
HAL Id: hal-03389776
https://hal.science/hal-03389776v1

Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Speed Scaling with Explorable Uncertainty
Evripidis Bampis, Konstantinos Dogeas, Alexander Kononov, Giorgio

Lucarelli, Fanny Pascual

To cite this version:
Evripidis Bampis, Konstantinos Dogeas, Alexander Kononov, Giorgio Lucarelli, Fanny Pascual.
Speed Scaling with Explorable Uncertainty. 33th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA 2021), ACM, Jul 2021, virtual conference, United States. pp.83-93,
�10.1145/3409964.3461812�. �hal-03389776�

https://hal.science/hal-03389776v1
https://hal.archives-ouvertes.fr

HAL Id: hal-03389776
https://hal.archives-ouvertes.fr/hal-03389776

Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Speed Scaling with Explorable Uncertainty
Evripidis Bampis, Konstantinos Dogeas, Alexander Kononov, Giorgio

Lucarelli, Fanny Pascual

To cite this version:
Evripidis Bampis, Konstantinos Dogeas, Alexander Kononov, Giorgio Lucarelli, Fanny Pascual. Speed
Scaling with Explorable Uncertainty. 33th ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA 2021), ACM, Jul 2021, virtual conference, United States. �10.1145/3409964.3461812�.
�hal-03389776�

https://hal.archives-ouvertes.fr/hal-03389776
https://hal.archives-ouvertes.fr

Speed Scaling with Explorable Uncertainty
Evripidis Bampis

evripidis.bampis@lip6.fr

Sorbonne Université, CNRS, LIP6

Paris, France

Konstantinos Dogeas

konstantinos.dogeas@lip6.fr

Sorbonne Université, CNRS, LIP6

Paris, France

Alexander Kononov

alvenko@math.nsc.ru

Novosibirsk State University

Sobolev Institute of Mathematics

Novosibirsk, Russia

Giorgio Lucarelli

giorgio.lucarelli@univ-lorraine.fr

Université de Lorraine, LCOMS

Metz, France

Fanny Pascual

fanny.pascual@lip6.fr

Sorbonne Université, CNRS, LIP6

Paris, France

ABSTRACT
In this paper, we introduce a model for the speed scaling setting in

the framework of explorable uncertainty. In the model, each job has

a release time, a deadline and an unknown workload that can be

revealed to the algorithm only after executing a query that induces

a given additional job-dependent load. Alternatively, the job may be

executed without any query, but in that case its workload is equal to

a given upper bound. This assumption is motivated for instance in

applications like code optimization, or file compression. We study

the problem of minimizing the overall energy consumption for

executing all the jobs in their time windows. We also consider the

related problem of minimizing the maximum speed used by the

algorithm. We present lower and upper bounds for both the offline

case, where all the jobs are known in advance, and the online

case, where the jobs arrive over time. We start with the single

machine setting and we finally deal with the more general case

where multiple identical parallel machines are available.

CCS CONCEPTS
• Theory of computation → Scheduling algorithms; Online
algorithms; Adversary models.

KEYWORDS
speed scaling, scheduling, explorable uncertainty

ACM Reference Format:
Evripidis Bampis, Konstantinos Dogeas, Alexander Kononov, Giorgio Lu-

carelli, and Fanny Pascual. 2021. Speed Scaling with Explorable Uncertainty.

In Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA ’21), July 6–8, 2021, Virtual Event, USA. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3409964.3461812

1 INTRODUCTION
Speed scaling is a standard and well-known mechanism to handle

energy consumption in computing systems. Given that the char-

acteristics of the jobs may not be known in advance, many works

in speed scaling adopt the frameworks of online optimization [1],

or stochastic optimization [18]. However, in some situations it is

possible to obtain the exact job characteristics at some extra cost.

The operation that allows to obtain the exact value of some part of

the input is called a query. Kahan [24] was the first to formalize this

notion known as explorable uncertainty. He applied this framework

in the context of selection problems. Since then, a series of problems

have been studied (e.g. see the survey [15]). In most of these works,

the aim is the minimization of the number of queries needed to

produce the desired solution. In this paper, we introduce a model for

speed scaling problems, inspired by the model introduced recently

for classical scheduling problem under explorable uncertainty in

[14]. In the model of Dürr et al. [14], the uncertain information

concerns the processing time of each job for which an upper bound

is known in advance. It is possible to learn the exact processing

time by querying at the price of a unit cost. If a job is executed

without a query, then its execution time is equal to its upper bound.

Contrary to the previous approaches, queries are executed directly

on the machine running the jobs and so it is important to balance

the time spent on queries and the time spent on the execution of

jobs. More recently, an extension of this model has been considered

in [4], where the querying times are job-dependent.

In this paper, we propose the study of the following natural

extension of this model in the speed scaling setting: each job has

a release time, a deadline and an unknown workload that can be

revealed to the algorithm only after executing a query that induces

a given additional job-dependent load. Alternatively, the job may be

executed without any query, but in that case its workload is equal to

a given upper bound. This assumption is motivated by the fact that

a query could correspond to a code optimizer as mentioned in [14].

In that case, the code optimizer needs some workload to process

the job and potentially reduces its workload. The upper bound on

the workload of a job corresponds to the workload of the job when

the code optimizer is not executed. Another possible application

for this assumption is file compression. The minimization objective

is the overall energy consumption for executing all the jobs in their

time windows (between their release dates and deadlines). We also

https://doi.org/10.1145/3409964.3461812

consider the related problem of minimizing the maximum speed

used by the algorithm.

Formulation of the problem. In the speed scaling model [27], the

speed of a machine can be modified by the scheduler in order

to save energy. Specifically, higher speed corresponds to better

performance, but higher energy consumption. To quantify this, we

assume that if the machine at a time 𝑡 runs at speed 𝑠 (𝑡), then
the power needed is 𝑃 (𝑠 (𝑡)). In integrated systems produced by

the standard CMOS technology, the power can theoretically be

described as 𝑃 (𝑠 (𝑡)) = 𝑠 (𝑡)3
, but in practice this exponent varies for

different architectures. In this paper, we study the more general case

where the power is described by the function 𝑃 (𝑠 (𝑡)) = 𝑠 (𝑡)𝛼 , where
𝛼 > 1 is considered to be constant. Then, the energy consumption

is computed as 𝐸 =
∫
𝑃 (𝑠 (𝑡))𝑑𝑡 .

In the classical speed scaling setting, each job 𝑗 is characterized

by a triple (𝑟 𝑗 , 𝑑 𝑗 ,𝑤 𝑗), which represents the release time, the dead-
line and the workload of the job respectively. The workload of 𝑗

should be entirely executed in the interval (𝑟 𝑗 , 𝑑 𝑗] which is called

its active interval. In this paper, we augment this framework by

introducing an uncertainty on the workload of the jobs. Here, the

workload,𝑤 𝑗 , is an upper bound rather than an exact value on the

actual work needed for the completion of a job. The exact load,
𝑤∗
𝑗
⩽ 𝑤 𝑗 , can be revealed to the algorithm only after executing a

query of additional load 𝑐 𝑗 ∈ (0,𝑤 𝑗]. Hence, in our setting, each job

is characterized by a quintuple (𝑟 𝑗 , 𝑑 𝑗 , 𝑐 𝑗 ,𝑤 𝑗 ,𝑤∗
𝑗
), where𝑤∗

𝑗
is not

known before the end of the potential execution of the query. Note

that, in the case where the query is not executed, the scheduler is

obliged to execute the upper bound of the workload𝑤 𝑗 .

We call the above enhanced model as Query-Based Speed-Scaling
model (QBSS). The QBSS model is online by nature, since the value

of𝑤∗
𝑗
for each job 𝑗 is revealed only after the potential execution

of the query 𝑐 𝑗 . However, we distinguish between the offline and
the online versions with respect to the classical scheduling setting.

In the offline version, the entire input is known in advance, i.e., the

total number of jobs to be scheduled, as well as their characteris-

tics, except for the exact loads𝑤∗
𝑗
. In the online version, the input

becomes available to the algorithm over time: at time 𝑡 = 𝑟 𝑗 , a new

job 𝑗 and its characteristics are revealed, except again for its exact

load𝑤∗
𝑗
. In other words, the algorithm does not know in advance

how many jobs it has to schedule, at which time they will arrive or

what are their characteristics. In both cases, if the exact load of a

job 𝑗 becomes known at the same time as its other characteristics,

then the QBSS model reduces to the classical speed scaling setting,

since the scheduler can simply decide whether to make the query

for 𝑗 or not based on the value of min{𝑤 𝑗 , 𝑐 𝑗 +𝑤∗
𝑗
}.

Our contribution and organisation of the paper. In this paper,

we study an enhanced speed scaling setting (called QBSS), where
queries can be optionally executed in the system in order to reveal a

more accurate value of the workload of jobs. The main objective is

the energy minimization, while the maximum speed minimization

is also studied.

There are two additional questions to answer for each job 𝑗 in

the QBSS model: whether the query will be done or not, and, if yes,

how to partition the active interval of the job among the execution

of its query and its exact load. Both decisions have a crucial impact

on the speeds and on the consumed energy. For the first question,

doing always the query leads to constant approximation algorithms,

whereas never doing it leads to unbounded ratios (Section 4.1).

However, in most cases a better decision can be made by comparing

the values of 𝑐 𝑗 and
𝑤𝑗

𝜙
, where 𝜙 ≈ 1, 6180 is the golden ratio.

Note that the optimal algorithm has complete knowledge of the

instance, including the exact loads. Hence, it can take this decision

by comparing𝑤 𝑗 and 𝑐 𝑗 +𝑤∗
𝑗
. For the second question, the algorithm

has to determine a splitting point 𝜏 𝑗 = 𝑟 𝑗 +𝑥 (𝑑 𝑗 −𝑟 𝑗), with 0 < 𝑥 < 1

so as 𝜏 𝑗 ∈ (𝑟 𝑗 , 𝑑 𝑗), indicating the latest time at which the query has

to finish execution and the earliest time at which the exact work of

𝑗 may start its execution.

We introduce the notion of equal window algorithms according to
which the active interval of a job is split in two equal sub-intervals:

the query is executed in the first half, and the exact work in the

second half. This is motivated by an instance consisting of a single

job, where a different splitting leads to stronger lower bounds (see

Lemma 4.3). A further discussion, as well as several lower bounds for

the offline version of our model when a single machine is available

are given in Section 4.1, where the use of randomization or oracles

that answers optimally to one of the questions above are explored.

Subsequently in Section 4, we consider the offline case where all

jobs have a common release date and we present a series of results

based on different assumptions on the deadlines. Specifically, if all

jobs have a common deadline, we propose in Section 4.2 the algo-

rithm CRCDwhich achieves a 2-approximation ratio with respect to

maximum speed and a min{2
𝛼−1𝜙𝛼 , 2𝛼 }-approximation ratio with

respect to energy. A better analysis is also given for special values

of 𝛼 . In Section 4.3, we consider the case where all deadlines are

powers of two and we propose a (4𝜙)𝛼 -approximation algorithm

(CRP2D) with respect to energy. In Section 4.4, we extend the previ-

ous result for arbitrary deadlines and we obtain an approximation

ratio of (8𝜙)𝛼 (algorithm CRAD) by rounding down the deadlines

of the instance to the closest power of two.

In Section 5 we consider the online case, and we adapt the well-

known AVR and BKP online algorithms for the classical speed

scaling setting to the QBSS model. The competitive ratio of our

algorithms (AVRQ and BKPQ) has an additional multiplicative factor

with respect to their version in the classical setting: a factor of 2
𝛼

for AVRQ in which the query is made for all jobs, and a factor of

(2 + 𝜙)𝛼 for BKPQ in which the query is decided based on the

golden ratio. Note that, BKPQ is also (2 + 𝜙)𝑒-competitive with

respect to maximum speed. Finally, in Section 6 we study the QBSS
model on parallel identical machines and we propose a modification

of the algorithm AVR(𝑚), which turns out to be 2
𝛼 (2𝛼−1𝛼𝛼 + 1)-

competitive with respect to energy.

In Section 2, we describe the related works with respect to the

speed scaling setting as well as the query optimisation model. In

Section 3, we present our notation and some preliminary results.

We conclude in Section 7. Our results are summarized in Table 1.

