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We consider a one-dimensional stationary stochastic process x(τ) of duration T . We study the
probability density function (PDF) P (tm|T ) of the time tm at which x(τ) reaches its global max-
imum. By using a path integral method, we compute P (tm|T ) for a number of equilibrium and
nonequilibrium stationary processes, including the Ornstein-Uhlenbeck process, Brownian motion
with stochastic resetting and a single confined run-and-tumble particle. For a large class of equi-
librium stationary processes that correspond to diffusion in a confining potential, we show that the
scaled distribution P (tm|T ), for large T , has a universal form (independent of the details of the
potential). This universal distribution is uniform in the “bulk”, i.e., for 0 � tm � T and has a
nontrivial edge scaling behavior for tm → 0 (and when tm → T ), that we compute exactly. More-
over, we show that for any equilibrium process the PDF P (tm|T ) is symmetric around tm = T/2,
i.e., P (tm|T ) = P (T − tm|T ). This symmetry provides a simple method to decide whether a given
stationary time series x(τ) is at equilibrium or not.

The properties of extremes of stochastic processes are
of fundamental importance in a wide range of practical
situation, including finance, computer science, and cli-
mate science [1]. For instance, in the context of climate
change, it is paramount to estimate the probability of ex-
treme climate events, such as heat waves, hurricanes, and
tsunamis. Even if in many cases one is interested in the
magnitude M of such anomalous events, it is often also
relevant to study the time tm at which they occur within
some fixed time period [0, T ] (see Fig. 1). This observ-
able tm, the time of the maximum, is a central quantity
in several applications [1–7]. For instance, in finance, the
distribution of the time at which the price of a stock at-
tains its maximal value within a fixed time period is a
quantity of clear practical interest.

Within the framework of extreme value theory, the sta-
tistical properties of tm have been investigated for a wide
range of stochastic processes [8–33]. For instance, in the
case of an overdamped Brownian particle in one dimen-
sion, the full probability density function (PDF) P (tm|T )
of tm was computed analytically by Lévy and is given by
[8–10]

P (tm|T ) =
1

π
√
tm(T − tm)

, (1)

with 0 ≤ tm ≤ T . More recently, the PDF of tm was
also computed for constrained Brownian motions (BM)
[11, 12, 14–18, 29, 31], Bessel process [17], and run-
and-tumble particles (RTPs) [28, 30, 33], amongst oth-
ers. However, to the best of our knowledge, the time of
the maximum has never been studied for stationary pro-
cesses, i.e., stochastic processes whose statistical proper-
ties are invariant under a time shift.

Stationary phenomena are ubiquitous in nature and
appear in a wide range of systems, including Brownian
engines [34], active matter [35] and climate systems [36].
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FIG. 1. Typical trajectory of a stationary process x(τ) as a
function of time τ . The process starts from position x0, drawn
from the stationary state, at the initial time and reaches the
maximum M at time tm.

They are divided into two main categories: equilibrium
and out-of-equilibrium. Equilibrium processes satisfy the
detailed balance condition, implying that all currents
vanish and that the dynamics is time-reversible. Stan-
dard techniques from statistical physics can be applied
to study equilibrium systems and thus their behavior is
generally well understood. In contrast, nonequilibrium
phenomena are characterized by the presence of currents
in the steady state and very few general results exist in
this case [37–42].

The distribution of the maximal value M has been
studied for several stationary processes of fixed duration
T , including fluctuating interfaces [43, 44], the Ornstein-
Uhlenbeck process [1], and BM with stochastic resetting
[1, 45, 46]. BM with stochastic resetting has become a
rather popular subject of late both theoretically and ex-
perimentally – for a recent review see [47]. Notably, in
the case where the autocorrelation function of the pro-
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cess decays sufficiently fast the distribution of M , prop-
erly centered and scaled, approaches a universal Gumbel
form at late times, i.e., for T � Tmicro where Tmicro is
a microscopic correlation time [1, 44, 48]. However, it is
not clear if this universality also extends to the distribu-
tion of the time tm at which the maximum M is reached.
Moreover, since the statistical properties of stationary
processes by definition do not evolve in time, one could
naively expect the distribution of tm to be uniform, i.e.,
P (tm|T ) = 1/T . Quite surprisingly, we show that this
is not true in general, due to the presence of nonzero
temporal correlations of the process.

In this Letter, we consider a one-dimensional station-
ary stochastic process x(τ), evolving in the time interval
[0, T ] (see Fig. 1). At the initial time, we assume that the
process has already reached its stationary state Pst(x).
This is equivalent to preparing the system in some ini-
tial condition at time τ = −∞ and starting to observe it
at τ = 0. Using a path-integral approach, we compute
exactly the distribution P (tm|T ) of the time tm at which
x(τ) attains its maximal value for several stationary mod-
els, both equilibrium and nonequilibrium. Notably, in the
case of the equilibrium motion of a Brownian particle in a
confining potential, we show that P (tm|T ) becomes uni-
versal at late times. Moreover, we demonstrate that for
any equilibrium process the PDF P (tm|T ) is symmetric
around the midpoint tm = T/2. For two nonequilibrium
processes, namely the resetting BM and a single confined
RTP, we verify by computing P (tm|T ) exactly that this
symmetry is not present (see Fig. 2). Thus, the measure-
ment of the distribution of tm provides a simple recipe
to detect nonequilibrium dynamics in a stationary time
series.

