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Parameterized Complexity of Elimination Distance to
First-Order Logic Properties *

Fedor V. Fomin' Petr A. Golovach! Dimitrios M. Thilikos?

Abstract

The elimination distance to some target graph property P is a general graph modification
parameter introduced by Bulian and Dawar. We initiate the study of elimination distances
to graph properties expressible in first-order logic. We delimit the problem’s fixed-parameter
tractability by identifying sufficient and necessary conditions on the structure of prefixes of
first-order logic formulas. Our main result is the following meta-theorem: For every graph
property P expressible by a first order-logic formula ¢ € X3, that is, of the form

¢ =3dz1dxy - -z, Vy1Vys -+ -Vys, Jz1329---d2p ¥,

where 1) is a quantifier-free first-order formula, checking whether the elimination distance of
a graph to P does not exceed k, is fived-parameter tractable parameterized by k. Properties
of graphs expressible by formulas from Y3 include being of bounded degree, excluding a
forbidden subgraph, or containing a bounded dominating set. We complement this theorem
by showing that such a general statement does not hold for formulas with even slightly more
expressive prefix structure: There are formulas ¢ € Il3, for which computing elimination
distance is W[2]-hard.

Keywords: First-order logic, elimination distance, parameterized complexity, descriptive com-
plexity

1 Introduction

One of the successful concepts in parameterized complexity is the “distance from triviality”
[20]. Roughly speaking, a parameter can measure the “distance” of the given instance from an
instance that is solvable efficiently and then exploit such a distance algorithmically. In graph
problems, a standard measure of distance from triviality is the vertex deletion distance to some
specific graph property P. That is, the minimum number of vertices whose deletion results in
a graph in P. An interesting alternative to vertex deletion distance, called elimination distance
was introduced by Bulian and Dawar [5] in their study of the parameterized complexity of the
graph isomorphism problem. The elimination distance of a graph G to graph property P is

0, if G eP,
edp(G) =<1+ min, ey () edp(G — v), if G ¢ P and G is connected,
max{edp(C) | C is a component of G}, otherwise.
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Arguably, elimination distance can be seen as a non-deterministic version of vertex deletion
distance, where the source of non-determinism is connectivity: each vertex removal creates con-
nected components and the elimination should be applied to each one of them as an independent
vertex deletion scenario. In the most simple case where P is the property of being edgeless, ver-
tex deletion distance to P generates vertex cover, while the elimination distance to P generates
tree-depth [26].

In their follow-up work, Bulian and Dawar [6] proved that deciding whether a given n-
vertex graph has elimination distance at most k£ to any minor-closed property of graphs can
be done by an algorithm running in time f(k) - n®®) (that is an FPT-algorithm), and thus is
fixed-parameter tractable parameterized by k. In the same paper, Bulian and Dawar [6] asked
whether computing the elimination distance to graphs of bounded degree is fixed-parameter
tractable.

The problem. The question of Bulian and Dawar is the departure point of our study. Ev-
ery graph property characterized by a finite set of forbidden induced subgraphs (and thus the
bounded degree property as well) is first-order logic definable (in short, FOL-definable), i.e.,
there is a FOL formula ¢ where P = {G | G = ¢}. It is well-known that MODEL CHECKING for
a FOL formula ¢, that is deciding whether G = ¢, can be done in time nOUeD | Tt is also easy
to design an algorithm that, in time n@®) . n@U4l) decides whether the elimination distance to
a property expressible by a FOL formula ¢ is at most k. Thus, for every FOL formula ¢, the
problem asking, given as input a graph G and a non-negative integer k, whether the elimination
distance from G to P, := {G | G |= ¢} is k is in the parameterized complexity class XP (when
parameterized by k). This brings us to the following question.

What is the parameterized complexity of computing the elimination distance to FOL-
definable properties?

Notice that the above general question could also be made for higher order logic-definable
properties. In this direction, one may observe that there are formulas ¢ in existential second-
order logic (ESOL) for which MODEL CHECKING for ¢ is already intractable: such ESOL-
definable problems are HAMILTONIAN CYCLE or 3-COLORING that are NP-complete. This
means that for the corresponding ESOL formulas ¢ the problem of checking whether edp,, (G) <
k, parameterized by k, is para-NP-complete. Motivated by this, we delimit our study to the
framework of first-order logic where our parameterized problem is in XP for every FOL-formula.
This permits us to set up the problem that we consider in this paper, that is to completely de-
termine the prefix classes of FOL that demark the parametric-tractability borders of elimination
distance to FOL-definable properties (that is FPT versus W-hardness).

The above question has been inspired by the study of Gottlob, Kolaitis, Schwentick in [18]
who provided an analogous dichotomy result (P versus NP-complete) for ESOL-formulas, in
several graph-theoretic contexts. They identified the set § of prefix classes of ESOL such that,
if o € §, then MODEL CHECKING for ¢ is polynomially solvable, while every prefix class not in
§ contains some ESOL formula ¢ where MODEL CHECKING for ¢ is NP-complete.

Our results. We identify sufficient and necessary conditions on the structure of prefixes of first-
order logic formulas demarcating tractability borders for computing the elimination distance.
Our main algorithmic contribution is the proof that computing the elimination distance to
any graph property defined by a formula from X3 is fixed-parameter tractable. We formally
define prefix classes II; and ¥; in the next section. For the purpose of this introduction, it is



sufficient to know that every formula in ¢ € ¥3 can be written in the form
@ =dx1dre - dwp Vi Vyo o - Vys 321329+ dz ),

where 9 is a quantifier-free FOL-formula and r, s, t are non-negative integers.

Every graph property characterized by a finite set of forbidden subgraphs can be expressed
by ¢ € 33. Actually, for this partiuclar purpose, we can consider even more restricted formulas
p € I} C X3 with only V quantifications over variables. The property that the diameter of a
graph is at most two cannot be expressed by using forbidden subgraphs but can easily be written
as an FOL formula from Iy C ¥3: YuVo3w[(u = v) V (u ~ v) V ((u ~ w) A (v ~ w))]. Another
interesting example of a property expressible in Y3 is the property of containing a universal
vertex, and, more generally, having an r-dominating set of size at most d for constants r and
d. Having a twin-pair, that is a pair of vertices with equal neighborhoods, is also the property
expressible in 3.

Theorem 1 (Informal). For every ¢ € X3, n-vertex graph G, and k > 0, deciding whether the
elimination distance from G to property P,, is at most k, can be done in time f(k) -nOUel for
some function [ of k only.

Our second theorem shows that the assumptions on the prefix of the formula are necessary.
Let I3 be the class of first-order logic formulas of the form

@ =Vr1Vag---Va, Jy1dys---Jys Vi Vag---Vz 1),

where 1) is a FOL-formula without quantifiers and s,t, ¢ are non-negative integers. We show
that

Theorem 2 (Informal). There is ¢ € ll3 such that deciding whether the elimination distance
to Py, is at most k, is W[2]-hard parameterized by k.

Variants of elimination distance. The main reason why we give informal statements of
our theorems in the introduction is due to the following issue. The definition of elimination
distance is tailored to the graph properties P with the condition that G € P if and only if
C € P for every component C' of G. Graph properties defined by FOL do not necessarily
satisfy such a condition. This leads to ambiguities. As an example, consider graph property
P ={G| G EVaVy z = y}. Thus G € P if and only if G is a single-vertex graph. Let G be
an edgeless graph with n > 2 vertices. Since G ¢ P it would be a natural assumption that the
elimination distance from G to P is positive. However, it is not: every connected component of
G is in P and, therefore,

edp(G) = max{edp(C) | C is a component of G} = 0.

To avoid such ambiguities, we refine the definition of the elimination distance.

Since we consider graph properties P, = {G | G = ¢} for formulas ¢, we define the
distances with respect to formulas. Notice that the notion of elimination distance combines
“connectivity” and “inclusion” in a graph class. Depending on which of these two properties
we want to prioritize, we give different definitions. Let ¢ be a FOL formula.

Definition 1 (Elimination distances ed;}™" and ed°?). The first definition prioritize on con-
nectivity. For a graph G, we set

edCOf‘In(G) — {07 7’fC.;! ): SO’

4 1+ min,ey(g)edy ™" (G —v), otherwise,
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if G is connected. We set
ed2""(G) = max{ed""(C) | C is a component of G'}
when G is not connected. The second definition prioritize on the graph property

0, if G e,
engp(g) = {1+ minyey(q) edgop(g — ), if G = ¢ and G is connected,

max{1, max{ed%°?(C) | C is a component of G}}, otherwise.

We assume that ed>™(G) = ed%°P(G) = 0 if G = (0,0) for any formula ¢.

If ¢ is such that G € P, if and only if C € P, for every component C of G, then edp,(G) =
edZ"(G) = edZ°P(G). However, in general ed?""(G) and ed°®(G) may differ significantly.
Consider ¢ = Judv —(u = v) A =(u ~ v) that defines the property that a graph has two
nonadjacent vertices. Let GG be the disjoint union of the complete n-vertex graph K, and an
isolated vertex. Then G [= ¢ and, therefore, ed)°?(G) = 0. On the other hand, G is not
connected and it is easy to see that ed™" (K,) = n.

Given the above, a more precise statement of Theorems 1 and 2 is that they hold for both
distances ed?"" and ed°®. We also define another interesting type of elimination distance

edgepth that focuses on the depth of the elimination set. We prove Theorems 1 and 2 hold
for that distance as well. Precise statements of both theorems and their proofs are given in
Sections 4 and 5.

Related work. Results of this work fit into two popular trends in logic and parameterized
complexity. A significant amount of research in descriptive complexity is devoted to the study
of prefix classes of certain logics. We refer to the book of Bérger, Grédel, and Gurevich [4],
as well as the aforementioned work of Gottlob, Kolaitis and Schwentick [19] for further refer-
ences. The study of graph modification problems is a well-established trend in parameterized
complexity. The books [10, 13, 14, 27] provide a comprehensive overview of the area. In partic-
ular, Fomin, Golovach, and Thilikos [15] studied parameterized complexity of computing vertex
deletion distance and edge editing to graph properties defined by first-order logic formulas; [15,
Theorem 1] establishes fixed-parameter tractability for vertex removal to a graph property P,
for ¢ € X3 and shows that the problem is W|[2]-hard for some ¢ € II3. While our Theorem 1
reaches the same tractability border for the elimination distance, the proof is significantly more
complicated.

The general question on the parameterized complexity of elimination distance to graph
properties was settled by Bulian and Dawar [5, 6]. Properties that have been considered so far
are minor-free graph classes [6], cluster graphs [1, 2], bounded degree graphs [5, 23], and H-free
graphs [1]. Moreover, Hols et al. [21] studied the existence of polynomial kernels for the VERTEX
COVER problem parameterized by the size of a deletion set to graphs of bounded elimination
distance to certain graph classes. Lindermayr, Siebertz, and Vigny [23] proved that computing
the elimination distance to graphs of bounded degree is fixed-parameter tractable when the
input does not contain Kj as a minor. While preparing our paper, we have learned about the
very recent work of Agrawal et al. [1]. Agrawal et al. established fixed-parameter tractability of
computing an elimination distance to any graph property characterized by a finite set of graphs
as forbidden induced subgraphs. Since graphs of bounded vertex degree can be characterized
by a finite set of forbidden induced subgraphs, the work of Agrawal et al. answers the question
of Bulian and Dawar [6] about the elimination distance to graphs of bounded degree.

Comparing with the result of Agrawal et al. [1], our Theorem 1 is more general. First, it
provides the tractability of the elimination ordering to a strictly larger family of graph prop-
erties. Every graph property described by a finite set of forbidden induced subgraphs is also
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definable by a formula from 3. However, properties like having a universal vertex or bounded
diameter, which are expressible in >3, cannot be described by forbidden subgraphs. Second,
Theorem 1 holds for three variants of the elimination distance: ed;>™", ed?°?, and edfoepth. With
this terminology, the result of Agrawal et al. is only about computing ed;>™. When it comes to
the proof techniques, both Theorem 1 and the result of Agrawal et al. use recursive understand-
ing, which seems to be a very natural technique for approaching problems about elimination
distances. However, the details are quite different. To deal with various types of elimination
distances and FOL formulas in a uniform way, we need different combinatorial characterizations
of the distances via sets of bounded elimination depths. Furthermore, while solving our prob-
lems on unbreakable graphs is done by recursive branching algorithms, similarly to Agrawal et
al., we do it in different way that exploits the random separation technique to deal with our
more general FOL framework. Moreover, the analysis of components of the graph obtained by
the deletion of an elimination set for computing edgepth(G), and especially, ed?°?(G), is great
deal more challenging. In particular, this is the reason why we apply the random separation
technique contrary to the more straightforward tools used by Agrawal et al.

Overview of the approach. The firsts two variants of the elimination distance that we
examine are defined recursively using the containment in the graph class P, as the base case.
We start by providing equivalent formulations that are more suitable from the algorithmic
perspective. For this, we introduce the notion of elimination set of depth at most d that is a set
X C V(@) that can be bijectively mapped to a rooted tree T of depth d expressing selection of
elimination vertices in recursive calls. We next prove that ed>™"(G) < k if and only if G has an
elimination set of X depth at most k& — 1 such that C' |= ¢ for every component C of G — X.
Similar, however more technical, equivalent formulations is given for ed°?. All alternative
definitions and the proofs of their equivalences to the recursive ones are gathered in Section 3.

The new definitions allows to certify a solution by a set X of bounded elimination depth.
However, the size of X could be unbounded. Moreover, there could be many connected com-
ponents of G — X and the sizes of these components could be immense. We use the recursive
understanding technique, introduced by Chitnis et al. in [8] to reduce the solution of the initial
problem to a much more structured problem. In the reduced problem, we can safely assume
that each yes-instance is certified by an elimination set X whose size, as well as the size of the
union of all but one of the components of G — X, is also bounded by a function of k.

More precisely, by making use of recursive understanding, we can consider only instances
that are (p(k), k)-unbreakable for some suitably chosen function p. Roughly speaking, a graph
is (p(k), k)-unbreakable when it has no separator of size at most k that partitions the graph in
two parts of size at least p(k) + 1 each. The application of recursive understanding uses the
meta-algorithmic result of Lokshtanov et al. [24] and the fact that all variants of the elimination
distance to P, are expressible in monadic-second order logic (MSOL) when ¢ is a formula in
FOL (Lemma 5).

