
HAL Id: hal-03389938
https://hal.science/hal-03389938

Submitted on 16 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stationary nonequilibrium bound state of a pair of run
and tumble particles

Pierre Le Doussal, Satya N. Majumdar, Grégory Schehr

To cite this version:
Pierre Le Doussal, Satya N. Majumdar, Grégory Schehr. Stationary nonequilibrium bound state of
a pair of run and tumble particles. Physical Review E , 2021, 104 (4), pp.044103. �10.1103/Phys-
RevE.104.044103�. �hal-03389938�

https://hal.science/hal-03389938
https://hal.archives-ouvertes.fr


Stationary nonequilibrium bound state of a pair of run and tumble particles

Pierre Le Doussal,1 Satya N. Majumdar,2 and Grégory Schehr3
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We study two interacting identical run and tumble particles (RTP’s) in one dimension. Each
particle is driven by a telegraphic noise, and in some cases, also subjected to a thermal white noise
with a corresponding diffusion constant D. We are interested in the stationary bound state formed
by the two RTP’s in the presence of a mutual attractive interaction. The distribution of the relative
coordinate y indeed reaches a steady state that we characterize in terms of the solution of a second-
order differential equation. We obtain the explicit formula for the stationary probability P (y) of y
for two examples of interaction potential V (y). The first one corresponds to V (y) ∼ |y|. In this case,
for D = 0 we find that P (y) contains a delta function part at y = 0, signaling a strong clustering
effect, together with a smooth exponential component. For D > 0, the delta function part broadens,
leading instead to weak clustering. The second example is the harmonic attraction V (y) ∼ y2 in
which case, for D = 0, P (y) is supported on a finite interval. We unveil an interesting relation
between this two-RTP model with harmonic attraction and a three-state single RTP model in one
dimension, as well as with a four-state single RTP model in two dimensions. We also provide a
general discussion of the stationary bound state, including examples where it is not unique, e.g.,
when the particles cannot cross due to an additional short-range repulsion.
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I. INTRODUCTION

Interacting active particles is a subject of much current interest both theoretically and experimentally [1–7]. An
active particle, in contrast to a passive particle, has an autonomous self-propelled motion, which is modelled by a
driving “active” noise, which has a finite persistence time. For example, a commonly studied model is the so-called
run-and-tumble particle (RTP) – a motion exhibited by E. Coli bacteria [5, 7]. In this simplest RTP model, the
particle chooses a direction at random and moves ballistically with a constant speed v0 in that direction during an
exponentially distributed random run time with mean γ−1. Then it tumbles, i.e., it changes its direction at random
and again moves ballistically with speed v0, performing a new run. Thus runs and tumbles alternate. The tumbling
rate γ and the speed v0 are the two parameters in this simplest RTP model. For example, in one dimension, the
position x(t) of the RTP evolves via the stochastic equation

dx(t)

dt
= v0 σ(t) , (1)

where σ(t) is a telegraphic noise that takes values σ(t) = ±1 and changes from one state to another with a constant
rate γ. Thus this “active noise” σ(t) has zero mean 〈σ(t)〉 = 0 and its auto-correlation function decays exponentially

in time 〈σ(t)σ(t′)〉 = e−2γ |t−t′|. Therefore the active noise is non-Markovian since it has a finite memory characterised
by the persistence time γ−1. In fact, much before the current interest in the context of active matter, this RTP model
in one-dimension has been studied extensively both in the mathematics and the physics literature where it is known
as “persistent” random walk [8–12]. In the limit γ → ∞, the active noise reduces to a “passive” delta-correlated
noise. At long times, the effect of activity becomes somewhat insignificant since a free RTP is known to converge to
a Brownian motion with an effective diffusion constant Deff = v2

0/(2γ). Thus the presence of activity is detected only
in the effective diffusion constant Deff . One can also add a thermal noise in Eq. (1)

dx(t)

dt
= v0 σ(t) +

√
2Dξ(t) , (2)

where ξ(t) is a Gaussian white noise with zero mean and a correlator 〈ξ(t)ξ(t′)〉 = δ(t − t′). Here also the system
becomes diffusive at late times with an effective diffusion constant Deff = v2

0/(2γ) + D [2, 13]. Thus the effect of an
additional thermal noise, in this simple setting, is just to renormalize the effective diffusion constant at late times.

There are two natural generalisations of this single free RTP dynamics described above in (1). The first concerns
the long-time stationary state of the RTP in the presence of an external confining potential. In this case, the evolution
equation (2) has an additional external force F (x) = −U ′(x), with U(x) being the confining potential,

dx(t)

dt
= F (x) + v0 σ(t) +

√
2Dξ(t) . (3)
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Here, at late times, the system reaches a stationary state which is typically non-Boltzmann, thus retaining the effect of
activity even at late times [11, 14–20]. The second generalisation is to study several RTP’s with pairwise interactions
(repulsive or attractive) between them. In the presence of interactions, RTP’s are known to exhibit interesting
collective effects, such as clustering and jamming [1, 3, 7, 21, 22]. While there have been several studies on the effect
of interactions between RTP’s, there still are very few exact results available. For example, even for two RTP’s on a
ring with hard-core repulsion between them, the steady state exhibits clustering and the solution is nontrivial [21–24].
Note that with repulsive interactions between the RTP’s, the steady state will exist only in a finite size system. In
an infinite system with two particles, while there is no steady state, other dynamical properties have been studied –
for example the probability that two particles do not cross each other up to time t has been computed exactly and it
was shown to be already nontrivial due to the presence of the active noise [25].

To obtain a steady state for a system of RTP’s in an infinite system (subtracting the zero-mode if any), one needs
to introduce an attractive interaction between the RTP’s. For instance, in the simplest setting of two particles with
attractive interactions between them, one would expect to see clustering in the steady state in the form of a bound
pair. The stationary properties of such bound pairs, even in an infinite system, are difficult to describe analytically.
In fact, there are hardly any analytical result available in the literature on such bound pairs.

In this paper, we study a simple model of two RTP’s on an infinite line with attractive interaction between them.
We provide exact analytical results for the steady-state distribution of the inter-particle distance for different types
of attractive interactions. These results provide a complete characterization of the bound pair. Even though our
system is extremely simple, it turns out that the stationary state of the bound pair has a very rich structure which
depends on the shape of the interaction. In some cases, e.g., for a linear interaction potential, and when the particles
are driven purely by active noise [see Fig. 1 a)], one finds that the clustering is “strong”, a signature of which is the
presence of a Dirac delta-function in the steady-state distribution of the inter-particle distance. In that case, adding
the thermal noise broadens the delta-function, indicating a “weak” clustering [see Fig. 1 b)], with exponential decay
of the steady-state distribution of the inter-particle distance. In other cases, e.g. for a harmonic interaction potential,
the inter-particle distance in the steady state remains bounded in a finite interval [see Fig. 1 c)].

The rest of the paper is organised as follows. In Section II, we introduce precisely our model and summarise the
main results. In Section III, we focus on the special case of a linear attractive potential V (y) = c̄|y| for which we
compute exactly the stationary state, both in the absence (Section III A) and in the presence (Section III B) of the
thermal noise. In Section IV, we study the case of a general V (y), but in the absence of thermal noise. Finally we
conclude in Section V.

II. THE MODEL AND A SUMMARY OF THE RESULTS

In this paper, we consider two interacting RTP’s on the line described by the equation of motion

dx1

dt
= f(x1 − x2) + v0 σ1(t) +

√
2D ξ1(t) ,

dx2

dt
= f(x2 − x1) + v0σ2(t) +

√
2D ξ2(t) , f(−y) = −f(y) , (4)

where σ1(t) = ±1 and σ2(t) = ±1 are two independent telegraphic noises with flipping rate γ. In addition, both
particles are also driven by thermal noises, represented by independent Gaussian white noises ξ1(t) and ξ2(t) of zero
mean and correlators 〈ξi(t)ξj(t′)〉 = δijδ(t − t′). We assume that both of them have the same diffusion constant D.
The two RTP’s interact via a potential energy V (x1 − x2) and in Eq. (4) f(y) = −V ′(y) is the inter-particle force.
Equivalently, denoting w = (x1 + x2)/2 and y = x1 − x2 one has

dw

dt
=
v0

2
(σ1(t) + σ2(t)) +

√
D η̃(t) , (5)

dy

dt
= 2f(y) + v0 (σ1(t)− σ2(t)) +

√
4Dη(t) , (6)

where η(t) = (ξ1(t) − ξ2(t))/
√

2 and η̃(t) = (ξ1(t) + ξ2(t))/
√

2 are two independent Gaussian white noises with zero
mean, each with a delta-correlator. The center of mass w undergoes a free RTP motion similar to Eq. (2) and
clearly does not reach a stationary state. Hence we will focus here only on the relative coordinate y(t) which evolves
independently of w(t). In other words we study the system in the center of mass frame. By comparing Eqs. (3) and
(6), we see that the dynamics of the relative coordinate y(t) in Eq. (6) can be interpreted as the dynamics of the
position of a single RTP with three internal states (−2v0, 0, 2v0), and subjected to an external force 2f(y). If f(y)
is sufficiently attractive we expect that the relative coordinate will reach a stationary state, leading to a stationary
bound state of the pair of particles. Denoting by P (y, t) the distribution of the relative coordinate at time t, our goal
is to evaluate its stationary limit P (y, t → ∞). Note that the only difference between Eqs. (3) and (6) is that the
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FIG. 1. Typical trajectories of the relative coordinate y as a function of time t (obtained by solving numerically the equation
of motion (6)) for the three different models for which we compute here exactly the stationary distribution P (y, t → ∞): a)
V (y) = c̄|y| with D = 0, b) V (y) = c̄|y| and D > 0 and c) V (y) = λy2/2 with D = 0. In case a), the system exhibits strong
clustering characterized by the presence of a delta-function at y = 0 in the steady state [see Eq. (32)] and clearly seen on the
figure where y sticks to zero from time to time, while in case b) the system exhibits only weak clustering since the thermal
noise (i.e., D > 0) broadens the delta-function [see Eq. (60)]. Finally in case c), the relative coordinate y is bounded in the
steady state, as indicated by the vertical dotted lines [see e.g., Eq. (97)].