We start by investigating P (tm|T ) in the case of equi-
librium systems. The process that we consider is an
overdamped 1d Brownian particle (with diffusion coef-
ficient D and friction coefficient Γ = 1) moving in a
symmetric confining potential that grows for large |x|
as V (x) ≈ α|x|p, where α > 0 and p > 0. In this case,
the system has an equilibrium stationary state character-
ized by the Gibbs-Boltzmann measure Pst(x) ' e−V (x)/D

where D is exactly the temperature by fluctuation dis-
sipation theorem. Computing the distribution of tm for
any p is challenging. However, in the special cases p = 1
and p = 2, we are able to compute exactly P (tm|T )
[49]. For instance, for V (x) = αx2 (corresponding to
the Ornstein-Uhlenbeck process), we obtain P (tm|T ) =
αFOU[αtm, α(T − tm)], where the double Laplace trans-
form of the scaling function FOU(t1, t2) is given by∫ ∞

0

dt1

∫ ∞
0

dt2 FOU(t1, t2)e−s1t1−s2t2 (2)

=
1

2
√

2π

∫ ∞
−∞

dz e−z
2/2D−1−s1/2(z)

D−s1/2(z)

D−1−s2/2(z)

D−s2/2(z)
,

where Dν(z) is the parabolic-cylinder function [50]. Us-
ing Eq. (2), it is easy to see that FOU(t1, t2) =
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FIG. 2. a) Probability distribution P (tm|T ) versus tm in the
case of the Ornstein-Uhlenbeck process, obtained from nu-
merical simulations with α = D = T = 1. The PDF P (tm|T )
is symmetric around the middle point tm = T/2 (dashed
black line), since the process is at equilibrium. b) Proba-
bility distribution P (tm|T ) versus tm in the case of Brownian
motion with resetting, obtained from numerical simulations
with D = T = 1 and r = 10. The PDF P (tm|T ) is asymmet-
ric around the middle point tm = T/2 (for further proof, see
[49]), signaling the nonequilibrium nature of the process.

FOU(t2, t1), leading to P (tm|T ) = P (T − tm|T ). As we
demonstrate below, the symmetry of P (tm|T ) around the
midpoint tm = T/2 is a general feature of equilibrium
processes. This property is a direct consequence of the
time reversibility, which is always present at equilibrium.
Conversely, if the process is out-of-equilibrium, the dis-
tribution of tm might or might not be symmetric.

The PDF P (tm|T ) can be also derived exactly for p = 1
(see Eq. (3) of [49]). In addition to proving the symmetry
P (tm|T ) = P (T − tm|T ), the exact result in Eq. (2) for
p = 2, and the analogous one for p = 1 (see Eq. (8) in
[49]), can be used to extract the asymptotic behaviour
of P (tm|T ) in the large T limit. In this limit, we find
that there is a “bulk” regime where P (tm|T ) ≈ 1/T is
essentially flat. However, near the two “edges” tm = 0
and tm = T (symmetrically), the distribution P (tm|T )
has a nontrivial shape [see Fig. 2 a)]. Moreover, near
the edges, once appropriately scaled, the scaling form of
P (tm|T ) turns out to be identical for both p = 1 and p =
2! This “universality” is rather unexpected and naturally
leads us to wonder whether the edge behavior of P (tm|T )
for general p > 0 is also universal. We show that indeed
this universality holds for any p ≥ 1, i.e., for sufficiently
confining potentials. However, for 0 < p < 1, i.e. for
“shallow” potentials, there is no universal edge behavior.

In the absence of an exact result for general p ≥
1, we develop a real-space “blocking argument” (à la
Kadanoff), which demonstrates clearly this universality
of the edge behavior for p ≥ 1. More precisely, we find
that, for p ≥ 1,

P (tm|T ) '


1
TG

[
tm
λ(T )

]
for tm . λ(T ),

1
T for λ(T )� tm � T − λ(T ),
1
TG

[
T−tm
λ(T )

]
for tm & T − λ(T ) ,

(3)

with λ(T ) = 4D
α2p2

[
D
α log(T )

]−2(p−1)/p
denoting the
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FIG. 3. The scaled distribution TP (tm|T ) as a function
of tm/λ(T ) in the region tm ∈ [0, 10 λ(T )]. The symbols
depict the results of numerical simulations with the potential
V (x) = |x|p, with p = 1, 2 and 3, and large T (T = 6400
for p = 1 and T = 800 for p = 2, 3). The continuous line
corresponds to the analytical result in Eqs. (3) and (4).

width of the edge region and the universal scaling func-
tion is given by

G(z) =
1

2

[
1 +

e−z√
πz

+ erf(
√
z)

]
, (4)

where erf(x) = (2/
√
π)
∫ x
0
e−u

2

du. The late time dis-
tribution P (tm|T ) in Eq. (3) is manifestly symmetric
around tm = T/2 for all p ≥ 1 and the dependence on the
parameters p and α appears only through the width λ(T ).
When z → 0, G(z) diverges as 1/(2

√
πz). On the other

hand, for large z, G(z) goes to the limit value 1, smoothly
connecting with the central part where P (tm|T ) ' 1/T .
The scaled distribution TP (tm|T ) is shown as a function
of tm/λ(T ) in Fig. 3. The numerical curves obtained
for different values of p collapse onto the same theoret-
ical curve, given in Eq. (3). We have checked that the
deviations from the theoretical curve are a consequence
of finite-size effects [49]. Note that for p = 1 the width
λ(T ) is a constant independent of T , while for p > 1 it
shrinks as log(T )−2(p−1)/p for large p.