The (p(k), k)-unbreakability permits us to assume that |X| < p(k) + k. Moreover, exactly
one connected component Cx of G — X, is big, that is of size at least p(k) + 1, and the size
of G — V(Cx) is bounded by some function of k£ (see Lemma 6). Given that Cx is the big
component corresponding to a solution X, we also consider the set Sx of the neighbours of
the vertices of Cx in G and we set Ux = V(G) \ (V(Cx) U Sx). We show that |Sx| < k and
|Ux| < p(k).

Our next step is to use the random separation technique, introduced by Cai, Chan, and
Chan in [8]. We construct in FPT-time a family F of at most f(k) - logn partitions (R, B) of
V(G) to “red” and “blue” vertices such that for every elimination set X corresponding to a
potential solution, F contains some (R, B) where Ux C R and Sx C B. In our algorithm, we
go over all these blue-red partitions and, for each one of them, we check whether there exists
an elimination set X (called colorful elimination set) where all vertices in Sx are blue and all
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vertices in Ux are red.

The correct “guess” of the above red-blue partition permits us to design a recursive procedure
that solves the latter problem, i.e., finds a colourful elimination set X. This procedure is different
for each of the three versions of the problem and its variants are presented in Subsection 4.2.
The key task here is to identify the big component C'x. It runs in FPT-time and its correctness
is based on the prefix structure of the formula ¢.

Organization of the paper. In Section 2 we provide the basic definitions of the concepts
that we use in this paper: complexity classes graphs, and formulas. In Section 3 we prove some
properties and relations between the elimination ordering variants that we consider. We also
provide alternative definitions and we prove their equivalencies with the original ones. The main
algorithmic result is in Section 4 where we explain how we apply the recursive understanding
technique, the randomized separtion technique, and we present the branching procedure for the
“colourful version” of each variant. Section 5 gives the lower bound of the paper. This uses
parameterized reduction from the SET COVER problem. Finally, in Section 6, we provide some
discussion on the kernelization complexity of our problems as well as some directions on further
research on elimination distance problems.

2 Preliminaries

Sets. We use N to denote the set of all non-negative numbers. We denote by a = (ay, ..., ar)
a sequence of elements of a set A and call a an r-tuple of simply a tuple. Note that the elements
of a are not necessarily distinct. We denote by ab = (ay,...,a,,b1,...,7s) the concatenation
of tuples a = (ay,...,a,) and b = (by ..., bs).

Parameterized Complexity. We refer to the recent books of Cygan et al. [10] and Downey
and Fellows [13] for the detailed introduction to the field. Formally, a parmeterized problem is
a language L C ¥* x N, where ¥* is a set of strings over a finite alphabet . This means that
an input of a parameterized problem is a pair (z, k), where x is a string over ¥ and k € N is a
parameter. A parameterized problem is fized-parameter tractable (or FPT) if it can be solved in
time f(k) - |z|°(M) for some computable function f. Also, we say that a parameterized problem
belongs in the class XP if it can be solved in time |z|/ (k) for some computable function f. The
complexity class FPT contains all fixed-parameter tractable problems. Parameterized complex-
ity theory also provides tools to disprove the existence of an FPT-algorithm for a problem under
plausible complexity-theoretic assumptions. The standard way is to show that the problem is
WI(1] or W][2]-hard using a parameterized reduction from a known WI[1] or W[2]-hard problem;
we refer to [10, 13] for the formal definitions of the classes W[1] and W[2] and parameterized
reductions.

Graphs. We consider only undirected simple graphs and use the standard graph theoretic
terminology (see, e.g., [12]). Throughout the paper we use n to denote |V(G)| if it does not
create confusion. For a set of vertices S C V(G), we denote by G[S] the subgraph of G induced
by the vertices from S. We also define G — S = G[V(G) \ S]; we write G — v instead of G — {v}
for a single vertex set. For a vertex v, Ng(v) denotes the open neighborhood of v, that is, the set
of vertices adjacent to v, and Ng[v] = {v} U Ng(v) is the closed neighborhood. For S C V(G),
Ne(S) = (Uyes Na(v)) \ S and N¢[S] = U,cg Ne[v]. For a vertex v, dg(v) = [Ng(v)| denotes
the degree of v. A graph G is connected if for every two vertices v and v, G contains a path
whose end-vertices are v and v. For a positive integer k, G is k-connected if |V (G)| > k and
G — S is connected for every S C V(G) of size at most k—1. A connected component (or simply a
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component) is an inclusion maximal induced connected subgraph of G. For two distinct vertices
u and v of a graph G, a set S C V(G) is a (u,v)-separator if G — S has no (u, v)-path.

A rooted tree is a tree T with a selected node (we use the term “node” instead of “vertex”
for such a tree) r called a root. The selection of r defines the standard parent—child relation on
V(T). Nodes without children are called leaves and we use L(T) to denote the set of leaves of
T. The depth depth(v) of a node v is the distance between r and v, and the depth (or height)
depth(T') of T' is the maximum depth of a node. The nodes of the (r,v)-path are called ancestors
of v. We use Ar(v) to denote the set of ancestors of v in T'. Note that v is its own ancestor; we
say that an ancestor is proper if it is distinct from v. Two nodes v and v of T" are comparable if
either v is an ancestor of u or u is an ancestor of v. Otherwise, u and v are incomparable. A node
w of T' is the lowest common ancestor of nodes v and v if w is the ancestor of maximum depth of
both u and v. Note that the lowest common ancestor is unique and if » and v are incomparable
then the lowest common ancestor is distinct from u and v. A node v is a descendant of u if u if
u is an ancestor of v. By Dr(u) we denote the set of descendants of v in 7. As with ancestors,
a node is its own descendant and we say that a descendant v of u is proper if u # v. For a node
v, the subtree induced by the descendants of v is the subtree rooted in v.

Formulas. In this paper we deal with first-order and monadic second-order logic formulas on
graphs.

The syntax of the first-order logic (FOL) formulas on graphs includes the logical connectives
V, A, -, variables for vertices, the quantifiers V, 3 that are applied to these variables, the
predicate u ~ v, where v and v are vertex variables and the interpretation is that v and v are
adjacent, and the equality of variables representing vertices. It also convenient to assume that
we have the logical connectives — and <». An FOL formula ¢ is in prenezx normal form if it is
written as ¢ = Qyz1Q2z2 - - - Quzyx where each Q; € {V,3} is a quantifier, x; is a variable, and
X is a quantifier-free part that depends on the variables x1,...,x;. Then Qix1Qax2 - - - Qrxy is
referred as the prefiz of . From now on, when we write “FOL formula”, we mean an FOL
formula on graphs that is in prenex normal form. Also we assume that a formula has no free,
that is, non-quantified variables unless we explicitly say that free variables are permitted. For
an FOL formula ¢ and a graph G, we write G |= ¢ to denote that ¢ evaluates to true on G.

We use the arithmetic hierarchy (also known as Kleene-Mostowski hierarchy) for the clas-
sification of formulas in the first-order arithmetic language (see, e.g., [28]). For this, we define
prefix classes according to alternations of quantifiers, that is, switchings from V to 3 or vice
versa in the prefix string of the formula. Here we allow a formula to have free variables. Let
3o = IIp be the classes of FOL-formulas without quantifiers. For a positive integer ¢, the class
3 contains formulas that may be written in the form

p = dridxy - - - dxs Y,

where 1 is a II;_;-formula, s is some integer, and x1, ..., x, are free variables of ¢). Respectively,
11, consists of formulas

o =V Vry- Vs 9,

where 1 is a ¥y_i-formula and 1, ...,z are free variables of 1. Note that for ¢/ > ¢, ¥, UII, C
Yo N1y, that is, every ¥y or I, formula is both a ¥y and ¥p-formula.

For technical reasons, we extend FOL formulas on graphs to structures of a special type.
We say that a pair (G, v), where v = (vy,...,v,) is an r-tuple of vertices of G, is an r-structure.
Let ¢ be an FOL formula without free variables and let x = (xi,...,z,) be an r-tuple of
distinct variables of . We denote by ¢[x] the formula obtained from ¢ by the deletion of the
quantification over z1,...,x,, that is, these variables become the free variables of ¢[x]|. For an
r-structure (G,v) with v = (vy,...,v,) and ¢[x], we write (G,Vv) |= ¢[x] to denote that ¢[x]

7



evaluates to true on G if x; is assigned v; for i € {1,...,r}. If r = 0, that is, v and x are empty,
then (G, v) = ¢[x] is equivalent to G = .

As a subroutine in our algorithms, we have to evaluate FOL formulas on graph, that is, solve
the MODEL CHECKING problem. Let ¢ be a FOL formula. The task of MODEL CHECKING is,
given a graph G, decide whether G = ¢. It was shown by Vardi [29] that MODEL CHECKING
is PSPACE-complete. The problem is also hard from the parameterized complexity viewpoint
when parameterized by the size of the formula. It was proved by Frick and Grohe in [17] that the
problem is AW([x]-complete for this parametrization (see, e.g., the book [14] for the definition
of the class). Moreover, it can be noted that the problem is already W([1]-hard for formulas
having only existential quantifiers, that is, for ¢ € 3;, by observing that the existence of an
independent set of size k can be easily expressed by such a formula and INDEPENDENT SET is
well-known to be W[1]-complete [13]. This implies that we cannot expect an FPT algorithm for
the problem. However, it is easy to see that MODEL CHECKING is in XP when parameterized
by the number of variables, because the problem for a formula with s variables can be solved in
O(n?®) time by the exhaustive search (the currently best algorithm is given by Williams in [30]).
This explains the exponential dependence of the polynomials in running times in our algorithm
on the number of variables. For referencing, we state the following observation.

Observation 1. MODEL CHECKING for an FOL formula ¢ can be solved in nOUeD time.

In monadic second-oder logic (MSOL), we additionally can quantify over sets of vertices
and edges. Formally, we can use variables for sets of vertices and edges and have the predicate
x € X, where z is a vertex (an edge, respectively) variable and X a vertex set (an edge set,
respectively) variable, denoting that = is an element of X. As with FOL formulas, we write
G = ¢ to denote that an MSOL formula ¢ evaluates true on G. We refer to the book of
Courcelle and Engelfriet [9] for the details of MSOL on graphs.

3 Properties of elimination distance

In this section we derive the properties of the elimination distances , edZ’™ and edf°? that will
be used in the proof of the main theorem. We also define ed?aepth.

Observation 2. For every FOL formula ¢ and every graph G, ed%°?(G) < ed2™(G) + 1.

Proof. The proof is by induction on the value of ed;>™(G).

Suppose that ed?""(G) = 0 for a graph G. If G is connected, then G = ¢ and ed%°P(G) = 0.
Hence, the inequality holds. If G is disconnected, then C' |= ¢ for every component C of
G. If G | o, then ed¥P(G) = 0. If G = ¢, then ed°P(G) = max{l, max{ed}°?(C) |
C'is a component of G}} = 1. In both cases, ed)°?(G) < ed2"(G) + 1.

Assume that ed2""(G) > 0 and edP°P(G’) < ed?™(G’) + 1 for all G" with edZ>™(G') <
ed>™(G). The claim is trivial if ed}°?(G) = 0. Let ed%°?(G) > 0. We have two cases.

Case 1. G is connected. By definition, there is u € V(G) such that ed2""(G) = 1 +
edZ""(G — u). Because ed°?(G) > 0,

ed!;rop(G) =14+ yénvi(nG) edgmp(G —v) <1+ engp(G —u).

Then by induction,

ed?P(G) < 1+ ed?P(G — u) < 2+ edP™(G — u) = 1 + edP™(G).



Case 2. (G is disconnected. Let Cq,...,Cs be the components of G. By definition,
ed?™(G) = maxi<i<sedy™(C;). In particular, we have that ed>™(C;) < edZ™(G) for ev-
ery i € {1,...,s}. Notice that by the already proved claim for connected graphs in Case 1,
ed?°P(C;) < edX™(C;) + 1 for every i € {1,...,s}. Because ed;’™(G) > 0, G = ¢. Then

prop _ prop (/. conn .
ed? (G) =max{1, 11;1?%5 ed? (Ci)} < max{l, g?é(edw (Ci)+ 1)}

= max ed©™(Cy) + 1 = ed¥™(G) + 1

as required. This completes the proof. O

The example of ¢ = VaVy x = y and an edgeless graph G with at least two vertices shows
that the inequality in Observation 2 is tight. However, ed’™(G) and ed°?(G) can be far
apart. Consider ¢ = Judv —(u = v) A =(u ~ v) that defines the property that a graph has
two nonadjacent vertices. Let G be the disjoint union of the complete n-vertex graph K, and
an isolated vertex. Then G = ¢ and, therefore, ed?°?(G) = 0. From the other side, G is
disconnected and it is easy to see that ed™"(K;) = n. This means that ed""(G) = n and
ed2""(G) — edZ°P(G) = n, that is, the difference can be arbitrary large.

For algorithmic purposes, it is convenient for us to define ed’™"(G) and ed%°P(G) via dele-
tions of sets of vertices of G with a special structure. Similar approach was recently exploited by
Agrawal et al. [1] but we do it in a different way, because we consider two variants of eliminations
distances.

Let G be a graph and let d > 0 be an integer. We say that a set of vertices X C V(G)
is an elimination set of depth at most d if there is a rooted tree T' of depth at most d and a
bijective mapping a:: V(T') — X such that for every two distinct incomparable nodes x and y
of T, a(Ar(v)) is an (a(z), a(y))-separator in G, where v is the lowest common ancestor of x
and y (recall that Ar(v) denotes the set of ancestors of v). We also say that the pair (T, «) is
a representation of X (or represents X). The depth of X C V(G), denoted depth(X), is the
minimum d such that X is an elimination set of depth at most d. We assume that the empty
set is an elimination set of depth —1.

We call a representation (7', o) of an elimination set X C V(G) nice if for every nonleaf node
v € V(T) and its child z, the vertices of a(Dp(z)) are in the same component of G — Ap(v).
The following property is useful for us.

Lemma 1. Let G be a connected graph and let d > 0 be an integer. Then a nonempty X C V(G)
is an elimination set of depth at most d if and only if X has a nice representation (T, «) with
depth(T") < d. Moreover, if (T, «) is a representation of X, then there is a nice representation
(T, «) of X with V(T") = V(T) such that (i) a(L(T)) C a(L(T")) and (ii) for each v € X,
depthy (o' (v)) > depthy (a™(v)).

Proof. Clearly, if X C V(G) has a nice representation (7', «) with depth(7') < d, then X is an
elimination set of depth at most d. For the opposite direction, it is sufficient to show the second
claim. Let (T, ) is a representation of X and depth(T') < d. We show the existence of (7", )
satisfying (i) and (ii) by induction on d.