driving active noise in the former case has two states, while in the latter it has three states. In the former case (3),
the stationary position distribution for arbitrary f(y) is exactly known, at least for D = 0. In contrast, when the
driving active noise has three states, as in Eq. (6), it is more difficult to compute the stationary distribution of the
relative coordinate for arbitrary f(y), even for D = 0. In this paper we derive a second order differential equation,
see (84), which is obeyed by this stationary distribution P (y, t → ∞). It is challenging to solve it analytically for a
general f(y), but here we obtain explicit solutions for two special cases of f(y) as discussed below.

To compute the stationary state, we start from the Langevin equation (6) for the relative coordinate y(t), and write
down the corresponding Fokker-Planck (FP) equation. However, due to the non-Markovian nature of the active noises
σ1(t) and σ2(t), the process is Markov only when one keeps track of the two internal degrees of freedom σ1(t) and
σ2(t), in addition to y(t). This obliges us to define Pσ1,σ2

(y, t) as the probability density for the relative coordinate
to be at y at time t and that the internal “spins” σ1(t) and σ2(t) take values σ1 and σ2 at time t. One can then write
down the four coupled FP equations for Pσ1,σ2(y, t) corresponding to σ1 = ±1 and σ2 = ±1. The distribution of the
relative coordinate P (y, t) is then obtained by summing over the four internal states

P (y, t) =
∑

σ1=±1,σ2=±1

Pσ1,σ2
(y, t) . (7)

However, for general f(y), solving these FP equations, even in the stationary state, turns out to be rather hard.
There is however one special case, namely when V (y) = c̄ |y| (corresponding to f(y) = −c̄ sgn(y)), for which one
can obtain the stationary state explicitly for arbitrary D ≥ 0. We present this solution in detail in Section III, first
in the absence of the thermal noise (D = 0) and then in the presence of the thermal noise D > 0. This allows us
investigate the effect of thermal noise on the stationary state. Our main result is that, when D = 0, the stationary
state P (y, t→∞) has two parts: (i) an exponentially decaying part and (ii) a delta-function at y = 0 [see Eqs. (31)
and (35)]. As mentioned above, the presence of this delta-function is a signature of strong clustering. When D > 0 is
switched on, the delta-function part gets smeared and the stationary state consists only of decaying exponentials [see
for instance Eq. (60)]. Thus the effect of the thermal noise in the stationary state is to weaken the clustering. The
second case for which we find an explicit solution is the harmonic potential V (y) = λy2/2, which we study only for
D = 0. In that case, the support of the stationary distribution of the relative coordinate is a single interval, where
P (y) exhibits some power-law singular behavior near the edges and at the center y = 0, with exponents depending
on the parameters γ and λ. It turns out that in this harmonic case the stationary solution is identical to the solution
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of another three-state model that was studied recently [19], even though the dynamics of the two models are quite
different. In the presence of a D > 0, although we did not study it, we expect the support to extend to the full real
axis.

III. STATIONARY SOLUTION FOR THE LINEAR INTERACTION POTENTIAL

In this section we will study the stationary state of the inter-particle distance y(t) in the presence of an attractive
potential V (y) = c̄|y|, with c̄ > 0 (similar to the Coulomb interaction between two opposite charges in one dimension).
This corresponds to a force f(y) = −V ′(y) = −c̄ sgn(y). In this case, the evolution equation for y(t) in Eq. (6) reads

dy

dt
= −2c̄ sgn(y) + v0 (σ1(t)− σ2(t)) +

√
4Dη(t) . (8)

In general, for arbitrary f(y) in Eq. (6), it is not easy to compute the stationary state in the presence of the thermal
noise (D > 0). However, in this special case when f(y) = −c̄ sgn(y), we show below that the stationary state for y(t)
can be fully characterised, both for D = 0 and for D > 0.

A. Without thermal noise, D = 0

In this section we study the process in Eq. (8) in the absence of thermal noise D = 0. We note that y(t) in Eq.
(8) is actually a non-Markov process, since σ1(t) and σ2(t) have a finite memory. In order to write a FP equation,
we need to recast first the dynamics into a Markovian form. This is usually done by enlarging the phase space –
here, e.g., by considering the evolution of the triplet {y(t), σ1(t), σ2(t)}. This leads us to define Pσ1,σ2

(y, t) as the
probability density function (PDF) of the relative coordinate at time t with internal states σ1, σ2. The time evolution
of this PDF is governed by the following FP equation

∂tPσ1,σ2
= −∂y[(−2c̄ sgn(y) + v0(σ1 − σ2))Pσ1,σ2

]− 2γPσ1,σ2
+ γ(P−σ1,σ2

+ Pσ1,−σ2
) . (9)

In Eq. (9), σ1 and σ2 can both take values ±1. Hence, Eq. (9) describes actually four coupled equations depending on
the four values of {σ1, σ2}, namely P++(y, t), P+−(y, t), P−+(y, t) and P−−(y, t). The first term in the right hand side
(r.h.s.) of Eq. (9) describes the convection in the presence of an external force, while the rest of the terms denote the
loss and gain due to the flipping of the telegraphic noise. The total probability P (y, t) is then obtained by summing
over the internal degrees of freedom as in Eq. (7).

Before analyzing the FP equation (9) let us investigate the Langevin equation and see what we may anticipate for
the evolution of the system. It reads

dy

dt
= −2 c̄ sgn(y) + v0 (σ1(t)− σ2(t)) . (10)

Consider for instance the case when (σ1(t), σ2(t)) are either (+,+) or (−,−), in which case dy
dt = −2c̄ sgn(y). Therefore,

for y(0) > 0 the time evolution is y(t) = y(0) − 2c̄t and y(t) vanishes in finite time. At all later times it remains
zero until one of the σi(t) changes sign provided v0 > c̄. This is a clustering effect which will lead to the appearance
of a delta function component, ∝ δ(y) in Pσ1,σ2

(y, t). In fact when v0 < c̄ we expect that the total probability
P (y, t) converges to δ(y) in finite time, and remains there. In contrast for v0 > c̄ we expect a non trivial stationary
distribution, where the delta function at y = 0 coexists with a continuous background.

We expect the system to reach a stationary state in the long time limit t→∞. For simplicity of notations, we will
denote the stationary state by Pσ1,σ2

(y) = Pσ1,σ2
(y, t → ∞). The stationary solution can be obtained from Eq. (9)

by setting ∂tPσ1,σ2
= 0 in the left hand side (l.h.s.) of Eq. (9). This leads to

0 = −∂y[(−2c̄ sgn(y) + v0(σ1 − σ2))Pσ1,σ2
]− 2γPσ1,σ2

+ γ(P−σ1,σ2
+ Pσ1,−σ2

) . (11)

Since, up to the sign of y the equation is linear with constant coefficients, it is natural to look for exponential solutions.
In addition, as discussed below Eq. (10), we anticipate also the presence of a delta-function at y = 0. This leads us
to look for a solution of the form

Pσ1,σ2
(y) = Aεσ1,σ2

e−µ|y| +Bσ1,σ2
δ(y) , (12)

where µ > 0 (to be fixed later) and ε = sgn(y). For a given σ1, σ2, there is no reason a priori, that the solution
Pσ1,σ2

(y) is symmetric around y = 0, even though the potential V (y) = c̄|y| is symmetric around y = 0. This is
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because the dynamics of y also depends explicitly on σ1 and σ2, and not just on y alone. Hence we put different sets
of constants in front of the exponentials in (12) for y > 0 and y < 0 and they are denoted by different vectors A+

σ1,σ2

and A−σ1,σ2
. Note that each of them is a 4-component column vector, hence we have 8 different unknown constants.

However, they are related via the symmetry relations A+
σ1,σ2

= A−σ2,σ1
. This follows from the fact that Eq. (9) is

invariant under the simultaneous change y → −y and (σ1, σ2)→ (σ2, σ1). Hence, it suffices to know for instance just
the vector A+, which has thus four unknown constants. In addition, the amplitudes of the delta-function defined in
Eq. (12) also form a 4 component column vector, with 4 additional unknown constants. Therefore, in total, we have
8 constants to determine.

