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ABSTRACT

Coincident Geostationary Lightning Mapper (GLM) and National Lightning Detection

Network (NLDN) observations are used to build a generator of realistic lightning optical

signal in the perspective to simulate Lightning Imager (LI) signal from European NLDN-like

observations. Characteristics of GLM and NLDN flashes are used to train different machine

learning (ML) models, that predict simulated pseudo-GLM flash extent, flash duration,

and event number per flash (targets) from several NLDN flash characteristics. Comparing

statistics of observed GLM targets and simulated pseudo-GLM targets, the most suitable

ML-based target generators are identified. The simulated targets are then further processed

to obtain pseudo-GLM events and flashes. In the perspective of lightning data assimilation,

Flash Extent Density (FED) is derived from both observed and simulated GLM data. The

best generators simulate accumulated hourly FED sums with a bias of 2 % to the observation,

while cumulated absolute differences remain of about 22 %. A visual comparison reveals that

hourly simulated FED features local maxima at the similar geolocations as the FED derived

from GLM observations. However, the simulated FED often exceeds the observed FED in

regions of convective cores and high flash rates. The accumulated hourly area with FED>0

flashes per 5 km× 5 km pixel simulated by some pseudo-GLM generators differs by only 7 %

to 8 % from the observed values. The recommended generator uses a linear Support Vector

Regressor (linSVR) to create pseudo-GLM FED. It provides the best balance between target

simulation, hourly FED sum, and hourly electrified area.
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1. Introduction30

Lightning is defined as electrical discharges within the atmosphere, more particularly31

within and between clouds (intra- and intercloud, IC) or between clouds and the ground32

(CG). Transient lightning phenomena also occur between the cloud and the upper atmo-33

sphere, e.g., Sprites and Jets. While cloud electrification and lightning initiation are still34

subject of studies, it is widely accepted that cloud ice and graupel are necessary to sepa-35

rate charges within clouds (e.g., Luque et al. 2020; Emersic and Saunders 2020; Lyu et al.36

2019; Kolmasova et al. 2019; Takahashi et al. 2017; MacGorman and Rust 1998; Brooks37

et al. 1997). In particular, convection creates favorable conditions for lightning, and the38

updraft strength can be well correlated to the total lightning rate (e.g., Deierling and Pe-39

tersen 2008). Ávila et al. (2010) found a high correlation between the occurrence of deep40

convection and lightning over land at a global scale. Hence, lightning is an effective tracer41

of deep convection.42

The new generation of geostationary (GEO) satellites carry optical lightning sensors,43

among other instruments. The Geostationary Lightning Mapper (GLM) of the Geostation-44

ary Operational Environmental Satellite (GOES) R-series, the Lightning Mapping Imager45

(LMI) on board the Chinese Fengyun-4 satellites (Yang et al. 2017), and the upcoming46

Meteosat Third Generation Lightning Imager (MTG-LI, Dobber and Grandell 2014) will47

provide GEO lightning observations at a global scale. This satellite-based, large-scale, con-48

tinuous observation of lightning offers new information for climate monitoring and studies.49

In addition, the assimilation of GEO lightning data in Numerical Weather Prediction (NWP)50

can help to improve the initial state of the model. Most of recent lightning data assimilation51
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studies use gridded Flash Extent Density (FED), for example Allen et al. (2016); Fierro52

et al. (2019).53

To assimilate new observation types in NWP models it is desired to develop an assimilation54

scheme prior to the instrument launch and data availability. The simulation of appropriate55

realistic pseudo-observations precedes the development of any assimilation scheme, espe-56

cially when the sensor is not yet in operation. Such synthetic observations can be derived57

from existing GEO sensors over other regions, i.e., GLM, and ground-based Lightning Lo-58

cating Systems (LLSs). In addition, Low Earth Orbit (LEO) missions such as the Lightning59

Imaging Sensor (LIS) on the Tropical Rainfall Measurement Mission (TRMM) satellites60

(e.g., Christian et al. 1999; Cecil et al. 2005) and on board the International Space Sta-61

tion (ISS) (Blakeslee and Koshak 2016; Blakeslee et al. 2020) provide space-based lightning62

observations. One can also use ground-based networks, e.g., the National Lightning De-63

tection Network (NLDN) (e.g., Cummins and Murphy 2009), Meteorage (e.g., Schulz et al.64

2016; Erdmann et al. 2020), and Lightning Mapping Arrays (LMAs) (e.g., Rison et al. 1999;65

Thomas et al. 2004; Coquillat et al. 2019). While the satellite sensors detect visible light66

of lightning at 777.4 nm, the ground-based networks are operated at different frequencies67

that match electromagnetic radiation emitted by different lightning processes. NLDN and68

Meteorage use low frequency (LF) sensors that are most sensitive to discharge processes69

such as return strokes for CG flashes. Most LF networks can distinguish CG and IC sig-70

nals. The CG flash detection (with return strokes) is usually reliable, whereas the IC flash71

detection efficiency (DE) increases within the network and for shorter baselines given one72

LF sensor type (personal communication, Stéphane Pedeboy, 2020/21). Global LF networks73

have lower DE and accuracy than national and regional LF networks (e.g., Nag et al. 2015).74

LMA stations sense very high frequency (VHF) signals of lightning leader propagation and75
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allow for 3-dimensional (3D) channel mapping (e.g., Rison et al. 1999). Their drawback is76

the limited range. A LMA network provides coverage within a radius of typically a few77

hundred kilometers (e.g., Thomas et al. 2004; Koshak et al. 2004; Chmielewski and Bruning78

2016; Coquillat et al. 2019).79

Biron et al. (2008) resampled TRMM-LIS data on a MTG-LI-like grid to assess the po-80

tential performance of the MTG-LI with emphasis on the influence of varying minimal de-81

tectable radiant energy. However, this method relying on LEO lightning data is not suitable82

for producing continuous pseudo-observations in the same area for operational applications83

because of the poor revisiting time. Stano (2013) demonstrated a simple method to create84

pseudo-GLM gridded products using LMA data. The pseudo-GLM data served to train85

forecasters on the use of GLM data products. GLM’s Algorithm Working Group (AWG)86

investigated a transformation function that transforms LMA sources to optical lightning ob-87

servations. The technique combines TRMM-LIS flash statistics and observed LMA flashes88