The claim is trivial if | X| = 1 as 7" = T in this case. Assume that |X| > 2 and d > 1. Denote
by r the root of T' and let u = a(r). Consider the components C1,...,Cs of G — u containing
at least one vertex of X. For every i € {1,...,s}, let X; = V(C;) N X and U; = o }(X;).
For every i € {1,...,s}, we construct the tree 7; with the set of vertices U; U {r} as follows.
For every x € U; such that « # r, we find a proper ancestor y € U; with respect to T of
maximum depth and make y the parent of x, and if x has no ancestors in U;, we make r the
parent of x. Because the choice of the parent is unique, T; has no cycles, and because we
assign the parent to every node distinct from 7, we conclude that T} is a tree. Denote by T'
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the union of T1,...,Ts and set r be its root. Because every node of T distinct from r got a
parent from the set of its proper ancestors in T, (i) a(L(T)) C a(L(T)) and (ii) for each v € X,
depthy(a™!(v)) > depthz (™! (v)).

We prove that (T, «) represents X. Consider incomparable nodes x and y of T and denote
by v their lowest common ancestor. We have to show that a(Az(v)) is an (a(x), a(y))-separator
in G. This is trivial if a(z) and a(y) are in distinct components of G —u. Assume that o(z) and
a(y) are in the same component C; for some i € {1,...,s}, that is, z,y € U;. Note that by the
construction of T, z and y are incomparable in T'. Let v’ be their lowest common ancestor in 7.
Clearly, v is an ancestor of v in 7. By the construction of T, Ar(v)NV(C;) = Ap(v') NV (Cy).
Because Ar(v) separates a(x) and a(y), we have that Ar(v)NV(C;) is an (a(x), a(y))-separator.
Therefore, a(Af(v)) is also an (a(z), a(y))-separator. This proves that (T, ) represents X.

Consider 7 € {1,...,s}. Observe that r has a unique child in U; in T. Otherwise, if z and y
are distinct children of r, we have that x and y have no ancestors in U; with respect to T". Let
v be the lowest common ancestor of x and y in T'. Note that v # z,y and a(Ar(v)) does not
separate a(x) and a(y) contradicting that (T, «) represents X. Hence, r has the unique child r;
in U;. Let T; be the subtree of T rooted in ;. We set a;(x) = a(z) for z € U;. Because (T, )
represents X, it is straightforward to verify that (TZ, ;) represents X in the graph C;. Because
depth(j’i) < d — 1, we can apply the inductive assumption. We obtain that there is a nice
representation (77, a;) of X; in C; with V(T!) = V(T;) such that (i) a(L(T})) € a(L(T})) and
(ii) for each v € X;, depthy, (o (v) > depthy, (a; ' (v)). Notice that by the second condition,
T} is rooted in r;.

We construct the trees T for all i € {1,...,s} and then construct 7" from their union by
making rq,...,7s the children of r. Clearly, depth(7”) < d and (7", ) is a nice representation
of X satisfying conditions (i) and (ii) of the lemma. O

It is also useful to characterize the depths of an elimination set in a disconnected graph.

Lemma 2. Let G be a graph with components C1,...,Cs and let X C V(G) such that X # (.
Then
depth(X) = lrgig max{depth(X;), max{depth(X;) |1 <j <s, j#i}+1}, (1)
<i<s

where X; = X NV(C;) forie{1,...,s}.

Proof. Recall that depth()) = —1 by definition. This allows us to assume without loss of
generality that X; # () for all i € {1,...,s}. Otherwise, we can delete each component C; such
that X; = () without violating the value of depth(X) and the right part of (1).

To show that

depth(X) < 11212 max{depth(X;), max{depth(X;) |1 <j <s, j#i}+1},

assume that the minimum value of the right part of (1) is achieved for ¢ € {1,...,s}. For
every j € {1,...,s}, let (T}, ;) be a representation of X; in C}, where Tj is rooted in 7; and
depth(T;) = depth(X;). We construct the tree T with the root r = r; from T7, ..., Ty by making
each r; for j € {1,...,s}\ {¢} a child of 7. Clearly, depth(7") = max{depth(T;), max{depth(7}) |
1 <j<s,j#i}+ 1} = max{depth(X;), max{depth(X;) | 1 < j <'s, j # i} +1}. We
define a: V(T') — X by setting a(z) = a;(z) whenever z € X; for some ¢ € {1,...,s}. It is
straightforward to verify that (7, ) represents X.
To show the opposite inequality

depth(X) > 11312 max{depth(X;), max{depth(X;) |1 <j <s, j#i} + 1},
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let (T, «) be a representation of X, where T" is rooted in r and depth(7') = depth(X). By
symmetry, we assume without loss of generality that r € V(C4). For every j € {1,...,s}, let
U, = Oz_l(Xj).

The rest of the proof is done similarly to the proof of Lemma 1. For every j € {1,...,s},
we construct the tree T; with the set of vertices U; U {r} as follows. For every z € U; such that
x # r, we find a proper ancestor y € U; of x with respect to 7' of maximum depth and make
y the parent of z, and if x has no ancestors in U;, we make r the parent of x. Because the
choice of the parent is unique, 7} has no cycles, and because we assign the parent to every node
distinct from 7, we conclude that 7} is a tree. Denote by 7" the union of T, ..., T and set r
be the root. Because every node of T distinct from r got a parent from the set of its proper
ancestors in 7', depth(7”) < depth(T") = depth(X).

We claim that (77, ) represents X. To show this, let 2 and y be incomparable nodes of T”
and let v be their lowest common ancestor. We show that a(A7(v)) is an («(x), a(y))-separator
in G. This is trivial if a(x) and a(y) are in distinct components of G. Assume that «(z) and
a(y) are in the same component C; for some j € {1,...,s}, that is, z,y € U;. Notice that
by the construction of 7", Ag»(v) N C; = Ap(v') N Cj, where v/ is the lowest common ancestor
of z and y in T. Because Ar(v’) separates a(x) and a(y), we have that Ar(v') N Cj is an
(a(z), a(y))-separator. Therefore, a(A/(v)) is an (a(z), a(y))-separator as well, as required.

Let j € {2,...,s}. Observe that r has a unique child in U; in 7. Otherwise, if z and y
are distinct children of r, we have that x and y have no ancestors in U;. Let v be the lowest
common ancestor of  and y in T'. Note that v # z,y and a(Ar(v)) does not separate a(z) and
a(y) contradicting that (T, «) represents X. Hence, r has the unique child r; in U;. Let T} be
the subtree of 7" rooted in r;. Define a;(z) = a(z) for z € U;. Since (1", ) represents X, we
obtain that (7}, ;) represents X;. Then depth(X;) < depth(7}) < depth(7") —1 = depth(X)—1.

It is straightforward to verify that (71, ;) represents X, where a;(z) = a(x) for € Uj.
This means that depth(X;) < depth(77) < depth(X). Because depth(X;) + 1 < depth(X) for
jef{2,...,s},

depth(X) > max{depth(X;), depth(X2) + 1,...,depth(X;) + 1}
> 11312 max{depth(X;), max{depth(X;) |1 <j <s, j#i}+1}.

This completes the proof. O

conn

o "(G) for connected graphs and we do it

It is sufficient for our purposes to characterize ed
in the following lemma.

Lemma 3. Let ¢ be an FOL formula and let G be a connected graph. Let also d > 0 be an
integer. Then ed’""(G) < d if and only if G contains an elimination set X of depth at most
d — 1 such that C |= ¢ for every component C of G — X.

Proof. First, we show that if ed?""(G) < d, then G has an elimination set X of depth at most
d — 1 such that C | ¢ for every component C of G — X. The proof is by induction on d. The
claim is trivial if edZ>""(G) = 0 as depth(f)) = —1 by the definition. Let d > ed>™(G) > 1.
Because G' is connected and ed’™(G) > 0, there is v € V(G) such that ed™(G) =
1+ edZ™(G — v). We construct a node r of 1" and set it be the root. If C' |= ¢ for every
component C of G — v, then the construction of X and T is completed and we define a(r) = v.
Otherwise, let C1,...,Cs be the components of G — v such that C; £ ¢ for i € {1,...,s}.
Clearly, ed2?""(C;) < d—1for i € {1,...,s}. Let i € {1,...,s}. By induction, there is an
elimination set X; C V(C;) of depth at most d — 2 such that H = ¢ for every component H of
C; — X;. Then there is a corresponding representation (7, «;) of X; in C;. Let r; be the root
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of T;. We define X = {v} UJ;_; X;, and construct T from T1,...,Ts by making r1,...,rs the
children of r. Finally, we define

v, ifex=mr
a(r) = .
ai(z), ifx e V(C;) for some i € {1,...,s}.

It is straightforward to verify that X is an elimination set of depth at most d — 1 with respect
to (T, «).

For the opposite direction, we assume that X is an elimination set of minimum depth such
that C' = ¢ for every component C' of G — X. We assume that the depth of X is d — 1 and
prove that ed;>™" G < d. The proof is by induction on d.

The claim is trivial if d = 0, that is, if X = (. Suppose that d = 1, that is, the depth of an
elimination set X is zero and, therefore, X = {u} for some u € V(G). We have that C' = ¢
for every component C' of G'— u. This means that ed;’™(C') = 0 for every component C' and,
therefore, ed;>™" (G —u) = 0. Then because ed""(G) > 0, ed2""(G) = 1 +min,cy (g edy" (G —
v) =1+edZX"(G-u)=1<d.

Suppose that d > 2 and the claim holds for the lesser values of d. Because G is connected, by
Lemma 1, there is a nice represenation (7, «) of X with depth(T") = d—1. Let r be the root of T
and u = a(r). Because ed™"(G) > 0, ed2""(G) = 1+min,cy(g) edy ™" (G—v) < 1+edX™(G—u)
and it is sufficient to show that ed>™"(G — u) < d — 1. For this, we have to prove that
edZ""(C) < d — 2 for every component C of G — u.

If V(C)NnX = 0 for a component C, then C is a component of G — X and we have that
C = ¢. Then ed™(C) = 0 < d — 2. Consider the components C1,...,Cs of G — u such
that V(C;) N X # (. Because (T,«) is nice, r has s children x1,...,zs such that for every
ie{l,...,s}, «(V(T;)) C V(C;), where T; is the subtree of T rooted in x;. Let ay: V(T;) —
V(C;) be the restriction of a on V(T;) for i € {1,...,s}. Consider i € {1,...,s}. We have that
(T}, o) is a representation of X; = X N V(C;). Notice that for each component C of C; — X,
C = ¢. Clearly, depth(T;) < depth(7"). This implies that we can use the inductive assumption
and conclude that edz>™"(C;) < d — 1. Therefore, ed2™"(G —u) < d — 1 and this concludes the
proof. ]

To characterize ed%°?(G), we need additional definitions.

Let G be a connected graph and let X C V(G) be an elimination set represented by (7', «).
We say that a node z € V(T) is an anchor of a component C of G — X if = is the node of
maximum depth in 7" such that a(x) € Ng(V(C)). We also say that C is anchored in x. Notice
that the definition of an elimination set immediately implies the following property.

Observation 3. Let G be a connected graph and let X C V(G) be an elimination set represented
by (T, ). Then for every component C of G—X, Ng(V(C)) C a(Ar(x)), where x is an anchor
of C.

In particular, Observation 3 implies that an anchor of each component of G — X is unique.
For a node x € V(T'), we denote by P, the set of components of G — X anchored in z, and G,
denotes the subgraph of GG induced by the vertices of the graphs of P,, that is, G, is the union
of the components of G — X anchored in z. Clearly, P, and G, may be empty. Note that the
anchors of the components of G — X depend on the choice of a representation. Therefore, we
use the above notation only when (T, «) is fixed and clear from the context.

Lemma 4. Let ¢ be an FOL formula and let G' be a connected graph with ed%°?(G) > 0. Let
also d be a positive integer. Then ed%°P(G) < d if and only if G contains an elimination set X
of depth at most d — 1 with a representation (T, ) such that the following is fulfilled:
(i) for every nonleaf node x € V(T), C k= ¢ for every C € Py,
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(ii) for every leaf x of T with depthy(x) < d — 2, either G, = ¢ or C |= ¢ for every C € Py,
(iii) for every leaf x of T with depthy(z) =d—1, Gy |E .

Proof. The lemma is proved similarly Lemma 3. We begin with showing that if ed°P(G) < d,
then G has an elimination set X of depth at most d — 1 with a representation (7, «a) such
that conditions (i)—(iii) are fulfilled. For this, we inductively construct X and (7T, «a) with
depth(7T") < d — 1 using the definition of ed°?(G).

Since G is connected and ed°"(G) > 0, there is v € V(G) such that ed°P(G) = 1 +
ed>™ (G —v). We construct a node r of T and set it be the root. If either G —v = p or C' |= ¢
for every component C' of G — v, then the construction of X and 7T is completed and we define
a(r) = v. Note that ed°"(G) = 1 in the first case and ed%°?(G) = 2 in the second. This
implies that (i)—(iii) are fulfilled. Assume from now that this is not the case.

Denote by C1,...,Cs the components of G — v such that C; & ¢ for i € {1,...,s}. By
definition, ed%°P(C;) < d — 1 for i € {1,...,s}. Notice that for each component C' of G — v
distinct from C,...,Cs, C' = ¢. Then we can assume inductively that for every ¢ € {1,...,s},
there is an elimination set X; C V/(C;) of depth at most d — 2 with respect to C; with a
representation (T;, ;) such that conditions (i)—(iii) are fulfilled. Let r; be the root of T; for
i€ {l,...,s}. We define X = {v} UlJ;_; X, and construct T from T1,...,T; by making
r1,...,7s the children of r. Then we set

a(x):{v’ ifx=r,

a;(z), ifx e V(C;) for some i € {1,...,s}.

Using the inductive assumptions that (i)—(iii) are fulfilled for X; with (7}, «;) for every ¢ €
{1,...,s} and the observation that P, consists of the components of G — v distinct from
Cy,...,Cs, we obtain that (i)—(iii) are fulfilled for X and the representation (7', c).

To show the implication in the opposite direction, assume that X is an elimination set of
depth at most d — 1 with a representation (7, «) satisfying (i)—(iii). By the second claim of
Lemma 1, we can assume that 7' is nice. We show that ed%°P(G) < d by the induction on
depth(T).

Suppose that depth(T") = 0, that is, the depth of an elimination set X is zero and, therefore,
X = {u} for some u € V(G). If d = 1, then G, = ¢ and edYP(G) = 1. If d > 2, then
either G, = ¢ or C |= ¢ for every component C' of G — u. In both cases, ed°?(G) < 2 by the
definition of ed?°?(G).