By analyzing Eq. (11) around y = 0, we arrive at two types of conditions. The first one is that upon injecting the
form (12) in (11) there should be no term generated proportional to δ′(y) which implies that for any σ1, σ2

(σ1 − σ2)Bσ1,σ2 = 0 . (13)

As a consequence we obtain B+− = B−+ = 0. In addition, due to the symmetry y → −y and (σ1, σ2)→ (−σ1,−σ2)
we expect that B++ = B−−. Summarising

B+− = B−+ = 0 , B++ = B−− . (14)

Hence, for the vector B, we have only one unknown constant to determine. Combining Aε (with ε = ±1) and B,
we then have a total of 5 unknown constants to determine. Hence we need 5 relations to fix them. One of them is
provided by the normalisation condition, namely

∫∞
−∞ P (y) dy = 1. The rest of the four conditions can be derived by

integrating the FP equations (11) over a small region across y = 0. This reads

[(2c̄ sgn(y)− v0(σ1 − σ2))Pσ1,σ2 ]0
+

0− − 2γBσ1,σ2 + γ(B−σ1,σ2 +Bσ1,−σ2) = 0 , (15)

where the second term comes from the contribution of the delta function in (12). Evaluating the first term gives

[(2c̄ sgn(y)− v0(σ1 − σ2))Pσ1,σ2 ]0
+

0− = 2c̄(A+
σ1,σ2

+A−σ1,σ2
)− v0(σ1 − σ2)(A+

σ1,σ2
−A−σ1,σ2

) . (16)

Substituting (16) in (15) gives us the four required conditions, namely

2c̄(A+
σ1,σ2

+A−σ1,σ2
)− v0(σ1 − σ2)(A+

σ1,σ2
−A−σ1,σ2

)− 2γBσ1,σ2
+ γ(B−σ1,σ2

+Bσ1,−σ2
) = 0 , (17)

for σ1 = ±1 and σ2 = ±1. These four conditions (17) in addition to the normalisation condition provide us exactly 5
relations to determine the 5 unknown constants. In addition, we need to determine the value of µ, to which we now
turn to.

To determine µ, we insert (12) in (11) in the stationary state and find that the amplitude vector Aε must satisfy

Mε(µ) ·

 Aε++

Aε+−
Aε−+

Aε−−

 = 0 , (18)

where we have defined the 4× 4 matrices M±(µ) as

Mε(µ) = (−2µc̄− 2γ) I +M(εµ) , M(µ) =

 0 γ γ 0
γ 2µv0 0 γ
γ 0 −2µv0 γ
0 γ γ 0

 . (19)

The relations in Eq. (18) provide a set of 4 linear equations for the Aεσ1,σ2
. The solutions for the Aεσ1,σ2

are identically
zero, unless the determinant of Mε(µ) vanishes. This condition that detMε(µ) = 0 actually fixes the value of µ.
To compute the determinant, we need to evalute the eigenvalues of Mε(µ), which thanks to Eq. (19), amounts to
computing the eigenvalues of the matrix M(µ). They are given by(

0, 0,−2
√
γ2 + µ2v2

0 , 2
√
γ2 + µ2v2

0

)
, (20)

and the associated eigenvectors are given by the columns of the 4× 4 matrix Ô

Ô =


− 1√

2
c√
2

s
2

s
2

0 s√
2
− 1

2 (1 + c) 1
2 (1− c)

0 − s√
2
− 1

2 (1− c) 1
2 (1 + c)

1√
2

c√
2

s
2

s
2

 , c =
−µv0√
γ2 + µ2v2

0

, s =
γ√

γ2 + µ2v2
0

, (21)
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FIG. 2. Plot of Pσ1,σ2(y) vs y for v0 = 1, c̄ = 1/2, γ = 1/2 and D = 0. The symbols correspond to numerical simulations
for σ1 = ±1, σ2 = ±1, obtained by solving Eq. (10), while the solid line corresponds to the exact result in Eq. (31). Note
that P++(y) = P−−(y) and P+−(y) = P−+(−y) as a consequences of the unicity of the stationary state and of the symmetries
discussed below in (72). Note that P+−(y) as well as P−+(y) are both discontinuous at y = 0, in agreement with (31). Instead,
P++(y) = P−−(y) exhibit a Dirac delta component ∝ δ(y) which, for clarity, is not shown on the figure, although it is clearly
seen on the simulation and its weight is in full agreement with the prediction in (31).

with c2 + s2 = 1. We will denote the four column vectors respectively by (V 1, V 2(µ), V 3(µ), V 4(µ)). Each of the V α

with α = 1, 2, 3, 4 is a 4-column vector and they form an orthonormal basis. Hence we get

detMε(µ) = (−2µc̄− 2γ)
2

(
−2µc̄− 2γ − 2

√
γ2 + µ2v2

0

)(
−2µc̄− 2γ + 2

√
γ2 + µ2v2

0

)
= 0 . (22)

We can obtain different solutions for µ by setting each of the factors (corresponding to four different eigenvalues of
Mε(µ)) to zero. However, it turns out that only the last eigenvalue (corresponding to the last factor in Eq. (22))
gives a real positive solution for µ which reads

µ = µ∗ =
2c̄γ

v2
0 − c̄2

, (23)

where we recall that we are studying the case v0 > c̄, such that there is a bound state. The solution for Aε,
corresponding to this fourth eigenvalue is therefore Aε ∝ V 4(εµ), i.e.,

Aεσ1,σ2
= aV 4

σ1,σ2
(εµ∗) = a



s
2

1
2 (1− εc)

1
2 (1 + εc)

s
2


, c =

−µ∗v0√
γ2 + (µ∗)2v2

0

=
−2v0c̄

v2
0 + c̄2

, s =
γ√

γ2 + (µ∗)2v2
0

=
v2

0 − c̄2
v2

0 + c̄2
, (24)

where a is an a priori unknown amplitude determined below, and c and s are given in (21) with µ∗ given in (23).
Note that the symmetry Aεσ1,σ2

= A−εσ2,σ1
discussed above implies that a does not depend on ε. This is because, under

this symmetry, the eigenvector V 4
σ1,σ2

(εµ∗) in Eq. (24) remains invariant, hence a cannot depend on ε. Thus we have

reduced the problem of determining 4 unknown constants in the column-vector A+
σ1,σ2

to the problem of determining
just one constant a. Thus to summarize, at this stage, we have two unknowns a and B++ to determine.

To proceed, we first rewrite the condition (17) explicitly

2c̄a

 s
1
1
s

+ v0a

 0
2c
2c
0

+

 −2γ γ γ 0
γ −2γ 0 γ
γ 0 −2γ γ
0 γ γ −2γ


 B++

B+−
B−+

B−−

 = 0 . (25)
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Next, we use Eq. (14) to eliminate B+−, B−+ and B−− in favour of B++. This gives the two relations

2ac̄s− 2γB++ = 0 , (26)

2a(c̄+ v0c) + 2γB++ = 0 , (27)

which are actually equivalent using the values for c and s from Eq. (24). This leads to the single relation

B++ = a c̄
v2

0 − c̄2
γ(v2

0 + c̄2)
. (28)

We are then left with one unkwown constant a to determine and this will be fixed by the normalization condition.
Injecting these results in the form (12) and summing over σ1, σ2 we obtain the total probability

P (y) =
∑

σ1=±1,σ2=±1

Pσ1,σ2
(y) = a(s+ 1)e−µ

∗|y| + 2B++δ(y) = 2a

(
v2

0

v2
0 + c̄2

e−µ|y| + c̄
v2

0 − c̄2
γ(v2

0 + c̄2)
δ(y)

)
. (29)

Imposing the normalization condition
∫ +∞
−∞ dyP (y) = 1 then allows to determine a as

a =
1

2

c̄γ

v2
0 − c̄2

, (30)

which leads to the final explicit result for the stationary probability Pσ1,σ2
(y)

Pσ1,σ2(y) =
γc̄

4(v2
0 + c̄2)

e
− 2γc̄

v2
0−c̄

2 |y|


1

v0+c̄
v0−c̄θ(y) + v0−c̄

v0+c̄θ(−y)
v0−c̄
v0+c̄θ(y) + v0+c̄

v0−c̄θ(−y)
1

+
1

2

c̄2

v2
0 + c̄2

δ(y)

 1
0
0
1

 , (31)

as well as the total probability

P (y) =
c̄γv2

0

v4
0 − c̄4

e
− 2γc̄

v2
0−c̄

2 |y|
+

c̄2

v2
0 + c̄2

δ(y) . (32)

In Fig. 2 we compare our theoretical results for Pσ1,σ2(y) in Eq. (31) for v0 = 1, c̄ = 1/2, γ = 1/2 and D = 0
with numerical simulations, showing a perfect agreement (note that, to keep the figure readable, the Dirac delta
components of P++(y) and P−−(y) are not shown there although they are clearly seen on the simulations – see also
Fig. 1 – and we have checked that their associated weight fully agrees with the prediction in (31)). In Fig. 3 we
compare our result for the total probability P (y) in Eq. (32) for two different values of c = 0.5 and c = 0.8 (and
v0 = 1, γ = 1/2 and D = 0) with numerical simulations, showing also a very good agreement.