(Bateman 2013). The same method was applied by Schultz et al. (2016) to study automated89

storm tracking and lightning jump algorithms using GLM pseudo-observations. Höller and90

Betz (2010) present a simple statistical model for transforming stroke-type data of the LF91

network LINET (Betz et al. 2009) to pseudo-MTG-LI optical events. The statistical rela-92

tions were studied comparing LINET strokes to concurrent TRMM-LIS groups. Then, they93

created a pixel matrix of the future MTG-LI and used TRMM-LIS statistics of radiance and94

event number per group to obtain pseudo-MTG-LI events. Their work aimed to propose a95

statistics-based method to create optical pseudo-observations of lightning from a given set of96

LF strokes. The available satellite lightning data solely emanated from the LEO TRMM-LIS97

mission, and in addition the number of cases was fairly limited (705 coincident flashes).98
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Recent studies assessing the GLM performance have shown that the DE varies within the99

field of view. GLM detects almost 90 % of the flashes in the south-eastern USA (e.g., Marc-100

hand et al. 2019; Murphy and Said 2020). The flash DE is statistically lower in other regions101

like Colorado. Rutledge et al. (2020) showed that the GLM performance depends on the102

charge structure and the hydrometeor distribution. In particular, electrically “anomalous”103

storms led to degrading GLM flash DE. The GLM flash DE also depends on the size and104

duration of flashes. Zhang and Cummins (2020) found that small, short duration flashes are105

more likely not observed by GLM than larger flashes.106

This paper introduces in-depth techniques and results of creating GEO lightning pseudo-107

observations. The GEO lightning pseudo-observation generator is developed using NLDN108

records in the US and can be applied to all NLDN-like ground-based LLSs, e.g., Meteorage109

in France. One key part of the generator uses machine learning (ML) to relate NLDN-110

like observations to the extent and duration of the generated optical flashes. The generator111

simulates the GEO lightning pseudo-observations on the flash level including events and thus112

flash extent. FED grids can be derived from the generated pseudo-observations to serve as113

assimilation input data. This work prepares in particular the assimilation of pseudo-MTG-114

LI data in the Meteo-France operational mesoscale numerical weather prediction system115

AROME (Applications de la Recherche à l’Opérationnel à Méso-Echelle) in France. As116

MTG-LI will produce GLM-like data, and the French Meteorage network observes lightning117

similarly as NLDN in the US (Erdmann 2020, Chapter II.2.4), the developed GEO lightning118

pseudo-observation generator can be used to simulate realistic pseudo-MTG-LI data.119

The main objective of this study is the generation of a realistic GEO lightning FED field.120

It does not aim at reproducing correctly individual flashes, but the FED product. Therefore,121

the most important characteristics are the overall flash number and the flash extent. There122
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is no direct dependency of FED on the flash duration and event number per flash, neither123

on flash energetics. The developed generator should provide synthetic MTG-LI FED over124

France for data assimilation studies (not in the scope of the present paper). The application125

in our study is not intended for an operational use even though the developed algorithm126

could be used for operational application or for training forecasters and users.127

Section 2 introduces both NLDN and GLM instruments. It also describes the dataset with128

coincident GLM and NLDN flashes. Section 3 explains in-depth the strategy to mimic GLM129

data from NLDN observations. This includes a 2-part GEO lightning pseudo-observation130

generator and different ML models to relate GLM and NLDN flash characteristics. Sec-131

tion 4 presents pseudo-GLM observations, their comparison to real GLM observations, and132

the evaluation of the 2-part generator. FED from real and pseudo-GLM observations is com-133

pared for the different ML-based generators. Finally, recommendations for suitable GEO134

lightning pseudo-observation generators are given.135

2. Instruments and Data136

GLM and NLDN make use of different lightning detection and locating techniques. This137

section introduces important specifications of both instruments and the studied dataset. It138

briefly describes the developed methods to match and compare GLM and NLDN observa-139

tions, and to infer flash characteristics needed for training ML models.140

a. Geostationary Lightning Mapper (GLM)141

The GLM is an optical sensor on board the GOES R-Series (currently GOES-16 at 75◦W142

and GOES-17 at 137◦W). This study uses the GOES-16 GLM data only. The GLM detects143

total lightning including IC and CG during day and night. Although it cannot directly144
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distinguish IC from CG signals, Koshak and Solakiewicz (2015) show that some ICs and145

CGs can be statistically differentiated. Especially due to the difficulty of the detection of146

daytime lightning against bright, sunlit clouds, thresholds and filters are applied to separate147

the lightning optical signal from background and other light sources. Lightning is detected148

in a narrow (1 nm) band centered at the 777.4 nm oxygen line in the near infrared. The149

wide field-of-view (FOV) image is focused on a high speed Charge Coupled Device (CCD)150

focal plane with a nearly hemispheric FOV coverage (1372×1300 pixels). The variable pitch151

pixel CCD allows for resulting pixels of about 8 km at nadir and only 14 km at the edge of152

the FOV (Goodman et al. 2013). Images are produced continuously and in time frames of153

2 ms.154

NASA’s GLM lightning data algorithm produces Level 2 data with lightning information155

as events, groups and flashes. The x,y-coordinates of the focal plane are transformed to156

latitude and longitude coordinates of an estimated cloud top ellipsoid (with a height of157

14 km at the equator and 6 km at the poles). Bruning et al. (2019) describes the effects of158

using this ellipsoid on GLM parallax with respect to any known ground-relative reference.159

GLM events are single illuminated pixels that pass the optical filters and are thus identified160

as lightning signals. Their location is defined as the center of the illuminated pixel. Adjacent161

events observed in the same 2 ms time frame are merged to form a group. Next, groups are162

combined into flashes. NASA’s clustering algorithm uses a Weighted Euclidean Distance163