Assume that depth(7) > 1. In particular, d > 2. Since G is connected and ed°?(G) > 0,
ed?P(G) = 1 + min,ey (g edP(G —v) < 1+ ed%°P(G — u) and it is sufficient to show that
ed?P(G —u) <d—1. If G —u = p, then ed)°P(G) = 1 < d. Assume from now that G —u = ¢.
Then, by the definition of ed;>™"(G), it is sufficient to show that ed°?(C) < d — 2 for every
component C of G — u.

If V(C)N X = 0 for a component C of G — u, then C' € P, and C = ¢. Then ed%°P(C) =
0 < d — 2. Consider the components C,...,Cs of G — u such that V(C;) N X # (. Because
(T, @) is nice, r has s children z1, ...,z such that for every i € {1,...,s}, a(V(T;)) C V(C}),
where T; is the subtree of T rooted in z;. Let «;: V(T;) — V(C;) be the restriction of a on
V(T;) for i € {1,...,s}. Consider i € {1,...,s}. We have that (7}, ;) is a representation of
Xi = X NV(C;) satisfying (i)-(iii). Notice that depth(7;) < depth(7"). Then by the inductive
assumption ed°?(C;) < d—1. Therefore, ed%°?(G'—u) < d—1 and this concludes the proof. [J

Lemmas 3 and 4 demonstrate that ed>""(G) and ed%°P(G), respectively, can be defined via
the deletion of an elimination set. We also use these results in order to define a third variant of
the elimination distance.
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Definition 2 (Elimination distance edgepth). Let ¢ be a FOL formula. For a graph G, ediepth(G)
is the minimum d such that G has an elimination set X C V(G) of depth d — 1 such that
G-XFEep.

Notice that if the trees in the considered representations of elimination sets are constrained
to be paths, then we obtain the classical deletion distance, that is, the minimum size of a set
X C V(G) such that G — X = .

Given a FOL formula ¢, we define the following three variants of the ELIMINATION DISTANCE
problems for x € {conn, prop, depth}:

ELIMINATION DISTANCE—(%) TO ¢ parameterized by k

Input: A graph G and a nonnegative integer k.
Task: Decide whether ed?(G) < k.

These problems may be seen as generalizations of DELETION TO ¢ problem for a formula ¢
that asks, given a graph G and a nonnegative integer k, whether there is a set S of size at most
k such that G — S |= ¢. In particular, Observation 3 implies the following.

Observation 4. DELETION TO ¢ and ELIMINATION DISTANCE—(*) TO ¢ for = € {conn, prop, depth}
are equivalent on instances (G, k), where G is a (k + 1)-connected graph.

4 An FPT algorithm for Y;-formulas

In this section, we show the main algorithmic result, Theorem 1, that ELIMINATION DISTANCE—
(x) TO ¢ is FPT for formulas from 3. Now we state this theorem formally.

Theorem 1. For every FOL formula ¢ € X3, ELIMINATION DISTANCE—(%) TO ¢ can be solved
in f(k)-nCU#D) time for each x € {conn, prop, depth}.

We prove the theorem using the recursive understanding technique introduced by Chitnis
et al. [8]. It was recently demonstrated by Agrawal et al. [1] that this approach is useful for
elimination problems. As we are interested in the quality result, we apply the meta theorem of
Lokshtanov et al. [24] (see the arxiv version [25] for more details). This simplifies the arguments,
but makes the proof nonconstructive. Moreover, we only show the existence of nonuniform FPT
algorithms. However, it is possible to show the theorem in constructive way by giving uniform
algorithm by either using the original approach of Chitnis et al. [8] or the dynamic programming
scheme proposed by Cygan et al. [11].

The remaining part of the section contains the proof of Theorem 1. In Subsection 4.1, we
introduce the notation and provide auxiliary results needed to apply the recursive understanding
technique, and in Subsection 4.2, we prove that the ELIMINATION DISTANCE—(%) TO ¢ is FPT
for the key case when the input graphs cannot be partitioned in big parts by separators of
bounded size.

4.1 Recursive understanding

Let G be a graph. A pair (A, B), where A, B C V(G) and AUB = V(G), is called a separtion of
G if there is no edge uv with u € A\ B and v € B\ A. In other words, AN B is a (u, v)-separator
for every u € A\ B and v € B\ A. The order of (A, B) is |AN Bj.

Let p, g be positive integers. A graph G is said to be (p, q)-unbreakable if for every separation
(A, B) of G of order at most g, either |A\ B| < por |B\ A| < p, that is, G has no separator of
size at most ¢ that partitions the graph into two parts of size at least p + 1 each.
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We state the restricted variant of the meta theorem of Lokshtanov et al. [24]. Lokshtanov
et al. proved the theorem for structures and counting monadic second-order logic. For us, it is
sufficient to state the theorem for graphs and MSOL.

Theorem 3 ([24, Theorem 1] ). Let 1 be a MSOL formula. For all ¢ € N, there exists p € N
such that if there exists an algorithm that solves MODEL CHECKING for v on (p, q)-unbreakable
graphs in O(n?) time for some d > 4, then MODEL CHECKING for 1) can be solved on general
graphs in O(n?) time.

It is crucial that the considered problems may be expressed in MSOL.

Lemma 5. For every FOL formula ¢, every = € {conn, prop,depth}, and every integer k > 0,
there is a MSOL formula vy such that for each graph G, G |= ¢y if and only if ed,(G) < k.

Proof. We use capital letter to write vertex set variables and small letters are used for vertex
variables. To simplify notation, we introduce some auxiliary formulas. Notice that we can
express that Z = X NY in MSOL and we write X NY for such an expression. Similarly, we
write X —Y to express that Z = X \ Y, and we write X —y for X \ {y}. Also X is used for the
complement of X. It is well-known that the connectivity property can be expressed in MSOL,
because of the following observation: a set X C V(@) induces a connected subgraph of G if
and only if for every partition (U, W) of X, there is an edge uw € E(G) such that u € U and
w € W. Then we can observe that for every X C V(G), G[X] is a component of G if and only
if X induces a connected subgraph but for every v € V(G) \ X, G[X U {v}] is not a connected
graph. This allows us to use the MSOL formula comp(X) with a free variable X expressing
the property that X induces a component. Clearly, every FOL formula is a MSOL formula.
In particular, this means that we can construct the MSOL formula ¢(X) for a free variable X
expressing the property that the subgraph induced by X models ¢.

First, we show the lemma for x € {conn, prop} using the definitions. For this, we inductively
construct °"" and wpmp

It is easy to see that for k = 0, ¥§°"" = VX comp(X) — p(X).

Now let k > 1 and assume that ¢;°"' is constructed. Then we can define the MSOL formula
PP (X)) for a free variable X expressing the property that the subgraph induced by X models
Pi°"'. Then it is straightforward to verify that

P = ORIV (VX comp(X) — (3x(z € X) AP (X — 1))
Next, we construct 1, PoP for k > 0. It is straightforward to see that ¢f ©° = ¢ and
PP =P v (VX comp(X) — (¥§*P(X) V (T (z € X) AP (X —2)))).
Then for k > 2,
poP =yt v (VX comp(X) — (Fz (z € X) Ay T (X — x))),

where ¢} 7 (X) for a free variable X expresses the property that the subgraph induced by X
models wpmp

Finally, we prove the claim for ¢, Here, the proof is more complicated and uses Lem-
mas 1 and 2. We express the property that X is an elimination set of set at most d.

By Lemma 1, if G is a connected graph and d > 0, then depth(X) < d if and only if X
has a nice representation of depth at most d. For a free variable X and an integer d > —1, we
define the formula £z(X) expressing that X has a nice representation (7, «) of depth at most
d. For d = —1, £(X) = (X =0), and for d = 0, £4(X) = (|]X| = 1) by the definition (clearly,
the property |X| = 1 can be expressed in MSOL). Assume that d > 1 and §{;_1(X) is already
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constructed. Additionally, we assume that we are given the formula £z_1(X,Y’) which expresses
the property that X has a nice representation of depth at most d —1 in the subgraph induced by
Y. For this, we observe that £;_1(X,Y) can be constructed from £z_1(X) in a straightforward
way. Also we use comp(Y, ) to denote the formula expressing that Y induces a component of
the subgraph obtained by the deletion of x. Then

Ea(X) = &1 (X)V Tz (z € X) A (VY (comp(Y,z) A (X NY #0)) = &1 (X NY,Y))).

To see this, it is sufficient to observe that 3z (x € X) A (VY (comp(Y,z) A (X NY # 0)) —
4-1(X NY)Y)) expresses that G has a vertex x € X such that for the root r of T, z = a(r),
and in each component C of G — x containing some vertices of X, there is a subtree of T' of
depth at most d — 1 that can be used to represent V(C)N X in C.

Now we construct the formula éd which expresses that X is an elimination set of depth at
most d using Lemma 2. Tt is easy to see that €_1(X) = (X = 0) and £4(X) = (|X| = 1). Assume
that d > 1, gd,l(X ) is already constructed, and we have a formula £;_1 (X, Y') expressing that
the depth of X is at most d — 1 in the subgraph induced by Y. Then by Lemma 2,

€a(X) =£4-1(X)
V(Y comp(Y) A Eg(X NY,Y) A (VZ (comp(Z)A(Z #Y)) = €4-1(X N Z, Z))).

Using &g for d > —1, we can write wgepth for k > 0 as follows
Ye®™ = 3X &1 A p(X).
This completes the proof. ]

Theorem 3 and Lemma 5 allows us to reduce the proof of Theorem 1 to solving ELIMINATION
DISTANCE—(x) TO ¢ for x € {conn, prop, depth} on unbreakable graphs. For this, we show that
any elimination set in an unbreakable graph has bounded size.

Lemma 6. Let G be a (p,q)-unbreakable graph for positive integers p and q with |V(G)| >
(Bp+2q)(p+1). Let also X C V(G) be an elimination set of depth at most d < g — 1. Then
|X| < p+q. Furthermore, there is a unique component C' of G — X with at least p + 1 vertices
and [V(G) \ Ne[V(C)]| < p.

Proof. Let (T, «) be a representation of X with depth(7") < d. Denote by r the root of T.

First, we show the weaker bound |X| < 3p + 2¢.

For the sake of contradiction, assume that | X| > 3p + 2g + 1. Because T is a tree, it has
a node z such that every component of T — z has at most 3|V (7| nodes. Let S = Ap(z) and
S" = a(Ar(z)). Since depth(T') < d < g—1, |S| = |5’| < ¢. By the definition of a representation,
for every two distinct components C and C’ of T— S, and every x € o(V(C)) and y € a(V (C")),
S is an (x,y)-separator in G.

We now claim that every component C' of T'— S has at most p nodes. Suppose to the contrary
that there is a component C of T — S with at least p + 1 nodes. Consider the components
C1,...,Cs of G — S’ such that V(C;) Na(V(C)) # 0. Define A = SUJ;_, V(C;). Note that
JA\ S| > |[V(C)| >p+1. Let Y = V(T)\ (SUV(C)). By the choice of z, |[V(C)| < 3|V(T)].
Then [Y| > |V(T)|—q > (3p+q+ 1) —qg=3p+3 > p+1. Observe that for every node
yeY, aly) ¢ V(C;) fori € {1,...,s}. Then a(Y) C V(G)\ A and |[V(G) \ A] > p+ 1. For
B = (V(G)\ A)US’, we have that (A, B) is a separation of G with S’ = AN B. In particular,
(A, B) is a separation of order at most q. However, |[A\ B| > p+1 and |B\ A|. This contradicts
the unbreakability condition and the claim follows.

Denote by C1, ..., Cs the components of T'— S. Consider a set of indices I C {1,..., s} such
that [U;c; V(Ci)| = p + 1 and for every proper I' C I, |, V(Ci)| < p. Such a set I exists,
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because ||J;_; V(Ci)| > |V(T)| — ¢ > 3p+ ¢+ 1. Since each component has at most p nodes, we
have that [{J;c; V(Ci)| < 2p. Then, because [V(T)\ S| = 3p+1, [Ujeqr,. sy V()| 2 p+ 1.

Consider the components C1, ..., C} of G—S’ that contain at least one vertex of a(V(C;)) for
some i € I. Define A = S'U{J!_, V(CY). Note that |A\S'| > p+1, because | ,c; V(C;)| > p+1.
Let B= (V(G)\ A)US’. Since Uieqr,..shr @(V(Ci)) € B\ S, [B\ S| = p+ 1. Then we obtain
that (A, B) is a separation of G of order at most ¢ with [A\ B| >p+1and |[B\ Al >p+1;a
contradiction. This concludes the proof of our claim that | X| < 3p + 2q.

Now we improve the obtained upper bound. Because |X| < 3p + 2¢ and |V(G)| > (3p +
2q)(p+1), |[V(G)\X| > (3p+2q)p. Observe that for the set of leaves L(T"), we have that |L(T)| <
3p + 2q. By Observation 3, it holds that for every component C' of G — X, Ng(V(C)) C Ap(z)
for some z € L(T). By the pigeon hole principle, we conclude that there is x € L(T") such
that for the components C1,...,Cs of G — X with Ng(V(C;)) C Ap(zx) for i € {1,...,s}, it
holds that ||J;_,; V(C;)] > p+ 1. Let S = a(Ar(z)). Note that |[S| < d+ 1 < ¢q. Consider
A=SUl,V(C;) and B = (V(G) \ A) US. We obtain that (A4, B) is a separation of G of
order at most ¢ and |A\ B| > p+ 1. Since G is (p, ¢)-unbreakable, we have that |B| < p+ q.
Notice that X C B. Thus, |X| < p+q.

To show the second claim, note that |L(T)| > p + ¢. In the same way as above, there is
x € L(T) such that for the components Ci,...,Cs of G — X with Ng(V(C;)) € Ar(x) for
ie{l,...,s}, it holds that || J;_, V(C;)| > p+1. We show that thereis i € {1,...,s} such that
|[V(C;)| > p+1. For the sake of contradiction, assume that [V (C;)| < p+1foralli e {1,...,s}.
Then there is a set of indices I C {1,...,s} such that ||J;c; V(C;)| > p+1 and for every proper
I' C I, |U;jep V(Cs)| < p. Because each component has at most p vertices, |J;c; V(Cs)| < 2p.
Consider A = SUJ;_, V(C;), where S = a(Ap(z)) and B = (V(G) \ A) US. Note that
|IB\ S| > |V(G)|—2p—q > p+1. Then (A, B) is a separation of G of order at most ¢ with
|A\B| > p+1 and |B\ A| > p+1; a contradiction with the condition that G is (p, g)-unbreakable.
This implies that there is a component C of G — X with |V(C)| > p + 1.