We next focus on nonequilibrium stationary processes.
One of the simplest nonequilibrium models is BM with
stochastic resetting [45, 47]. Here, we consider a one-
dimensional BM, whose position is reset to the origin
randomly in time with constant rate r. The resetting
dynamics induces a nonzero net probability current to-
wards the origin, driving the system to a nonequilib-
rium stationary state where the position distribution,

in 1d, is known to be Pst(x) =
√
r/(4D)e−

√
r/D|x|,

where D is the diffusion constant [45]. The distribu-
tion P (tm|T ) for this process has been recently stud-
ied where the starting position is fixed [81]. Here, in-
stead, we assume that the initial position of the particle
is drawn from the stationary state Pst(x). We show that

P (tm|T ) = rFR[rtm, r(T − tm)], where the scaling func-
tion FR(t1, t2) is given in Eq. (8) of [49]. In this case, we
find that FR(t1, t2) 6= FR(t2, t1), implying that P (tm|T )
is not symmetric around tm = T/2. This asymmetry is
confirmed by numerical simulations (see Fig. 2b) and
analytically (see Eqs. (9) and (10) as well as Fig. 2 in
[49]).

The second nonequilibrium process that we consider
is a single RTP with fixed velocity v0, moving in a one-
dimensional potential V (x) = α|x|, with α > v0 (for the
details of the model, see [49]). In the context of active
matter, the RTP model has been widely studied [35, 82–
86]. We compute exactly P (tm|T ) for this model, showing
that it is not symmetric around tm = T/2 [49].

Interestingly, the fact that for all equilibrium processes
the distribution P (tm|T ) is symmetric around tm = T/2
provides a simple criterion to detect nonequilibrium dy-
namics in stationary time series. More precisely, imagine
that one has access only to a long stationary time se-
ries x(τ) as a function of time τ , e.g., from experimental
measurements (see Fig. 4), but with no other additional
information. This setup is motivated by the increas-
ing interest in single-particle tracking, which provides
individual-particle trajectories with high space-time res-
olution [51–57]. For instance, this time series x(τ) could
represent the location of a confined active particle or the
position of a BM in an optical trap. Then, a natural ques-
tion arises: is there a simple way to determine whether
or not x(τ) is at equilibrium, without any a priori knowl-
edge of its underlying dynamics? In recent years, sev-
eral attempts to answer this question have been made
[58]. One possibility is the verification of the so-called
fluctuation-dissipation theorem, which is only valid at
equilibrium [58–62]. As an example, this method has
been employed to show the nonequilibrium nature of red
blood cells [62]. Several other methods, based, e.g., on
the detection of probability currents in the phase space
or the breakdown of time-reversal symmetry, have also
been developed [36, 42, 58, 63–79].

Here, we propose the following simple recipe which
consists of two steps. a) Divide the long time series x(τ)
intoN blocks each of duration T (see Fig. 4) and measure
the time tim at which the maximum occurs within the i-th
block. From the histogram of the N values t1m , . . . , t

N
m ,

one then constructs the empirical PDF P (tm|T ), where
0 ≤ tm ≤ T . b) Check if the empirical PDF P (tm|T )
is symmetric around tm = T/2. Our test predicts that
if P (tm|T ) is asymmetric around T/2 [as in Fig. 2b)],
the dynamics of x(τ) is nonequilibrium. Conversely, if
P (tm|T ) is symmetric around tm = T/2 [as in Fig. 2a)],
our test is inconclusive and one has to resort to more
sophisticated techniques. The asymmetry in P (tm|T ) is
a clear signature of the nonequilibrium nature of x(τ).
Our test is also applicable to systems composed of sev-
eral interdependent variables. For such cases, using our
criterion, finding that the distribution of tm for any one of
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FIG. 4. Long stationary process x(τ) as a function of time
τ . The trajectory can be divided into N blocks of duration
T . For 1 ≤ i ≤ N , we compute the time tim at which the
maximum of x(τ) within the i-th block is reached (see inset).
From the histogram of these N variables t1m , . . . , t

N
m , one can

estimate the distribution P (tm|T ), defined in the text. If
P (tm|T ) is not symmetric around tm = T/2, then the process
is out-of-equilibrium.

these variables is not symmetric around T/2 is sufficient
to determine that the full system is out of equilibrium.

Let us also mention that there exist nonequilibrium
processes for which our criterion is inconclusive. For
instance, let us consider another model of active mat-
ter, namely a single one-dimensional active Ornstein-
Uhlenbeck particle (AOUP) in a harmonic potential
[87, 88]. It is possible to show that in this case, de-
spite the system being nonequilibrium, the distribution
P (tm|T ) of the time of the maximum is symmetric around
tm = T/2 [88]. This is just a consequence of the fact that
the AOUP in a harmonic potential is a Gaussian sta-
tionary process. Indeed, it is possible to show that for
any Gaussian stationary process the distribution of tm is
symmetric around T/2 [49].

We start by sketching the blocking argument that leads
to the universal result in Eqs. (3) and (4) for all p ≥ 1.
We consider the position x(τ) of a single overdamped
Brownian particle in a confining potential growing as
V (x) ' α|x|p for large |x|, with α > 0 and p ≥ 1. The
Langevin equation that describes the evolution of x(τ) is

dx(τ)

dτ
= −V ′(x) + η(τ) , (5)

where η(τ) is Gaussian white noise with zero mean
and correlator 〈η(τ)η(τ ′)〉 = 2Dδ(τ − τ ′) and V ′(x) =
dV (x)/dx. For p ≥ 1, one can show that the autocorre-
lation function 〈x(τ)x(τ ′)〉 − 〈x(τ)〉〈x(τ ′)〉 decays expo-
nentially in |τ − τ ′| over a typical time TB ∼ O(1) [89].
For T � TB , we can divide the time interval [0, T ] into
NB blocks of identical size TB , which are essentially un-
correlated. Let mi be the maximal position reached in
the i-th block. Clearly the variables mi’s are independent

of each other (since they belong to different blocks), but
they are identically distributed due to the stationarity of
the process. This implies that the probability that the
maximum is reached in the i-th box is the same for each
box and thus it is simply 1/NB = TB/T . This argument
suggests that the probability distribution of tm is approx-
imately given by the uniform measure P (tm|T ) ' 1/T .
However, this argument is only valid in the bulk of the
distribution P (tm|T ), i.e., when TB � tm � T − TB . In
the regions 0 < tm < TB and T−TB < tm < T , a detailed
analysis, taking into account edge effects, is required.