2 RELATEDWORK
Speed scaling. Since the seminal paper of Yao et al. [27], in 1995,

which introduced the speed scaling mechanism to reduce the con-

sumption of CPU energy, a series of papers, e.g. [2, 3, 5, 6, 9–13, 21],

and surveys, e.g. [1, 8, 19], have been appeared. In [27], each job has

Table 1: Summary of our results

Energy

Lower Bound Upper Bound

O
ffl
i
n
e

Oracle 𝜙𝛼 -

CRCD

max{𝜙𝛼 , 2𝛼−1}
min{2𝛼−1𝜙𝛼 , 2𝛼 }

CRP2D (4𝜙)𝛼
CRAD (8𝜙)𝛼

O
n
l
i
n
e AVRQ (2𝛼)𝛼 2

𝛼
2
𝛼−1𝛼𝛼

BKPQ 3
𝛼−1 (2 + 𝜙)𝛼2(𝛼

𝛼−1
)𝛼𝑒𝛼

AVRQ(m) (2𝛼)𝛼 2
𝛼 (2𝛼−1𝛼𝛼 + 1)

to be executed preemptively between its arrival time and deadline

by a single variable-speed processor. An off-line algorithm (YDS)

that is optimal with respect to energy is proposed, while two online

algorithms are described for the same problem. Firstly, the Aver-

age Rate heuristic (AVR) is shown to have a constant competitive

ratio, i.e., 2
𝛼−1𝛼𝛼 , for any power function with 𝛼 ⩾ 2. A lower

bound of 𝛼𝛼 is stated but not proved in this paper. Bansal et al. [12]

showed that this competitive ratio is essentially tight. They provide

a nearly matching lower bound of
((2−𝛿)𝛼)𝛼

2
, where 𝛿 is a function

of 𝛼 that approaches zero as 𝛼 approaches infinity. Secondly, the

Optimal Available (OA) heuristic is introduced but not analysed in

the original work [27]. Bansal et al. [13] gave a tight 𝛼𝛼 bound on

the competitive ratio of OA with respect to energy. Furthermore,

they propose a new online algorithm (BKP) that is 𝑒-competitive

with respect to maximum speed, and 2

(
𝛼
𝛼−1

)𝛼
𝑒𝛼 -competitive with

respect to energy, which is lower than the ratio of OA for any 𝛼 ⩾ 5.

They also show that no deterministic online algorithm can have a

better competitive ratio with respect to maximum speed.

Albers et al. [2] study the same problem of dynamic speed scaling

but in multi-processor environments with𝑚 parallel variable-speed

processors, assuming that job migration is allowed at no cost. They

begin by solving optimally the offline version of the problem. Mov-

ing to the online version, they extend the two algorithms proposed

by Yao et al. [27] into OA(𝑚) and AVR(𝑚) for the multiple ma-

chines. They show that OA(𝑚) is 𝛼𝛼 -competitive and that AVR(𝑚)
achieves a competitive ratio of 2

𝛼−1𝛼𝛼 + 1.

Explorable uncertainty. Kahan [24] was the first to introduce the

notion of explorable uncertainty studying some selection problems.

Since then, many other problems have been studied in this frame-

work. For instance, in [17, 22, 24], the problem of finding the 𝑘-th

smallest value in a set of uncertainty intervals has been studied.

In [26], caching problems in distributed databases have been stud-

ied. Other problems that have been studied include, the shortest

path problem [16], the knapsack problem [20] and the minimum

spanning tree problem [23, 25]. The goal in most of these works is

the minimization of the number of queries to guarantee an exact

optimum solution. In [26], the trade-off between the number of

queries and the precision of the returned solution has been studied.

More close to our work are the works on scheduling under ex-

plorable uncertainty [4, 7, 14]. In [14], the authors consider the

problem of scheduling jobs on a single machine when the cost of

each query/test is unitary. The authors propose lower and upper

bounds on the competitive ratio for deterministic and random-

ized algorithms. They also consider the problem of minimizing the

makespan for which they propose optimal deterministic and ran-

domized online algorithms. In [4], the authors extend the problem

to non-uniform testing times and they present new competitive

algorithms for different variants of the problem. In [7], a single-

machine scheduling problem is considered, where given a set of 𝑛

unit-time jobs, and a set of 𝑘 unit-time errors, the objective is to

reveal 𝑛 error-free timeslots with the minimum number of queries.

The authors present both lower bounds and asymptotically tight

upper bounds for different variants of the problem.

3 NOTATIONS AND PRELIMINARIES
We consider a set of 𝑛 jobs J which should be executed on a single

machine or on a set of 𝑚 parallel machines M. Each job 𝑗 ∈ J
is characterized by a quintuple (𝑟 𝑗 , 𝑑 𝑗 , 𝑐 𝑗 ,𝑤 𝑗 ,𝑤∗

𝑗
). The scheduler

should decide if the initial workload 𝑤 𝑗 will be executed, or if a

query of load 𝑐 𝑗 ∈ (0,𝑤 𝑗] will first run in order to reveal the exact

(compressed) load𝑤∗
𝑗
⩽ 𝑤 𝑗 , which will be executed afterwards. In

any case, the whole execution of the job 𝑗 should be done during

its active interval (𝑟 𝑗 , 𝑑 𝑗]. We assume that the preemption of the

execution of jobs is permitted, while each machine can execute at

most one job at each time. We consider two objectives: the min-

imization of the maximum speed used, and the minimization of

the total energy consumption with respect to the speed scaling

mechanism. Then, our goal is to find a feasible preemptive schedule

that optimizes one of these objectives.

For a job 𝑗 ∈ J , we denote by 𝑝 𝑗 the amount of work an algo-

rithm chooses to execute, i.e., 𝑝 𝑗 = 𝑐 𝑗 +𝑤∗
𝑗
if the query is executed,

otherwise 𝑝 𝑗 = 𝑤 𝑗 . Let 𝑝
∗
𝑗
= min{𝑤 𝑗 , 𝑐 𝑗 +𝑤∗

𝑗
} be the load executed

by the optimal algorithm for 𝑗 . The following lemma describes the

relation between the load 𝑝∗
𝑗
executed by the optimal solution and

the load 𝑝 𝑗 executed by an algorithm which decides the execution

of the query based on the relation of the quantities 𝑐 𝑗 and
𝑤𝑗

𝜙
, where

𝜙 is the golden ratio, i.e., 𝜙 ≈ 1, 6180.

Lemma 3.1. Consider an algorithm which decides to make the
query for a job 𝑗 ∈ J only if 𝑐 𝑗 ⩽

𝑤𝑗

𝜙
. Then, we have 𝑝 𝑗 ⩽ 𝜙𝑝∗

𝑗
.

In the classical speed scaling setting without uncertainty, the

instance can be described as a set of jobs, each one characterized

by the triple (𝑟 𝑗 , 𝑑 𝑗 ,𝑤 𝑗). Let 𝛿 𝑗 =
𝑤𝑗

𝑑 𝑗−𝑟 𝑗 be the density of the job 𝑗 .

The density is an important ingredient in most of the algorithms

proposed for this setting as it is related with the speed. Note that

the optimal offline solution for the QBSS model coincides with the

optimal offline solution in the classical speed scaling setting by

using a job (𝑟 𝑗 , 𝑑 𝑗 , 𝑝∗𝑗) for each job 𝑗 ∈ J .

Due to space limitations, some proofs are omitted.

4 OFFLINE
4.1 Lower Bounds
In this section, we will compare the performance of an algorithm

in the QBSS offline model, i.e an algorithm which does not know

the values𝑤∗
𝑗
, to an optimal algorithm, which knows these values.

Our aim is to give lower bounds on the approximation ratio of any

algorithm in our setting, for the two objectives that we consider,

the minimization of the maximum speed, and the minimization of

the total energy. All our results hold for both the single machine

case and the multiple machines case, since they will only need to

consider a single task. Before introducing our results, let us define

a new setting, specifically for instances with one job, which we call

the oracle model.
Recall that 𝑥 , 0 < 𝑥 < 1, is the fraction of the window (𝑟 𝑗 , 𝑑 𝑗]

in which the query is executed. In other words, in the case where

we decide to make the query, then this will be executed in (𝑟 𝑗 , 𝑟 𝑗 +
𝑥 (𝑑 𝑗 − 𝑟 𝑗)], while the exact work 𝑤∗

𝑗
will be executed in (𝑟 𝑗 +

𝑥 (𝑑 𝑗 − 𝑟 𝑗), 𝑑 𝑗]. In the oracle model, we suppose the existence of

an oracle that can give us the best value of 𝑥 for the single job of

the instance. Therefore, in this model the algorithm needs to take

only one decision, i.e. to make or not the query for the job (if the

decision is to make the query, the oracle will dictate where to split

the window).

Note that the existence of such an oracle is highly improbable,

because it translates to knowing the exact load𝑤∗
𝑗
of the job upon

its arrival, which conflicts with the setup of our model. The oracle

model is however interesting to give lower bounds on the approxi-

mation ratio of an algorithm in our setting for two reasons. Firstly,

a lower bound on the approximation ratio with the oracle model

helps us to better understand the difficulty of our problem. It allows

us to see whether the difficulty of a problem is due to the fact that

we don’t know if it is worthy to do the query or not, or due to the

fact that, once we have chosen to do a query, we don’t know the

exact load 𝑤∗
𝑗
before the query has been completed. Of course, a

lower bound in the oracle model is also valid in the general model.

Secondly, in the following lemmas we mainly create instances of

a single task. In the oracle model, once it has been decided that

the query will be done, the speed to execute this task will be con-

stant during its whole interval, since this choice minimizes both the

maximal speed and the energy due to the convexity of the power

function.

Lemma 4.1. Any algorithm which never makes the query, can be
arbitrarily bad with respect to maximum speed and to energy.

Proof. We consider an instance consisting of a single job 𝑗 for

which 𝑟 𝑗 = 0, 𝑑 𝑗 = 1, 𝑐 𝑗 = 𝜀𝑤 𝑗 , and 𝑤
∗
𝑗
= 𝜀𝑤 𝑗 , with 𝜀 < 1 a small

positive constant. If the algorithm does not execute the query, then

it uses speed 𝑠 =
𝑤𝑗

𝑑 𝑗−𝑟 𝑗 , whereas the speed used by an optimal

algorithm is 𝑠∗ =
𝑝∗𝑗

𝑑 𝑗−𝑟 𝑗 =
𝑐 𝑗+𝑤∗

𝑗

𝑑 𝑗−𝑟 𝑗 . Concerning the maximum speed,

the ratio of such an algorithm is
𝑠
𝑠∗ =

𝑤𝑗

𝑐 𝑗+𝑤∗
𝑗
= 1

2𝜀 , which can

be arbitrarily large. Since the speed is constant during the whole

interval of size 1, we get that the energy used by the algorithm is

𝐸 = 𝑠𝛼 , while the optimal energy is 𝐸∗ = (𝑠∗)𝛼 . The approximation

ratio of the algorithm, concerning energy, is thus at least
𝐸
𝐸∗ =

(𝑠𝑠∗)
𝛼 = (1

2𝜀)
𝛼
, which can be arbitrarily large. □

Lemma 4.2. For any 𝜖 > 0, there is no deterministic (𝜙 − 𝜖)-
approximate algorithm with respect to maximum speed, even in the
oracle model. Likewise, there is no (𝜙𝛼 − 𝜀)-approximate algorithm
with respect to the energy, even in the oracle model. Here 𝜙 ≈ 1, 6180

is the golden ratio.

Lemma 4.3. For any 𝜖 > 0, there is no deterministic (2 − 𝜖)-
approximation algorithm with respect to maximum speed. Moreover,

there is no deterministic (2𝛼−1 − 𝜖)-approximation algorithm with
respect to energy.

Proof. We consider an instance consisting of a single job active

in the interval (𝑟 𝑗 , 𝑑 𝑗], for which 𝑐 𝑗 = 1 and 𝑤 𝑗 = 2. Let A be a

deterministic algorithm. In the case where A does not make the

query, then its speed will be constant during the whole interval and

we have that 𝑠 =
𝑤𝑗

𝑑 𝑗−𝑟 𝑗 = 2

𝑑 𝑗−𝑟 𝑗 . In this case the adversary will set

𝑤∗
𝑗
= 0. Therefore, for the speed of an optimal algorithm we have

𝑠∗ =
𝑐 𝑗

𝑑 𝑗−𝑟 𝑗 = 1

𝑑 𝑗−𝑟 𝑗 . The approximation ratio of A with respect to

maximum speed is at least 2, while with respect to energy is at least

2
𝛼
.