(WED) with limits of 16.5 km in latitude and longitude direction and 330 ms in time. Two164

groups with a WED of less than one are assigned to the same flash. The WED criterion is165

tested for pairs of events with one event in each group (Mach 2020).166
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The reader is referred to Goodman et al. (2013), the GLM Product Performance Guide167

for Data Users (Koshak et al. 2010), and Goodman et al. (2012) for further information on168

GLM details. Mach (2020) analyzed the GLM algorithms recently.169

b. The National Lightning Detection Network (NLDN)170

The NLDN (Cummins and Murphy 2009) consists of more than 100 Vaisala LS7002 ground171

sensors in the contiguous US (CONUS). It detects LF electromagnetic signals generated by172

fast lightning discharges such as return strokes or by intracloud components. Due to a173

combination of magnetic direction finding and time-of-arrival techniques, only two sensors174

are needed to construct the horizontal location (latitude and longitude, no altitude) and175

time of a signal. NLDN locates total lightning, including CG and IC discharges. According176

to Vaisala (2013), up to 95 % and better than 50 % of all CG and IC lightning, respectively,177

is detected. Zhu et al. (2016) found that one third of 153 IC pulses were detected by NLDN,178

and 86 % were classified correctly. NLDN detected 92 % of 367 return strokes, and also 92 %179

were correctly classified as CG. The median location accuracy approaches 250 m for CG180

strokes in the interior of the network. Lightning can be located at long range (1500 km),181

but the location accuracy in the interior of the network is significantly higher than outside.182

NLDN measures also the peak amplitude of the LF source. NLDN data used in this study183

include time (resolved at 1 ms), the location as latitude and longitude, the peak amplitude184

[kA], the polarity, the type (CG or IC) of the LF source, and quality parameters, e.g., the185

location error ellipse axes. Although Vaisala merges strokes to flashes (within 10 km and186

1 s), this study retrieves NLDN flash level data using the algorithm developed by Erdmann187

et al. (2020) for Meteorage records in France. Hence, pulses/strokes are merged into a flash188
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if they occur within both 20 km and 0.4 s. The dataset is not further separated in this work,189

and the term pulse/stroke is used to represent all NLDN detections on the stroke-pulse level.190

c. Database for the current study191

The general dataset consists of six months of GLM and NLDN records, from March 15,192

2018 to September 15, 2018. NLDN data were provided in a region between 30◦N and 35◦N193

and 95◦W and 82◦W. GLM data before 26 September 2018 need a time-of-flight (TOF)194

correction that takes into account the time lightning photons need to travel from the cloud195

tops (approximated at 10 km of altitude) to the GLM orbit. Our study applies a dynamical196

TOF correction with values ranging from 122.8 ms to 124.9 ms in the region of interest.197

In order to handle the large amount of GLM data and hence to limit the data processing198

time, a reduction of the 6-month dataset was necessary. The complete lightning dataset is199

studied to identify lightning-active days (start and end at 00 UTC), defined by the number200

of GLM flashes and the number of GLM events. Ten days with significant lightning activity201

and different storm types during both day and night are selected. Table 1 summarizes the202

number of GLM events and flashes as well as NLDN pulses and strokes and flashes recorded203

in the region during each of the ten selected days. Table 1 also states the dominant weather204

situation during each of the ten days. At least one day per month is selected to represent205

possible climatological differences of the lightning within the region. All further analyses206

use these ten days in order to reduce the immense amount of GLM event scale data. The207

resulting dataset comprises 1,133,671 GLM flashes and 1,115,675 NLDN flashes. Missing208

data is identified through an analysis of instrument activity during 20 s time windows equal209

to those of the GLM L2 data files. The amount of flashes is reduced to 1,132,051 GLM flashes210
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and 1,115,585 NLDN flashes due to possible1 short periods of instrument inactivity. Hence,211

the difference in the number of observed flashes is less than 2 % of the flash counts, and both212

instruments operated continuously during the selected days. As the effect of downtimes of213

an instrument can be disregarded, the following analysis uses all available data. Three214

among the ten days are chosen to test the generators with uncorrelated data and to assess215

the variability in the results (test days). The test days (07 April 2018, 26 May 2018, and216

31 July 2018) feature both thermally driven convection and dynamic forcing at air mass217

boundaries. In the following, the different weather regimes with different lightning activity218

are briefly described for the test days as the final FED product is in fact only analyzed for219

these three days.220

For instance on 07 April 2018, the weather was dominated by a major cold front that221

traversed the region from northwest to southeast. Temperatures dropped by about 10 K222

behind the front. The strong dynamic forcing caused a mesoscale convective system (MCS)223

with linear structure. This system produced the vast majority of flashes observed during224

the test period of 07 April 2018 until it left the studied region at about 12 UTC.225

26 May 2018 was characterized by relatively warm surface temperatures with slightly226

decreasing temperatures from west to east within the region. Moisture was induced into227

the region by a weak tropical depression over Cuba and later southern Florida. Convection228

occurred mainly in the local afternoon as a result of surface heating. Well defined cells229

formed and propagated slowly southward in the cyclonic flow.230

1We do not know instrument downtimes from the data. Data may come with flags, but they do not give reliable information

about the instrument status. We used a two-step approach to identify downtimes; (i) the flash DE is less than 50 % and (ii)

the number of flashes observed is less than 10 % of the reference LLS.
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Daytime temperatures widely exceeded 30 ◦C and remained at about 25 ◦C at night within231

the region on 31 July 2018. Moisture was advected into the region from the Gulf of Mexico232

while a dry line approached from the northwest. A multicell storm cluster formed in the233

convergence zone at local nighttime and propagated eastward driven by a short baroclinic234

wave aloft. The second peak of lightning activity results from thermal convection in the235

eastern portion of the region before the dry air moved in and inhibited further convection.236

d. Data processing algorithms – Flash scale data and identification of matches237