To show this, we consider the interval [0, TB ] and con-
dition on the event that the maximum is reached in this
first block. Since the position x(τ) in this block will be
very close to the maximal position M , we can linearize
the potential V (x) around x = M . To leading order, the
Langevin equation (5) becomes

dx(τ)

dτ
= −V ′(M) + η(τ) . (6)

In first approximation, the particle is subject to a con-
stant negative drift µ = −V ′(M) < 0. For large T , the

maximum M typically grows as
(
D
α log(T )

)1/p
[49]. Con-

sequently, the constant drift µ is given by

µ ' −α p
(
D

α
log(T )

)(p−1)/p

. (7)

The PDF of the time tm of the maximum in a time
interval [0, TB ] of a BM with constant drift µ has been
computed in Ref. [15] and is given by

P (tm|TB) =
hµ(tm)h−µ(TB − tm)

π
√
tm(TB − tm)

, (8)

where

hµ(τ) = e−µ
2τ/4D + µ

√
πτ

4D

[
1 + erf

(
µ

√
τ

4D

)]
. (9)

Thus, for 0 ≤ tm � 1 and T � 1, the distribution of tm
can be written as

P (tm|T ) ' TB
T

hµ(tm)h−µ(TB − tm)

π
√
tm(TB − tm)

, (10)

where the drift µ is given in Eq. (7). We recall that
the term TB/T is the probability that the maximum falls
in the first block. Note that, since we do not know the
precise value of TB , the result in Eq. (10) gives us the
edge behavior of P (tm|T ) up to a multiplicative constant.
In particular, in the region where tm � TB , we obtain

P (tm|T ) ∝ 1

T

hµ(tm)√
tm

. (11)

Finally, the multiplicative factor can be obtained by im-
posing that the edge expression in Eq. (11) matches for
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large tm with the bulk result P (tm|T ) ' 1/T and, using
the expression of hµ(τ) in Eq. (9), we obtain the result in
Eq. (3). An analogous derivation can be carried out for
the right edge of P (tm|T ). In the special cases p = 1 and
p = 2, where we could compute P (tm|T ) exactly [80], the
asymptotic analysis for large T is fully consistent with
the approximate block argument developed above for ar-
bitrary p ≥ 1. Note that in the case 0 < p < 1 the result
in Eq. (3) is not valid since the autocorrelation function
of x(τ) does not decay exponentially in time [89].

We next present the derivation of the fact that
P (tm|T ), for any equilibrium stationary process on the
interval [0, T ], is symmetric around tm = T/2. For
simplicity, we consider a discrete-time process xk, with
1 ≤ k ≤ T . It is easy to generalize the following deriva-
tion to continuous time. Note that here tm and T are
integer numbers. Denoting by P ({xk}) the probability
of observing the trajectory {xk} = {x1, . . . , xT }, the dis-
tribution of the time tm of the maximum can be written
as

P (tm|T ) =

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxT Θtm({xk})P ({xk}) ,

(12)
where Θk ({xi}) =

∏
i6=k θ (xk − xi) and θ(z) is the Heav-

iside step function, i.e., θ(z) = 1 for z > 0 and θ(z) = 0
otherwise. In other words, Θk ({xi}) is one if the maxi-
mum of the trajectory {xi} is reached at step k and zero
otherwise. Thus, in Eq. (12), we integrate over all possi-
ble trajectories for which the time of the maximum is tm.
Let us denote by {x̄k} = {xT−k} the time-reversed tra-
jectory associated to {xk}. For an equilibrium process,
it is possible to show that, as a consequence of the de-
tailed balance condition, P ({xk}) = P ({x̄k}) (this is not
true in general for nonequilibrium processes). Using this
result in Eq. (12) and performing the change of variables
xi → x̄i = xT−i, we obtain

P (tm|T ) =

∫ ∞
−∞

dx̄1 . . .

∫ ∞
−∞

dx̄T Θtm({x̄T−k})P ({x̄k}) .

(13)
It is easy to show that Θtm({x̄T−k}) = ΘT−tm({x̄k}) and
thus we find

P (tm|T ) =

∫ ∞
−∞

dx̄1 . . .

∫ ∞
−∞

dx̄T ΘT−tm({x̄k})P ({x̄k}) .

(14)
Recalling the expression for P (tm|T ), given in Eq. (12),
we obtain our desired result P (tm|T ) = P (T − tm|T ),
which is thus a necessary, but not a sufficient, condition
for a stationary process to be at equilibrium.

To conclude, we have investigated the distribution
P (tm|T ) of the time tm at which a stationary process
of duration T reaches its global maximum. Using path
integral techniques, we have computed exactly P (tm|T )
for several stationary processes. In particular, for a dif-
fusive particle in a trapping potential, we have further

shown that P (tm|T ), suitably scaled, is universal at late
times, i.e., independent of the details of the potential.
Moreover, we have presented a simple sufficiency test to
detect whether a stationary time series has nonequilib-
rium dynamics. Our method is based on estimating the
PDF P (tm|T ). If it is asymmetric the dynamics is neces-
sarily nonequilibrium. The test proposed in this Letter
is very general and can be applied to any stationary pro-
cess.