Let us now consider the case where A makes the query. Recall

that the query is executed in (𝑟 𝑗 , 𝑟 𝑗 +𝑥 (𝑑 𝑗 −𝑟 𝑗)] and the exact work
in (𝑟 𝑗 + 𝑥 (𝑑 𝑗 − 𝑟 𝑗), 𝑑 𝑗]. Thus, the speed of A during the whole first

interval is 𝑠1 =
𝑐 𝑗

𝑥 (𝑑 𝑗−𝑟 𝑗) , while during the whole second interval

is 𝑠2 =
𝑤∗

𝑗

(1−𝑥) (𝑑 𝑗−𝑟 𝑗) . We have two sub-cases with respect to 𝑥 . If

𝑥 ∈
(
0, 1

2

]
, then the adversary will set𝑤∗

𝑗
= 0, and hence the speed

of an optimal algorithm 𝑠∗ =
𝑐 𝑗

𝑑 𝑗−𝑟 𝑗 will be constant for the whole

interval, while 𝑠1 ⩾
2𝑐 𝑗

(𝑑 𝑗−𝑟 𝑗) . In this case, the approximation ratio

of A with respect to maximum speed is at least
𝑠1

𝑠∗ ⩾ 2, while with

respect to energy is at least
𝐸
𝐸∗ =

𝑥 (𝑑 𝑗−𝑟 𝑗)𝑠𝛼
1

(𝑑 𝑗−𝑟 𝑗) (𝑠∗)𝛼 =
𝑥

(
𝑐 𝑗

𝑥 (𝑑𝑗 −𝑟 𝑗)

)𝛼
(𝑐 𝑗

𝑑𝑗 −𝑟 𝑗
)𝛼

=

𝑥1−𝛼 ⩾ 2
𝛼−1

. If 𝑥 ∈
[

1

2
, 1

)
, then the adversary will set 𝑤∗

𝑗
= 𝑤 𝑗

having 𝑠∗ =
𝑤𝑗

𝑑 𝑗−𝑟 𝑗 . Then the maximum speed used by A is 𝑠 ⩾

max {𝑠1, 𝑠2} ⩾ 𝑠2 ⩾
𝑤𝑗

(1−𝑥) (𝑑 𝑗−𝑟 𝑗) ⩾
𝑤𝑗

𝑑𝑗 −𝑟 𝑗
2

=
2𝑤𝑗

𝑑 𝑗−𝑟 𝑗 . In this case, the

approximation ratio of A with respect to maximum speed is at

least
𝑠2

𝑠∗ = 1

1−𝑥 ⩾ 2, while with respect to energy is at least
𝐸
𝐸∗ =

(1−𝑥) (𝑑 𝑗−𝑟 𝑗)𝑠𝛼
2

(𝑑 𝑗−𝑟 𝑗) (𝑠∗)𝛼 =
(1−𝑥)

(
𝑤𝑗

(1−𝑥) (𝑑𝑗 −𝑟 𝑗)

)𝛼(
𝑤𝑗

𝑑𝑗 −𝑟 𝑗

)𝛼 = (1 − 𝑥)1−𝛼 ⩾ 2
𝛼−1

. □

The next lemma deals with randomized algorithms. We consider

that for a given instance 𝐼 , a randomized algorithm makes the

query with a probability 𝜌𝐼 , and does not make it with probability

1 − 𝜌𝐼 . The approximation ratio of a randomized algorithm is the

maximum value, over all instances, of the expected value of the

objective function (energy or maximum speed) of the algorithm

over the value of an optimal solution. We focus in this paper on

deterministic algorithms, but it is worth noticing that the problem

is also difficult, even with a randomized algorithm, and even in

the oracle model. As in the previous proofs, we will use a proof

with a single task: the algorithm will only have to choose with

which probability it will do the query (if the query is done then

the window is divided into two parts optimally, so that the speed is

constant during the whole interval).

Lemma 4.4. For any 𝜖 > 0, there is no (4/3 − 𝜖)-approximate
randomized algorithm with respect to maximum speed, even in the

oracle model. Likewise, there is no
(

1

2
(1 + 𝜙𝛼) − 𝜀

)
-approximate ran-

domized algorithm with respect to energy, even in the oracle model.

Algorithm 1: CRCD

1 for each job 𝑗 ∈ J do
2 if 𝑗 ∈ 𝐵, i.e., 𝑐 𝑗 ⩽

𝑤𝑗

𝜙
then

3 Add (0, 𝐷
2
, 𝑐 𝑗) in set Q;

4 if 𝑗 ∈ 𝐴, i.e., 𝑐 𝑗 >
𝑤𝑗

𝜙
then

5 Add (0, 𝐷
2
,
𝑤𝑗

2
) in setW1;

6 Schedule the jobs in Q ∪W1 in an arbitrary order during

the interval

(
0, 𝐷

2

]
using speed 𝑠 (𝑡) = ∑

𝑗 ∈Q∪W1
𝛿 𝑗 ;

7 // At time
𝐷
2
all queries are done;

8 for each job 𝑗 ∈ J do
9 if 𝑗 ∈ 𝐵 then
10 Add (𝐷

2
, 𝐷,𝑤∗

𝑗
) in setW∗

;

11 if 𝑗 ∈ 𝐴 then
12 Add (𝐷

2
, 𝐷,

𝑤𝑗

2
) in setW2;

13 Schedule the jobs in W∗ ∪W2 in an arbitrary order during

the interval

(
𝐷
2
, 𝐷

]
using speed 𝑠 (𝑡) = ∑

𝑗 ∈W∗∪W2
𝛿 𝑗 ;

Lemma 4.5. The competitive ratio of an equal window algorithm
is at least 3 with respect to the maximum speed, and at least 3

𝛼−1

with respect to energy.

Note that this last result holds even if we restrict to instances

where the optimal algorithm always does the query (since in the

example of the proof above both the equal window algorithm and

the optimal algorithm always do the query). This shows that, even

if an oracle would tell us whether the query should be done or not,

the difficulty of splitting the window for each job (query, real work)

is significant.

4.2 Common Release, Common Deadline
In this section, we consider that all jobs are released at time 0, and

they have to finish execution at time 𝐷 . We present Algorithm 1

which is an approximation algorithmwith respect to bothmaximum

speed and energy. For each job of our instance, the algorithm creates

two jobs of the classical speed scaling setting. In order to do this,

it first partitions the jobs into two subsets 𝐴 and 𝐵, where 𝐴 and

𝐵 are defined as follows: 𝐴 = { 𝑗 ∈ J : 𝑐 𝑗 >
𝑤𝑗

𝜙
} and 𝐵 = { 𝑗 ∈ J :

𝑐 𝑗 ⩽
𝑤𝑗

𝜙
}. By construction, we have that 𝐴 ∪ 𝐵 = J and 𝐴 ∩ 𝐵 = ∅.

For the jobs in 𝐴 the algorithm chooses to execute their initial

workload without doing a query. Specifically, for each job 𝑗 ∈ 𝐴, it

creates two jobs 𝑗1 and 𝑗2 with half the initial workload to be sched-

uled in the first half and the second half of the initial interval respec-

tively: (𝑟 𝑗1 , 𝑑 𝑗1 ,𝑤 𝑗1) = (0, 𝐷
2
,
𝑤𝑗

2
) and (𝑟 𝑗2 , 𝑑 𝑗2 ,𝑤 𝑗2) = (𝐷

2
, 𝐷,

𝑤𝑗

2
).

On the other hand, for the jobs in 𝐵 the algorithm chooses to make

the query and hence the exact load of these jobs is revealed once

the execution of their query is finished. Specifically, for each job

𝑗 ∈ 𝐵, it creates at time 0 the job (0, 𝐷
2
, 𝑐 𝑗) to be scheduled in the

first half of the initial interval. At the end of this first half-interval,

the exact load𝑤∗
𝑗
of 𝑗 is known, and hence the algorithm creates

the job (𝐷
2
, 𝐷,𝑤∗

𝑗
) to be scheduled in the second half-interval.

Theorem 4.6. Algorithm 1 achieves an approximation ratio of 2
with respect to maximum speed and of min{2

𝛼−1𝜙𝛼 , 2𝛼 } with respect
to energy.

Proof. The optimal solution for this problem is computed by

using the offline optimal YDS algorithm [27]. Since all jobs are active

during the same interval (0, 𝐷], the speed during the whole interval
is constant and equal to the sum of densities of all jobs. In an optimal

solution, the load for each job 𝑗 ∈ J is 𝑝∗
𝑗
= min{𝑤 𝑗 , 𝑐 𝑗 +𝑤∗

𝑗
}, and

hence its density is 𝛿∗
𝑗
=

min{𝑤𝑗 ,𝑐 𝑗+𝑤∗
𝑗 }

𝐷
=
𝑝∗𝑗
𝐷
. Then, the speed at

each time 𝑡 is 𝑠∗ = 𝑠∗ (𝑡) = ∑
𝑗 ∈J

𝑝∗𝑗
𝐷

and the total energy consumed

by the optimal solution is

𝐸∗ =
∫ 𝐷

0

(
𝑠∗ (𝑡)

)𝛼
𝑑𝑡 = 𝐷

(∑
𝑗

𝑝∗𝑗
𝐷

)𝛼
Algorithm 1 produces a schedule which uses two distinct speeds

𝑠1 and 𝑠2 in the time intervals (0, 𝐷
2
] and (𝐷

2
, 𝐷] respectively. For

these speeds we have

𝑠1 =
∑

𝑗 ∈Q∪W1

𝛿 𝑗 =
∑
𝑗 ∈W1

𝑤𝑗

2

𝐷
2
− 0

+
∑
𝑗 ∈Q

𝑐 𝑗
𝐷
2
− 0

=
∑
𝑗 ∈𝐴

𝑤 𝑗

𝐷
+
∑
𝑗 ∈𝐵

2𝑐 𝑗

𝐷
⩽

∑
𝑗 ∈𝐴

𝜙𝑝∗
𝑗

𝐷
+
∑
𝑗 ∈𝐵

2𝑝∗
𝑗

𝐷
⩽ 2

∑
𝑗 ∈J

𝑝∗
𝑗

𝐷
= 2𝑠∗

and

𝑠2 =
∑

𝑗 ∈W∗∪W2

𝛿 𝑗 =
∑
𝑗 ∈W2

𝑤𝑗

2

𝐷 − 𝐷
2

+
∑
𝑗 ∈W∗

𝑤∗
𝑗

𝐷 − 𝐷
2

=
∑
𝑗 ∈𝐴

𝑤 𝑗

𝐷
+
∑
𝑗 ∈𝐵

2𝑤∗
𝑗

𝐷
⩽

∑
𝑗 ∈𝐴

𝜙𝑝∗
𝑗

𝐷
+
∑
𝑗 ∈𝐵

2𝑝∗
𝑗

𝐷
⩽ 2

∑
𝑗 ∈J

𝑝∗
𝑗

𝐷
= 2𝑠∗

where the first inequality in both cases holds by Lemma 3.1, 𝑐 𝑗 ⩽
min{𝑐 𝑗 + 𝑤∗

𝑗
,𝑤 𝑗 } = 𝑝∗

𝑗
and 𝑤∗

𝑗
⩽ min{𝑐 𝑗 + 𝑤∗

𝑗
,𝑤 𝑗 } = 𝑝∗

𝑗
. Hence,

Algorithm 1 is 2-approximation with respect to maximum speed.

For the energy consumption of our algorithm we have:

𝐸𝐼 =

∫ 𝐷
2

0

𝑠𝛼
1
𝑑𝑡 +

∫ 𝐷

𝐷
2

𝑠𝛼
2
𝑑𝑡

=
𝐷

2

(∑
𝑗 ∈𝐴

𝑤𝑗

𝐷
+∑

𝑗 ∈𝐵
2𝑐 𝑗
𝐷

)𝛼
+ 𝐷

2

(∑
𝑗 ∈𝐴

𝑤𝑗

𝐷
+∑

𝑗 ∈𝐵
2𝑤∗

𝑗

𝐷

)𝛼
We can now bound the total energy consumption of Algorithm 1.