Note also that for each state (σ1, σ2) one can check from Eq. (31) that
∫ +∞
−∞ dyPσ1,σ2

(y) = 1
4 , hence each of the

four states is equiprobable in the stationary solution, as expected. The variance of the position is∫ +∞

−∞
dy y2 P (y) =

v2
0

2γ2c̄2
(v2

0 − c̄2)2

v2
0 + c̄2

. (33)

In the passive limit γ, v0 → +∞ with Deff = v2
0/(2γ), as well as c̄, fixed, the weight of the delta function vanishes as

c̄2/v2
0 and one recovers the standard Gibbs-Boltzmann distribution

P (y)→ c̄

2Deff
e−c̄|y|/Deff , Pσ1,σ2(y)→ 1

4

c̄

2Deff
e−c̄|y|/Deff , (34)

for all σ1, σ2. Therefore the delta-peak in Eq. (32) in the stationary distribution is an explicit signature of the activity
in the system. Note that even for finite v0, the non-delta function part of P (y) in (32) retains a pure symmetric-
exponential form ∝ e−µ|y|, as in the passive case, albeit with a different decay rate µ = 2γc̄/(v2

0− c̄2) from the passive
case ∝ e−c̄|y|/Deff .

When v0 → c̄+ each term in P (y) in (32) goes to 1
2δ(y) and the size of the bound state goes to zero. To investigate

the fine structure inside the critical regime, one can rescale y by the typical size of the bound state. Denoting
y = v0−c̄

γ ỹ one obtains the scaling form in the critical region as

P (y)dy → P̃ (ỹ)dỹ , P̃ (ỹ) =
1

4
e−|ỹ|

 0
1
1
0

+
1

2
δ(ỹ)

 1
0
0
1

 . (35)
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FIG. 3. Plot of the total probability density P (y) vs y for two different values of the interaction strength c̄ = 0.5 and c̄ = 0.8
for v0 = 1, γ = 1/2 and D = 0. The symbols are the results of numerical simulations, obtained by solving Eq. (10), while the
solid lines correspond to the exact result in Eq. (32). Note that, for clarity, the Dirac delta component ∝ δ(y) is not shown
here although it is clearly seen in the simulations and its weight is in full agreement with the prediction in (32).

The first part shows that when they have opposite velocities σ1 = −σ2 the two RTP’s form a (very small) exponential
bound state (weak clustering), while when they have identical velocities they are bound at exactly the same position
in space (strong clustering).

B. With thermal noise, D > 0

We now switch on a nonzero value of D in Eq. (8). As a result, the FP equation for Pσ1,σ2
(y, t) changes from

Eq. (9) to

∂tPσ1,σ2
= −∂y[(−2c̄ sgn(y) + v0(σ1 − σ2))Pσ1,σ2

]− 2γPσ1,σ2
+ γ(P−σ1,σ2

+ Pσ1,−σ2
) + 2D∂2

yPσ1,σ2
, (36)

where only the last term on the r.h.s., involving the second derivative with respect to y, is D-dependent. We now
look for a stationary solution, setting ∂tPσ1,σ2

= 0 in the l.h.s of (36). Since D > 0 this solution will obey:

(i) continuity of Pσ1,σ2(y) at y = 0

(ii) a jump in the derivative at zero, with the matching condition

P ′σ1,σ2
(0+)− P ′σ1,σ2

(0−) = −2
c̄

D
Pσ1,σ2

(0) . (37)

These give two sets of four conditions, since they hold for any σ1, σ2. As discussed in Section II, we anticipate that
the presence of a finite D will smear out the delta function and replace it by a cusp at y = 0 and exponential decaying
profile, whose width will vanish as D → 0+. Since, up to the sign of y, Eq. (36) is linear with constant coefficients, it
will be a linear superposition of exponentials for y > 0 and y < 0 separately. We thus look for a particular solution
of the form

Pσ1,σ2
(y) = Aεσ1,σ2

e−µ|y| (38)

where ε = sgn(y).

Let us start by determining µ. Inserting (38) in (36) in the stationary state we find that the amplitude vector Aε

must satisfy the same condition (18) where now the matrix M±(µ) has an additional D-dependent diagonal term

Mε(µ) = (−2µc̄+ 2Dµ2 − 2γ) I +M(εµ) (39)
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with M(µ) given in (19). The eigenvalues of Mε(µ) and their associated eigenvectors are then

−2µc̄+ 2Dµ2 − 2γ , V 1 (40)

−2µc̄+ 2Dµ2 − 2γ , V 2(εµ) (41)

−2µc̄+ 2Dµ2 − 2γ − 2
√
γ2 + µ2v2

0 , V 3(εµ) (42)

−2µc̄+ 2Dµ2 − 2γ + 2
√
γ2 + µ2v2

0 , V 4(εµ) (43)

where the eigenvectors Ô = (V 1, V 2(µ), V 3(µ), V 4(µ)) are given (in column form) in (21) and depend on µ via c̄ and s.
As in the previous sub-section, the value of µ is fixed by the condition

detMε(µ) =
(
−2µc̄+ 2Dµ2 − 2γ

)2(−2µc̄+ 2Dµ2 − 2γ − 2
√
γ2 + µ2v2

0

)(
−2µc̄+ 2Dµ2 − 2γ + 2

√
γ2 + µ2v2

0

)
= 0 . (44)

First two eigenvectors. Setting the first factor in (44) to 0 (corresponding to the sectors of the two first eigenvectors
V 1 and V 2) we get

− 2µc̄+ 2Dµ2 − 2γ = 0 . (45)

Taking the positive root we obtain

µ = µ1 = µ2 =
c̄+

√
c̄2 + 4Dγ

2D
, (46)

which corresponds to a component of Pσ1,σ2
(y) proportional to e−

c̄+
√
c̄2+4Dγ
2D |y|. In the limit D → 0 this component

yields the δ(y) term obtained in the previous section for D = 0 [see Eq. (31)].

The two other eigenvectors. The third and the fourth factors in Eq. (44) (corresponding to the eigenvectors V 3

and V 4) lead to the pair of equations

−µc̄+Dµ2 − γ + ν
√
γ2 + µ2v2

0 = 0 , (47)

with ν = −1 for V 3 and ν = +1 for V 4. For D = 0 one finds the solutions µ = 0 and µ = 2c̄γ
v2
0−γ2 found previously.

For D > 0, let us use dimensionless units. We write µ = γ
v0
µ̃ and look for the positive roots µ̃ of

fη(µ̃) = −gµ̃+ D̃µ̃2 − 1 + ν
√

1 + µ̃2 = 0 , (48)

in terms of the two dimensionless parameters

g =
c̄

v0
, D̃ =

Dγ

v2
0

. (49)

Taking the square of Eq. (48) one finds a quartic equation for µ̃. However, one can easily check that there is a trivial
solution µ̃ = 0, which is of course discarded since we need µ̃ > 0. This leads to a cubic equation for µ̃

− 2g + µ̃
(

2D̃ + 1− g2
)

+ 2gD̃µ̃2 − D̃2µ̃3 = 0 . (50)

Note that after squaring Eq. (48) the ν-dependence has disappeared. Thus the information about the associated
eigenvenctor (V 3 or V 4) has been lost. Hence, we need to reinject the solution for µ̃ [from Eq. (50)] back into the

original unsquared Eq. (48) to recover the eigenvector dependence. Indeed, by noting that
√

1 + µ̃2 > 0 and ν = ±1,
it follows from Eq. (48) that

ν = sgn
(

1 + gµ̃+ D̃µ̃2
)
, (51)

with ν = −1 associated to V 3 while ν = +1 associated to V 4.
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FIG. 4. Plot of Pσ1,σ2(y) vs y for v0 = 1, c̄ = 1/2, γ = 1/2 and D = 1/2. The symbols correspond to numerical simulations
for σ1 = ±1, σ2 = ±1 while the solid line corresponds to the exact result in Eq. (A16). Note that P++(y) = P−−(y)
P+−(y) = P−+(−y) as a consequences of the unicity of the stationary state and of the symmetries discussed below in (72).