NLDN and GLM observe lightning independently of each other. The comparison of the238

two LLSs needs, however, coincident observations. This work uses the matching algorithm239

introduced by Erdmann et al. (2020). Coincident observations are defined at the flash240

scale for flashes within 20 km and 1.0 s. The criteria are tested for any pair of events and241

pulses/strokes. Two parent flashes are matched if one event (pulse/stroke) meets both the242

spatial and the temporal criteria to any pulse/stroke (event) of the given flash. The algorithm243

does not analyze the flash mean position but the event and pulse/stroke locations.244

GLM flash level data are included in the GLM L2 science data and emanate from NASA’s245

GLM L2 clustering algorithm. Mach (2020) found recently that NASA’s GLM clustering246

algorithm was quite stable for different spatial and temporal merging criteria (mainly for247

storms with flash rates below about 40 flashes per minute). In the present study, the perfor-248

mance of NASA’s GLM L2 clustering algorithm for one hour on May 26 was investigated.249

NASA’s L2 GLM clustering algorithm succeeded to merge many events and to detect large250

flashes. The GLM operational algorithm still limits the maximum size of flashes due to251

computational restrictions. However, such cases are rare and hardly influence the data252

generators as statistical approaches are used for both training and testing here.253
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The matching of GLM and NLDN flashes (for the 10-day dataset) leads to 948,872 GLM254

and 971,102 NLDN flashes with match. Some flashes from one system are matched to more255

than one flash in the other system, and it happens more often that one GLM flash matches256

multiple NLDN flashes than vice versa. Considering the total number of GLM (NLDN)257

flashes, the relative flash DE is defined as ratio of flashes observed by both given and258

reference LLSs to the total number of flashes observed by the reference LLS. It yields 87.0 %259

(of 1,115,585 NLDN flashes) and 83.8 % (of 1,132,051 GLM flashes) for GLM and NLDN,260

respectively. Figure 1 illustrates the flash DE of both GLM and NLDN within the studied261

region, along with 2D density of observed flash centroids (gray iso-contour). The flash DE262

remains consistent within the entire domain. The local minimum in the northeast is caused263

by a low number of observed flashes for the two 1◦×1◦ pixels in Figure 1. The high flash DE264

of GLM agrees with the results of Marchand et al. (2019), who found the GLM DE relative265

to ground-based Earth Networks Total Lightning Network (ENTLN) flashes exceeding 80 %266

for most of the southeastern CONUS. They used 35 km and 330 ms as spatial and temporal267

matching criteria, respectively. Murphy and Said (2020) compared among others GLM and268

NLDN relative DE, matching flashes within 20 km between GLM flash centroids and the269

first NLDN pulse/stroke per flash and 200 ms between the flash time windows between the270

start and end times, and report similar flash DE values on the large scale in the southeastern271

CONUS. A new approach to the GLM flash DE and false alarm ratio (FAR) is introduced by272

Bateman and Mach (2020); Bateman et al. (2021): combining several ground-based networks273

to provide reference data, and using coarse matching criteria of 50 km and 10 min, they found274

flash DE of over 90 % and FAR just above 5 % for the GLM on GOES-16.275
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3. Methods276

This section defines the concepts and the strategy to generate GEO pseudo lightning277

observations. The methods are designed to use NLDN data and evaluated using real GLM278

observations. MTG-LI will provide total lightning observations with similar data structure279

as GLM observations. It will also consist of events, groups, and flashes. Although MTG-280

LI’s spatial resolution (4.5 km at nadir versus 8.0 km at nadir) and the temporal resolution281

(1 ms versus 2 ms) will be higher than those of GLM, the methods presented here can still282

be applied to simulate MTG-LI observations. A comparison of ISS-LIS records over the283

domain of this study (USA) and the target region (France) revealed statistically similar284

flash characteristics (Erdmann 2020, thesis, Chapter II.1-2). In addition, for both regions285

of interest, statistics on NLDN and Meteorage LF lightning observations relative to ISS-LIS286

records were consistent. The FED as explained in the following section is simulated on a287

5 km× 5 km resolution grid approximating the MTG-LI grid.288

a. Definition of the Flash Extent Density (FED)289

Flash extent density is a gridded product, summing over a given time integration period,290

the projections of the location of flash components, e.g., events and pulses/strokes on a291

given regular grid mesh. FED pixels with any lightning observation are identified, while292

pixels with multiple observations (e.g., multiple NLDN pulses/strokes) are counted once per293

flash. This gives a grid of pixels with either lightning (value 1) or no lightning (value 0) for294

each flash. The FED product considers all flashes within a given time integration period295

and sums up the occurrence of flash components per pixel. Hence, the FED product can296

have values greater than or equal to one flash per pixel. It shows the spatial distribution of297
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lightning activity within the given time period. For example, the propagation of convective298

cores can be tracked over several successive time integration periods.299

The FED in this study is calculated on a regular latitude longitude grid with an average300

pixel size of 5 km × 5 km. To obtain the regular latitude longitude grid, the distance of301

5 km is transformed to latitudinal and longitudinal distance as of the pixel at the center302

of the study region. Appendix A describes the details to transform GEO pixel grid to the303

regular FED grid. In the present study, FEDs are analyzed per 60 min time integration304

periods. The 1-hour period maintains information to locate tracks of convective cores and305

most electrified regions while it is also long enough to capture several storms distributed306

within the full domain. There might be, however, multiple storms at one location during307

60 min. The FED integration period can be changed as needed since our GEO lightning308

pseudo-observation generator simulates data at the flash level. The sum of multiple short309

FED periods is equal to the FED of a corresponding long period, but the computation of one310

long period is more efficient. Hence, this work simulates FED per hour for computational311

reasons. It should be mentioned, however, that other FED time integration periods are312

currently under investigation, and the assimilation of MTG-LI will use a shorter FED time313

integration period.314

b. Work flow – The simulation of GEO pseudo-observations of FED315

The simulation of pseudo-GLM flashes from NLDN observations is performed in 2 parts.316