We use two different approaches. In the first approach, we apply

the property 𝑥𝛼 + 𝑦𝛼 ⩽ (𝑥 + 𝑦)𝛼 . Specifically, we have

𝐸 ⩽
𝐷

2

(∑
𝑗 ∈𝐴

𝑤𝑗

𝐷
+∑

𝑗 ∈𝐵
2𝑐 𝑗
𝐷

+∑
𝑗 ∈𝐴

𝑤𝑗

𝐷
+∑

𝑗 ∈𝐵
2𝑤∗

𝑗

𝐷

)𝛼
=
𝐷

2

(∑
𝑗 ∈𝐴

2𝑤𝑗

𝐷
+∑

𝑗 ∈𝐵
2𝑐 𝑗+2𝑤∗

𝑗

𝐷

)𝛼
= 2

𝛼−1𝐷

(∑
𝑗 ∈𝐴

𝑝 𝑗
𝐷

+∑
𝑗 ∈𝐵

𝑝 𝑗
𝐷

)𝛼
⩽ 2

𝛼−1𝐷

(∑
𝑗 ∈𝐴

𝜙𝑝∗𝑗
𝐷

+∑
𝑗 ∈𝐵

𝜙𝑝∗𝑗
𝐷

)𝛼
= 2

𝛼−1𝜙𝛼𝐷

(∑
𝑗

𝑝∗𝑗
𝐷

)𝛼
= 2

𝛼−1𝜙𝛼𝐸∗

where the second inequality holds by Lemma 3.1.

In the second approach, we bound the energy of the entire in-

terval by twice the maximum energy consumed in one of the two

half-intervals. Hence, we have

𝐸 ⩽ 2 · max

𝐷

2

©«
∑
𝑗 ∈𝐴

𝑤 𝑗

𝐷
+
∑
𝑗 ∈𝐵

2𝑐 𝑗

𝐷

ª®¬
𝛼

,
𝐷

2

©«
∑
𝑗 ∈𝐴

𝑤 𝑗

𝐷
+
∑
𝑗 ∈𝐵

2𝑤∗
𝑗

𝐷

ª®¬
𝛼

= 𝐷 max

©«
∑
𝑗 ∈𝐴

𝑝 𝑗

𝐷
+
∑
𝑗 ∈𝐵

2𝑐 𝑗

𝐷

ª®¬
𝛼

,
©«
∑
𝑗 ∈𝐴

𝑝 𝑗

𝐷
+
∑
𝑗 ∈𝐵

2𝑤∗
𝑗

𝐷

ª®¬
𝛼

⩽ 𝐷 max

©«
∑
𝑗 ∈𝐴

𝜙𝑝∗
𝑗

𝐷
+
∑
𝑗 ∈𝐵

2𝑝∗
𝑗

𝐷

ª®¬
𝛼

,
©«
∑
𝑗 ∈𝐴

𝜙𝑝∗
𝑗

𝐷
+
∑
𝑗 ∈𝐵

2𝑝∗
𝑗

𝐷

ª®¬
𝛼

= 𝐷
©«
∑
𝑗 ∈𝐴

𝜙𝑝∗
𝑗

𝐷
+
∑
𝑗 ∈𝐵

2𝑝∗
𝑗

𝐷

ª®¬
𝛼

⩽ 2
𝛼𝐷

©«
∑
𝑗

𝑝∗
𝑗

𝐷

ª®¬
𝛼

= 2
𝛼𝐸∗

where the second inequality holds using Lemma 3.1 and the facts

that 𝑐 𝑗 ⩽ min{𝑤 𝑗 , 𝑐 𝑗 +𝑤∗
𝑗
} = 𝑝∗

𝑗
and𝑤∗

𝑗
⩽ min{𝑤 𝑗 , 𝑐 𝑗 +𝑤∗

𝑗
} = 𝑝∗

𝑗
.

The third inequality holds since 𝜙 < 2. □

In what follows in this section, we give a more tight analysis of

Algorithm 1 for special values of 𝛼 based on the following lemma.

Lemma 4.7. Let 𝛼 ⩾ 2 and 𝑥 ⩾ 𝑦. Then (𝑥 + 𝑦)𝛼 ⩾ 𝑥𝛼 + 𝑦𝛼 +
𝛼𝑥𝛼−1𝑦.

Theorem 4.8. If 𝛼 ⩾ 2, then Algorithm 1 achieves a competitive
ratio of max𝑟⩾1 {min {𝑓1 (𝑟), 𝑓2 (𝑟)}} with respect to energy, where

𝑓1 (𝑟) = 2
𝛼−1

(
1 + 1

𝑟𝛼

)
, 𝑓2 (𝑟) = 2

𝛼−1𝜙𝛼
[
1 − 𝛼𝑟𝛼−1

(𝑟+1)𝛼
]
and 𝑟 = 𝑥

𝑦 ,

where 𝑥 =
∑
𝑗 ∈𝐴

𝑤𝑗

𝐷
+∑

𝑗 ∈𝐵
2𝑐 𝑗
𝐷

and 𝑦 =
∑
𝑗 ∈𝐴

𝑤𝑗

𝐷
+∑

𝑗 ∈𝐵
2𝑤∗

𝑗

𝐷
.

In general, comparing the three ratios 𝜌1 = 2
𝛼−1𝜙𝛼 , 𝜌2 = 2

𝛼

and 𝜌3 = max𝑟⩾1

{
min

{
2
𝛼−1

(
1 + 1

𝑟𝛼

)
, 2𝛼−1𝜙𝛼

[
1 − 𝛼𝑟𝛼−1

(𝑟+1)𝛼
]}}

for

different values of 𝛼 , we get that 𝜌1 is better for 1 < 𝛼 ⩽ 1.44, 𝜌2 is

better for 1.44 < 𝛼 < 2 and 𝜌3 is better for 𝛼 ⩾ 2.

𝛼 1.25 1.5 1.75 2 2.25 2.5 2.75 3

𝜌1 2.17 2.91 3.90 5.23 7.02 9.41 12.63 16.94

𝜌2 2.37 2.82 3.36 4 4.75 5.65 6.72 8
𝜌3 0 0 0 2.76 3.70 5.25 6.72 8

4.3 Common Release, Power of 2 Deadlines
In this section, we consider that all jobs are released at time zero,

but they have a different deadline. We assume that the deadlines

are powers of 2 and that 2
𝑘
is the biggest deadline of our instance.

We present here Algorithm 2 which is an approximation algo-

rithm with respect to energy. We split again the set of jobs J into

two subsets: 𝐴 = { 𝑗 ∈ J : 𝑐 𝑗 >
𝑤𝑗

𝜙
} and 𝐵 = { 𝑗 ∈ J : 𝑐 𝑗 ⩽

𝑤𝑗

𝜙
}.

We further split 𝐵 into the subsets 𝐵ℓ = { 𝑗 ∈ 𝐵 : 𝑑 𝑗 = 2
ℓ }, 0 ⩽ ℓ ⩽ 𝑘 ,

with respect to the deadline of the jobs. As in the previous section,

for each job in our instance, Algorithm 2 creates one or two jobs of

an instance of the classical speed scaling setting.

In order to analyze our algorithm, we define the three following

instances of the classical speed scaling setting:

Algorithm 2: CRP2D

1 for each job 𝑗 ∈ J do
2 if 𝑗 ∈ 𝐵, i.e., 𝑐 𝑗 ⩽

𝑤𝑗

𝜙
then

3 Add (0, 𝑑 𝑗
2
, 𝑐 𝑗) in set Q;

4 if 𝑗 ∈ 𝐴, i.e., 𝑐 𝑗 >
𝑤𝑗

𝜙
then

5 Add (0, 𝑑 𝑗 ,𝑤 𝑗) in setW;

6 Run YDS algorithm to determine the speed 𝑌𝐷𝑆𝑆 (𝑡) for
each time 𝑡 ∈ (0, 2𝑘] for the jobs in Q ∪W;

7 In the interval (0, 1

2
], execute the (parts of) jobs in Q ∪W

scheduled by YDS during this interval, using speed

𝑠 (𝑡) = 𝑠𝑌𝐷𝑆 (𝑡);
8 for each discrete time 2

ℓ

2
, ℓ = 0, 1, . . . , 𝑘 do

9 // the queries for the jobs in 𝐵ℓ are finished;

10 for 𝑗 ∈ 𝐵ℓ do
11 Add (𝑑 𝑗

2
, 𝑑 𝑗 ,𝑤

∗
𝑗
) in setW∗

ℓ

12 In the interval (2
ℓ

2
, 2ℓ], execute the (parts of) jobs in

Q ∪W scheduled by YDS during this interval as well

as the jobs inW∗
ℓ
, using speed

𝑠 (𝑡) = 𝑠𝑌𝐷𝑆 (𝑡) +∑
𝑗 ∈W∗

ℓ
𝛿 𝑗 ;

• 𝐼∗: (0, 𝑑 𝑗 , 𝑝∗𝑗)∀𝑗 ∈ J = 𝐴 ∪ 𝐵

• 𝐼 ′: (0, 𝑑 𝑗 , 𝑐 𝑗) and (0, 𝑑 𝑗 ,𝑤∗
𝑗
)∀𝑗 ∈ 𝐵 and (0, 𝑑 𝑗 ,𝑤 𝑗)∀𝑗 ∈ 𝐴

• 𝐼 ′
1/2

: (0, 𝑑 𝑗
2
, 𝑐 𝑗) and (𝑑 𝑗

2
, 𝑑 𝑗 ,𝑤

∗
𝑗
)∀𝑗 ∈ 𝐵 and (0, 𝑑 𝑗 ,𝑤 𝑗)∀𝑗 ∈ 𝐴

Lemma 4.9. Let 𝐸∗ and 𝐸 ′ be the energy consumption in an optimal
schedule for the instance 𝐼∗ and 𝐼 ′ respectively. Then, 𝐸 ′ ⩽ 𝜙𝛼𝐸∗.

Proof. Given an optimal solution for the instance 𝐼∗, we are
going to create a feasible schedule, S, for the instance 𝐼 ′.

Consider an arbitrary job 𝑗 ∈ J and its corresponding job

(0, 𝑑 𝑗 , 𝑝∗𝑗) of the instance 𝐼∗ which is executed in 𝑞 intervals in

the optimal schedule for this instance: (𝑡1, 𝑡 ′
1
], (𝑡2, 𝑡 ′

2
],. . . , (𝑡𝑞, 𝑡 ′𝑞].

Let 𝑠𝑝 , 1 ⩽ 𝑝 ⩽ 𝑞, be the speed used in the interval (𝑡𝑝 , 𝑡 ′𝑝]. By
definition, we have that

𝑝∗𝑗 =
𝑞∑
𝑝=1

∫ 𝑡 ′𝑝

𝑡𝑝

𝑠𝑝𝑑𝑡 =

𝑞∑
𝑝=1

(𝑡 ′𝑝 − 𝑡𝑝)𝑠𝑝

In the schedule S, we use in the interval (𝑡𝑝 , 𝑡 ′𝑝], 1 ⩽ 𝑝 ⩽ 𝑞, the

speed 𝜙𝑠𝑝 . Hence the work that can be executed in this interval is

𝑞∑
𝑝=1

(𝑡 ′𝑝 − 𝑡𝑝)𝜙𝑠𝑝 = 𝜙

𝑞∑
𝑝=1

(𝑡 ′𝑝 − 𝑡𝑝)𝑠𝑝 = 𝜙𝑝∗𝑗 ⩾ 𝑝 𝑗

where the inequality follows from Lemma 3.1. Thus, in these in-

tervals we can execute the jobs (0, 𝑑 𝑗 , 𝑐 𝑗) and (0, 𝑑 𝑗 ,𝑤∗
𝑗
) or the job

(0, 𝑑 𝑗 ,𝑤 𝑗) of the instance 𝐼 ′. By doing this for each job, we get a fea-

sible schedule for the instance 𝐼 ′ which at each time 𝑡 uses speed 𝜙

times bigger than the speed of the optimal schedule for the instance

𝐼∗, and hence the energy consumption 𝐸 (S) in the schedule S is

at most 𝜙𝐸∗. Therefore, an optimal schedule for 𝐼 ′ will use even
smaller energy, i.e., 𝐸 ′ ⩽ 𝐸 (S) ⩽ 𝜙𝛼𝐸∗, and the lemma follows. □

Lemma 4.10. Let 𝐸 ′ and 𝐸 ′
1/2

be the energy consumption in an
optimal schedule for the instance 𝐼 ′ and 𝐼 ′

1/2
respectively. Then 𝐸 ′

1/2
⩽

2
𝛼𝐸 ′.