Because G is a (p, ¢)-unbreakable graph and |Ng(V (C))| < g, we have that |V (G)\Ng[V (C)]| <
p. To see it, it is sufficient to consider the separation (A, B) of G with A = Ng[V(C)] and
B =V(G)\V(C). Clearly, |B\ A| < p and, therefore, |V (G)\ Ng[V(C)]| < p. This also implies
the uniqueness of a component of G — S with at least p+ 1, because for every other component
C’, we have that V(C”) C B\ A. This concludes the proof. O

Using the notation in Lemma 6, we say that a component C of G — X with at least p + 1
vertices is big and the other components are small.

We can use backtracking to verify, given a X, whether depth(X) < d. For this we combine
Lemmas 1 and 2 with backtracking and obtain the following straightforward lemma.

Lemma 7. Given a graph G, a set of vertices X C V(G), and an integer d > —1, it can be
decided in | X|°@ . nM) time whether depth(X) < d.

We have to solve ELIMINATION DISTANCE—(*) TO ¢ for x € {conn,prop} on instances of

bounded size. It is straightforward to see that this also can be done by backtracking following
the definitions of ed”™" and edf°P.

Lemma 8. Let ¢ be a FOL formula. Then ELIMINATION DISTANCE—(%) TO ¢ can be solved
in nC*HeD time for « € {conn, prop}.

We also need the following technical lemma that will allow us to consider inclusion minimal
elimination sets.

Lemma 9. Let G be a connected graph and let X be a nonempty elimination set with a nice
representation (T, ). Let also C be a component of G — X anchored in z* € V(T). Suppose
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that S C Ng(V(C)) and C" is a component of G — S with V(C) C V(C'). Then there is an
elimination set X' C X with a nice representation (T',a’) such that V(T') C V(T) and the
following is fulfilled:

(a) S C X' and (Ng(V(C)\S)NX' =0,
(b) for every component H of G — X', either V(H) C V(C") or H is a component of G — X,
(¢c) for every node y € V(T"), depths (y) < depthp(y),

(d) if a component H of G — X' distinct from C' is anchored in a leaf z of T, then H in
anchored in z in T" and z is a leaf of T,

(e) if v* is a leaf of T and x* € S, then C' is anchored in x* in T'.

Proof. Let R = Ng(V(C)). The claim is trivial if S = (), because C' = G and we can take
X' = (). We assume that this is not the case. The proof is by induction on |R\ S|. The claim is
straightforward if R = S as we can take X’ = X and consider the same representation (7', «).
The crucial case is the case |[R\ S| = 1. Let u be the unique vertex of R\ S. We consider two
possibilities for u. Let v = a(r), where r is the root of T

Case 1. u=v. Let W = V(C’). Notice that a vertex w € V(G) is in W if and only if either
weV(C)orw¢ SUV(C) and G — S has a (u, w)-path. Define X’ = X \ W. Clearly, (a) holds
for this X’. Observe that for a component H of G — X, we have that V(H) C W if Ng(V(H))
contains a vertex of W and V(H)NW = () otherwise. In particular, this implies (b).

Next, we construct 7" and o/. We set V(T") = a~1(X’) and define o/ (z) = a(z) for every
x € V(T'). Because S # (), there is a descendant r’ of 7 of minimum depth such that «(r’) € S.
For every w € X’ distinct from «(r’), we consider # = a~!(w) and find a proper ancestor y of
x in T of maximum depth such that a(y) € X’. Then we define y be the parent of x.

We argue that 7" is a tree rooted in 7/. We have to show that for every w € X' distinct
from «a(r'), we have an ancestor y of + = a~!(w) in T such that a(y) € X’. For the sake
of contradiction, assume that there is w € X’ such that for every proper ancestors y of z =
a Yw) in T, a(y) ¢ X'. Clearly,  is not a descendant of ' in 7. In particular, »’ and
x are incomparable. Let z be the lowest proper ancestor of ' and y in T. We have that
a(Ap(z)) is an (a(r'),w)-separator of G and, moreover, S has no vertices in the component
G — a(Ar(z)) containing a(x). Since (7, «) is nice, this component has an (a(z),w)-path.
Because a(z) ¢ S, G — S has a (u, a(z))-path. We conclude that G — S has a (u,w)-path and
w ¢ X'; a contradiction. This proves that 7" is a tree rooted in r’.

We prove that (77, /) represents X’. Towards a contradiction, assume that this is not the
case, that is, there are distinct 2,y € V(T”) whose lowest common descendant z # x,y and o/ (x)
and o/ (y) are in the same component of G— A (z). By the definition of 7”7, z has a descendant 2’
such that 2’ # z,y is the lowest common ancestor of z and y in T'. Clearly, either 2z ¢ Ng(V (C))
ory ¢ Ng(V(C)). By symmetry, assume that y ¢ Ng(V(C)). Because (T, «) is a representation
of X, a(Ap(2')) is an (a(x), a(y))-separator. This means that every (o/(x),a(y))-path in G
contains a vertex of (a(z),a(y)). In particular, this implies that there is a vertex z” € Ap(2/)
such that G has an (a(z”),d/(y))-path P in G such that the internal vertices of the path are in
the component G — a(Ar(2')) containing o/(y). Because y ¢ Ng(V(C)), we have that P avoids
the vertices of S. Since 2z’ ¢ X', G — S has a (u,a(2"))-path P’. Concatenating P’ and P, we
obtain that G — S has a (u, a(y’))-path. However this contradicts that o/(y) € X’. This proves
that (17, ) represents X'.

By the construction of T, it is easy to see that T is nice, because T is nice. Also the
construction of 77 immediately implies (¢)—(e). This concludes the analysis of the first case.
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Case 2. u # v. We show the claim by induction on d = depth(7"). Notice that depth(7") > 1,
because X \ {v} # 0. Let C1,...,Cs be the components of G — v such that X; = X NV(C;) # 0
for i € {1,...,s}. Because T is nice, T has children r1,...,rs such that for every i € {1,...,s},
the subtree T; of T rooted in r; together with o;(z) = a(z) for x € V(T;) represent X; in C;. By
Observation 3, we can assume without loss of generality that V(C) C V(C1) and Ng(V (C)) C
V(Ci) U {v}. Because depth(T}) < depth(T"), we can apply the inductive assumption and
construct an elimination set X| C X; with a nice representation (77, ) satisfying (a)—(e).
Then we construct X' = X{UJ;_; X;. Then we construct 7" from 7] and T, ..., T, by making
ri and 7g,...,7s the children of r, where r} is the root of T]. We set

ai(z), ifz e X, for some i€ {2,...,s},
o (z)=1q : ,
of(z), ifzeXj.

It is straightforward to verify that X’ and (77, &) satisfy (a)—(e).

This concludes the poof for the base case |R\ S| = 1. To show the claim for |R\ S| > 1,
consider a vertex w € R\ S and apply the claim for S = SU{w} using the inductive assumption.
We have that there is an elimination set X’ C X with a nice representation (7”,«’) such that
V(T') C V(T) and (a)—(e) are fulfilled with respect to S’. Then we apply the claim for X’
and (7T”,«’) with respect to the component C’ and S. Clearly, we obtain an elimination set
X" C X" C X with a nice representation (T”, ") such that V(T") C V(T") C V(T) satisfying
(a)—(e). This completes the proof. O

In our algorithms, we use the random separation technique introduces by Cai, Chan and
Chan in [7]. To avoid dealing with randomized algorithms, we use the following lemma stated
by Chitnis et al. in [§].

Lemma 10 ([8]). Given a set U of size n and integers 0 < a,b < n, one can construct in time
90 (min{ab}log(a+b)) . plogn a family F of at most 20min{abtlog(atb)) 160 subsets of U such
that the following holds: for any sets A,B CU, ANB =1, |A| <a, |B|] <b, there exists a set
Re F with ACR and BNR =10.

4.2 Algorithm for unbreakable graphs

In this subsection, we give FPT-algorithms for ELIMINATION DISTANCE—(*) TO ¢ for x €
{conn, prop, depth} for FOL formulas ¢ € ¥3 on unbreakable graphs. Throughout the subsection,
we assume without loss of generality that

o =3dwy - oYy Vyedz - 3z X

where y is quantifier-free and r, s,t are positive integers, because we always can write a FOL
formula from 33 in this form by adding dummy variables if necessary. We also write x =

(X1, . yxr), y = (Y1, -+, Ys), and z = (21,. .., 2).

Notice that ed”""(G) = 0 if and only if for every component C of G, C' |= ¢. Also ed%P(G) =
0 (edgjepth(G) = 0, respectively) if and only if G |= . This implies that ELIMINATION DISTANCE—
(%) TO ¢ for x € {conn, prop,depth} can be solved in time n@UeD if k = 0 by Observation 1,
that is, Theorem 1 trivially holds for £ = 0. Hence, throughout this subsection we assume that
the parameter k in the considered instances is positive.

By Theorem 3 and Lemma 5, to prove Theorem 1, it is sufficient to demonstrate FPT
algorithm for the considered problems on (p(k), k)-unbreakable graphs for a computable function
p: N — N. Slightly abusing notation, we write p instead of p(k).

The algorithms for ELIMINATION DISTANCE—(*) TO ¢ for x € {conn, prop, depth} are similar.
However, there are differences that make it inconvenient to describe them together. Hence,
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we first give the details of the algorithm for ELIMINATION DISTANCE—(conn) TO ¢ and then
more briefly explain our algorithms for ELIMINATION DISTANCE—(prop) TO ¢ and ELIMINATION
DISTANCE—(depth) TO ¢. Then we derive Theorem 1 from Lemmas 12, 15, and 17 in which we
summarize the properties of the algorithms for the considered problems.

Algorithm for Elimination Distance—(conn) to ¢. Let (G,k) be an instance of ELIM-
INATION DISTANCE—(conn) TO ¢, where G is a (p, k)-unbreakable graph. We assume with-
out loss of generality that G is connected. Otherwise, because ed;’™(G) = max{ed""(C) |
C' a component of G}, we can solve the problem for each component separately. If |[V(G)| <
(3p + 2k)(p + 1), we solve the problem in (p + k)©*+l#D) time by Lemma 8. From now we
assume that [V(G)| > (3p +2k)(p + 1).

By Lemma 3, (G, k) is a yes-instance of ELIMINATION DISTANCE—(conn) TO ¢ if and only
if G contains an elimination set X of depth at most k£ — 1 such that C' = ¢ for every component
C of G — X. Our algorithm finds such a set X, called a solution, if it exists. We verify in n©(#l)
time whether X = () has the required property and return yes if this holds. Assume that this is
not the case, that is, we have to find a nonempty solution.

Suppose that (G, k) is a yes-instance and let X be a solution with a representation (T, «).
By Lemma 6, |X| < p+ k and there is a unique big component C' of G — X with at least
p + 1 vertices, the other components are small, and |V (G) \ Ng[V(C)]| < p. By Observation 3,
Ng(V(C)) € a(Ar(zx)), where z is an anchor of C. In particular, this means that |[Ng(V(C))| <
k. We use these properties to identify C'. This is done by combining the random separation
technique [7] with a recursive branching algorithm.

We use random separation to highlight the hypothetical sets S = Ng(V(C)) and U = V(G) \
Nq[V(C)] (if they exist). To avoid randomized algorithms, we directly use the derandomization
tool from Lemma 10. By this lemma, we can construct in 20min{p.k}log(p+k)) . 1ogn time a
family F of at most 20min{pk}log(r+k)) . 1og 1 subsets of V(@) such that there is R € F such
that U € R and SN R = (. In our algorithm, we go over all sets R € F and for each set R,
we check whether there is a solution X such that U C R and S N R = ( for the sets S and
U corresponding to X (recall that S = Ng(V(C)) and U = V(G) \ Ng[V(C)], where C' is the
unique big component of G — X with at least p+ 1 vertices). Clearly, (G, k) is a yes-instance of
ELIMINATION DISTANCE—(conn) TO ¢ if and only if there is R C F and a solution X with the
required property. X

From now on we assume that R € F is given. We set ¢
B = V(G) \ R. We say that the vertices of R are red and
the vertices of B are blue. We also call the components of
G[R] red components of G and we use the same convention
for induced subgraphs of G. A solution X is colorful if the Figure 1: A visualization of the
vertices of U are red and the vertices of S are blue (see get X, the component C, the
Figure 1). The crucial property of colorful solutions is that gets S, and U, and and the way

U

the red and blue colors are dis-

if a red vertex v is in U, then the set of vertices tributed among them.

of the red component H containing v is a subset
of U.

If G — X has a big component C' and C' = ¢, then there is an r-tuple v = (vq,...,v,) of
vertices of C' such that (C,v) = ¢[x] (recall that ¢[x] is the formula with the free variables
Z1,..., T, obtained from ¢ by the removal of the quantification over x1, ..., z,, and (C,v) = ¢[x]
means that p[x] evaluates true on G when x; is assigned v; for all i € {1,...,r}). Using brute
force, we consider all r-tuples v = (v1,...,v,) of vertices of G, and for each v, we explain how to
check whether there is a colorful solution X with the big component C' such that v; € V(C) for
all i € {1,...,r}. Note that at most n" r-tuples v can be listed in nPUeD) time. The algorithm
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returns yes if we find a colorful solution for some choice of v, and it concludes that there is no
colorful solution for the considered selection of R otherwise.

From now we assume that v = (v1,...,v,) is fixed. Because these vertices should be in
C, we temporarily (i.e., only for the current choice of v) recolor them red to simplify further
notation. We apply a recursive branching algorithm to find C and S.

By definition, we have that (C,v) = ¢[x] if and only if for every s-tuple u = (u1,...,us)
of vertices of C, (C,vu) | ¢[xy]. Suppose that (C,v) F~ [x]. Then there is an s-tuple
u = (ui,...,us) of vertices such that (C,vu) = p[xy]. Notice now that, because ¢ € X3, we
have that for any induced subgraph C’ of C such that v; € V(C') for every i € {1,...,r},
f (C',v) = ¢[x|, then there is j € {1,...,s} such that u; ¢ V(C’). This implies that if
(C,vu) £ plxy], then there is j € {1,..., s} such that either u; € S and should be deleted or
u; is in a component of G'— S distinct from C and this component should be deleted together
with its neighborhood. Note that w; is blue in the first case, and u; is red in the second.
Moreover, in the second case, we should delete the red component containing u; together with
its blue neighborhood. We branch on all possible deletions of v;’s, using the following subroutine
FINDC(C, S, h), where we initially set C':= G, S := 0, and h := k.

