1

1, Γ1
p+1, and Γe,f2 belong to obs(G(k)). In this case we have proven the assertion of

the Lemma.
We now examine the case where H = Γ1

1 and H ′ = Γ2
q+1. (The case where H = Γ2

1 and
H ′ = Γ1

p+1 is symmetrical.) Let Γ′ be the graph obtained from Γ after contracting the edges of all
blocks Γ1

2, . . . ,Γ1
p+1 into the single edge z1u and the edges of all blocks Γ2

1, . . . ,Γ1
q except wqv and

finally removing the edge e′ = uv. Observe that Γ′ can be expressed as the parallel join of Γ1
1 and

Γ2
q+1 in the following way: Γ′ = ||(Γ1

1, v, z1,Γ2
q+1, wq, u). Observe that Γ′ is a proper minor of Γ and

from Lemma 12, bedG(Γ′) ≥ k + 2. This is a contradiction to the hypothesis that Γ ∈ obs(G(k+1)).
This concludes the proof of the claim. �

The above claims complete the proof of the Lemma.

Lemma 12, Lemma 13, and Lemma 15 the following.
Theorem 17. For every non-trivial minor-closed class G and every k ∈ N, every outerplanar graph
in obs(G(k+1)) can be generated by applying either the parallel join or the triangular gluing operation
to outerplanar graphs of obs(G(k)) in a way that preserves outerplanarity.

As obs(G(0)) = obs(B(G)), Lemma 9 and Theorem 17 give a complete characterization of
O∩G(k), for every k ∈ N and every non-trivial minor-closed graph class G. It is easy to verify that
for every G, there are at least two obstructions in obs(G(3)) that are generated by the triangular
gluing operation. Moreover, as the operation of trianglular gluing three graphs from a set of q graphs
results to q2 +

(q
3
)
≥ q2 new graphs, our results imply that, for k ≥ 3, |obs(G(k))| ≥ |obs(G(k−1))|2.

It follows that, for every non-trivial minor-closed class G, obs(G(k)) contains doubly exponentially
many graphs.
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7 A conjecture on the universal obstructions
Recently, Huynh et al. in [15] defined the parameter td2 as follows. A biconnected centered coloring
of a graph G is a vertex coloring of G such that for every connected subgraph H of G that is
a block graph, some color is assigned to exactly one vertex of H. Given a non-empty graph G,
td2(G) is defined as the minimum number of colors in a biconnected centered coloring of G. Using
the alternative definition of Section 2, it can easily be verified that, for every non-empty graph G,
td2(G) = bedE(G) + 1. We define the t-ladder as the (2× t)-grid (i.e., the Cartesian product of K2
and a path on t-vertices) and we denote it by Lt. It is easy to check that td2(Lt) = Ω(log(t)). One
of the main results of [15] was that there is a function f : N→ N such that every graph excluding
a t-ladder belongs to E(f(t)). This implies that the t-ladder Lt is a universal minor obstruction for
bedE . This motivates us to make a conjecture on how the results of [15] should be extended for
every non-trivial minor-closed class G: Given a positive t, we define LG,t as the class containing
every graph that can be constructed by first taking the disjoint union of two paths Pi, i ∈ [2], with
vertices vi1, . . . , vit (ordered the way they appear in Pi) and t graphs G1, . . . , Gt from obs(B(G))
and then, for i ∈ [t], identify v1

i and v2
i with two different vertices in Gi. It is easy to check that

if G ∈ LG,t, then bedG(G) = Ω(log t). We conjecture that LG,t is a universal minor obstruction
for bedG , i.e., there is a function f : N → N such that every graph excluding all graphs in LG,t
as a minor, has block elimination distance to G bounded by f(t), i.e., excl(LG,t) ⊆ G(f(t)). Notice
that the two operations of Theorem 17 imply that, when restricted to outerplanar graphs, this
conjecture is correct for f(t) = O(t). However we do not believe that the linear upper bound is
maintained in the general case.
Acknowledgements: Öznur Yaşar Diner is grateful to the members of the research group
GAPCOMB for hosting a research stay at Universitat Politècnica de Catalunya.
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