To solve the cubic equation (50) we first rewrite it in the standard form, by writing µ̃ = t+ 2g/(3D̃), which gives
t3 + pt+ q = 0 with

p = −6D̃ + g2 + 3

3D̃2
, q =

2g
(

9D̃ + g2 − 9
)

27D̃3
, (52)

and the discriminant is given by

∆2 = −(4p3 + 27q2) = 4D̃−6
(

(D̃2 + 10D̃ − 2)g2 + (2D̃ + 1)3 + g4
)
. (53)

It is easy to see that ∆2 is always positive, hence there are 3 real roots indexed by k = 0, 1, 2 and given by the
Cardano’s formulae [26]

tk = 2

√
−p

3
cos

(
1

3
arccos

(
3q

2p

√
−3

p

)
− 2πk

3

)
, k = 0, 1, 2 . (54)

This leads to three possible roots in the original variable µ̃

µ̃k =
2g

3D̃
+

2

3

√
6D̃ + g2 + 3

D̃2
cos

1

3
cos−1

− g
(

9D̃ + g2 − 9
)

(
6D̃ + g2 + 3

)3/2

− 2πk

3

 . (55)

By investigating Eq. (55) using Mathematica, we find that

µ̃0 > µ̃1 > 0 , µ̃2 < 0 . (56)

Since µ̃2 < 0 we discard this root. Thus the only allowed roots are µ̃0 and µ̃1. Now using Eq. (51), we find that the
values of ν associated to these two roots are respectively ν = −1 for µ̃0 and ν = +1 for µ̃1. Thus µ̃0 is associated to
the eigenvector V 3 while µ̃1 is associated to V 4. Hence in summary the only positive roots are

µ3 =
γ

v0
µ̃0 , V 3 (57)

µ4 =
γ

v0
µ̃1 , V 4 .



12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-4 -3 -2 -1  0  1  2  3  4

D=1/2
D=1/8
exact

P
(y

)

y

FIG. 5. Plot of the total probability density P (y) vs y for two different values the diffusion constant D = 1/2 and D = 1/8
and for c̄ = 0.5, v0 = 1, γ = 1/2. The symbols are the results of numerical simulations while the solid lines correspond to the
exact results in Eq. (63) for D = 1/2 and in Eq. (64) for D = 1/8.

To conclude the general solution is

Pσ1,σ2(y) = [(b1V
1
σ1,σ2

+ b2V
2
σ1,σ2

(µ2))θ(y) + (b′1V
1
σ1,σ2

+ b′2V
2
σ1,σ2

(−µ2))θ(−y)]e−µ2|y| (58)

+(b3V
3
σ1,σ2

(µ3)θ(y) + b′3V
3
σ1,σ2

(−µ3)θ(−y))e−µ3|y| + (b4V
4
σ1,σ2

(µ4)θ(y) + b′4V
4
σ1,σ2

(−µ4)θ(−y))e−µ4|y| .

To determine the 8 coefficients bi, b
′
i we can use (i) the continuity of Pσ1,σ2

(y) at y = 0 (4 equations) (ii) the 4 matching
conditions (37)

P ′σ1,σ2
(0+)− P ′σ1,σ2

(0−) = −2
c̄

D
Pσ1,σ2

(0) , (59)

and then the normalization condition for the total probability P (y) =
∑
σ1=±1

∑
σ2=±1 Pσ1,σ2

(y), i.e.,
∫ +∞
−∞ dyP (y) =

1. This is performed in the Appendix, leading to the result given in Eq. (A16). In Fig. 4, we compare this analytical
predictions for Pσ1,σ2

(y) in Eq. (A16) for a specific set of the parameters of the model to numerical simulations,
showing an excellent agreement.

To conclude this section, we provide our explicit results for the final result for the total probability P (y)

P (y) =
1

2( c2µ2
+ b̃3

s3−1
µ3

+ b̃4
s4+1
µ4

)

(
c2e
−µ2|y| + b̃3(s3 − 1)e−µ3|y| + b̃4(s4 + 1)e−µ4|y|

)
(60)

b̃3 =
s2 (c̄−Dµ4)

(c3 + c4) c̄−D (c4µ3 + c3µ4)
, b̃4 =

s2 (c̄−Dµ3)

(c3 + c4) c̄−D (c4µ3 + c3µ4)
(61)

and we recall that

ci = − µiv0√
γ2 + µ2

i v
2
0

, si =
γ√

γ2 + µ2
i v

2
0

(62)

where µ2 is given in (46), µ3 and µ4 are given in (57)-(55). For instance for c̄ = 1/2, D = 1/2, v0 = 1, γ = 1/2 we
find

P (y) = 0.020441 e−3.3234y + 0.0868356 e−1.61803y + 0.157553 e−0.357926y , (63)

while for c̄ = 1/2, D = 1/8, v0 = 1, γ = 1/2 we find

P (y) = 0.0523053 e−12.331y + 0.397104 e−4.82843y + 0.220603 e−0.533482y . (64)

These theoretical predictions in Eqs. (63) and (64) are compared to numerical simulations in Fig. 5, showing a very
good agreement.
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IV. MORE GENERAL INTERACTION WITHOUT DIFFUSION

A. Models and flow diagram

In this section we discuss the case of a more general attractive interaction between the two RTP’s, i.e., a more
general force f(y) which is an odd function of y, f(−y) = −f(y). For simplicity, we will set D = 0 as argued earlier.
In this case, the equations for the center of mass w = (x1 +x2)/2 and the relative coordinate y = x1−x2 respectively
in (5) and (6) reduce to

dw

dt
=
v0

2
(σ1(t) + σ2(t)) , (65)

dy

dt
= 2f(y) + v0 (σ1(t)− σ2(t)) . (66)

In principle, we can write down the FP equation for the joint distribution Pσ1,σ2(w, y, t). This joint distribution
obviously does not reach a steady state, since w(t) in Eq. (65) corresponds to a free RTP motion and hence diffuses

at late times. Only the marginal distribution of the relative coordinate Pσ1,σ2
(y, t) =

∫ +∞
−∞ dw Pσ1,σ2

(w, y, t) reaches

a steady state as t→∞. Hence, we focus on the y-marginal only. The FP equation for Pσ1,σ2
(y, t) reads

∂tPσ1,σ2
= −∂y[(2f(y) + v0(σ1 − σ2))Pσ1,σ2

]− 2γPσ1,σ2
+ γ(P−σ1,σ2

+ Pσ1,−σ2
) . (67)

Note that for f(y) = −c̄ sgn(y) discussed in Section III, this equation reduces to Eq. (9).
To search for a stationary solution Pσ1,σ2

(y), one must set the l.h.s. of Eq. (67) to 0. However, before writing the
steady state equations, it is useful to see what we can anticipate about the form of this solution, and in particular
whether this solution is unique. This can be guessed by studying the stability behaviour of the Langevin equation (66),
following the examples in Refs. [16, 20]. We will consider two generic examples of interactions between the RTP’s,
which present a different steady state behavior. The first example is the harmonic force f(y) = −λy. In the second
example there is in addition a repulsion between the particles so that they cannot cross, with f(y) = 1

y − λy. The

curves f(y) versus y are plotted in Fig. 6 for both examples. Note that σ1(t) − σ2(t) can take only three values
−2 v0, 0, 2 v0 corresponding respectively to the two RTP’s being in the states (−+), (++) or (−−) and (+−). Hence
to find stationary points for a fixed 2 particle state one must look at the roots of the equations, respectively f(y) = v0,
f(y) = 0 and f(y) = −v0. In Fig. 6 we have indicated the positions of these roots. In the first example (harmonic
force) there are three of them denoted a, b and c. Because of the symmetry f(−y) = −f(y) one has b = 0 and
c = −a = λ/v0. In the second example (with short range repulsion) there are six of them: three on the y < 0 side
(i.e., x1 < x2) denoted a, b and c and three on the y > 0 positive side (i.e., x1 > x2), denoted a′, b′ and c′. Because
of the symmetry f(−y) = −f(y) one has a′ = −c, b′ = −b and c′ = −a. We have indicated by arrows in the figure
the flow diagram for each of the three values of σ = σ1(t)− σ2(t). For both examples considered here all fixed points
a, b, c (and a′, b′, c′) are attractive (i.e., f ′(y) is negative at the fixed point). From the general analysis performed in
Ref. [20], we can predict the support of the steady state probabilities from the flow in the Fig. 6.

In the first model (harmonic force) we predict that the stationary state is unique and that after a finite time the
relative coordinate y(t) will end up within the interval [a, c]. Once the particle enters this interval [a, c], it can never
go out via the dynamics in Eq. (66). Hence we would expect that the stationary state, if it exists, will be supported
only inside the interval [a, c]. In other words, the stationary probability density Pσ1,σ2

(y) will strictly vanish outside
this interval [a, c].

In the second model (with short range repulsion) the two RTP’s cannot cross, hence it is clear that, depending
on the initial condition, i.e., whether x1(0) > x2(0) or x2(0) > x1(0), the relative coordinate y(t) of the two RTP’s
will end up either on [a, c] or on [a′, c′]. In that case the stationary solution is not unique, and there are two possible
disconnected supports, which are images of each other by the symmetry y → −y.