Proof. We consider that both optimal solutions for the instances

𝐼 ′ and 𝐼 ′
1/2

are created using the YDS algorithm. Let 𝑠∗
𝐼 ′ (𝑡) be the

speed at each time 𝑡 in an optimal schedule for the instance 𝐼 ′. Due
to the YDS algorithm and the fact that the jobs have a common

release date, this speed is non-increasing with respect to the time,

i.e., 𝑠∗
𝐼 ′ (𝑡1) ⩾ 𝑠∗

𝐼 ′ (𝑡2) for each 𝑡1 < 𝑡2. Moreover, the speed can

change only at a deadline.

Note that the optimal schedule for 𝐼 ′ is not feasible for 𝐼 ′
1/2

. In

order to make it feasible, we first transform the optimal schedule for

𝐼 ′ into an intermediate schedule S which at each time 𝑡 uses speed

𝑠 (𝑡) = 2𝑠∗
𝐼 ′ (𝑡). Specifically, for any ℓ , 0 ⩽ ℓ ⩽ 𝑘 , consider the work

executed during the time interval (2ℓ−1, 2ℓ]. By doubling the speed

during this interval, we can execute all this work during the first

half, i.e., (2ℓ−1, 2ℓ − 2
ℓ−2], while the second half, i.e., (2ℓ − 2

ℓ−2, 2ℓ],
remains idle. In a similar way we double the speed during (0, 1

2
],

and we are able to execute all of its work during (0, 1

4
] while (1

4
, 1

2
]

remains idle. By slightly abusing the definitions, we assume that

the speed of the machine for any time 𝑡 satisfies 𝑠 (𝑡) = 2𝑠∗
𝐼 ′ (𝑡), even

during the idle intervals of S where no work is executed. Note that,

for each time interval (0, 2ℓ], −1 ⩽ ℓ ⩽ 𝑘 , the half of it is idle in

the constructed schedule S. However, S is still not feasible for the

instance 𝐼 ′
1/2

. In what follows, we make S feasible by shifting some

jobs in time.

I∗
t

0 1/2 1 2 4 8

p∗j
p∗j
p∗j
p∗j

I ′
t

0 1/2 1 2 4 8

cj w∗
jwj

cj w∗
jwj

cj w∗
jwj

cj w∗
jwj

I ′1/2

t

0 1/2 1 2 4 8

cj w∗
jwj

cj w∗
jwj

cj w∗
jwj

cj w∗
jwj

Figure 1: The figure shows the intervals of the three differ-
ent instances. On the top, there are the intervals of instance
𝐼∗, in the middle, the intervals of instance 𝐼 ′ and on the bot-
tom, the intervals of the instance 𝐼 ′

1/2
.

For each job 𝑗 ∈ 𝐴, there is a job (0, 𝑑 𝑗 ,𝑤 𝑗) which is added both

in 𝐼 ′
1/2

and in 𝐼 ′. For these jobs, their allocation in S is already

feasible since they have the same active interval in 𝐼 ′ and 𝐼 ′
1/2

.

For each job 𝑗 ∈ 𝐵ℓ , 0 ⩽ ℓ ⩽ 𝑘 , the instance 𝐼 ′ contains two
jobs (0, 𝑑 𝑗 , 𝑐 𝑗) and (0, 𝑑 𝑗 ,𝑤∗

𝑗
), while the instance 𝐼 ′

1/2
contains the

jobs (0, 𝑑 𝑗
2
, 𝑐 𝑗) and (𝑑 𝑗

2
, 𝑑 𝑗 ,𝑤

∗
𝑗
). Hence, in order to guarantee the

feasibility of S, we shift in (𝑑 𝑗
2
, 𝑑 𝑗] the (parts of) jobs (

𝑑 𝑗
2
, 𝑑 𝑗 ,𝑤

∗
𝑗
)

of 𝐼 ′
1/2

allocated in (0, 𝑑 𝑗
2
]. Similarly, we shift in (0, 𝑑 𝑗

2
] the (parts

of) jobs (0, 𝑑 𝑗
2
, 𝑐 𝑗) of 𝐼 ′

1/2
allocated in (𝑑 𝑗

2
, 𝑑 𝑗]. We make these shifts

starting with the jobs having deadline 2
0
, we continue with those

having deadline 2
1
, and so on.

We will prove by induction the following statement: “For each ℓ ,

0 ⩽ ℓ ⩽ 𝑘 , in the ℓ-th iteration of our shifting procedure, there is

enough idle space in order to allocate all jobs (0, 2ℓ−1, 𝑐 𝑗) of 𝐼 ′
1/2

to

the interval (0, 2ℓ−1] and all jobs (2ℓ−1, 2ℓ ,𝑤∗
𝑗
) of 𝐼 ′

1/2
to the interval

(2ℓ−1, 2ℓ]”.

• Basis: As explained before, the intervals (1

4
, 1

2
] and (3

4
, 1] in the

schedule S are idle before any shifting due to the doubling of the

speed. At the same time, the (parts of the) jobs (0, 1

2
, 𝑐 𝑗) which

were infeasibly allocated after the doubling in S appear only

in the interval (1

2
, 3

4
]. Similarly, the (parts of the) jobs (1

2
, 1,𝑤∗

𝑗
)

which were infeasibly allocated after the doubling appear only in

the interval (0, 1

4
]. Moreover, the speed during the whole interval

(0, 1] is constant, due to the YDS algorithm. Hence we can shift

all the infeasible (parts of) jobs (0, 1

2
, 𝑐 𝑗) to the interval (1

4
, 1

2
] and

all the infeasible (parts of) jobs (1

2
, 1,𝑤∗

𝑗
) to the interval (3

4
, 1].

• Induction: Assume now that the statement is true for ℓ − 1.

Consider first the jobs (0, 2ℓ−1, 𝑐 𝑗) of 𝐼 ′
1/2

. Some parts of these

jobs may have been allocated in the interval (2ℓ−1, 2ℓ − 2
ℓ−2],

making their execution infeasible. However, these parts are ex-

ecuted for at most 2
ℓ−2

time which corresponds exactly to the

idle time during the interval (0, 2ℓ−1]. Thus, we can safely shift

their execution to the left, since the speed used in (0, 2ℓ−1] is at
least the speed used in (2ℓ−1, 2ℓ − 2

ℓ−2], by the definition of the

YDS algorithm, getting a feasible schedule for these jobs.

Consider now the the jobs (2ℓ−1, 2ℓ ,𝑤∗
𝑗
) of 𝐼 ′

1/2
. Some parts of

these jobs may have been allocated in the interval (0, 2ℓ−1], mak-

ing their execution infeasible. However, these parts are executed

for at most
1

4
+2

−2+2
−1+· · ·+2

ℓ−3 = 2
ℓ−2

timewhich corresponds

exactly to the idle time during the interval (2ℓ − 2
ℓ−2, 2ℓ]. If the

speed used in (0, 2ℓ−1] is equal to the speed used in (2ℓ−1, 2ℓ],
then we can safely shift their execution to the right, getting a fea-

sible schedule for these jobs. If the speed used in (0, 2ℓ−1] is bigger
than the speed used in (2ℓ−1, 2ℓ], then the jobs (0, 2ℓ ,𝑤∗

𝑗
) of 𝐼 ′ are

not executed at all during (2ℓ−1, 2ℓ] in the optimal schedule for

the instance 𝐼 ′ obtained by the YDS algorithm, since they belong

on a different critical interval. Hence, the jobs (2ℓ−1, 2ℓ ,𝑤∗
𝑗
) of

𝐼 ′
1/2

are also not executed in (2ℓ−1, 2ℓ]. They are already feasible.

As a result, the schedule S is feasible for 𝐼 ′
1/2

after all the shifts,

and it uses speed 𝑠 (𝑡) = 2𝑠∗
𝐼 ′ (𝑡), for any time 𝑡 . Then, the energy

consumption 𝐸 (S) ofS is at most two time the energy consumption

of the optimal solution for 𝐼 ′. Therefore, an optimal schedule for

𝐼 ′
1/2

will use even smaller energy, i.e., 𝐸 ′
1/2
⩽ 𝐸 (S) ⩽ 2

𝛼𝐸 ′, and the
lemma follows. □

Lemma 4.11. Given an optimal schedule for the instance 𝐼 ′
1/2

and
a schedule given by Algorithm 2, we have that 𝑠 (𝑡) ⩽ 2𝑠∗

𝐼 ′
1/2

(𝑡) for
each time instant 𝑡 .

Proof. By the construction of 𝐼 ′
1/2

and the definition of Q and

W in Lines 1-5 of the algorithm, we have that Q ∪ W ⊆ 𝐼 ′
1/2

.

In Line 6, an optimal schedule is created for the jobs in Q ∪ W.

Since both optimal solutions for 𝐼 ′
1/2

and for the jobs in Q ∪W are

computed by the YDS algorithm, and due to the properties of this

algorithm, we have that 𝑠𝑌𝐷𝑆 (𝑡) ⩽ 𝑠∗
𝐼 ′
1/2

(𝑡), for each 𝑡 ∈ (0, 2𝑘].
Similarly, by the construction of 𝐼 ′

1/2
and the definition of W∗

ℓ
’s

in Lines 8-11 of the algorithm, we have that

⋃𝑘
ℓ=0

W∗
ℓ
⊆ 𝐼 ′

1/2
. More-

over, the jobs in W∗
ℓ
, 0 ⩽ ℓ ⩽ 𝑘 , are of the form (2

ℓ

2
, 2ℓ ,𝑤∗

𝑗
), and

hence the active intervals of any two jobs belonging to two different

setsW∗
ℓ
andW∗

ℓ′ are time-disjoint. Thus, in an optimal solution for

the jobs in

⋃𝑘
ℓ=0

W∗
ℓ
, the speed used during the interval (2

ℓ

2
, 2ℓ]

is

∑
𝑗 ∈W∗

ℓ
𝛿 𝑗 . Therefore, using the same arguments as before, for

each 𝑡 ∈ (2
ℓ

2
, 2ℓ], we have that ∑𝑗 ∈W∗

ℓ
𝛿 𝑗 ⩽ 𝑠∗

𝐼 ′
1/2

(𝑡).

For the speed of the algorithm, for any time 𝑡 ∈ (0, 1

2
], we

have that 𝑠 (𝑡) = 𝑠𝑌𝐷𝑆 (𝑡) ⩽ 𝑠∗
𝐼 ′
1/2

(see Line 7). Moreover, for any

ℓ , 0 ⩽ ℓ ⩽ 𝑘 , and any time 𝑡 ∈ (2
ℓ

2
, 2ℓ], we have that 𝑠 (𝑡) =

𝑠𝑌𝐷𝑆 (𝑡) + ∑
𝑗 ∈W∗

ℓ
𝛿 𝑗 ⩽ 𝑠∗

𝐼 ′
1/2

(𝑡) + 𝑠∗
𝐼 ′
1/2

(𝑡) ⩽ 2𝑠∗
𝐼 ′
1/2

(𝑡) (see Line 12),
and the lemma follows. □

Corollary 4.12. Let 𝐸 and 𝐸 ′
1/2

be the energy consumption of the
schedule created by Algorithm 2 and of an optimal schedule for the
instance 𝐼 ′

1/2
respectively. Then, 𝐸 ⩽ 2

𝛼𝐸 ′
1/2

.

Theorem 4.13. Algorithm 2 achieves a competitive ratio of (4𝜙)𝛼
with respect to energy.