Subroutine FINDC(C, S, h).
o If (C,v) |= ¢[x] and h > 0, then return C, S, and stop.
o If (C,v) |~ ¢[x] and h < 0, then stop.

e If A > 1 and there is an s-tuple u = (uy, ..., us) of vertices of C such that (C,vu) = ¢[xy],
then do the following for every j € {1,...,s}.

— If u; € B and there is a component C’ of C' — u; such that v; € V(C’) for all
ie{l,...,r}, then call FINDC(C’, S U {u;},h —1).

— If u; € R and there is a red component H of C' with the set of vertices W and
S" = N¢(W) such that (a) u; € W, (b) |S’| < h, and (c) there is a component C” of
C'— Ne[W] with v; € V(C) for all i € {1,...,r}, then call FINDC(C’, SUS’, h—|S5]).

We show the following lemma.

Lemma 11. If X is an inclusion minimal colorful solution to (G, k) with the big component C
such that v; € V(C) for all i € {1,...,s} and (C,v) = p[x], then there is a leaf of the search
tree produced by FINDC(G, 0, k) for which the subroutine outputs C' and S = Ng(V(C)).

Proof. To prove the lemma, we show the following claim. If the subroutine FINDC is called for
(C,S,h) such that (a) V(C) C V(C) (b) S = Ng(V(C)), (¢) S C S, and (d). h=k—|S|
then either the subroutine outputs C and S or it recursively calls FINDC(C” S’ 1), where (a/)
V(C) CV(C, (b) S = Ng(V(C’)) () ' C S, and (d) W =k — |5

Notice that & = k — |S| > 0, because |S| < k. Hence, if (C,v) |= ¢[x |, then FINDC(C, S, h)
outputs C' and S in the first step, and the claim holds. Assume that (C,v) ¥ ¢[x |. Because
the subroutine is called only for connected induced subgraphs of G, we have that S C S and,
therefore, h > 0. This implies that the subroutine does not stop in the second step. Then
it proceeds to the third step and finds an s-tuple u = (uq,...,us) of vertices of C such that
(C,vu) £ ¢[xy]. Because (C,v) = ¢[x], there is a j € {1,...,s} such that u; ¢ V(C). We
consider the following two cases.

Case 1. u; € S. Notice that because X is a colorful solution, u; is blue in this case. Observe
also that C' — u; has a component C’ such that V(C) < V(C"). Then the subroutine calls
FINDC(C", 5’ iLl), where S’ = S U {uj} and B = h — 1. Tt is easy to see that (a')—(d’) are
fulfilled for C’ S’ and 1.
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Case 2. uj € U. As X is colorful, u; is red in this case. Let H be the red component of
C containing u; and let W = V(H). Because X is a colorful solution, we have that W C U
and N5(W) C S. Then G — Ng[W] has a component C’ such that V(C) € V(C'). Then the
subroutine calls FINDC/(C', S, b'), where 5 = S U Na(W) and B =h-— |IN&(W)|. We obtain
that (a’)—(d’) are fulfilled for ¢/, S, and A’/. This concludes the case analysis and the proof of
the claim.

Observe that conditions (a)—(d) of the claim are fulfilled if C = G, S =0, and h = k. Then
the inductive application of the claim proves that there is a leaf of the search tree for which it
outputs C' and S such that (a) V(C) C V(C), (b) S = Ng(V(C)), and (c) S C S. Recall that
X is an inclusion minimal colorful solution. Then Lemma 9 immediately implies that C' = C
and S = S and this concludes the proof. O

Note that the number of branches of every node of the search tree produced by FINDC(G, 0, k)
is at most s and the depth of the search tree is at most k. This implies that the search tree
has at most s* leaves. By Lemma 11, if (G, k) has an inclusion minimal colorful solution X,
then the subroutine outputs the corresponding big component C' containing vy,...,v, and S.
We consider all pairs (C, S) produced by FINDC(G, (), k) and for each of these pairs, we verify
whether there is a colorful solution corresponding to it. If we find such a solution we return yes
(or return the solution), and we return no if we fail to find a clorful solution for each C' and S.
In the last case we conclude that we have no colorful solution and discard the current choice of
Re F.

Assume that C' and S are given. Recall that v; € V(C) for i € {1,...,r}, S = Ng(V(C)),
and (G,v) = ¢[x]|. First, we check whether C is a big components of G — S by verifying
whether |[V(C)| > p + 1. Clearly, if |V(C)| < p, C cannot be a big component of G — X for
a solution X and we discard the considered choice of C' and S. Assume that this is not the
case, that is, |V(C)| > p+ 1. Then because G is a (p, k)-unbreakable graph, we have that
[V(G)\ Ng[V(C)]| < p. We use brute force and consider every subset Y C V(G) \ N¢g[V(C)]
and then verify whether (i) X = SUY is an elimination set of depth at most k£ — 1 and (ii) for
every component C' # C of G — X, C' = ¢. Note that checking (i) can be done by Lemma 7
in (k + p)°® . n%) time and (ii) can be verified in n(#D time by Observation 1. If we
find X = SUY satisfying (i) and (ii), then we conclude that X is a solution and return yes.
Otherwise, if we fail to find such a set, we return no.

This concludes the description of the algorithm for ELIMINATION DISTANCE—(conn) TO ¢
and its correctness proof. We summarize in the following lemma.

Lemma 12. ELIMINATION DISTANCE—(conn) TO ¢ on (p, k)-unbreakable graphs for ¢ € X3
can be solved in 20((P+k)log(p+k)) . pOULD) time,

Proof. Since the correctness of the algorithm was already established, it remains to evaluate
the total running time. Recall that if |V (G)| < (3p 4+ 2k)(p + 1), then the problem is solved
in (p + k)OF+H2D time. Otherwise, we construct F of size at most 20(in{p-k}log(p+k)) . og 7 in
20(min{p.k}log(p+k)) . yy Jog n time. Then for every R € F, we try to find a colorful solution. For
this, we first guess v. Clearly, we have n@(#D) possibilities for the choice of v. Then we run the
subroutine FINDC(C, S, h). Note that the search tree produced by the subroutine has at most
|o|¥ leaves and each call (without recursive calls) requires n@(#)) time. Then the running time
of the subroutine is |p|* - n®U#). We consider the pairs (C,S) produced by the subroutine, and
for each C' and S, we verify whether we have a corresponding colorful solution X. The brute
force selection of X can be done in 2°® time. Then checking whether X is a solution requires
(k+p)°®) .nO0) | Then we conclude that the total running time is 20((p+F) log(p+k)) . n O(¢l) - 7
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Algorithm for Elimination Distance—(prop) to ¢. Let (G, k) be an instance of ELIM-
INATION DISTANCE—(prop) TO ¢, where G is a (p, k)-unbreakable graph. We check whether
G = ¢ and immediately return yes if this is fulfilled. Assume that this is not the case and that
edf;mp(G) > 1. Then we can assume without loss of generality that G is connected. Otherwise,
because edl°?(G) = max{1, max{ed°**(C) | C' a component of G'}}, we can solve the problem
for each component separately. In the same way as with ELIMINATION DISTANCE—(conn) TO
@, we solve the problem in (p + k)°*+¥D) time by Lemma 8 if [V(G)| < (3p + 2k)(p + 1).
Therefore, from now on, we may assume that |V(G)| > (3p + 2k)(p + 1).

Let (T, ) be a representation of an elimination set X. Recall that P, denotes the set of
components of G — X anchored in z, where z is a node of T. Also G, denotes the subgraph
of G induced by the vertices of the graphs of P, that is, G, is the union of the components of
G — X anchored in z. By Lemma 4, (G, k) is a yes-instance of ELIMINATION DISTANCE—(prop)
TO ¢ if and only if G' contains an elimination set X of depth at most k£ — 1 with a representation
(T, ) such that

(i) for every nonleaf node z € V(T'), C |= ¢ for every C € Py,

(ii) for every leaf x of T' with depthy(z) < k — 2, either G = ¢ or C |= ¢ for every C € Py,
and

(iii) for every leaf x of T' with depthp(z) =k —1, G, = .

We call such a set X a solution. We observe that, given a set X, we can decide whether X is a
solution.

Lemma 13. Let X C V(G) be nonempty. It can be decided in |X|* - n®U¥D) time whether X
has a representation (T, «) satisfying (i)—(iii).

Proof. Because G is connected and k > 1, it is sufficient to verify the existence of a nice repre-
sentation. We do it by a recursive algorithm that for a given x € X finds a nice representation
(T, @) such that a(r) = z, where r is the root of T'. More precisely, given a graph G, a nonempty
X CV(H), avertex z € X, and a positive integer k, the algorithm find a nice representation
(T, ) of X satisfying (i)—(iii) such that a(r) = x if such a representation exists.

Suppose that | X| =1, that is, X = {z}. If G —z |= ¢, the algorithm returns a single-vertex
tree rooted in r with a(r) = x. If G — x £~ ¢ and k > 2, we check whether C = ¢ for every
component C' — z. If this holds, then again, the algorithm returns a single-vertex tree rooted in
r with a(r) = z. In all other cases, the algorithm returns no.

Suppose from now that |X| > 2. If kK = 1, then we immediately return no and stop. Also if
there is a component C' of G — x such that V(C)NX = 0 and C [~ ¢, the the algorithm returns
no and stops. Assume that these are not cases. Let C1,...,Cs be the components of G — x such
that X; = X NV(C;) # 0.

For every i € {1,...,s}, we call the algorithm recursively for C;, X;, every y € X;, and
k — 1. If there is i € {1,...,s} such that the algorithm failed to produce a representation for
every choice of y € X;, the algorithm returns no and stops. Otherwise, the algorithm finds for
every i € {1,...,s} a vertex z; € X; and a nice representation (7;, ;) of X; in C; satisfying
(i)—(iil) (with respect to the new parameters) such that the root r; is mapped to x; by a;. We
construct T from T7,...,Ts by creating a root r and making it the parent of rq,...,rs;. Then

a(z)—{x’ if z=r,

ai(z), if z € V(T;) for some i € {1,...,s}.

This completes the description of the algorithm. It is straightforward to verify its correctness
using the definition of a nice representation of an elimination set. To decide whether X has
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a representation (7, «) satisfying (i)—(iii), we run the algorithm for all x € X. Clearly, a
representation exists if and only if the algorithm produces a representation for some choice of
x. Since in each call of the algorithm, we make at most | X| recursive calls and the depth of the
recursion is at most k, the total running time is | X|* . n©¢D, O

Suppose that (G, k) is a yes-instance and let X be a solution with a nice representation
(T,«). By Lemma 6, |X| < p+ k and there is a unique big component C' of G — X with
at least p + 1 vertices, the other components are small, and |V(G) \ Ng[V(C)]| < p. By
Observation 3, Ng(V(C)) C a(Ar(z)), where x is an anchor of C. In particular, this means
that [Ng(V(C))| < k. As with the algorithm for ELIMINATION DISTANCE—(conn) TO ¢, our
aim is to identify C'. We consider two possibilities for C.

First, we try to find C assuming that one of the following holds: either (a) the anchor of C'is
not a leaf of T or (b) the anchor z is leaf but depth(z) < k—1 and C’ = ¢ for every C' € P,, or
(¢) Gy = C. In this case, the algorithm is essentially identical to the algorithm for ELIMINATION
DISTANCE—(conn) TO . We use Lemma 10 to highlight S and U = V(G)\ Ng[V(C)]. Then we
guess v in C and call the subroutine FINDC(G, 0, k) to enumerate all candidate big components
C and S = Ng(V(S)). The difference occurs only in the last step of the algorithm, where we
find a solution X. We use brute force and consider every subset Y C V(G) \ Ng[V(C)] and
then verify whether X = SUY is an elimination set of depth at most k — 1 satisfying (i)—(iii)
using Lemma 13. If we find a required X, then we conclude that X is a solution and return yes.
Otherwise, if we fail to find such a set for every candidate C, we return no for the considered
set R and discard it. The correctness is proved and the running time is analysed in exactly the
same way as for ELIMINATION DISTANCE—(conn) TO ¢.

Next, if we failed to find a solution so far, we consider the remaining possibility that the
anchor z of C is a leaf of T and G, | ¢, where G, is a disconnected graph. Our algorithm for
this case uses the same approach as the algorithm for ELIMINATION DISTANCE—(conn) TO ¢ but
the arguments are more involved, as we aim to identify C together with the other components
of G;. In other words, we find G.

Let S = Ng(V(Gz)). Note that S C a(Ar(x)) and, therefore, |[S| < k. Observe that
Na(V(C)) € S. Let also U = V(G) \ (V(C)US). Because C is a big component and G is
(p, k)-unbreakable, |U| < p.

Similarly to the algorithm for ELIMINATION DISTANCE—(conn) TO ¢, we use Lemma 10 to
highlight hypothetical S and U. By this lemma, we can construct in 20 (min{p.k}log(p+k)) . logn
time a family F of at most 20(in{p.k}log(r+k)) . 1og 1 subsets of V(G) such that there is R € F
such that U C R and SN R = (). In our algorithm, we go over all sets R C F and for each set
R, we check whether there is a solution X such that U C R and S N R = () for the sets S and
U corresponding to X. Clearly, (G, k) is a yes-instance of ELIMINATION DISTANCE—(prop) TO
o if and only if there is R C F and a solution X with the required property.

From now on we assume that R C F is given. We set B = V(G) \ R. In the same way as
before, we say that the vertices of R are red and the vertices of B are blue. The components of
G|[R] are called red components of G and the same convention is used for induced subgraphs of
G. A solution X is called colorful if the vertivces of U are red and the vertices of S are blue.
We aim to find a colorful solution.

Assume that a colorful solution X exists. Suppose that w = «(z) for the leaf x of T' that is
the anchor of G. Notice that w € B. Then for every component C’ of G, distinct from C, we
have that C’ is a red component and z € Ng(V(C")). We also observe that by the assumption
for R, if C' is a red component of G such that w € Ng(V(H)), then either V(C") C V(C) or C’
is a component of G, distinct from C. Using these observations, we consider all possible choices
of w in B, and decide whether there is a colorful solution X such that for the required G, the
leaf = of T is mapped to w. We say that X is a colorful solution attached to w.
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From now we assume that w is given. Let W = |JV (H), where the union is taken over all
red components H of G such that w € Ng(V(H)). Notice that if there is a colorful solution X
attached to w for the considered choice of w, then W C V(G,) for the corresponding graph G,.