B. Determination of the steady state solution

We now focus on the case where the stationary solution is unique (for models in the same class as the harmonic well)
and show how to find this solution. Let us rewrite the equation Eq. (67) in components and set ∂tPσ1,σ2

(y, t) = 0,
leading to the four coupled equations
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FIG. 6. Dynamical diagrams for the 2 RTP’s within the two models discussed in the text. The interaction force between the
RTP’s, f(y) is plotted versus y, the relative coordinate. The fixed points for the dynamics (66) in each state of the two RTP’s
are determined by the roots of the equations f(y) = −v0 (state +−), f(y) = 0 (states ++ and −−) and f(y) = v0 (state
−+). These are obtained as the intersections of the plot of f(y) with the three horizontal lines which correspond to the three
possible values of σ = σ1 − σ2. Top panel a): the harmonic force model, f(y) = −y, with the three fixed points a, b and c
(see discussion in the text). The flow indicated by the arrows shows the dynamics of y(t) in each state. The three fixed points
are attractive and the steady state is supported by the interval [a, c]. Bottom panel b): the second model (with a repulsive
short range interaction), f(y) = 1

y
− y, with the six fixed points a, b, c and a′, b′, c′ (see discussion in the text). All fixed points

are attractive. The steady state is not unique, with two supports [a′, c′] and [a, c], depending on the initial ordering of the
particles.

∂tP++ = −2∂y(f(y)P++)− 2γP++ + γ(P+− + P−+) = 0 (68)

∂tP+− = −2v0∂yP+− − 2∂y(f(y)P+−)− 2γP+− + γ(P++ + P−−) = 0 (69)

∂tP−+ = 2v0∂yP−+ − 2∂y(f(y)P−+)− 2γP−+ + γ(P++ + P−−) = 0 (70)

∂tP−− = −2∂y(f(y)P−−)− 2γP−− + γ(P+− + P−+) = 0 . (71)

These equations (see also (67)) are invariant under the change (y, σ1, σ2) → (y,−σ2,−σ1). Since f(y) is an odd
function of y, they are also invariant under the change (y, σ1, σ2)→ (−y,−σ1,−σ2). Since we consider here the case
where the stationary solution is unique, this implies that

Pσ1,σ2
(y) = P−σ1,−σ2

(−y) , Pσ1,σ2
(y) = Pσ2,σ1

(−y) , (72)

where the second symmetry is obtained by combining the two symmetries mentioned above. The first corresponds to
reversing the speed of each particle and reversing the direction of y. Since the confining potential V (y) is symmetric
under y → −y (equivalently f(−y) = −f(y)), the first symmetry in Eq. (72) is evident when the stationary state is
unique. Summing over σ1, σ2 this also implies that the total probability P (y) must be an even function of y.
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It is convenient to introduce the following quantities

p1 = P++ + P−− , p2 = P++ − P−− , q1 = P+− + P−+ , q2 = P+− − P−+ , P = p1 + q1 . (73)

In terms of these quantities Eqs. (68)-(71) simplify to

−∂y[f(y)p1]− γp1 + γq1 = 0 (74)

−∂y[f(y)p2]− γp2 = 0 (75)

−∂y[f(y)q1 + v0q2]− γq1 + γp1 = 0 (76)

−∂y[f(y)q2 + v0q1]− γq2 = 0 . (77)

Amazingly, Eq. (75) for p2(y) completely decouples from p1, q1 and q2 for arbitrary f(y). In fact p2 is not needed to
obtain p1, q1 and q2. The origin of this simplification will be discussed below. It therefore remains to solve the three
equations (74), (76) and (77). Adding (74) and (76) and using P = p1 + q1 one finds

∂y(2f(y)P (y) + 2v0q2(y)) = 0 =⇒ 2f(y)P (y) + 2v0q2(y) = J , (78)

where J is a constant. We can identify this constant with the total probability current in the system. This can
be seen by adding the four equations (67) for σ1 = ±1 and σ2 = ±1 which gives ∂tP = −∂yJ(y) with J(y) =
2f(y)P (y) + 2v0q2(y). In the steady state, the probability current must be a constant since ∂tP = 0. Hence J(y) = J
is independent of y and coincides with Eq. (78). Since f(y) is an odd function, P (y) is even, and q2(y) is also an
odd function because of the symmetry (72) and of the unicity of the steady state, the equation (78) implies that the
current J must vanish. Setting J = 0 we get another relation

f(y)P (y) = f(y)(p1(y) + q1(y)) = −v0q2(y) . (79)

We now eliminate q2(y) from Eqs. (76) and (77) by using the relation in Eq. (79). This gives a pair of coupled
equations, involving P (y) and q1(y)

−∂y(f(y)(q1 − P )) + γP − 2γq1 = 0 (80)

−∂y(v2
0q1 − f(y)2P ) + γf(y)P = 0 , (81)

which can be conveniently re-written as

fP ′ + (f ′ + γ)P = fq′1 + (f ′ + 2γ)q1 (82)

f2P ′ + f(2f ′ + γ)P = v2
0q
′
1 . (83)

After differentiating both equations (82) and (83) and performing straightforward manipulations, one can eliminate
q1 and write a closed second order ordinary differential equation for P (y). We get

f(y)
(
v2

0 − f(y)2
)
P ′′(y) +

((
v2

0 − 3f(y)2
)

(γ + 2f ′(y)) +
f(y) (f(y)− v0) (f(y) + v0) f ′′(y)

2γ + f ′(y)

)
P ′(y) (84)

+

(
γ
(
v2

0 − 3f(y)2
)
f ′′(y)

2γ + f ′(y)
− f(y) (γ + 2f ′(y)) (2γ + 3f ′(y))

)
P (y) = 0 . (85)

One can in principle solve this equation for P (y) using the boundary conditions given below. Once P (y) is known
one obtains q2(y) = −f(y)P (y)/v0 from (79). One also obtains q1(y) by integration of (83). Alternatively, a similar
second order differential equation can also be derived for q1(y) by eliminating P (y) from the pair of Eqs. (82) and
(83). We do not write it explicitly here. As argued before, the stationary solution is expected to be supported over
the finite interval [a, c] where f(a) = v0 and f(c) = −v0. Therefore Eq. (84) for P (y) holds for y ∈ [a, c]. In addition,
we need to provide the appropriate boundary conditions to find the unique solution. These boundary conditions are
nontrivial and we derive them below.

Boundary conditions. The main idea is to derive, directly from the Langevin equation (66) how the four probabil-
ities Pσ1,σ2

(y, t) evolve in a small time ∆t exactly at the two edges of the support y = a and y = c. Let us illustrate
this explicitly with the state P++(y, t). For this case, the Langevin equation (66) says that in a small time ∆t the
position of the particle evolves by ∆y = 2 f(y) ∆t. Therefore the evolution of the probability density P++(y, t) can
be written as

P++(y, t+ ∆t) = (1− 2γ∆t)P++(y − 2 f(y) ∆t, t) + γ∆t [P+−(y, t) + P−+(y, t)] . (86)
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FIG. 7. Plot of the total probability density P (y) vs y for the harmonic interaction f(y) = −λy with v0 = 1, λ = 2 and
γ = 2λ = 4. The symbols are the results of numerical simulations while the solid lines correspond to the exact result in
Eq. (97).

This is easily explained since in the time interval [t, t + ∆t] the velocities (v0σ1(t), v0σ2(t)) do not change sign with
probability 1 − 2γ∆t. Hence, if the particle wants to be at the location y at time t + ∆t, it must have been at
y − ∆y = y − 2 f(y) ∆t at time t. This explains the first term in Eq. (86). In contrast, with probability γ∆t, it
can come from the state (+−) or (−+) just by flipping the negative velocity. This explains the last two terms in
Eq. (86). Now we consider this evolution equation (86) exactly at the left edge y = a where we recall that f(a) = v0.
Hence the first term on the r.h.s. of Eq. (86) reads (1 − 2γ∆t)P++(a − 2v0∆t, t). Since 2v0∆t > 0, the argument
a− 2v0∆t < a. This means that the argument a− 2v0∆t is outside the left edge of the support where, by definition,
there is no particle in the stationary state. Hence the first term is identically zero at y = a. As ∆t→ 0, the last two
terms in Eq. (86) also vanish. This gives us the boundary condition in the stationary state

P++(y = a) = 0 . (87)

By repeating this argument for each of the states (σ1 = ±1, σ2 = ±1) at the two boundaries a and c, we find the
following set of boundary conditions

P++(a) = P++(c) = 0 (88)

P−−(a) = P−−(c) = 0 (89)

P+−(a) = 0 (90)

P−+(c) = 0 . (91)

Note that, due to the symmetry condition (72), these boundary conditions are not all independent. In fact, there
are only four independent boundary conditions. Since our original stationary states equations (68)-(71) are four
first-order differential equations (albeit coupled), these four boundary conditions are enough to fix the stationary
solution uniquely. Note that these boundary conditions (88)-(91) mean that no jump is allowed at these points for
these probabilities, which must thus vanish continuously.

Let us now return to the function p2(y) = P++(y)− P−−(y). Using both symmetries in Eq. (72) for σ1 = σ2 = +
we obtain that

p2(y) = P++(y)− P−−(y) = P++(y)− P++(−y) = 0 . (92)

Hence all the components Pσ1,σ2(y) of the stationary state can be determined.