First, our GEO lightning pseudo-observation generator uses the flash database with the317

coincident GLM and NLDN flashes and their characteristics. This part called target gen-318

erator employs ML techniques. It is based on statistical relationships between the NLDN319

characteristics (features) and the characteristics of the concurrently observed GLM flashes320
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(targets). The target generator is detailed in the following section. This part is conducted321

using different approaches, which will be explained thereafter. They include simple linear322

regressions as well as more sophisticated ML models. The second part of the GEO light-323

ning pseudo-observation generator, described in the last section here, simulates pseudo-GLM324

events using the simulated GLM flash characteristics.325

1) Simulate pseudo-GLM flash characteristics326

Coincident NLDN and GLM flashes are analyzed regarding their characteristics including327

the flash extent and flash duration (both GLM and NLDN) as well as the event number per328

flash (GLM) or pulse/stroke number (NLDN) per flash. The flash extent is a characteristic329

distance for the illuminated area for GLM or simply the distance between point sources for330

NLDN. It sums up the distance between the lowest and highest latitude (the North-South331

[NS] extent) and the distance between lowest and highest longitude (the West-East [WE]332

extent) of events or pulses/strokes of the flash. GLM flash extent relies on the pixel center333

position but does not include the pixel extensions. Single pixel GLM flashes and single334

pulse/stroke NLDN flashes have an extent of 0.0 km. Flash duration is defined as the time335

between the frames; therefore, a single frame features a flash duration of 0.0 s, i.e., GLM336

flashes with all events at the same time and NLDN flashes with all pulses/strokes at the337

same time. The maximum and mean signal strengths, defined from the LF peak currents338

and radiant energies as measured by NLDN and GLM, respectively, are evaluated per flash339

to represent flash energetics. In addition, a CG stroke ratio is calculated for NLDN flashes340

dividing the number of CG strokes of the flash by the total pulse/stroke number. Previous341

studies (e.g., Thomas et al. 2000; Marchand et al. 2019; Erdmann et al. 2020; Murphy and342

Said 2020; Rutledge et al. 2020) found that characteristics of flashes observed by optical343
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satellite LLSs depend among others on the flash altitude. Flash components identified as344

CG strokes propagate on average at lower altitudes than the IC components. In total,345

there are 5 GLM flash characteristics (flash duration, event number per flash, flash extent,346

mean and maximum event radiant energy per flash) and 6 NLDN flash characteristics (flash347

duration, pulse/stroke number per flash, flash extent, mean and maximum LF amplitude per348

flash, CG stroke ratio). Details on the distributions of the flash characteristics are provided349

by Erdmann (2020, Chapter II.3.4).350

Linear regressions between any two GLM and NLDN flash characteristics showed that351

GLM flash duration has Pearson correlation coefficients R above 0.64 to NLDN flash duration352

and the number of pulses/strokes per flash. GLM event number per flash and GLM flash353

extent feature R of 0.08 to 0.43 to the complete set of features. Mean and maximum event354

radiant energies per GLM flash are not correlated to any NLDN flash characteristic on the355

flash scale and then not relevant for synthetic FED generation. Hence, they are excluded356

from the ML targets. The remaining targets are GLM flash duration, event number per357

flash, and flash extent.358

Building the GEO lightning pseudo-observation generator requires independent generator359

building (GB) and generator testing (GT) data for the generator design and for the veri-360

fication of the generated product, i.e., the FED, respectively. The split of our dataset is361

illustrated in Figure 2. The GB data consist of seven days and the GT data of the remaining362

3 days (test days) of the full dataset (see Section 2.c and Table 1). The GB includes an363

ML part. Here, only matched flashes are considered in order to compare feature and target364

values (see Figure 2). Features (input data) of the ML are the six NLDN characteristics,365

and targets (output data) are GLM flash duration, event number per flash, and flash extent.366

Feature and target sample sizes are given as the number of matched flashes detected by367
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GLM and NLDN, respectively, and are not equal in general (Section 2.d). Since training368

the ML models requires the same sample size for the features and targets, two (or more)369

flashes matched to the same flash of the other LLS are merged, and characteristics of the370

merged flashes are combined. The resulting ML data (dark orange in Figure 2) consist of371

672,794 flashes, each sample with six NLDN features and three GLM targets. The ML part372

further splits this set of ML data randomly into independent ML training and ML validation373

data at a ratio of 90 % to 10 %. The ML models are thus trained with 605,515 flashes. The374

ML validation data serves to calculate goodness-of-fit scores for each applied ML technique.375

Then, the different ML models are compared and the model parameters (e.g., the number376

of trees or the number of neural network layers, see Appendix B.a) are tuned based on the377

scores. The 3-day GT dataset is used to evaluate each generator as a whole including the ML378

and event generation parts. The test exercise exploits both observed GLM and generated,379

NLDN-based pseudo-GLM datasets as two independent populations.380

The generator simulates one pseudo-GLM flash for each observed NLDN flash. Thereby,381

it is assumed that flashes detected by GLM only and detected by NLDN only compensate382

each other. The assumption was justified as (i) GLM and NLDN feature flash DEs on the383

same order, (ii) both GLM-only and NLDN-only flashes were smaller in extent and shorter384

in duration than the flashes with coincident observations (see also e.g., Zhang and Cummins385

2020; Erdmann et al. 2020), and (iii) most GLM-only and NLDN-only flashes were found in386

the same regions in proximity to convective cores where high flash rates were observed (as387

in Zhang and Cummins 2020). The overall GLM and NLDN flash numbers (see Table 1)388

vary by only a few percent. However, it can be seen that there are days and cases where389

NLDN detects more flashes than GLM, i.e., 07 Apr. and 14 Apr. and other days where390

GLM detected more flashes than NLDN, i.e., 26 May, 03 Jun., and 07 Aug.391
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Here, only GLM flashes will be simulated and only if there are NLDN records. The al-392

gorithms do not distinguish potential NLDN flashes that would not be detected by GLM.393

In addition, there is no algorithm developed to create flashes only detected by GLM. For394

those two configurations, developing dedicated algorithms would require taking into account395

the microphysical properties of the cloud profiles, but also a model that would generate the396

lightning activity as realistically as possible to mimic GLM-only and NLDN-only flashes.397