Proof. Note that the energy consumption of an optimal sched-

ule for our original instance and of an optimal schedule for the

instance 𝐼∗ is exactly the same, as they contain exactly the same set

of jobs with the same characteristics. Then, the proof of the theorem

is an immediate consequence of Lemmas 4.9 and 4.10, and Corol-

lary 4.12. Specifically, we have: 𝐸 ⩽ 2
𝛼𝐸 ′

1/2
⩽ 4

𝛼𝐸 ′ ⩽ (4𝜙)𝛼𝐸∗. □

4.4 Common Release, Arbitrary Deadlines
In this section we adapt the previous result for jobs with arbi-

trary deadlines. Given an instance 𝐼 of our original problem, we

create an instance 𝐼 by rounding down the deadline of all jobs to

a power of two: for each job (𝑟 𝑗 , 𝑑 𝑗 , 𝑐 𝑗 ,𝑤 𝑗 ,𝑤∗
𝑗
) ∈ J , add a job

(𝑟 𝑗 , 𝑑 ′𝑗 , 𝑐 𝑗 ,𝑤 𝑗 ,𝑤
∗
𝑗
) in 𝐼 , where 𝑑 ′

𝑗
= max{2𝑖 |2𝑖 ⩽ 𝑑 𝑗 }. Then, run Al-

gorithm 2 using instance 𝐼 as input. We call this algorithm CRAD.

Lemma 4.14. Let 𝐸 and 𝐸 be the energy consumption of an optimal
schedule for the instance 𝐼 and 𝐼 respectively. Then, 𝐸 ⩽ 2

𝛼𝐸.

Corollary 4.15. CRAD achieves a competitive ratio of (8𝜙)𝛼
with respect to energy.

5 ONLINE
In this section, we consider the QBSS model when the jobs arrive

online and they should be executed on a single machine.

5.1 AVR with Queries
The online AVR algorithm for the classical speed scaling setting

works as follows: at each time 𝑡 , themachine runs at speed 𝑠𝐴𝑉𝑅 (𝑡) =∑
𝑗 :𝑡 ∈(𝑟 𝑗 ,𝑑 𝑗] 𝛿 𝑗 and it executes the unfinished job with the smaller

deadline which is released before 𝑡 . Yao et al. [27] proved that AVR

is 2
𝛼−1𝛼𝛼 -competitive with respect to energy.

In this section we propose the online algorithm AVRQ, an adapta-

tion of AVR to the QBSSmodel. AVRQ does the query for all the jobs

by selecting as a splitting point the half of their interval. Specifically,

for each job (𝑟 𝑗 , 𝑑 𝑗 , 𝑐 𝑗 ,𝑤 𝑗 ,𝑤∗
𝑗
) in J , two jobs of the classical speed

scaling setting are created and added to the set J ′
(in an online

manner): the job (𝑟 𝑗 ,
𝑟 𝑗+𝑑 𝑗

2
, 𝑐 𝑗) at time 𝑟 𝑗 , and the job (

𝑟 𝑗+𝑑 𝑗
2

, 𝑑 𝑗 ,𝑤
∗
𝑗
)

at time

𝑟 𝑗+𝑑 𝑗
2

. The AVR algorithm runs using as input the set of

jobs J ′
which is created online.

The following lemma extends the lower bound for AVR proposed

in [13] and gives a lower bound to the competitive ratio of AVRQ

with respect to energy.

Lemma 5.1. The competitive ratio of algorithm AVRQ is at least
(2𝛼)𝛼 with respect to energy.

Let AVR
∗
be the original AVR algorithm when executed using

the set of jobs J ∗
created as follows: for each 𝑗 ∈ J , add the job

(𝑟 𝑗 , 𝑑 𝑗 , 𝑝∗𝑗) to J ∗
. The following theorem compares, for each time

𝑡 , the speed used by the algorithm AVRQ with the speed of AVR
∗
.

Theorem 5.2. For any time instant 𝑡 , we have 𝑠𝐴𝑉𝑅𝑄 (𝑡) ⩽ 2𝑠AVR
∗ (𝑡).

Proof. At any time 𝑡 , the speed of AVRQ is

𝑠𝐴𝑉𝑅𝑄 (𝑡) ⩽ ∑
𝑗 ∈J:𝑡 ∈(𝑟 𝑗 ,𝑑 𝑗] max

{
𝑐 𝑗

(𝑑 𝑗−𝑟 𝑗)/2
,

𝑤∗
𝑗

(𝑑 𝑗−𝑟 𝑗)/2

}
= 2

∑
𝑗 ∈J:𝑡 ∈(𝑟 𝑗 ,𝑑 𝑗]

max{𝑐 𝑗 ,𝑤∗
𝑗 }

𝑑 𝑗−𝑟 𝑗

⩽ 2

∑
𝑗 ∈J:𝑡 ∈(𝑟 𝑗 ,𝑑 𝑗]

min{𝑤𝑗 ,𝑐 𝑗+𝑤∗
𝑗 }

𝑑 𝑗−𝑟 𝑗

= 2

∑
𝑗 ∈J∗

:𝑡 ∈(𝑟 𝑗 ,𝑑 𝑗]
𝑝∗𝑗

𝑑 𝑗−𝑟 𝑗 = 2𝑠AVR
∗ (𝑡) □

Corollary 5.3. AVRQ is 2
2𝛼−1𝛼𝛼 -competitive with respect to

energy.

5.2 BKP with Queries
The online BKP algorithm for the classical speed scaling setting

works as follows: for the time instants 𝑡 , 𝑡1 and 𝑡2 with 𝑡1 < 𝑡 ⩽ 𝑡2,

let𝑤 (𝑡, 𝑡1, 𝑡2) be the total work of jobs that have arrived by time 𝑡 ,

have a release time of at least 𝑡1 and a deadline of at most 𝑡2. At any

time 𝑡 , the machine runs at speed 𝑠𝐵𝐾𝑃 (𝑡) = 𝑒 max𝑡1,𝑡2
𝑤 (𝑡,𝑡1,𝑡2)
(𝑡2−𝑡1) and

it executes the unfinished job with the smallest deadline which is re-

leased before 𝑡 . Bansal et al. proved that BKP achieves a competitive

ratio of 2(𝛼
𝛼−1

)𝛼𝑒𝛼 with respect to energy, while it is 𝑒-competitive

with respect to maximum speed.

In this section, we propose the online algorithm BKPQ, an adap-

tation of BKP to the QBSS model. For each job (𝑟 𝑗 , 𝑑 𝑗 , 𝑐 𝑗 ,𝑤 𝑗 ,𝑤∗
𝑗
) in

J , BKPQ decides to make the query only if 𝑐 𝑗 ⩽
𝑤𝑗

𝜙
using as split-

ting point 𝜏 𝑗 =
𝑟 𝑗+𝑑 𝑗

2
. Hence, in the case of a query, two jobs of the

classical speed scaling setting, corresponding to (𝑟 𝑗 , 𝑑 𝑗 , 𝑐 𝑗 ,𝑤 𝑗 ,𝑤∗
𝑗
),

are created and added to the set of jobs J ′
(in an online manner):

the job (𝑟 𝑗 ,
𝑟 𝑗+𝑑 𝑗

2
, 𝑐 𝑗) at time 𝑟 𝑗 , and the job (𝑟 𝑗+𝑑 𝑗

2
, 𝑑 𝑗 ,𝑤

∗
𝑗
) at time

𝑟 𝑗+𝑑 𝑗
2

. In the case where no query is made, then a single job, cor-

responding to (𝑟 𝑗 , 𝑑 𝑗 , 𝑐 𝑗 ,𝑤 𝑗 ,𝑤∗
𝑗
), is added to the set J ′

: the job

(𝑟 𝑗 , 𝑑 𝑗 ,𝑤 𝑗) at time 𝑟 𝑗 . The BKP algorithm runs using as input the

set of jobs J ′
which is created online.

Let BKP
∗
be the original BKP algorithm when executed using

the set of jobs J ∗
created as follows: for each 𝑗 ∈ J , add the job

(𝑟 𝑗 , 𝑑 𝑗 , 𝑝∗𝑗) to J ∗
. The following theorem compares, for each time

𝑡 , the speed used by the algorithm BKPQ with the speed of BKP
∗
.

Theorem 5.4. For any time instant 𝑡 , we have 𝑠𝐵𝐾𝑃𝑄 (𝑡) ⩽ (2 +
𝜙)𝑠BKP∗ (𝑡).

Proof. Let 𝑡1 and 𝑡2 be time instants such that

𝑤 (𝑡, 𝑡1, 𝑡2)
(𝑡2 − 𝑡1)

= max

𝑡 ′
1
,𝑡 ′

2

𝑤 (𝑡, 𝑡 ′
1
, 𝑡 ′

2
)

(𝑡 ′
2
− 𝑡 ′

1
)

for the jobs in J ′
. We define three disjoint subsets of J and we

explain how the corresponding jobs in J ′
contribute to𝑤 (𝑡, 𝑡1, 𝑡2):

• Let L be the set of queried jobs whose queries are entirely pro-

cessed in the interval (𝑡1, 𝑡2], but not its exact loads themselves,

and start before time 𝑡 .

• Let R be the set of queried jobs whose exact load is entirely

processed in the interval (𝑡1, 𝑡2], but not its queries themselves,

and start before time 𝑡 .

• Let C be the set of jobs (corresponding to queries, exact loads

or initial workloads) that are entirely processed in the interval

(𝑡1, 𝑡2] and start before time 𝑡 .

Let𝑊 (L) = ∑
𝑗 ∈L 𝑐 𝑗 ,𝑊 (R) = ∑

𝑗 ∈R 𝑤∗
𝑗
and𝑊 (C) = ∑

𝑗 ∈C 𝑝 𝑗

be the total work of jobs in J ′
which belong to L, R and C, respec-

tively. By definition,𝑊 (L)+𝑊 (R)+𝑊 (C) describes the total work
that is executed in (𝑡1, 𝑡2] by BKPQ. So, for any time 𝑡 ∈ (𝑡1, 𝑡2], we
have that 𝑠𝐵𝐾𝑃𝑄 (𝑡) = 𝑊 (L)+𝑊 (R)+𝑊 (C)

(𝑡2−𝑡1) .

In a similar way, let𝑊 ∗ (L) = ∑
𝑗 ∈L 𝑝∗

𝑗
,𝑊 ∗ (R) = ∑

𝑗 ∈R 𝑝∗
𝑗
and

𝑊 (C) = ∑
𝑗 ∈C 𝑝∗

𝑗
. We consider the following three bounds:

(1) Consider a job 𝑗 ∈ L. If 𝑝∗
𝑗
= 𝑤 𝑗 then 𝑐 𝑗 ⩽

𝑤𝑗

𝜙
⩽ 𝑤 𝑗 = 𝑝∗

𝑗
. If

𝑝∗
𝑗
= 𝑐 𝑗 +𝑤∗

𝑗
then 𝑐 𝑗 ⩽ 𝑐 𝑗 +𝑤∗

𝑗
= 𝑝∗

𝑗
. Thus, for each 𝑗 ∈ L we

have 𝑐 𝑗 ⩽ 𝑝∗
𝑗
and𝑊 (L) ⩽𝑊 ∗ (L).

(2) Consider a job 𝑗 ∈ R. If 𝑝∗
𝑗
= 𝑤 𝑗 then 𝑤∗

𝑗
⩽ 𝑤 𝑗 = 𝑝∗

𝑗
. If

𝑝∗
𝑗
= 𝑐 𝑗 +𝑤∗

𝑗
then𝑤∗

𝑗
⩽ 𝑐 𝑗 +𝑤∗

𝑗
= 𝑝∗

𝑗
. Thus, for each 𝑗 ∈ R we

have𝑤∗
𝑗
⩽ 𝑝∗

𝑗
and𝑊 (R) ⩽𝑊 ∗ (R).

(3) For each 𝑗 ∈ C we have 𝑝 𝑗 ⩽ 𝜙𝑝∗
𝑗
by using Lemma 3.1. Thus,

𝑊 (C) ⩽ 𝜙𝑊 ∗ (C).
Consider now the time interval (𝑡0, 𝑡3) such as 𝑡0 = max{0, 2𝑡1 −

𝑡2} and 𝑡3 = 2𝑡2 − 𝑡1. For each 𝑗 ∈ L we have 𝑡1 ⩽ 𝑟 𝑗 ⩽ 𝑡 < 𝜏 𝑗 ⩽ 𝑡2,

and hence 𝑑 𝑗 = 2𝜏 𝑗 − 𝑟 𝑗 ⩽ 2𝑡2 − 𝑡1 = 𝑡3. For each 𝑗 ∈ R we have

𝑡1 ⩽ 𝜏 𝑗 and 𝑑 𝑗 ⩽ 𝑡2, and hence 𝑟 𝑗 = 2𝜏 𝑗 −𝑑 𝑗 ⩾ max{0, 2𝑡1 −𝑡2} = 𝑡0.