C. Harmonic interactions and mapping to a three state model

To illustrate the method, let us consider the example of the harmonic interaction f(y) = −λy in which case Eq. (84)
becomes

(γ − 2λ)P ′(y)
(
v2

0 − 3λ2y2
)
− λyP ′′(y)

(
v2

0 − λ2y2
)

+ λy(2γ − 3λ)(γ − 2λ)P (y) = 0 . (93)
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Let us first study the special case γ = 2λ, which turns out to be a bit simpler. In that case, indeed, the above
equations simplify into

y
(
v2

0 − λ2y2
)
P ′′(y) = 0 (94)

−λyP ′ + λP = −λyq′1 + 3λq1 (95)

λ2y2P ′ = v2
0q
′
1 . (96)

The solution is easily obtained for y ∈ [− v0

λ ,
v0

λ ] as

P (y) =
λ2

v2
0

(v0

λ
− |y|

)
, q1(y) =

1

3

λ

v0
− λ4

3v4
0

sgn(y)y3 , q2(y) =
λ3

v3
0

y
(v0

λ
− |y|

)
, (97)

and zero for |y| > v0

λ . In Fig. 7 we show a comparison of our exact prediction in Eq. (97) with numerical simulations
for γ = 2λ = 4 (as well as v0 = 1.0) showing a very good agreement.

The general solution of (93) can be obtained in terms of hypergeometric functions. In fact, as we show below, the
present problem can be mapped onto a recently studied problem of a single RTP with position y, with three internal
states, in an harmonic potential V (y) = 1

2λy
2, which was solved in terms of hypergeometric functions [19]. This leads

to the general result for the solution of the 2 RTP problem with harmonic interaction, i.e. of Eq. (93), as

P (y) = A1

[
2F1

(
1− β

2
,

3

2
− β, 3− β

2
;

(
λy

v0

)2
)

+
2√
π

Γ( 3−β
2 )Γ(β + 1

2 )

(1− 2β)Γ(β+1
2 )

(
λy

v0

)β−1

2F1

(
1

2
, 1− β

2
,
β + 1

2
;

(
λx

v0

)2
)]

, −v0

λ
≤ y ≤ v0

λ
, (98)

where β = γ/λ and the amplitude A1 is given in Eq. (33) of Ref. [19].
The model studied in Ref. [19] is defined by the transition rates between the three states denoted +1, 0,−1 as

shown in Fig. 8 b). One can identify these states with ours as

1 ≡ (+−) ⇒ P1 = P+− (99)

−1 ≡ (−+) ⇒ P−1 = P−+ (100)

0 ≡ (++) ∪ (−−) ⇒ P0 = P++ + P−− . (101)

This implies that the probabilities denoted as P , Q and R in Ref. [19] are related to P , q1 and q2 studied here via

Q = P1 + P−1 ≡ q1 , (102)

R = P1 − P−1 ≡ q2 , (103)

P = P0 + P1 + P−1 ≡ P . (104)

Hence the solution for these functions obtained there also provide the solution for our model.

D. General mapping to a two-dimensional single RTP model

In fact, this mapping, between (i) the relative coordinate of a pair of interacting particles and (ii) the position of
a single particle in a confining potential subjected to a three-state active noise, actually is more general than just
the harmonic interaction and can be extended to arbitrary attractive interaction in (i). The general mapping can be
formulated as follows. Consider a single particle on a plane with its coordinates (y(t), z(t)) evolving via the pair of
equations

dy(t)

dt
= f(y(t)) + v0σy(t) (105)

dz(t)

dt
= g(z(t)) + v0σz(t) (106)

where the confining force f(y) in the y-direction depends only on y and the confining force g(z) in the z-direction
depends only on z. In Eqs. (105) and (106), σy,z(t) are the y and z-components of a director field which has four
possible orientations E (East), N (North), W (West) and S (South), as shown in Fig. 8 a). The transition rates
between the different directions of the director field are indicated in Fig. 8 a). The state of the system has four
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FIG. 8. Illustration of the four-state model (left panel) and corresponding three-state model studied in Ref. [19] and discussed
in the text.

labels E,N,W and S and hence there are four position distribution functions PE(y, z, t), PN (y, z, t), PW (y, z, t)
and PS(y, z, t). In Ref. [27], these position distribution functions were computed explicitly in the “free” case where
f(y) = 0 and g(z) = 0. Here we consider instead the case of nonzero interaction forces f(y) 6= 0 and g(z) 6= 0. Taking
into account the transition rates in Fig. 8 a), one can explicitly write down the associated coupled FP equations
[along the lines of Eq. (67)]. We do not repeat them here as they are a bit long (see Eqs. (6a)-(6d) of Ref. [19] in
the case f(y) = −µy and g(z) = −µz). Following Ref. [19] we consider three marginal position distribution in the
y-direction

P1(y, t) =

∫
dz PE(y, z, t) , (107)

P−1(y, t) =

∫
dz PW (y, z, t) , (108)

P0(y, t) =

∫
dz [PN (y, z, t) + PS(y, z, t)] . (109)

From the explicit FP equations for PE,N,W,S , it is straightforward to obtain the FP equations for these three marginal
probability densities proceeding as in [19]

∂

∂t
P1(y, t) =

∂

∂y
[(f(y)− v0)P1] +

γ

2
P0 − γP1 , (110)

∂

∂t
P−1(y, t) =

∂

∂y
[(f(y) + v0)P−1] +

γ

2
P0 − γP−1 , (111)

∂

∂t
P0(y, t) =

∂

∂y
[f(y)P0] + γ(P1 + P−1)− γP0 . (112)

We first note that the force field g(z) has completely dropped out in Eqs. (110)-(112) and this is precisely due to the
decoupled structure of the force field (105) and (106). How is this related to the two-particle model with attractive
force f(y)? If we take our basic FP equations in Eq. (67) and use the identification in Eqs. (99), (100) and (101), it
is easy to see that the resulting FP equations for P1, P−1 and P0 are exactly the same as in Eqs. (110)-(112). In fact
it is possible by comparing Eqs. (68)-(71) in the present paper, and Eqs. (6a)-(6d) of Ref. [19] to establish a direct
mapping between the two interacting RTP model and the single RTP 2d-model [19]. One finds

P+−(y, t) =

∫
dz PE(y, z, 2t) , P−+(y, t) =

∫
dz PW (y, z, 2t) , (113)

P++(y, t) =

∫
dz PN (y, z, 2t) , P−−(y, t) =

∫
dz PS(y, z, 2t) , (114)

the rescaling of time being equivalent to a rescaling of γ. Note that there is some arbitrariness in connecting (N,S) ≡
(++,−−) rather than (N,S) ≡ (−−,++). Note that p2(y, t) = P++(y, t)−P−−(y, t) =

∫
dz [PN (y, z, 2t)−PS(y, z, 2t)]

indeed decouples as found above since it is determined by the dynamics along z (which is not observed). This completes
the mapping between the y-component of a 2d single particle problem subjected to a force-field as in Eqs. (105)-(106)
and the relative coordinate of a pair of RTP’s with arbitrary interactions between them.
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Finally, it is interesting to observe that if one instead looks at the marginals of the z-coordinate z in the 2d model
(i.e., if we integrate over y instead of z) one has again a mapping to two RTP’s interacting with a force g(z), and the
identification W ≡ −−, E ≡ ++, N ≡ +−, and S ≡ −+ (which is obtained by a rotation of the Fig. 8 a)).

V. CONCLUSION

In this paper we have studied two RTP’s interacting via an attractive potential V (y), depending on their relative
coordinate y. In the large time limit, the total probability distribution of y reaches a stationary form P (y) which
we have characterized in terms of the solution of a second-order differential equation. For two specific examples
of potential V (y) we have obtained the four components of the stationary distribution, Pσ1,σ2

(y) where σ1 = ±1,
σ2 = ±1 are the states of each RTP with velocity ±v0.

As a first example, we have studied in detail the case of a linear potential V (y) ∼ |y|, first without thermal noise
(i.e. for D = 0) and then for general D > 0. In the first case, D = 0, a striking result is that P (y) is the sum of
a delta function part δ(y) and a decaying exponential. This is the signature of a strong clustering effect, when the
two RTP’s are in the same state. This is reminiscent of the observation in [21–24], except that here the clustering
effect is enhanced by the attractive interaction. Because of the finite decay length of the exponential part, the weight
of the delta part is finite even for an infinite system. In the presence of thermal noise, D > 0, the delta function
broadens and P (y) is now a sum of exponentials. We have tested our analytic formula with numerical simulations of
two interacting RTP’s.

The second example is the harmonic attraction, V (y) = λ
2 y

2. In that case, the support of P (y) is found to be
a finite interval [−v0

λ ,
v0

λ ]. We found that the general solutions for P (y) on this interval are expressed in terms of
hypergeometric functions. In addition, Pσ1,σ2(y) generically exhibit power-law singular behaviors at the three points
y = 0,± v0

λ . Remarkably, this exact solution can be mapped onto a problem studied previously of a three-state single
RTP in one dimension in a harmonic external potential. In fact, as we have shown, this mapping extends to any
interaction potential V (y). In addition, a related mapping to a two-dimensional single RTP model is obtained. Finally,
we have also discussed the effect of an additional short-range repulsion. When it is strong enough so that the particles
cannot cross it results in the existence of several distinct steady states which are related by the symmetry y → −y.