We thank R. K. P. Zia for useful discussions.
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.

Supplementary Material for
Distribution of the time of the maximum for stationary processes

I. DISTRIBUTION OF THE TIME OF THE MAXIMUM: SUMMARY OF THE MAIN RESULTS

In this Section, we present the main results on the distribution of the time tm of the maximum for the stationary
processes considered in the Letter. The corresponding formulae are too long to be included in the main text and are
thus presented here. The details of the computations, performed using path-integral techniques, are quite long and
will be presented elsewhere [80]. Here, with the help of Fig. 5, we sketch this path-integral method, which can be
summarized in the following steps:

1. divide the time interval [0, T ] into two subintervals [0, tm] (I) and [tm, T ] (II),

2. in the first interval (I) the process starts from position x0, drawn from the stationary measure Pst(x0), and
reaches the maximum M without crossing position M ,

3. in the second interval (II) the process starts from position M and reaches the final position xF < M without
crossing position M .

Thus, the joint probability of x0, M , tm, and xF can be written as

P (x0,M, xF , tm|T ) = Pst(x0)GM (M, tm|x0, 0)GM (xF , T |M, tm) , (15)

with the constraint x0 < M and xF < M . In Eq. (15) GM (x2, t2|x1, t1) is the constrained propagator of the process,
defined as the probability that the process arrives at position x2 at time t2 starting from position x1 at time t1 with
t2 ≥ t1, while staying below M in the time interval (t1, t2). Note that to obtain Eq. (15) we have assumed that
the process is Markov. This technique can be also generalized to some non-Markov processes, e.g. run-and-tumble
particles (RTPs). Integrating over x0, M , and xF , we find that the distribution of tm can be written as

P (tm|T ) =

∫ ∞
−∞

dx0

∫ ∞
x0

dM

∫ M

−∞
dxF Pst(x0)GM (M, tm|x0, 0)GM (xF , T |M, tm) . (16)

Thus, in order to compute P (tm|T ) one needs the constrained propagator GM (x2, t2|x1, t1) , which is usually not easy
to compute. However, for some processes, one can compute the constrained propagator exactly as mentioned below.
One can then substitute this constrained propagator in Eq. (16)– however performing this triple integral explicitly
is highly nontrivial. In most solvable cases shown below, it however allows us to obtain an exact expression for the
double Laplace transform of P (tm|T ) (see, for example, Eq. (2) in the main text).

A. Brownian motion in a confining potential

The equilibrium process we consider is an overdamped Brownian particle in a confining potential V (x) = α|x|p,
with α > 0 and p > 0. The position x(τ) of the particle evolves according to the Langevin equation

dx(τ)

dτ
= −V ′(x) + η(τ) , (17)

where η(τ) is a Gaussian white noise with zero mean and correlator 〈η(τ)η(τ ′)〉 = 2Dδ(τ−τ ′) and V ′(x) = dV (x)/dx.
The equilibrium stationary state of this system is given by Pst(x) ∝ e−V (x)/D. We assume that the particle starts at
the initial time from some position x0, drawn from the equilibrium distribution Pst(x0), and that it evolves according
to Eq. (17) up to time T . We are interested in computing the distribution P (tm|T ) of the time tm at which the
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0 tm T

0

x0

M

xFx
(
)

FIG. 5. Decomposition of a stationary trajectory x(τ) of duration T . In the first interval [0, tm] (I) the process starts from
position x0, it remains below position M , and reaches the maximum M at time tm. In the second interval [tm, T ], it starts
from position M at time tm and it reaches position xF at time T , without crossing position M .

position of the particle reaches its maximal value up to time T . Computing P (tm|T ) for any p > 0 is challenging.
However, we compute exactly P (tm|T ) in the special cases p = 1 and p = 2.

In the case p = 1, we show that [80]

P (tm|T ) =
α2

4D
F1

[
α2

4D
tm,

α2

4D
(T − tm)

]
, (18)

where the double Laplace transform of the scaling function F1(t1, t2) is given by∫ ∞
0

dt1

∫ ∞
0

dt2 F1(t1, t2)e−s1t1−s2t2 (19)

=
1

2(1 +
√

1 + s1)(1 +
√

1 + s2)

[
1 +

∫ ∞
0

dz e−z

(√
1 + s1 + 1− e−

√
1+s1z

)(√
1 + s2 + 1− e−

√
1+s2z

)
(√

1 + s1 − 1 + e−
√
1+s1z

) (√
1 + s2 − 1 + e−

√
1+s2z

) ] .
From Eq. (19), it is easy to check that P (tm|T ) is correctly normalized to unity. Inverting the double Laplace
transform in Eq. (19) is highly nontrivial. However, it is easy to check that F1(t1, t2) = F1(t2, t1) and hence
P (tm|T ) = P (T − tm|T ), in agreement with the fact that the process is at equilibrium. Consequently, the first
moment of tm is simply given by 〈tm〉 = T/2.

In the case p = 2, corresponding to the Ornstein-Uhlenbeck process, we find that

P (tm|T ) = αFOU [αtm, α(T − tm)] (20)

where the double Laplace transform of the scaling function FOU(t1, t2) is given by∫ ∞
0

dt1

∫ ∞
0

dt2 FOU(t1, t2)e−s1t1−s2t2 =
1

2
√

2π

∫ ∞
−∞

dz e−z
2/2D−1−s1/2(z)

D−s1/2(z)

D−1−s2/2(z)

D−s2/2(z)
, (21)

as given in Eq. (1) in the main text. Here Dν(z) is the parabolic-cylinder function [50]. From Eq. (21), it is
possible to check that P (tm|T ) is normalized to unity. Moreover, it is easy to show that FOU(t1, t2) = FOU(t2, t1) and
consequently P (tm|T ) = P (T − tm|T ). Hence, the first moment of tm is simply given by 〈tm〉 = T/2.