Therefore, each job 𝑗 ∈ L∪R∪C should be executed in the interval

[𝑡0, 𝑡3] by any algorithm and also by BKP
∗
. As a result, we have

𝑠BKP
∗
(𝑡) ⩾ 𝑊 ∗ (L) +𝑊 ∗ (R) +𝑊 ∗ (C)

(𝑡3 − 𝑡0)

=
𝑊 ∗ (L) +𝑊 ∗ (R) +𝑊 ∗ (C)

3(𝑡2 − 𝑡1)
(1)

As explained before, for the speed of BKPQ at any time 𝑡 ∈ (𝑡1, 𝑡2]
we have

𝑠𝐵𝐾𝑃𝑄 (𝑡) = 𝑊 (L) +𝑊 (R) +𝑊 (C)
(𝑡2 − 𝑡1)

⩽
𝑊 ∗ (L) +𝑊 ∗ (R) + 𝜙𝑊 ∗ (C)

(𝑡2 − 𝑡1)

=
𝑊 ∗ (L) +𝑊 ∗ (R) +𝑊 ∗ (C) + (𝜙 − 1)𝑊 ∗ (C)

(𝑡2 − 𝑡1)
⩽ 3𝑠BKP

∗
(𝑡) + (𝜙 − 1)𝑠BKP

∗
(𝑡) = (2 + 𝜙)𝑠BKP

∗
(𝑡)

The first inequality follows by the three bounds presented above. In

the next line we just add and subtract𝑊 ∗ (C). For the last inequality
we use Inequality 1, as well as the fact that 𝑠BKP

∗ (𝑡) ⩾ 𝑊 ∗ (C)
(𝑡2−𝑡1) since

all jobs in the set C are entirely executed in the interval (𝑡1, 𝑡2] by
any algorithm and also by BKP

∗
. □

Corollary 5.5. BKPQ is (2 + 𝜙)𝛼2(𝛼
𝛼−1

)𝛼𝑒𝛼 -competitive with
respect to energy, and (2 + 𝜙)𝑒-competitive with respect to maximum
speed.

6 MULTIPLE MACHINES
In this section we adapt to the QBSS model the online AVR(𝑚)
algorithm proposed byAlbers et al. [2] for the classical speed scaling

setting on a set of 𝑚 parallel identical machines M. AVR(𝑚) is
(2𝛼−1𝛼𝛼 + 1)-competitive with respect to energy consumption.

For completeness, we briefly present AVR(𝑚). The algorithm

works online per each unit time slot (𝑡, 𝑡 + 1] and it schedules

𝛿 𝑗 amount of work from each active job during (𝑡, 𝑡 + 1]. Let J𝑡
be the set of active jobs in (𝑡, 𝑡 + 1]. Moreover, let 𝑈 ⊆ J𝑡 be

the unscheduled jobs of J𝑡 and 𝑅 ⊆ M be the remaining unused

machines at each step of the algorithm. In the beginning, we set

𝑈 = J𝑡 and 𝑅 = M. We denote by Δ =
∑
𝑗 ∈𝑈 𝛿 𝑗 the total work of

the jobs in 𝑈 . The jobs in 𝑈 will be characterized as big or small
depending on their densities. Intuitively, each big job will occupy

one machine during the whole slot (𝑡, 𝑡 + 1], while small jobs will
share the remaining machines in (𝑡, 𝑡+1]. The algorithm searches in

an iterative way the job 𝚥 = argmax{𝛿 𝑗 : 𝑗 ∈ 𝑈 } with the maximum

density in𝑈 and if 𝛿 𝚥 >
Δ
|𝑅 | then it is characterized as a big one. In

this case, the algorithm schedules 𝚥 with speed 𝛿 𝚥 in the machine

of the lower index in 𝑅 which is then removed from 𝑅. Moreover,

the algorithm updates J𝑡 = J𝑡 \ { 𝚥} and it searches for the next

big job. If no big job exists, then all the remaining jobs are small
and they are allocated to the remaining machines using speed

Δ
|𝑅 | .

Note that, at each time moment the speed of a machine with lower

index is not less than the speed of a machine with larger index.

In this section we propose the online algorithm AVRQ(𝑚) which
makes the query for all jobs by selecting as a splitting point the half

of their interval. Specifically, for each job (𝑟 𝑗 , 𝑑 𝑗 , 𝑐 𝑗 ,𝑤 𝑗 ,𝑤∗
𝑗
) in J ,

two jobs of the classical speed scaling setting are created and added

to the set J ′
(in an online manner): the job 𝜁 (𝑗) = (𝑟 𝑗 ,

𝑟 𝑗+𝑑 𝑗
2

, 𝑐 𝑗)
at time 𝑟 𝑗 , and the job 𝜁 ′(𝑗) = (𝑟 𝑗+𝑑 𝑗

2
, 𝑑 𝑗 ,𝑤

∗
𝑗
) at time

𝑟 𝑗+𝑑 𝑗
2

. The

AVR(𝑚) algorithm runs using as input the set of jobs J ′
which is

created online.

We start our analysis with two technical lemmas.

Lemma 6.1. Let two sets of non-negative rational numbers 𝐴 =

{𝑎1, ..., 𝑎𝑛} and 𝐵 = {𝑏1, ..., 𝑏𝑛} be given such that 𝑏 𝑗 ⩽ 2𝑎 𝑗 for all
𝑗 = 1, . . . , 𝑛. Let 𝜋𝐴 and 𝜋𝐵 be permutations of numbers from 𝐴 and
𝐵, respectively, in which the numbers are ordered in non-increasing
order. Then 𝜋𝐵 (𝑖) ⩽ 2𝜋𝐴 (𝑖) for all 𝑖 = 1, . . . , 𝑛.

Lemma 6.2. Let a sequence of non-negative rational numbers

𝑎1, ..., 𝑎𝑛 and an integer 𝑚 ⩾ 2 be given. If 𝑎1 >

∑𝑛
𝑖=1
𝑎𝑖

𝑚 , then∑𝑛
𝑖=1
𝑎𝑖

𝑚 >

∑𝑛
𝑖=2
𝑎𝑖

𝑚−1
, otherwise,

∑𝑛
𝑖=1
𝑎𝑖

𝑚 ⩽
∑𝑛

𝑖=2
𝑎𝑖

𝑚−1
.

Let AVR
∗ (𝑚) be the original AVR(𝑚) algorithm when executed

using the set of jobs J ∗
created as follows: for each 𝑗 ∈ J , add the

job (𝑟 𝑗 , 𝑑 𝑗 , 𝑝∗𝑗) to J ∗
. The following theorem compares, for each

time 𝑡 , the speed used by the algorithm AVRQ(𝑚) with the speed

of AVR
∗ (𝑚).

Theorem 6.3. For any time instant 𝑡 , and any machine 𝑖 , we have
𝑠
AVRQ(𝑚)
𝑖

(𝑡) ⩽ 2𝑠
AVR∗ (𝑚)
𝑖

(𝑡).

Proof. We consider the set of jobs J ′′
which is produced from

J ∗
by replacing each job (𝑟 𝑗 , 𝑑 𝑗 , 𝑝∗𝑗) with two jobs,

𝜓 (𝑡) = (𝑟 𝑗 ,
𝑟 𝑗+𝑑 𝑗

2
,
𝑝∗𝑗
2
) and𝜓 ′(𝑡) = (𝑟 𝑗+𝑑 𝑗

2
, 𝑑 𝑗 ,

𝑝∗𝑗
2
). Since the number

of jobs and their densities in each unit time slot (𝑡, 𝑡 + 1] do not

change, then the speed of the machines in the schedules obtained

by AVR(𝑚) when applied to the sets of jobs J ∗
and J ′′

does not

change either.

Algorithm AVRQ(𝑚) also creates two jobs, let 𝜁 (𝑗) and 𝜁 ′(𝑗) for
each original job 𝑗 ∈ J using the same intervals as in J ′′

. Hence,

the number of active jobs in J ′
and J ′′

is the same at each unit

time slot, and by definition we have

𝛿𝜁 (𝑗) ⩽ 2𝛿𝜓 (𝑗) and 𝛿𝜁 ′ (𝑗) ⩽ 2𝛿𝜓 ′ (𝑗) for all 𝑗 ∈ J (2)

since 𝑐 𝑗 ⩽ 𝑝∗
𝑗
and𝑤∗

𝑗
⩽ 𝑝∗

𝑗
.

Denote by J ′′
𝑡 ⊆ J ′′

and J ′
𝑡 ⊆ J ′

the set of active jobs in the

unit slot (𝑡, 𝑡 + 1]. We order the jobs in each set in non-increasing

densities. Note that |J ′′
𝑡 | = |J ′

𝑡 | = 𝑟 . Let 𝑎 𝑗 be the density of the

j-th job in J ′′
and𝑏 𝑗 be the density of the j-th job in J ′

. Lemma 6.1

and Inequalities (2) imply that 𝑏 𝑗 ⩽ 2𝑎 𝑗 .

Let𝑘 be the number of big jobs in the setJ ′′
𝑡 and ℓ be the number

of big jobs in the set J ′
𝑡 . We consider three cases.

(1) Case 𝑘 = ℓ . For each machine 𝑖 ⩽ 𝑘 we have:

𝑠
AVRQ(𝑚)
𝑖

(𝑡) = 𝑏𝑖 ⩽ 2𝑎𝑖 = 2𝑠
AVR

∗ (𝑚)
𝑖

(𝑡)

For each machine 𝑖 > 𝑘 we have:

𝑠
AVRQ(𝑚)
𝑖

(𝑡) =
∑𝑟
𝑗=ℓ+1

𝑏 𝑗

𝑚 − ℓ
⩽ 2

∑𝑟
𝑗=𝑘+1

𝑎 𝑗

𝑚 − 𝑘
⩽ 2𝑠

AVR
∗ (𝑚)

𝑖
(𝑡)

(2) Case 𝑘 > ℓ . For each machine 𝑖 ⩽ ℓ we have:

𝑠
AVRQ(𝑚)
𝑖

(𝑡) = 𝑏𝑖 ⩽ 2𝑎𝑖 = 2𝑠
AVR

∗ (𝑚)
𝑖

(𝑡)

For each machine 𝑖 > ℓ we have 𝑏ℎ ⩽

∑𝑟
𝑗=ℎ

𝑏 𝑗

𝑚−ℎ+1
for ℓ + 1 ⩽ ℎ ⩽ 𝑘 .

Successively applying Lemma 6.2 we get:∑𝑟
𝑗=ℓ+1

𝑏 𝑗

𝑚 − ℓ
⩽

∑𝑟
𝑗=ℓ+2

𝑏 𝑗

𝑚 − ℓ − 1

⩽ · · · ⩽
∑𝑟
𝑗=𝑘+1

𝑏 𝑗

𝑚 − 𝑘

Hence, we obtain:

𝑠
AVRQ(𝑚)
𝑖

(𝑡) =
∑𝑟
𝑗=ℓ+1

𝑏 𝑗

𝑚 − ℓ
⩽

∑𝑟
𝑗=𝑘+1

𝑏 𝑗

𝑚 − 𝑘

⩽ 2

∑𝑟
𝑗=𝑘+1

𝑎 𝑗

𝑚 − 𝑘
⩽ 2𝑠

AVR
∗ (𝑚)

𝑖
(𝑡)

(3) Case 𝑘 < ℓ . For each machine 𝑖 ⩽ 𝑘 we have

𝑠
AVRQ(𝑚)
𝑖

(𝑡) = 𝑏𝑖 ⩽ 2𝑎𝑖 = 2𝑠
AVR

∗ (𝑚)
𝑖

(𝑡)

For each machine 𝑖 , 𝑘 < 𝑖 ⩽ ℓ , we have

𝑠
AVRQ(𝑚)
𝑖

(𝑡) = 𝑏𝑖 ⩽ 2𝑎𝑖 ⩽ 2

∑𝑟
𝑗=𝑘+1

𝑎 𝑗

𝑚 − 𝑘
= 2𝑠

AVR
∗ (𝑚)

𝑖
(𝑡)

where the last inequality follows by the definition of AVR
∗ (𝑚).