Since we require that G, = ¢, then there is an r-tuple v = (v1,...,v,) of vertices of G,
such that (G, v) = ¢[x]. Using brute force, we consider all r-tuples v = (v1, ..., v,) of vertices
of GG distinct from w, and for each v, we check whether there is a colorful solution X with G,
such that v; € V(G,) for all i € {1,...,r}. Note that at most n" r-tuples v can be listed in
nU¢D time. The algorithm returns yes if we find a colorful solution attached to w for some
choice of v, and it concludes that there is no colorful solution for the considered selection of R
otherwise.

From this point we assume that v = (vy,...,v,) is fixed. Because these vertices should
be in G, we temporarily (i.e., only for the current choice of v) recolor them red to simplify
further notation and recompute W if necessary. We apply a recursive branching algorithm to find
F = G, and S. Similarly to the subroutine FINDC, we construct the subroutine FINDF (F, S, h),
where initially FF = G —w, S = {w}, and h =k — 1.

Subroutine FINDF (F, S, h).
o If (F,v) = ¢[x] and h > 0, then return F, S, and stop.
o If (F,v) I~ ¢[x] and h < 0, then stop.

e If h > 1 and there is an s-tuple u = (uy, ..., us) of vertices of F' such that (F,vu) = ¢[xy],
then do the following for every j € {1,...,s}.

— If wj € B and there is an induced subgraph F” of F' that is the disjoint union of the
components of F'—u; containing vertices of W and vertices v; for ¢ € {1,...,r}, then
call FINDF (F', S U{u;},h —1).

— If u; € R and there is a red component H of C' with the set of vertices Z and
S" = Np|[Z] such that (a) uj € Z, (b) ZNW =0 and v; ¢ Z for all i € {1,...,r},
(¢) |S'| < h, and (d) there is an induced subgraph F’ of F that is a disjoint union
of the components of F' — Np[W] containing vertices of W and vertices v; for some
i €{l,...,r}, then call FINDF(F',SUS' h—|5|).

In the same way as with Lemma 11, we show the following.

Lemma 14. If X is an inclusion minimal colorful solution attached to w for (G, k) with such
that (a) X has a representation (T,«) with a(x) = w, (b)) W C V(G,), (c) v € V(Gy)
for alli € {1,...,s} and (G, V) |E ¢[x|, then there is a leaf of the search tree produced by
FINDC(G, {w}, k — 1) for which the subroutine outputs F' and S = Ng(V (F)).

Since the number of branches of every node of the search tree produced by FINDF(G, {w}, k—
1) is at most s and the depth of the search tree is at most &, the search tree has at most r* leaves.
By Lemma 14, if (G, k) has an inclusion minimal colorful solution X attached to w with respect
to some representation (7', a) of X, then the subroutine outputs the corresponding graph F' = G,
containing vy, ..., v, and S. We consider all pairs (F,.S) produced by FINDF(G, {w}, k—1) and
for each of these pairs, we verify whether there is a colorful solution corresponding to it. If we
find such a solution we return yes (or return the solution), and we return no if we fail to find
a colorful solution for each F and S. In the last case we conclude that we have no colorful
solution and discard the current choice of R € F.

Assume that F' and S are given. Recall that v; € V(C) for i € {1,...,r}, S = Ng(V(C)),
and (G,v) = ¢[x]. First, we check whether F' has a big components of G — S by verifying
whether F' has a component with at least p + 1 vertices. If we have no such a component, we
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discard the considered choice of F' and S. Assume that this is not the case. Then because G
is a (p, k)-unbreakable graph, we have that |V (F') \ Ng[V(F)]| < p. We use brute force and
consider every subset Y C V(G) \ Ng[V(F)] and then verify whether X = SUY is a solution
using Lemma 13. If we find a solution, we return yes. Otherwise, if we fail to find Y with the
required properties, we return no.

This concludes the description of the algorithm for ELIMINATION DISTANCE—(conn) TO ¢
and its correctness proof. We summarize in the following lemma that is proved in the same way
as Lemma 12.

Lemma 15. ELIMINATION DISTANCE—(prop) TO ¢ on (p, k)-unbreakable graphs for ¢ € 33 can
be solved in 20((P+k)log(p+k) . Ol time.

Algorithm for Elimination Distance—(depth) to ¢. Our final task is to construct an
algorithm for ELIMINATION DISTANCE—(depth) TO ¢. Let (G, k) be an instance of ELIMINATION
DISTANCE—(depth) TO ¢, where G is a (p, k)-unbreakable graph. If G = ¢, then we return yes.
Assume that this is not the case and edgepth(G) > 1.

Suppose that G is disconnected. Denote by C4,...,Cs the components of G. Because G
is a (p, k)-unbreakable graph, at most one component can have more p vertices. Then we can
assume that |V(C;)| < p for every i € {2,...,s}. For eachi € {2,...,s}, we solve ELIMINATION
DISTANCE(depth) TO ¢ for (Ci, k — 1) and (Cy, k) in 27 - pO*+1#D) time using brute force. Let
i€{2,...,s}. For each set X C V(C};), we check whether depth(X) < k —2 (depth(X) <k —1,
respectively) applying Lemma 7, and if this holds we verify whether G—X = . This can be done
in 27.pO@®). pOUeD) time. If we find that either thereis i € {2, ..., s} such that ediepth(Ci) > k+1
or there are two distinct 4,5 € {2,...,s} such that ediePth(Ci) = edfpepth(Cj) = k, we return no
by Lemma 2. If there is a unique i € {2,..., s} with ediepth(Ci) =k and edfoepth(C'j) < k-1 for
j€{2,...,s} distinct from 4, (G, k) is a yes-instance if and only if (C},k — 1) is a yes-instance
by Lemma 2. If edfoepth(Ci) <k —1forevery i€ {2,...,s}, then by the same lemma, (G, k) is
a yes-instance if and only if (C1, k) is a yes-instance. Thus, we are able to reduce solving the
problem on G to solving it on C. This implies that we can assume without loss of generality
that G is connected.

If |[V(G)| < (3p+2k)(p+1), we again can solve the problem using brute force in 2(3r+2k)(P+1).
((3p + 2k)(p + 1))°*+#D time in the same way as above. Then we assume that |V(G)| >
(3p+ 2k)(p+1).

Given a subset X C V(G), we can verify in |X|9®) . n©®(1) whether depth(X) < k —1 by
Lemma 7 and then can check whether G — X |= ¢ using Observation 1. Based on this, we aim
to find X that we call a solution in the same way as for the previously considered problems.

For ELIMINATION DISTANCE—(conn) TO ¢, we used the random separation technique to
highlight a big component of G—X (or rather its complement), and for ELIMINATION DISTANCE—
(prop) TO ¢, besides a big component we had to highlight some specific small components
composing G, together with the big component. Now we are highlighting the small components,
X and the neighborhood N¢(V(C)) C X of the big component.

Suppose that (G, k) is a yes-instance with a solution X. By Lemma 6, |X| < p + k and
[V(G)\ N[V (C)]| < p, where C'is a big component of G — X. By Lemma 10, we can construct
the family F of subsets of V(G) of size at most 20((P+F) log(0+k)) . ]og 1 in 20((w+k)log(p+k)) .y 1og n
time such that if (G, k) has a solution X, then F has a set R such that V(H) C R for every
small component and RN X = (). Then for every R € F, we aim to find a solution X such that
the vertices of the small components of G — X are in R and X N R = (.

From this point we assume that R is given. Consider U = V(G) \ R. If C is a big com-
ponent of a (hypothetical) solution X satisfying the above conditions, then Ng(V(C)) C U
and |Ng(V(C))| < k. Recall that | X \ Ng(V(C))| < |V(G) \ Ng[V(C)]| < p. Since |U| <
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n, applying Lemma 10 for U, we construct the family F’ of subsets of U of size at most
20(min{p,k}log(p+k)) . og py jn 20min{p.ktlog(p+k)) . log n time such that F’ has a set Y with the
property that X \ Ng(V(C)) CY and Ng(V(C))NY = 0. We consider all Y € F’ and try find
a solution X such that

(i) the vertices of the small components of G — X are in R,
(ii) for the big component C of G — X, X \ Ng(V(C)) C Y,
(iii) for the big component C' of G — X, Ng(V(C)) C B, where B=V(G) \ (RUY).

If a solution X satisfies (i)—(iii), then we say that X is colorful.

We say that the vertices of R are red, the vertices of Y are yellow, and the vertices of B
are blue. The components of G[R] are called red and the components of G[R U Y] are called
red-yellow components of G, and we use the same term for the induced subgraphs of G.

Assume that X is a colorful solution. Notice that if H is a red component of G, then either
H is a small component of G — X with Ng(V(H)) C X or V(H) C V(C), where C is the big
component. Also we have that if H is a red-yellow component of G, then either V(H) C V(C)
or every red component of V' (H) is a small component of G— X. These are the crucial properties
of colorful solutions exploited by our algorithm.

Because G — X | ¢ for a solution X, it should exist an r-tuple v = (vq, ..., v,) of vertices of
G — X such that (G — X, v) = ¢[x]. In the same way as for the previous problem, we use brute
force to list all r-tuples v = (vy,...,v,) of vertices of G. Then for each v, we check whether

there is a colorful solution X such that v; ¢ X for all i € {1,...,r} and (G — X,v) = ¢[x].
There are at most n” r-tuples v can be listed n®U#D time. Our algorithm returns yes if we find
a colorful solution for some choice of v, and it concludes that there is no colorful solution for
the considered selection of R otherwise.

From now we assume that v = (v1,...,v,) is fixed. Again we observe that these vertices
should not belong to X and we recolor them red for the considered choice of R. We use a
recursive branching algorithm to find X. The algorithm exploits the subroutine FINDX(Z, h),
where initially Z = () and h = p + k.

Subroutine FINDX(Z, h).
1. Set F:=G — Z.

2. If (F,v) |E ¢[x], depth(Z) < k — 1, and h > 0, then return Z, and stop executing the
algorithm.

3. If (F,v) I~ ¢[x] and h < 0, then stop executing the subroutine.

4. If h > 1 and there is an s-tuple u = (uy, ..., us) of vertices of F' such that (F,vu) [~ ¢[xy],
then do the following:

e If uj € R for every j € {1,..., s}, then stop executing the subroutine.
e Otherwise, for every j € {1,...,s} such that u; € YUB, call FINDX(ZU{u;},h—1).

5. If depth(Z) > k, then for every x € Z such that there is a red-yellow component H of
F with the properties (i) |[Np(V(H))| < k, (ii) |[V(H)| < p, (ili) =z € V(H), and (iv)
Np[V(H)N(BUY) #0,set S:= Np[V(H)]N(BUY) and call FINDX(Z U S, h — |S]).

Notice that if the subroutine outputs Z, then we stop the algorithm and report that we
found a solution. If we stop in other steps, then we only stop the execution of the subroutine
for the current call. The crucial property of the subroutine are proved the following lemma.
Since FINDX(Z, h) substantially differs from FINDC(C, S, h) and FINDF(F, S, h), we provide
the proof.
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Lemma 16. If (G,k) has a colorful inclusion minimal solution X with v; € V(G) \ X for all
i€{l,...,s} such that (G — X,v) = ¢[x], then FINDX(D,p + k) returns X.

Proof. The lemma is proved similarly to Lemma 11. Let ¢ = p+ k. We show that the algorithm
maintains the following property: if the subroutine FINDX is called for (Z,h) such that (a)
Z C X and (b) h =t — |Z|, then either the subroutine outputs Z = X or it recursively calls
FINDX(Z',h'), where (a') Z' C X and (V') B =t — |Z'|

In the first step, the algorithms sets F' = G — Z. If (F,v) = ¢[x], depth(Z) < k—1, h > 0,
and (F,v) = ¢[x], then Z is a colorful solution and the algorithm returns return Z. Since X
is inclusion minimal, we have that X = Z. Thus, the claim holds. Assume that this is not the
case. Since Z C X, we have that h > 1, that is, the subroutine does not stop in step 3. Clearly,
we have that (F,v) £ ¢[x] and/or depth(Z) > k.

Suppose that (F,v) £~ ¢[x]. Then there is an s-tuple u = (uq, ..., us) of vertices of F' such
that (F,vu) £ ¢[xy]. This means that the subroutine executes step 4. As (G — X,v) E ¢[x]
and Z C X, there is j € {1,...,s} such that u; € X \ X. Because X is a colorful solution,
u;j € B . Therefore, the subroutine calls FINDX(Z’, /') for Z' =Y \ {u;} and ' = h — 1. Tt is
easy to see that (a’) and (b’) are fulfilled.

Assume that (F,v) = ¢[x]. Then depth(Z) > k. Because depth(X) < k — 1, X has a
representation (7', ) with depth(7') < k — 1. Because depth(7") < k — 1 and depth(Z) > k,
there are vertices x,y € Z such that the nodes 2/ = a~1(z) and 3’ = a~!(y) have the lowest
common ancestor z in T such that z # x,y and it holds that a(Ap(s))\ Z # 0 and «(Ap(z)) is
an (z,y)-separator in G. In particular, z and y cannot be both in Ng[V (C)]. By symmetry, we
can assume that © ¢ Ng[V(C)]. This means that there is a red-yellow component H of F' such
that properties (i)—(iv) of step 5 are fulfilled. Because X is a colorful solution, we have that
S =Np[V(H)N(BUY) C X. Thus, (a/) and (b') are fulfilled for Z’ = ZU S and b’ = h—|S)|.
As the subroutine calls FINDX(Z’, h'), we conclude that the claim if fulfilled.

Recall that we call FINDX((), p+ k) and note that conditions (a) and (b) are trivially fulfilled
for Z = () and h = t. Observe also that in each recursive call of the subroutine the parameter h

strictly decreases. Thus, we conclude that we output X is some recursive call of FINDX(Z, h).
O

Lemma 16 concludes the description of the algorithm and its correctness proof. We summa-
rize and evaluate the running time in the following lemma.

Lemma 17. ELIMINATION DISTANCE—(depth) TO ¢ on (p, k)-unbreakable graphs for ¢ € 33
can be solved in 20((+k)(log(p+k)+p)) . nOULD) time.