The goal of the lightning generator is to provide synthetic LI records with a better represen-398

tativeness than what has been used so far, knowing that there are some limitations in our399

models, to develop a new proof of concept to assimilate space-based lightning observations.400

Another aspect concerns the detection of optical flashes at day and night. One can consider401

to develop a GEO pseudo-observation generator for both day and nighttime with potentially402

different relations between LF flash characteristics and GEO flash characteristics. However,403

as this paper includes a variety of methods and the first approach to use ML techniques to404

simulate GEO flashes, day and nighttime flashes are not separated. This also is the case for405

flashes over land and sea.406

The aforementioned assumption means that flashes detected by NLDN only are treated407

similarly to those coincidently detected by both NLDN and GLM. As the number of NLDN-408

only flashes is significantly lower than the number of NLDN flashes with GLM match (given409

a GLM flash DE relative to NLDN of 87 % for the full 10-day dataset), the assumption410

only affects about 13 % of the simulated flashes. Statistics of GLM targets and FED fields411

inferred from the generated pseudo-GLM flashes are compared to those from all observed412

GLM flashes during the 3 days.413

The comparisons of statistics of the observed and simulated targets include the distribution414

mean, median, minimum, and maximum. The root mean squared error (RMSE) between415
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characteristics of individual (simulated and real) GLM flashes is also computed, but only for416

the 295,313 NLDN flashes with GLM match (representing a GLM flash DE of 86.7 % for the417

test days). The evaluation makes an addition use of two statistical scores that are defined for418

the cumulative (in fact empirical) distribution functions (CDFs): the Kolmogorov-Smirnov419

statistic (KS, Massey 1951) and the Cramér-von Mises criterion (CvM, Anderson 1962)420

measure the distance between the observed and simulated CDFs of the targets. Both the421

KS and the CvM tests can verify the null-hypothesis that two samples belong to the same422

population.423

2) ML-based target generators relating NLDN flash characteristics to424

GLM flash characteristics425

The previous sections explained that our GEO lightning pseudo-observation generator426

consists of 2 parts, the ML-based target generator and the simulation of GEO pseudo-427

events. Appendix B.a briefly describes the different ML models used in the ML-based part428

of this generator. The ML-based algorithms relate NLDN flash characteristics to GLM flash429

characteristics in this work. Hence, all ML models are supervised models with the same430

training data. The models emanate from Python’s scikit-learn library (sklearn, Pedregosa431

et al. 2011).432

This study uses seven different ML model types (details in Appendix B.a): Multivariate433

linear regressions (LinReg), third-degree polynomial regressions (Poly), Extra Trees Re-434

gressors (ETR) as a form of Random Forests, Bagging with k-nearest neighbor regressors435

(BAGR KNN), Multilayer Perceptron neural networks (MLP), linear Support Vector Re-436

gressors (linSVR), and Histogram Gradient Boosting Regressors (HGBR).437
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3) Multi-step Approach438

Targets of a multi-target ML training can be correlated, e.g., GLM event number per flash439

is strongly correlated to GLM flash extent with R of 0.74. To the best knowledge of the440

authors, models of Python’s sklearn library do not take advantage of correlations between441

targets. Indeed, the so-called single target (ST) approaches do not consider correlations442

between targets, however, such correlations can help to improve the skill of ML models and443

thus the prediction of the generators. Borchani et al. (2015) summarize methods to deal with444

multi-target regressions and take advantage of correlations between targets. Their paper445

compares the ST approach to multiple multi-target approaches, e.g., multi-target regressor446

stacking (MTRS), regression chains (RC), multi-output support vector regression, multi-447

target regression trees, and rule methods. Spyromitros-Xioufis et al. (2016) introduced the448

stacked ST (SST) and ensemble RC (ERC). These methods can be computationally complex449

with high memory costs (Mastelini et al. 2019). As Aguiar et al. (2019) state, choosing the450

most suitable approach needs previous testing and depends on the task. The methods cited451

here are computationally expensive.452

The flow chart in Figure 3 shows a computationally efficient multi-target approach that453

simplifies the SST. As a starting point, there are NLDN features and GLM targets as454

input for the ML training. The approach combines ST models (Figure 3a) of three classes455

(colored) for the training. The application case only uses the NLDN features as first input.456

Therefore, a multi-step approach is required. An application example is shown in Figure 3b.457

More details about our approach can be found in Appendix C.458

In summary, the multi-step approach modifies the ML input feature set selection and thus459

the configuration of the corresponding generator. It is a form of multi-target regression that460
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can take advantage of correlations between the ML targets. Appendix B.b summarizes the461

available feature set selections for the ML as different configurations of generators. Figure 3b462

shows just one example of the application that is also detailed in Appendix C. Section 4 will463

demonstrate whether the additional GLM pseudo-features can help to tune the pseudo-GLM464

simulation towards observed GLM data.465

4) Applied Scaling Methods466

This study normalizes features to the [0,1] range with a Min-Max-scaler:467

XN =
X −minX

maxX −minX
(1)

where X is a data vector, minX and maxX define the minimum and maximum of X,468

respectively, and the resulting normalization XN ranges from 0 to 1.469

The targets are scaled with a common standard-scaler (also called z-value scaling) defined470

as471

Z =
X −meanX

stdX
(2)

where X is a data vector, meanX and stdX are the mean and the standard deviation of472

X, respectively. The resulting standardization Z is centered around 0.473

The Min-Max-Scaler is an alternative standardization method that is more robust to474

small standard deviations and for different feature ranges than the common standard-scaler475

(sklearn documentation).476

Some generators perform well with unscaled data (i.e., direct input of data with physical477

units) used as a reference input method during the ML part. All results presented in this478

paper are re-scaled to physical units.479
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5) Generate pseudo-GLM events480

The studied domain is separated into regular adjustable size latitude-longitude pixels that481

represent the pseudo-GLM pixel matrix. Any given latitude-longitude position is projected482

on that pixel matrix to determine the corresponding pixel and thus the shape of one pseudo-483