Taking the limit T →∞ in Eqs. (18) and (20), it is possible to show that the exact expressions for P (tm|T ), valid
for p = 1 and p = 2, converge to the universal form given in Eq. (2) of the main text, valid for p ≥ 1. This asymptotic
result is also verified numerically for p = 1, 2, and p = 3, as shown in Fig. 6. We observe that the numerical curves
approach the analytic result as T increases.
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FIG. 6. The scaled distribution TP (tm|T ) as a function of tm/λ(T ) for different values of T and for p = 1 (panel a), p = 2
(panel b), and p = 3 (panel c). The symbols depict the results of numerical simulations while the continuous lines correspond
to the analytical result in Eq. (2) of the main text, valid in the limit of large T .

B. Brownian motion with resetting

The first out-of-equilibrium process that we consider is Brownian motion (BM) with stochastic resetting, which has
been extensively studied in recent years [45, 47]. We consider a Brownian particle, diffusing in one dimension with
diffusion constant D and resetting to the origin with constant rate r. It is possible to show that the system admits
the following nonequilibrium steady state [45]

Pst(x) =

√
r

4D
exp

(
−
√

r

D
|x|
)

(22)

We assume that the particle starts from position x0, drawn from the stationary state (22), and that it evolves up to
time T . We show that the probability density function (PDF) P (tm|T ) of the time tm at which the particle reaches
its maximal position up to time T can be written as

P (tm|T ) = rFR [rtm, r(T − tm)] , (23)

where the double Laplace transform of the scaling function FR(t1, t2) is given by [80]∫ ∞
0

dt1

∫ ∞
0

dt2 FR(t1, t2)e−s1 t1−s2 t2 =
1

2

1√
1 + s2

(
1 +
√

1 + s1
) (24)

+
1

2

√
1 + s2√

s1 + 1− 1

∫ ∞
0

dz
e−(1+

√
1+s1)z

(
s1e
√
1+s1z −

√
s1 + 1 + 1

)
(
s1 + e−

√
1+s1z

) (
s2 + e−

√
1+s2z

) .

From this result in Eq. (24) it is easy to check that P (tm|T ) is correctly normalized to unity. Moreover, since the
expression on the right-hand side of Eq. (24) is not invariant under exchange of s1 and s2, we find that FR(t1, t2) 6=
FR(t2, t1) and thus that P (tm|T ) is not symmetric around the midpoint tm = T/2.

The asymmetry of the PDF P (tm|T ) in the case of BM with stochastic resetting is also confirmed by numerical
simulations, as shown in Fig. 2b) of the main text. However, in some cases, it might be difficult to determine whether
a distribution P (tm|T ), obtained from simulations or experiments, is symmetric or not, due to measurement or
statistical noise. One simpler quantity that one can study is the average value of tm. Indeed, finding that 〈tm〉 6= T/2
is sufficient to conclude that the full distribution P (tm|T ) is not symmetric around tm = T/2 and thus that the process
is nonequilibirum. In the case of resetting BM, using Eq. (23), we find that the value of 〈tm〉(T ) as a function of T
is given by [80]

〈tm〉(T ) =
1

r
f(rT ) , (25)

where the scaling function f(t) is given by

f(t) =
1

96

[
−4t(2t2 + 3t− 18) +

2√
π

√
t(3 + 16t+ 4t2)e−t + (−3− 30t+ 36t2 + 8t3) erf(

√
t)

]
+

1

2

[
e−t − 2√

π
Γ

(
3

2
, t

)]
+

∞∑
k=1

gk(t) , (26)
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FIG. 7. The scaled average 〈tm〉/T as a function of rT for Brownian motion with resetting rate r. The symbols depict the
results of numerical simulations while the continuous line correspond to the analytical result in Eq. (25). In the case of an
equilibrium process, one expects 〈tm〉/T = 1/2 for any T .

where Γ(a, t) =
∫∞
t
xa−1 e−x dx is the upper incomplete Gamma function,

gk(t) = (−1)k
1

2
(k + 1)(k + 2)

∫ t

0

dτ hk(t− τ)τk+1

(
1

(k + 1)!
+

τ

(k + 2)!

)
, (27)

and

hk(t) =
1

k2

{
−e−t+t/k

2

k(1− k)2 + e−t
k
[
k(1 + k)3 − 2k3t

]
√
πt(1 + k)3

}
+

1

k2

[
erf

(√
t

k

)
e−t+t/k

2

(1− k)2
]

× 1

(1 + k)4
e−t+t/(1+k)

2 [
(1 + k)2(k2 − 2) + 2kt

] [
1− erf

( √
t

(k + 1)

)]
. (28)

The exact result in Eqs. (25) and (26) is shown in Fig. 7 and is in good agreement with numerical simulations. Note
that in the case of an equilibrium process one has 〈tm〉(T )/T = 1/2. In Fig. (7), we observe that the ratio 〈tm〉/T is
manifestly different from the constant value 1/2, signaling the nonequilibrium nature of the resetting process. Note
also that the deviation of 〈tm〉/T from the equilibrium value 1/2 has a maximum at some finite value of rT . Thus,
keeping T fixed, there exists an optimal value of the resetting rate r that maximizes the deviation from the equilibrium
result.