Proof. If |V(G)| < (3p+ 2k)(p+ 1), the problem is solved by brute force in 203P+20)@+1) . ((3p 4
2k)(p 4+ 1))°F+#D time. Assume that |V(G)| > (3p + 2k)(p + 1). Then we construct F in
20((p+k)log(p+k)) .y log n time. The size of F is at most 20((PTR)10s(P+k)) . 1ogn, and for every
R € F, we construct F’ in 20min{p.k}Hog(p+k)) . 1og n time. Recall that the size of F' is at most
20(min{p.k}log(p+k)) . 1o ny. Then we consider at most n” r-tuples of vertices v that can be listed
in n@U¢D time. Finally, for every R € F, Y € F', and every v, we call FINDX (0, p + k).

Thus, it remains to evaluate the running time of FINDX(), p + k). Notice that in each call,
|Z| < p+ k. Then we can verify in (p + k)®® . n©() time whether depth(Z) < k — 1 using
Lemma 7. Also we can check whether (F,v) = ¢[x] in n©(#) by Observation 1. Simultaneously,
we find an s-tuple u of vertices of F' such that (F,vu) = ¢[xy] if this is not the case. In step 4,
we perform at most s recursive calls. In step 5, finding H can be done in polynomial time. Notice
that we have at most |Z| < p+ k recursive calls in this step. The depth if the recursion is upper
bounded by k + p. This implies that the running time of FINDX (0, p + k) is (p 4 k)C@+k) . plel,

Summarizing, we obtain that the total running time is 20((P+F)(og@+k)+p)) . nO(el) O
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5 Lower bound for II;-formulas

In this section, we complement Theorem 1 by proving that there are formulas in II3 for which
ELIMINATION DISTANCE—(*) TO ¢ is W[2]-hard. We state now Theorem 2 formally.

Theorem 2. For every = € {conn,prop,depth}, there is ¢ € I3 such that ELIMINATION
DISTANCE—(x) TO ¢ is W[2]-hard.

Proof. We show that the problems are W[2]-hard for the formula ¢ expressing the property that
for every vertex u of a graph, there is a vertex v at distance at most two from u of degree at
most one. Notice that the property that a vertex v of a given graph G has degree at most one
can be written as follows: for every z1, 29 € V(G), if v is adjacent to z; and z9, then z; = 2s.
Thus, we define the formula

¢(U>217Z2) = [((U ~ Zl) VAN (U ~ Zg)) — (Zl = 22)]
with three free variables and set

@ = VaIy13yeVa1 V2 [1h(x, 21, 22) V (2 ~ y1) Ap(y1, 21, 22))
V((x ~y1) A (g1~ y2) Ay, 21, 22))]-

Clearly, ¢ € I13.

To show W/[2]-hardness, we reduce from the SET COVER problem. The problem asks, given
a universe U, a family S of subsets of S, and a positive integer k, whether there is S’ C S of
size at most k that covers U, that is, for every u € U, there is S € S’ such that u € S. It is
well-known that SET COVER is W|[2]-complete when parameterized by k [13].

Figure 2: Construction of G for n = 2 and m = 2 with S1 = {u1, u2,us} and Sy = {ug, us, us};
for simplicity, just one copy of each ugp ) for p € {0,...,k} is shown.

Let (U, S, k) be an instance of SET COVER with U = {ui,...,un}, S = {S1,...,Sm}. We
also assume that n > 2 and k < m. We construct the following graph G (see Figure 2).

e For every i € {1,...,n}, construct k + 2 vertices ugl), e ,ugk”), and then for every
i, €{l,...,n} and all p,q € {1,...,k + 2} such that (¢,p) # (J,q), make ul(p) and u§-q)
adjacent.

e For every j € {1,...,m}, construct three vertices s;,v;, w; and edges s;jv; and vjw;.

. . Y (1) (k+2) .

e For every i € {1,...,n} and every j € {1,...,m}, make s; adjacent to u; ’,...,u; if
U; € Sj.

We claim that G has a set cover of size at most k if and only if edi(G) < k for x €
{conn, prop, depth}. Notice that by the definition of ¢, H = ¢ if and only if C' |= ¢ for every
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component C' of H. Therefore, ed?""(G) = edY°P(G) = edgepth(G)7 and it is sufficient to prove
that G has a set cover of size at most k if and only if there is an elimination set X of G with
depth(G) < k — 1 such that C' = ¢ for every component C of G — X.

Suppose that sets Sj,,...,S;, € S form a set cover. We define X = {wj,,...,w;, }. Since
|X| = k, depth(X) < k — 1. Notice that H = G — X is connected. We claim that H |= ¢.
Recall that H = ¢ if and only if for every vertex x € V(H) there is a vertex y € V(H) at
distance at most two such that dy(y) < 1. This property trivially holds if z € {s;,v;,w;} \ X

for j € {1,...,m}. Consider a vertex u® for some i € {1,...,n}and p e {1,...,k+2}. We

i
have that there is h € {1,...,k} such that u; € Sj,. Then u;s;, € E(H). Because wj, € X, we
(»)

obtain that dg(vj;,) = 1. Since sj,v;, € E(H), vj, is at distance two from ;" as required. We
conclude that H = ¢.

For the opposite direction, assume that there is an elimination set X of G with depth(X) <
k—1 such that C' |= ¢ for every component C of G—X. Consider Z = {ugp) |1<i<n,1<p<
k +2}. Because Z is a clique, we have that |Z N X| < k. To see this, consider a representation
(T,a) of X with depth(T) < k — 1. Then there is a leaf x of T such that o= (X N Z) C Ap(z).
Since depth(7T) < k—1, we conclude that |Z N X| < k. Note that the vertices of Z\ X are in the
same component H of G—X. Let W = {wy,...,wp}. By Observation 3, |[Ng(V(H))NX| < k.
Hence, [Ng(V(H)) N (X NW)| < k as well. Let {wj,,...,wj,} = Ng(V(H))N (X NW). We
claim that the sets Sj,,...,95;, cover U.

Consider an arbitrary i € {1,...,n}. Because |Z N W| < k, there are two distinct p,q €

{1,...,k+2} such that ul(-p), uz(q) € V(H). Since H = ¢, there is a vertex z € V(H) at distance
at most two from u”) such that dp(z) < 1. Since n > 2, we have that |Z\ X| > 3 and, therefore,

dH(u(.p)) > 2. Moreover, for every h € {1,...,n} and r € {1,...,k + 2}, if ug) € V(H), then

1

dH(uglr)) > 2. Then the construction of G implies that there is h € {1,...,m} such that

sp € V(H) and uz(p)sh € E(G) with the property that either dy(s;) <1 or s; has a neighboor
in H of degree at most one. As s is adjacent to ul(.p ), this vertex is adjacent to ugq). Hence,
dp(sp) > 2. We obtain that vy, € V(H) and dp(v) < 1 by the construction of G. This means

that wy, ¢ H, that is, wy, € Ng(V(H))N (X NW). We conclude that there is ¢t € {1,...,¢} such

(»)

that j; = h. Finally, because u; "’ is adjacent to sj,, u; € S, and this concludes the proof. [

6 Discussion

We established a parameterized complexity dichotomy for the elimination problems whose aim
is to satisfy a FOL formula ¢ with respect to the quantification structure of the prefix. For
this, we considered three variants of the elimination distance to the class of graphs modelling ¢
and defined the ELIMINATION DISTANCE—(%) TO ¢ for x € {conn, prop, depth} corresponding to
the considered type of distance. In Theorem 1, we proved that for every FOL formula ¢ € 33,
ELIMINATION DISTANCE—(%) TO ¢ is FPT for x € {conn, prop, depth}. In Theorem 2, we showed
that this result is tight in the sense that there are FOL formulas ¢ € II3 such that these problems
are W[2]-hard.

Notice that the above dichotomy is the same for all the considered variants of the elimi-
nation problems. Moreover, it coincides with the structural dichotomy obtained by for DELE-
TION TO ¢ by Fomin, Golovach, and Thilikos in [15]. This leads to the following natural
question: is there a FOL formula ¢ such that the parameterized complexity of ELIMINATION
DISTANCE—(x) TO ¢ for x € {conn, prop,depth} and DELETION TO ¢ differs? In particular,
is there a formula ¢ such that DELETION TO ¢ is FPT but one of the problem ELIMINATION
DISTANCE—(x) TO ¢ for x € {conn, prop,depth} turns to be, say W[1] or W[2]-hard? Note that
Lemma 5 holds for every FOL formula ¢. Thus, solving ELIMINATION DISTANCE—(*) TO ¢ for

30



* € {conn, prop, depth} can be reduced to solving these problems on unbreakable graphs by The-
orem 3. Since ELIMINATION DISTANCE—(%) TO ¢ for € {conn, prop, depth} is somehow similar
to DELETION TO ¢ on unbreakable graphs, it may happen that ELIMINATION DISTANCE—(x) TO
¢ for x € {conn, prop, depth} are FPT whenever DELETION TO ¢ is FPT. However proving this
would demand applying different algorithmic tools as our techniques are tailored for ¢ € Xs.
Also it would be interesting to know whether there are FOL formulas such that ELIMINATION
DISTANCE—(x) TO ¢ for x € {conn, prop, depth} differ from the parameterized complexity view-
point.

In contrast with the same behaviour of the elimination and deletion problems with respect
to the inclusion in FPT, we would like to point that they behave differently with respect to
kernelization (we refer to the books [10, 16] for the definition of the notion). It was shown
n [15] that DELETION TO ¢ admits a polynomial kernel for ¢ € 31 UII; (in fact, DELETION TO
¢ is polynomial for ¢ € ¥1) and there are formulas ¢ € IIy and Y9 such that DELETION TO ¢
has no polynomial kernel unless NP C coNP /poly. For the elimination problems, we can show
the following lower bound.

Proposition 1. There are formulas ¢ € II; such that ELIMINATION DISTANCE—(x) TO ¢ do
not admit polynomial kernels unless NP C coNP /poly for x € {conn, prop, depth}.

Proof. We show the claim for the formula ¢ expressing the property that a graph has no
triangles, that is, cycles of length three:

p=VaVyvz [ =y)V(y=2)V(z=2)V(z~y)V(y~2z)V(x~2)

It is straightforward to see that G = ¢ if and only if G has no triangles.

By the classical results of Lewis and Yannakakis [22], DELETION TO ¢ is NP-complete. Then
it is easy to observe that the problem remains NP on instances (G, k), where G is a (k + 1)-
connected graph. For example, we can reduce from DELETION TO ¢ on general graphs. Let
G be an n-vertex graph. We assume that & < n — 1 as otherwise the problem is trivial. We
construct the graph G’ from G by adding k + 1 copies of the complete bipartite graph K, ,, and
making each vertex of one part of the vertex partition to a unique vertex of G. Clearly, G’ is
(k+1)-connected and it is easy to see that G— X is triangle-free if and only if G’ has no triangles
for every X C V(G’). This proves the NP-hardness for DELETION TO ¢ on (k + 1)-connected
graphs. Then Observation 4 implies that ELIMINATION DISTANCE—(*) TO ¢ is NP-complete
for every x € {conn, prop, depth}.

Let (Gi1,k),...(Gt k) be instances of ELIMINATION DISTANCE—(%*) TO ¢ for some x €
{conn, prop, depth}. Let G be the disjoint union of Gi,...,G;. Then for x € {conn, prop}, we
have that (G,k) is a yes-instance of ELIMINATION DISTANCE—(%) TO ¢ if and only if (G;, k)
is a yes-instance of ELIMINATION DISTANCE—(x) TO ¢ for every j € {1,...,t}. Then by the
result of Bodlaender, Jansen, and Kratsch [3] (see also [16, Part III] for the introduction to
the technique), ELIMINATION DISTANCE—(x) TO ¢ does not admit a polynomial kernel unless
NP C coNP /poly. For ELIMINATION DISTANCE—(depth) TO ¢, consider G’ that is the disjoint
union of G and Kj3. Clearly, edi®P™" (K} 2) = k + 1. Then by Lemma 2, (G',k + 1) is a
yes-instance of ELIMINATION DISTANCE—(depth) TO ¢ if and only if (G}, k) is a yes-instance of
ELIMINATION DISTANCE—(depth) TO ¢ for every j € {1,...,t}. This implies that ELIMINATION
DISTANCE—(depth) TO ¢ has no polynomial kernel unless NP C coNP /poly. O

Notice that Proposition 1 does no exclude existence of Turing kernels (we again refer
to [10, 16] for the definition of the notion). This makes it natural to ask whether ELIMINATION
DISTANCE—(x) TO ¢ admit polynomial Turing kernels for ¢ € 33 for x € {conn, prop, depth}.

We defined the depth of a set X C V(G) using a representation. However, there is an
equivalent definition that uses the notion of tree-depth (see, e.g., [5] for the definition). Let G

31



be a graph and let X C V(G). We define the torso of X as the graph H obtained from G[X]
by making every two vertices u,v € X adjacent if three is a component C' of G — X such that
u,v € Ng(V(C)). Then the following property can be shown by the definition of tree-depth.

Observation 5. For a set X C V(G) and an integer k, depth(X) < k — 1 if and only if the
tree-depth of the torso of X is at most k.

Thus, ELIMINATION DISTANCE—(depth) TO ¢ can be stated as follows: given a graph G and
a nonnegative integer k, is there X C V(G) whose torso has the tree-depth at most & such that
G — X = ¢? In other words, we ask whether there is a set of vertices whose torso has bounded
tree-depth such that the graph obtained by the deletion of this set models our formula. Then we
can consider the variants of ELIMINATION DISTANCE—(depth) TO ¢ for other “width-measures”.
For example, what can be said about parameterized complexity of the variant of ELIMINATION
DISTANCE—(depth) TO ¢, where the tree-width (see, e.g, [10] for the defintion) of the torso of
X should be at most k — 17

Finally, we believe that it could be interesting to consider yet another variant of the elimi-
nation distance. Recall that in the definitions of ed; for x € {conn, prop, depth}, we considered
properties of the components. In particular,

0, if G E o,
ed?P(G) = { 1 + min,cy () ed? (G — v), if G |~ ¢ and G is connected,

max{1, max{ed%°?(C) | C'is a component of G'}}, otherwise.
However, we can consider unions of components instead. We say that graphs G1,...,Gs form a
component-partition of G if every component of G is a component of G; for some i € {1,...,s}
and G is the disjoint union of G, ...,Gs. Then, we can define

0, ifG E o,
edP(G) — 1+ min,ey (g ed?™ (G —v), if G £ ¢ and G is connected,

4 min{max{l,edfoart(Gl), e edfoart(Gs)} | Gyi,...,Gs
is a component partition of G'} otherwise.

Then we can define the respective ELIMINATION DISTANCE—(part) TO ¢ and investigate its
parameterized complexity depending of ¢. Note that our approach for solving the elimination
problems fails in this case. In particular, we cannot express the problem using MSOL.
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