GLM event. Using a regular grid simplifies and speeds up the simulation of pseudo-GLM484

events significantly. Each regularly shaped pseudo-GLM event covers an area equal to the485

average size of the observed, irregularly shaped GLM events in the region of interest. Ana-486

lyzing simulations built on this regular pseudo-GLM grid should lead to statistically similar487

results as for the irregular grid of the GLM observations.488

The target generator of the GEO lightning pseudo-observation generator simulates the489

targets based on the given NLDN flash characteristics. These pseudo-GLM targets provide490

the information to derive individual pseudo-GLM events. As the target generator may491

produce targets with values smaller than the observed (and physical) limits, the targets are492

adjusted to account for the known thresholds. For instance, negative flash extent and flash493

duration are set to zero, and there are at least 2 pseudo-GLM events per flash in accordance494

with NASA GLM data processing (Mach 2020). Pseudo-GLM flash NS and WE extents are495

calculated based on the simulated pseudo-GLM flash extent applying the same ratio as the496

NS and WE extents of the corresponding NLDN flash. If the NLDN flash contains a single497

pulse or stroke, the NS to WE ratio is set to one.498

First, the locations of pseudo-GLM events are generated. Using the simulated pseudo-499

GLM flash extent and its NS and WE components, a rectangular sub-domain on the pseudo-500

GLM pixel matrix is defined. The center of this sub-domain houses the NLDN flash position501

centroid and the corresponding pixel constitutes the first event of the pseudo-GLM flash.502
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Any pixel within the sub-domain may also become a pseudo-GLM event of this pseudo-503

GLM flash. Three constraints have been designed to generate subsequent pseudo-GLM504

events: (i) each event of the flash has at least one adjacent or diagonal neighbor within505

one flash, thus, avoiding spatial gaps; (ii) pixels are primarily selected starting at the first506

event and propagating (meaning increasing distance to the first event) towards the sub-507

domain border to approximate the simulated flash extent; and (iii) additional pixels can be508

selected randomly within the rectangular area until the simulated event number is reached.509

In consequence one single pixel of the sub-domain can contain more than one pseudo-GLM510

event. Since pixels of the sub-domain are not guaranteed to contain a pseudo-GLM event,511

this random selection also affects the final FED product.512

Then, the pseudo-GLM events get time stamped. In the present study, the matching of513

GLM and NLDN flashes revealed that the median time offset between the mean time of a514

given NLDN flash and the mean time of the matched GLM flash was about 8 ms. The NLDN515

and GLM average flash duration were 0.24 s and 0.39 s, respectively. Hence, the mean time516

of matched NLDN and GLM flashes are relatively close while GLM flashes last on average517

longer than NLDN flashes. As a consequence, the mean time of the NLDN flash defines the518

mean time of the pseudo-GLM flash that is also the time stamp of the first pseudo-GLM519

event. Our generator is built to generate realistic FED fields. Only the spatial distribution520

of the events is needed to infer FED. Hence, the temporal occurrences of pseudo-events are521

uniformly and arbitrary distributed during the duration of one flash. Pseudo-event times522

are then rounded to the time frames of the mimicked GEO LLS, i.e., to 2-ms-frames for523

pseudo-GLM data. The only constraint is that any adjacent pixel occurs within 330 ms (i.e.,524

the time criterion to separated flashes in NASA’s GLM L2 algorithm). One 2-ms-frame525

contains often several pseudo-GLM events.526
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4. Results527

Figure 4 shows the example of one simulated pseudo-GLM flash created with the final528

GEO lightning pseudo-observation generator based on a linSVR model, the corresponding529

GLM and NLDN observations, and the observed and simulated GLM flash characteristics.530

One can see the difference between the real GLM grid and the regular pseudo-GLM grid of531

the simulation (Figure 4(c)). The difference between observed and simulated flash extent532

is within the size of one GLM pixel for this example. The simulated flash duration exceeds533

the observed flash duration significantly. There is also an overestimation of the number of534

GLM events by the generator.535

Results are obtained from the 3-day test dataset. It contains 340,712 NLDN flashes that536

are used to simulate the same number of pseudo-GLM flashes. Statistics of the pseudo-GLM537

flashes are compared to the statistics of all 338,579 observed GLM flashes. First, the distri-538

butions of the simulated and observed GLM flash extent, flash duration, and event number539

per flash are compared. The best target generators are used to simulate pseudo-GLM events540

and eventually compute the pseudo-FED product. The FED is analyzed statistically for both541

observed and simulated GLM data of the three test days. The minimum discrepancy between542

observation and simulation will indicate the most suitable target generator configuration for543

the final GEO lightning pseudo-observation generator.544

a. Evaluating the target generators – Distributions of GLM flash extent, flash duration and545

event number per flash546

In a general sense, a wide range of values is observed for all target distributions. The547

GLM flash duration ranged from 0.0 s to 16.4 s. Observed GLM flashes comprised between548
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2 and 1395 events. The test data features GLM flash extent between 0 km and 277 km. The549

target generators should handle these ranges of values and predict target statistics similar550

to the statistics of observed GLM flashes.551

Table 2 summarizes the findings , with statistics, the KS, and the CvM of the distributions552

of observed and simulated GLM flash duration, event number per flash, and flash extent for553

the full 3-day test data. The table contains distribution statistics for the respective target554

generator with smallest difference between observed and simulated characteristics over the555

test period. Results for the linSVR num ext(a) plus generator are shown as reference.556

Statistics of the simulated pseudo-GLM and the observed distributions are referred to as557

simulated statistics and observed statistics, respectively.558

This analysis was also conducted for each test day. The results are presented in Ap-559

pendix D.a.560

The majority of the target generators features mean values similar to the observed means561

for all three target characteristics. The simulated medians, however, exceed the observed562

medians in most cases, especially for the number of events per flash, suggesting a tendency563

to overestimate the target values. The previously described behavior is true for all but the564

linSVR-based generators. linSVR filters the dataset in advance to build the prediction on the565

support vectors (Appendix B.a.(vi)). That results (in this study) in lower differences between566

the simulated and observed median values as compared to using the other ML model types.567