C. Run-and-tumble particle in a confining potential

We next consider a single RTP moving in a one-dimensional potential V (x) = α|x|p. The position x(τ) of the
particle evolves according to the stochastic differential equation

dx(τ)

dτ
= −V ′(x) + v0σ(τ) , (29)

where v0 > 0 is the speed of the particle and σ(τ) = ±1 is telegraphic noise, switching sign with constant rate γ. In
reference [86] it has been shown that the nonequilibrium steady state of the system depends on the system parameters
α and p. In this Section, we focus on the special case p = 1 and v0 > α. In this case, the steady-state probability
P±st (x) that the particle is at position x with velocity ±v0 can be written as [86]

P±st (x) =
1

2

(
1± α

v0
sign(x)

)
γ α

v20 − α2
exp

(
− 2γα

v20 − α2
|x|
)
. (30)

Note that
∫∞
−∞ P±st (x) , dx = 1/2. Therefore, in the stationary state, the right movers (the particles with positive

velocity +v0) and the left movers (the particles with positive velocity −v0) occur with equal probability 1/2. We
assume that at the initial time the position x0 of the particle and its velocity v0σ(0) are jointly drawn from the steady
state (30). We find that the distribution of the time tm at which the position of the particle reaches its maximal value
up to time T can be written as [80]

P (tm|T ) = P0(T )δ(tm) + Pbulk(tm|T ) + P1(T )δ(tm − T ) . (31)
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In other words, with finite probability P0(T ) the maximal position occurs at the initial time and similarly with
probability P1(T ) the time of the maximum will be the final time T . These two delta functions in the distribution of
tm are a direct consequence of the persistent nature of the RTP motion. The Laplace transforms with respect to T of
the amplitudes P0(T ) and P1(T ) are given by∫ ∞

0

dT P0(T )e−sT =

∫ ∞
−∞

dx0 P
−
st (x0)Q̃(x0, s) , (32)

and ∫ ∞
0

dT P1(T )e−sT =
∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0) G̃(M, s|x0, σ) , (33)

where Pσst(x0) is given in Eq. (30). Here, Q̃(x0, s) and G̃(M, s|x0,±) denote the Laplace transforms with respect to
T of Q(x0, T ) and G(M,T |x0,±), respectively. The function Q(x0, T ) is defined as the probability that the RTP,
starting from position x0 with negative velocity, remains below its starting position x0 up to time T . Similarly,
G(M,T |x0,±) is the probability that the RTP, starting from position x0 with velocity ±v0, reaches position M > x0
for the first time at time T . The exact expressions of Q̃(x0, s) and G̃(M, s|x0,±) are given below.

The PDF Pbulk(tm|T ) in Eq. (31) describes the probability density of tm when 0 < tm < T . Its double Laplace
transform with respect to t1 = tm and t2 = T − tm can be written as∫ ∞

0

dt1

∫ ∞
0

dt2 Pbulk(tm = t1|T = t1 + t2)e−s1t1−s2t2 = γ
∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0)

∫ ∞
x0

dM G̃(M, s1|x0, σ) Q̃(M, s2) ,

(34)
where Pσst(x0) is given in Eq. (30),

G̃(M, s|x0,+) =



1

v0 + α
e−(k−(s+γ)α)(M−x0)/(v

2
0−α

2) for x0 < 0 ,M < 0

k
e−(α(s+γ)+k)M/(v20−α

2) e(−α(s+γ)+k)x0/(v
2
0−α

2)

v0(k − α(γ + s)) + α(v0(γ + s)− k)e−2kM/(v20−α2)
for x0 < 0 ,M > 0

1

v0 − α
(k − v0(s+ γ))α+ e2kx0/(v

2
0−α

2)v0((s+ γ)α− k)

(k − v0(s+ γ))α+ e2kM/(v20−α2)v0((s+ γ)α− k)

×e(k−α(s+γ))(M−x0)/(v
2
0−α

2) for x0 > 0 ,M > 0 ,

(35)

G̃(M, s|x0,−) =



v0(γ + s)− k
γ(v20 − α2)

e−(k−(s+γ)α)(M−x0)/(v
2
0−α

2) for x0 < 0 ,M < 0

k(v0(γ + s)− k)

γ(v0 − α)

e−(α(s+γ)+k)M/(v20−α
2) e(−α(s+γ)+k)x0/(v

2
0−α

2)

v0(k − α(γ + s)) + α(v0(γ + s)− k)e−2kM/(v20−α2)
for x0 < 0 ,M > 0

v0(s+ γ)− k
γ(v20 − α2)

(k − v0(s+ γ))α+ e2kx0/(v
2
0−α

2)v0((s+ γ)α− k)

(k − v0(s+ γ))α+ e2kM/(v20−α2)v0((s+ γ)α− k)

×e(k−α(s+γ))(M−x0)/(v
2
0−α

2) for x0 > 0 ,M > 0 ,

(36)

and

Q̃(M, s) =



1

s

k + v0s− γα
k + v0(s+ γ)

for M < 0

1

s

1

k + v0(s+ γ)

[
k + v0s+ αγ − 2kγα(v0 − α)

(v0(s+ γ)− k)α+ v0(k − (s+ γ)α)e2kM/(v20−α2)

]
for M > 0 .