For each machine 𝑖 > ℓ we have 𝑏ℎ >

∑𝑟
𝑗=ℎ

𝑏 𝑗

𝑚−ℎ+1
for 𝑘 + 1 ⩽ ℎ ⩽ ℓ .

Successively applying Lemma 6.2 we get:∑𝑟
𝑗=𝑘+1

𝑏 𝑗

𝑚 − 𝑘
>

∑𝑟
𝑗=ℓ+2

𝑏 𝑗

𝑚 − 𝑘 − 1

> · · · >
∑𝑟
𝑗=ℓ+1

𝑏 𝑗

𝑚 − ℓ

Hence, we obtain:

𝑠
AVRQ(𝑚)
𝑖

(𝑡) ⩽
∑𝑟
𝑗=ℓ+1

𝑏 𝑗

𝑚 − ℓ
<

∑𝑟
𝑗=𝑘+1

𝑏 𝑗

𝑚 − 𝑘

⩽ 2

∑𝑟
𝑗=𝑘+1

𝑎 𝑗

𝑚 − 𝑘
⩽ 2𝑠

AVR
∗ (𝑚)

𝑖
(𝑡)

and the theorem follows. □

Corollary 6.4. AVRQ(𝑚) is 2
𝛼 (2𝛼−1𝛼𝛼 + 1)-competitive with

respect to energy.

7 CONCLUSION
In this paper, we studied an enhanced speed scaling setting, where

queries can be additionally executed in the system in order to reveal

a more accurate value of the workload of jobs. The main minimiza-

tion objective was the energy consumption, while the maximum

speed minimization was also studied. We proposed various lower

bounds for the offline and the online settings. In particular, we

showed how to use known online algorithms (AVR and BKP) of the

classical speed scaling context in the speed scaling with explorable

uncertainty setting. Notice also that our approach can directly be

applied to the preemptive-non-migratory variant of the problem

[21]. An interesting open question is whether the Optimal Available

(OA) algorithm of [27] could be extended in this new framework.

ACKNOWLEDGMENTS
This work was partially supported by the French National Research

Agency (Energumen ANR-18-CE25-0008 and Algoridam ANR-19-

CE48-0016). The research of the third author was supported by the

Russian Science Foundation RSF-ANR 21-41-09017.

REFERENCES
[1] Susanne Albers. 2010. Energy-efficient algorithms. Commun. ACM 53, 5 (2010),

86–96. https://doi.org/10.1145/1735223.1735245

[2] SusanneAlbers, Antonios Antoniadis, andGeroGreiner. 2015. Onmulti-processor

speed scaling with migration. J. Comput. Syst. Sci. 81, 7 (2015), 1194–1209. https:

//doi.org/10.1016/j.jcss.2015.03.001

[3] Susanne Albers, Evripidis Bampis, Dimitrios Letsios, Giorgio Lucarelli, and

Richard Stotz. 2017. Scheduling on power-heterogeneous processors. Inf. Comput.
257 (2017), 22–33. https://doi.org/10.1016/j.ic.2017.09.013

[4] Susanne Albers and Alexander Eckl. 2020. Explorable Uncertainty in Scheduling

with Non-Uniform Testing Times. CoRR abs/2009.13316 (2020). arXiv:2009.13316

https://arxiv.org/abs/2009.13316

[5] Susanne Albers, Fabian Müller, and Swen Schmelzer. 2014. Speed Scaling on

Parallel Processors. Algorithmica 68, 2 (2014), 404–425. https://doi.org/10.1007/

s00453-012-9678-7

[6] Eric Angel, Evripidis Bampis, Fadi Kacem, and Dimitrios Letsios. 2019. Speed

scaling on parallel processors with migration. J. Comb. Optim. 37, 4 (2019),

1266–1282. https://doi.org/10.1007/s10878-018-0352-0

[7] Luciana Arantes, Evripidis Bampis, Alexander V. Kononov, Manthos Letsios, Gior-

gio Lucarelli, and Pierre Sens. 2018. Scheduling under Uncertainty: AQuery-based

Approach. In Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, Jérôme

Lang (Ed.). ijcai.org, 4646–4652. https://doi.org/10.24963/ijcai.2018/646

[8] Evripidis Bampis. 2016. Algorithmic Issues in Energy-Efficient Computation.

In Discrete Optimization and Operations Research - 9th International Conference,
DOOR 2016, Vladivostok, Russia, September 19-23, 2016, Proceedings (Lecture Notes
in Computer Science, Vol. 9869), Yury Kochetov, Michael Khachay, Vladimir L.

Beresnev, Evgeni A. Nurminski, and Panos M. Pardalos (Eds.). Springer, 3–14.

https://doi.org/10.1007/978-3-319-44914-2_1

[9] Evripidis Bampis, Alexander V. Kononov, Dimitrios Letsios, Giorgio Lucarelli,

and Ioannis Nemparis. 2015. From preemptive to non-preemptive speed-scaling

scheduling. Discret. Appl. Math. 181 (2015), 11–20. https://doi.org/10.1016/j.dam.

2014.10.007

[10] Evripidis Bampis, Alexander V. Kononov, Dimitrios Letsios, Giorgio Lucarelli, and

Maxim Sviridenko. 2018. Energy-efficient scheduling and routing via randomized

rounding. J. Sched. 21, 1 (2018), 35–51. https://doi.org/10.1007/s10951-016-0500-2
[11] Evripidis Bampis, Dimitrios Letsios, and Giorgio Lucarelli. 2015. Green sched-

uling, flows and matchings. Theor. Comput. Sci. 579 (2015), 126–136. https:

//doi.org/10.1016/j.tcs.2015.02.020

[12] Nikhil Bansal, David P. Bunde, Ho-Leung Chan, and Kirk Pruhs. 2011. Average

Rate Speed Scaling. Algorithmica 60, 4 (2011), 877–889. https://doi.org/10.1007/

s00453-009-9379-z

[13] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. 2007. Speed scaling to manage

energy and temperature. J. ACM 54, 1 (2007), 3:1–3:39. https://doi.org/10.1145/

1206035.1206038

[14] Christoph Dürr, Thomas Erlebach, Nicole Megow, and Julie Meißner. 2018.

Scheduling with Explorable Uncertainty. In ITCS 2018. 30:1–30:14. https:

//doi.org/10.4230/LIPIcs.ITCS.2018.30

[15] Thomas Erlebach and Michael Hoffmann. 2015. Query-Competitive Algorithms

for Computing with Uncertainty. Bulletin of the EATCS 116 (2015). http://eatcs.

org/beatcs/index.php/beatcs/article/view/335

[16] Tomás Feder, Rajeev Motwani, Liadan O’Callaghan, Chris Olston, and Rina

Panigrahy. 2007. Computing shortest paths with uncertainty. J. Algorithms 62, 1
(2007), 1–18. https://doi.org/10.1016/j.jalgor.2004.07.005

[17] Tomás Feder, Rajeev Motwani, Rina Panigrahy, Chris Olston, and JenniferWidom.

2003. Computing the Median with Uncertainty. SIAM J. Comput. 32, 2 (2003),
538–547. https://doi.org/10.1137/S0097539701395668

[18] Bruno Gaujal, Alain Girault, and Stéphan Plassart. 2020. Dynamic speed scaling

minimizing expected energy consumption for real-time tasks. J. Sched. 23, 5
(2020), 555–574. https://doi.org/10.1007/s10951-020-00660-9

[19] Marco E. T. Gerards, Johann L. Hurink, and Philip K. F. Hölzenspies. 2016. A

survey of offline algorithms for energy minimization under deadline constraints.

J. Sched. 19, 1 (2016), 3–19. https://doi.org/10.1007/s10951-015-0463-8

[20] Marc Goerigk, Manoj Gupta, Jonas Ide, Anita Schöbel, and Sandeep Sen. 2015.

The robust knapsack problem with queries. Computers & OR 55 (2015), 12–22.

https://doi.org/10.1016/j.cor.2014.09.010

[21] Gero Greiner, Tim Nonner, and Alexander Souza. 2014. The Bell Is Ringing in

Speed-Scaled Multiprocessor Scheduling. Theory Comput. Syst. 54, 1 (2014), 24–44.
https://doi.org/10.1007/s00224-013-9477-9

[22] Manoj Gupta, Yogish Sabharwal, and Sandeep Sen. 2011. The update complexity

of selection and related problems. In IARCS FSTTCS 2011. 325–338. https://doi.

org/10.4230/LIPIcs.FSTTCS.2011.325

[23] Michael Hoffmann, Thomas Erlebach, Danny Krizanc, Matús Mihalák, and Rajeev

Raman. 2008. Computing Minimum Spanning Trees with Uncertainty. In STACS
2008. 277–288. https://doi.org/10.4230/LIPIcs.STACS.2008.1358

[24] Simon Kahan. 1991. A Model for Data in Motion. In Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans,
Louisiana, USA, Cris Koutsougeras and Jeffrey Scott Vitter (Eds.). ACM, 267–277.

https://doi.org/10.1145/103418.103449

[25] Nicole Megow, Julie Meißner, and Martin Skutella. 2015. Randomization Helps

Computing a Minimum Spanning Tree under Uncertainty. In Algorithms - ESA
2015. 878–890. https://doi.org/10.1007/978-3-662-48350-3_73

[26] Chris Olston and Jennifer Widom. 2000. Offering a Precision-Performance

Tradeoff for Aggregation Queries over Replicated Data. In VLDB 2000. 144–155.
http://www.vldb.org/conf/2000/P144.pdf

[27] F. Frances Yao, Alan J. Demers, and Scott Shenker. 1995. A Scheduling Model for

Reduced CPU Energy. In 36th Annual Symposium on Foundations of Computer
Science, Milwaukee, Wisconsin, USA, 23-25 October 1995. IEEE Computer Society,

374–382. https://doi.org/10.1109/SFCS.1995.492493

https://doi.org/10.1145/1735223.1735245
https://doi.org/10.1016/j.jcss.2015.03.001
https://doi.org/10.1016/j.jcss.2015.03.001
https://doi.org/10.1016/j.ic.2017.09.013
https://arxiv.org/abs/2009.13316
https://arxiv.org/abs/2009.13316
https://doi.org/10.1007/s00453-012-9678-7
https://doi.org/10.1007/s00453-012-9678-7
https://doi.org/10.1007/s10878-018-0352-0
https://doi.org/10.24963/ijcai.2018/646
https://doi.org/10.1007/978-3-319-44914-2_1
https://doi.org/10.1016/j.dam.2014.10.007
https://doi.org/10.1016/j.dam.2014.10.007
https://doi.org/10.1007/s10951-016-0500-2
https://doi.org/10.1016/j.tcs.2015.02.020
https://doi.org/10.1016/j.tcs.2015.02.020
https://doi.org/10.1007/s00453-009-9379-z
https://doi.org/10.1007/s00453-009-9379-z
https://doi.org/10.1145/1206035.1206038
https://doi.org/10.1145/1206035.1206038
https://doi.org/10.4230/LIPIcs.ITCS.2018.30
https://doi.org/10.4230/LIPIcs.ITCS.2018.30
http://eatcs.org/beatcs/index.php/beatcs/article/view/335
http://eatcs.org/beatcs/index.php/beatcs/article/view/335
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1137/S0097539701395668
https://doi.org/10.1007/s10951-020-00660-9
https://doi.org/10.1007/s10951-015-0463-8
https://doi.org/10.1016/j.cor.2014.09.010
https://doi.org/10.1007/s00224-013-9477-9
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.325
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.325
https://doi.org/10.4230/LIPIcs.STACS.2008.1358
https://doi.org/10.1145/103418.103449
https://doi.org/10.1007/978-3-662-48350-3_73
http://www.vldb.org/conf/2000/P144.pdf
https://doi.org/10.1109/SFCS.1995.492493

	Abstract
	1 Introduction
	2 Related Work
	3 Notations and Preliminaries
	4 Offline
	4.1 Lower Bounds
	4.2 Common Release, Common Deadline
	4.3 Common Release, Power of 2 Deadlines
	4.4 Common Release, Arbitrary Deadlines

	5 Online
	5.1 AVR with Queries
	5.2 BKP with Queries

	6 Multiple machines
	7 Conclusion
	Acknowledgments
	References