As we have seen here, it is already non-trivial to obtain the stationary probability for two RTP’s with a general
interaction potential. An interesting question is whether there are solvable models for a number N > 2 RTP’s.
Preliminary study shows that it is already quite challenging for the linear attraction potential. Multi-particle models
with N > 2 were studied for a chain of harmonically attracting RTP’s, for which the mean square displacement of a
single RTP as well the two time correlation have been obtained [28, 29]. However the stationary distribution has not
been studied, and as we see here, already for N = 2, it involves hypergeometric functions. These questions are left
for future investigations.

Recently, the simple RTP model of a single particle dx/dt = v0σ(t) in Eq. (1) has been generalised to the case
dnx/dtn = v0σ(t) with any n > 0 [30]. For example, the case n = 2 would correspond to an undamped particle driven
by a random telegraphic force. It would be interesting to see if our method can be extended to study a pair of such
interacting undamped RTP’s.

Acknowledgments: This research was supported by ANR grant ANR-17-CE30-0027-01 RaMaTraF.

Appendix A: Details for two RTP’s with diffusion

As stated in the text the stationary solution ∂tPσ1,σ2
(y) = 0 of the FP equation (36) which obeys (i) continuity at

y = 0 and (ii) the matching condition (37) for derivatives has the form

Pσ1,σ2
(y) = [(b1V

1
σ1,σ2

+ b2V
2
σ1,σ2

(µ2))θ(y) + (b′1V
1
σ1,σ2

+ b′2V
2
σ1,σ2

(−µ2))θ(−y)]e−µ2|y| (A1)

+(b3V
3
σ1,σ2

(µ3)θ(y) + b′3V
3
σ1,σ2

(−µ3)θ(−y))e−µ3|y| + (b4V
4
σ1,σ2

(µ4)θ(y) + b′4V
4
σ1,σ2

(−µ4)θ(−y))e−µ4|y| ,

where the eigenvectors Ô = (V 1, V 2(µ), V 3(µ), V 4(µ)) are given (in column form) in (21) and depend on µ via c and s.
The parameter µ2 is given in (46) and the parameters µ3, µ4 are solutions of (47) and given explicitly in Eqs. (55)-(57).
We will now determine the unknown coefficients b1, b2, b3, b4 and b′1, b

′
2, b
′
3, b
′
4 from the above conditions (i) and (ii)

that we rewrite explicitly. The first one (i) is the continuity condition

b1V
1
σ1,σ2

+b2V
2
σ1,σ2

(µ2)+b3V
3
σ1,σ2

(µ3)+b4V
4
σ1,σ2

(µ4) = b′1V
1
σ1,σ2

+b′2V
2
σ1,σ2

(−µ2)+b′3V
3
σ1,σ2

(−µ3)+b′4V
4
σ1,σ2

(−µ4) (A2)
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and the second one (ii) is the matching of the derivatives, which reads

µ2

(
b1V

1
σ1,σ2

+ b2V
2
σ1,σ2

(µ2)) + b′1V
1
σ1,σ2

+ b′2V
2
σ1,σ2

(−µ2)
)

+ µ3

(
b3V

3
σ1,σ2

(µ3) + b′3V
3
σ1,σ2

(−µ3)
)

(A3)

+µ4

(
b4V

4
σ1,σ2

(µ4) + b′4V
4
σ1,σ2

(−µ4)
)

= 2
c̄

D
×
(
b1V

1
σ1,σ2

+ b2V
2
σ1,σ2

(µ2) + b3V
3
σ1,σ2

(µ3) + b4V
4
σ1,σ2

(µ4)
)
.

Finally we will also use that the total probability is normalized to unity. We note that V 1
σ1,σ2

is orthogonal to all the

other vectors for any value of µ. We can thus take the scalar product of all equations with V 1 and obtain

b1 = b′1 , µ2(b1 + b′1) = 2
c̄

D
b1 ⇐⇒ b1 = b′1 = 0 , (A4)

as soon as γ > 0, which is similar to our result for p2 = P++ − P−− = 0 in the case D = 0, see (92).
Based on some numerical observation, we now assume that

b′2 = −b2 , b′3 = b3 , b′4 = b4 , (A5)

and we will verify below that it indeed provides a solution to the problem. These identities imply from (A2) that

b2(V 2
σ1,σ2

(µ2) + V 2
σ1,σ2

(−µ2)) + b3(V 3
σ1,σ2

(µ3)− V 3
σ1,σ2

(−µ3)) + b4(V 4
σ1,σ2

(µ4)− V 4
σ1,σ2

(−µ4)) = 0 , (A6)

and from (A3) that

µ2b2(V 2
σ1,σ2

(µ2))− V 2
σ1,σ2

(−µ2)) + µ3b3(V 3
σ1,σ2

(µ3) + V 3
σ1,σ2

(−µ3)) (A7)

+µ4b4(V 4
σ1,σ2

(µ4) + V 4
σ1,σ2

(−µ4)) = 2
c̄

D
×
(
b2V

2
σ1,σ2

(µ2) + b3V
3
σ1,σ2

(µ3) + b4V
4
σ1,σ2

(µ4)
)
.

Replacing the r.h.s. by half the sum of both sides of (A2) and using the above relations (A4) and (A5) one can rewrite
(A7) as

(µ2 −
c̄

D
)b2(V 2

σ1,σ2
(µ2))− V 2

σ1,σ2
(−µ2)) + (µ3 −

c̄

D
)b3(V 3

σ1,σ2
(µ3) + V 3

σ1,σ2
(−µ3)) (A8)

+(µ4 −
c̄

D
)b4(V 4

σ1,σ2
(µ4) + V 4

σ1,σ2
(−µ4)) = 0

Let us now express these equations using the explicit forms

V 2(µ2) =


c2√

2
s2√

2

− s2√
2

c2√
2

 , V 3(µ3) =


s3
2

− 1
2 (1 + c3)
− 1

2 (1− c3)
s3
2

 , V 4(µ4) =


s4
2

1
2 (1− c4)
1
2 (1 + c4)

s4
2

 , (A9)

where, for j = 2, 3, 4 one has

cj =
−µjv0√
γ2 + µ2

jv
2
0

, sj =
γ√

γ2 + µ2
jv

2
0

, (A10)

and V j(−µj) obeys the same formula (A9) with cj → −cj and sj → sj . Inserting these expressions for V j(±µj) into
(A6) we obtain only one independent equation

b3c3 + b4c4 =
√

2b2s2 . (A11)

Similarly, inserting them into (A8) we obtain only two independent equations

b4

( c̄
D
− µ4

)
= b3

( c̄
D
− µ3

)
(A12)

√
2b2c2

( c̄
D
− µ2

)
+ b3s3

( c̄
D
− µ3

)
+ b4s4

( c̄
D
− µ4

)
= 0 . (A13)

The equations (A11), (A12) give

b3 =
√

2b2b̃3 , b4 =
√

2b2b̃4 (A14)

b̃3 =
s2 (c̄−Dµ4)

(c3 + c4) c̄−D (c4µ3 + c3µ4)
, b̃4 =

s2 (c̄−Dµ3)

(c3 + c4) c̄−D (c4µ3 + c3µ4)
, (A15)
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in which case we have checked that the third equation (A13) is automatically satisfied.
Putting everything together we find that the stationary measure is

Pσ1,σ2
(y) = b2

(
(V 2
σ1,σ2

(µ2)θ(y)− V 2
σ1,σ2

(−µ2)θ(−y)]e−µ2|y| (A16)

+b̃3
√

2(V 3
σ1,σ2

(µ3)θ(y) + V 3
σ1,σ2

(−µ3)θ(−y))e−µ3|y| + b̃4
√

2(V 4
σ1,σ2

(µ4)θ(y) + V 4
σ1,σ2

(−µ4)θ(−y))e−µ4|y|
)
,

where b̃3, b̃4 are given in (A14) and there remains a single unknown parameter b2 which is obtained by normalization.
Let us thus study the total probability P (y) =

∑
σ1,σ2

Pσ1,σ2
(y). One has, from (A9)∑

σ1,σ2

V 2
σ1,σ2

(±µ2) = ±
√

2c2 ,
∑
σ1,σ2

V 3
σ1,σ2

(±µ3) = s3 − 1 ,
∑
σ1,σ2

V 4
σ1,σ2

(±µ4) = s4 + 1 . (A17)

From (A16) we thus obtain

P (y) = b2
√

2
(
c2e
−µ2|y| + b̃3(s3 − 1)e−µ3|y| + b̃4(s4 + 1)e−µ4|y|

)
, (A18)

and the normalization condition
∫ +∞
−∞ P (y)dy = 1 leads to the following result for b2

b2 =
1

√
2
(
c2

2
µ2

+ b̃3(s3 − 1) 2
µ3

+ b̃4(s4 + 1) 2
µ4

) . (A19)

Solving for b2 and inserting into (A18) we obtain the result for P (y) given in the text in Eq. (60). Substituting into
(A16) gives the complete result for all components of the stationary probability Pσ1,σ2(y).
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