(37)
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In the equations above we have defined

k =
√
s2v20 + 2sv20γ + γ2α2 . (38)

From the equations above it is possible to show (e.g. by numerical integration) that P (tm|T ) in Eq. (31) is correctly
normalized to unity. Moreover, for 0 < tm < T one can check that P (tm|T ) = P (T − tm|T ), i.e., that the central part
of the distribution of tm is symmetric around the midpoint tm = T/2. However, it is easy to show that the amplitudes
P0(T ) and P1(T ) of the delta functions in tm = 0 and tm = T are not equal. Thus, the full distribution P (tm|T ), for
0 ≤ tm ≤ T is not symmetric around tm = T/2. This is in agreement with the criterion presented in the main text,
since the process is out-of-equilibrium.

II. MAXIMUM OF A CONFINED BROWNIAN PARTICLE AT LATE TIMES

We consider a Brownian particle in a potential that grows as V (x) ' α|x|p for large |x|, with p > 0. At the initial
time we assume that the particle starts from position x0 and evolves according to the Langevin equation (17) up to
time T . We assume that the initial position x0 is drawn from the equilibrium steady state

Pst(x0) ∝ exp

(
−V (x0)

D

)
. (39)

We want to investigate the distribution of the maximal position M reached by the particle up to time T .
In order to estimate the distribution of M , we will apply the following heuristic argument. For p ≥ 1, we expect

the autocorrelation function to decay as

〈x(τ1)x(τ2)〉 − 〈x(τ1)〉〈x(τ2)〉 ∼ e−|τ1−τ2|/TB . (40)

We thus divide the time interval [0, T ] in NB = T/TB intervals of size TB and we denote by mi the maximal position
reached in the i-th interval. Since the size of the blocks is the correlation time TB , the variables m1 , . . . ,mN can be
considered independent. The global maximum M is given by

M = max
1≤i≤N

[m1 ,m2 , . . . ,mN ] . (41)

Even if we do not know the PDF P (m) of the local maxima mi, we can guess that it will have the same right tail as
the equilibrium distribution in Eq. (39), i.e., that for large m one has

P (m) ∼ exp
(
− α
D

mp
)
. (42)

Thus, one can apply the standard extreme value theory for i.i.d. random variables (see, e.g., Ref. [1]) and one finds
that, for large T

M =

[
D

α
log(T )

]1/p
+O(1) . (43)

In other words, for T � TB , the maximum of the process becomes to leading order deterministic, with subleading
random fluctuations of order one.

III. TIME OF THE MAXIMUM FOR GAUSSIAN STATIONARY PROCESSES

In this section, we show that for any Gaussian stationary process, the distribution P (tm|T ) of the time tm of
the maximum is symmetric around its midpoint tm = T/2, i.e., that P (tm|T ) = P (T − t|T ). Let us consider a
one-dimensional discrete-time Gaussian stationary process xk with 1 ≤ k ≤ T . Note that here we assume that T is
an integer number. The derivation below can be easily generalized to continuous-time processes. For simplicity we
assume that the average value of the process is zero, i.e., that 〈xk〉 = 0 for any k. The probability of observing a
given trajectory {xk} = {x1 , . . . , xT } is given by

P ({xk}) = N exp

−1

2

∑
i,j

xiΣ
−1
i,j xj

 , (44)
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where Σi,j = 〈xixj〉 is the covariance matrix and N is a normalization constant. By definition of Gaussian stationary
process, the covariance Σi,j only depends on |i− j|, thus the expression in Eq. (44) can be rewritten as

P ({xk}) = N exp

−1

2

∑
i,j

xiΣ
−1(|i− j|)xj

 . (45)

Let us now consider the time-reversed trajectory {x̄k} = {xT−k}. The probability of observing the trajectory {x̄k} is
given by

P ({x̄k}) = N exp

−1

2

∑
i,j

xT−iΣ
−1(|i− j|)xT−j

 . (46)

Performing the change of variable (i, j)→ (i′ = T − i, j′ = T − j), we obtain

P ({x̄k}) = N exp

−1

2

∑
i′,j′

xi′Σ
−1(|i′ − j′|)xj′

 . (47)

Comparing this expression with Eq. (45), we finally get

P ({x̄k}) = P ({xk}) . (48)

In other words, the process is symmetric under time reversal. As we have shown in the main text, this implies that
the distribution of tm is symmetric around tm = T/2, i.e., that P (tm|T ) = P (T − tm|T ).

As an example of Gaussian stationary process, we consider a single active Ornstein-Uhlenbeck particle (AOUP) in
a one dimensional harmonic potential V (x) = αx2 [87]. The position x(τ) of the AUOP evolves according to

dx(τ)

dτ
= −αx(τ) + v(τ) +

√
2Dξ(τ) , (49)

where ξ(t) is a Gaussian white noise with zero mean and correlator 〈ξ(τ)ξ(τ ′)〉 = δ(τ − τ ′) and the active noise v(τ)
is a Ornstein-Uhlenbeck process. In other words, v(τ) evolves according to

dv(τ)

dτ
= − v

τa
+

√
2Da

τa
ζ(τ) , (50)

where Da and τa are positive constants and ζ(τ) is a Gaussian white noise, uncorrelated with ξ(τ). Note that τa > 0
can be interpreted as the persistence time of the driving noise v(τ), which induces memory in the evolution of the
position x(τ).

Note that while the evolution of x(τ) is influenced by v(τ), there is no feedback mechanism from x(τ) to v(τ). This
induces a net probability current in the phase space (x, v), which violates detailed balance. Thus, the system is out-
of-equilibrium [88]. However, since Eqs. (49) and (50) are linear, it is clear that x(τ) is a Gaussian stationary process
(if initialized from the stationary state). Thus, from the discussion above the distribution P (tm|T ) of the time tm of
the maximum of the position x(τ) is symmetric around tm = T/2, even if the joint process (x, v) is out-of-equilibrium.
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