The mean values of linSVR-based predictions, are, however, often smaller than the observed568

mean, especially for the event number per flash. Table 2 demonstrates this behavior of569

linSVR-based generators. To detail one example, the recommended linSVR-based generator570

(see Section 4.b, bold in Table 2) underestimates median and mean flash extent by about571

4.5 % and 11.7 %, respectively. The mean event number per flash is also underestimated572
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by about 29.6 %, however, the median event number per flash is overestimated by 20 %.573

The linSVR-based generator creates, compared to the observations, not enough flashes with574

an event number in the tails of the distribution, i.e., close to the observed minimum and575

maximum event numbers. Hence, it cannot mimic the full range of the observed event576

numbers per flash. This linSVR-based generator still outperforms all other generators with577

respect to the median considering the full 3-day test data.578

Some general conclusions can be drawn regarding the generator performances for the ob-579

served range and variability of the target values. The target generator minimum often580

approximates or slightly exceeds the observed minimum, whereas the maximum is under-581

estimated in most cases. This particular behavior can even be seen for the best target582

generators (Table 2) because the number of small flashes with characteristics close to the583

minimum observed target values is relatively high. The rare, highest observed values are584

often underrepresented in the statistical approach. It is further found that observed GLM585

flash statistics can vary for a given set of the six observed NLDN features. This is the case586

as our six NLDN features cannot completely explain the range of target values even if the587

statistics derived here are significant in terms of the large sample size. The large values of588

the RMSE per flash in Table 2 and also Appendix D.a result from the deterministic nature of589

the ML models in combination with this lack of information in the features, e.g., cloud prop-590

erties. The RMSE values of the GLM flash extent are similar to the mean values, whereas591

they reach twice the mean for both GLM flash duration and event number per flash. Here,592

the optimization of our GEO lightning pseudo-observation generator for FED that depends593

mostly on the flash extent is evident. A relatively wide range of target values is in particular594

found for small NLDN flashes with NLDN pulse/stroke number, extent, and duration near595

the lower end of the distributions (not shown). Large (meaning long extent, long duration,596
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and many pulses/strokes or events) NLDN flashes usually coincide with large GLM flashes.597

As the NLDN features are somewhat correlated to the GLM targets, the high RMSE due to598

a small NLDN flash as input also leads to a high RMSE when predicting small GLM flashes.599

KS and CvM assign a quantitative value to measure the distance between two samples.600

While KS is normalized (values of 0 to 1), the CvM value depends in general on the distance601

between simulated and observed CDFs and the sample size. As the sample size is kept con-602

stant for all generators, CvM in fact provides a common measure of the agreement between603

observed and simulated targets. Both KS and CvM feature lower values for the GLM flash604

duration than for both the GLM flash extent and the GLM event number per flash consid-605

ering the full test dataset (Table 2). This result is in accordance with the strong correlation606

coefficients between observed GLM flash duration and NLDN features (see also Section 1).607

KS and CvM for the flash duration rely mainly on the underestimation of long duration608

flashes. As an exception, the recommended linSVR num ext(a) plus generator not only609

underestimates the maximum flash duration but also cannot produce single-frame flashes.610

Therefore, KS and CvM are higher for the flash duration than for the flash extent here2. KS611

and CvM reach their highest values, i.e., when comparing the 3 target distributions, for the612

GLM event number per flash, for which the weakest correlations to features were observed.613

The presented selection of generator performance for the 3-day test data and each test day614

(Appendix D.a) indicate that the choice of a suitable target generator can be situational. The615

objective now is to find a configuration that best approximates the observed GLM flashes616

and target distributions. Therefore, the differences between the simulated and observed617

2It can be noticed from Table 2 that this linSVR-based generator also overestimates the minima of event number per flash

and flash extent. For those two targets, the simulated maxima are closer to the observed maxima than for the best performing

generator in Table 2 causing overall similar and even lower KS and CvM for the linSVR num ext(a) plus.
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statistics (i.e., mean, median, minimum, maximum, RMSE, KS, CvM) are calculated and618

normalized for each statistic. The normalization divides each absolute difference by the619

maximum absolute difference of all target generators for a given statistic. A value of 1620

represents the worst target generator for the given statistic, while a value of 0 indicates621

no difference to the observation. In addition, and to summarize all the information, the622

so-called Normalized Difference Average (NDA) is introduced to average the normalized623

absolute differences and scores for a given generator. The perfect generator would yield an624

NDA of zero. NDAs of the target generators can be directly compared in order to identify625

the highest performer. NDA is calculated per target and for all three targets overall.626

Overall NDAs for all three targets range from 0.35 for the linSVR num ext raw generator to627

0.87 for the MLP num ext(a) raw generator. The best (i.e., lowest NDA) 24 target generators628

all use a linSVR, and the performance of the best target generators varies only within the629

range of uncertainty given in Section 1. For example, the difference between the 1st and 10th630

ranked target generator is only 0.04 NDA. The NDA ranking of target generators reveals631

a clustering explained by the ML model type, with linSVR-based generators performing632

the best, followed by BAGR KNN dist-based, ETR-based, and polynomial regression-based633

generators. MLP- and HGBR-based generators exhibit the highest NDAs.634

The generators yielding the lowest NDA values are mostly those using the multi-step635

approach. In addition, the use of all six (plus, Appendix B.b) instead of only four (default)636

NLDN features improved the performance of the majority of tested generators. The feature637

and target scaling had little effect on the generator performance, although scaling is usually638

recommended for ML applications. The ML model type has in fact the highest impact on639

the simulation of pseudo-GLM flashes and thus on the target generator performance.640
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Figure 5 visualizes the statistics of all tested target generators for the flash extent as the641

most impactful characteristic on FED. It groups the results for each statistic by ML model642

type. Seven ML model types were used to build the generators (Section 2 and Table B1643

except RF ). Each distribution contains the results of 28 generators using this ML model644

type including 7 feature set selections and 2 optional attributes (Appendix B.b, Table B2).645

Figure 5 shows these results as normalized differences and scores for the 3 test days combined.646

It reveals that the boxplot minima for the linSVR type generators are the closest to zero647

for most statistics. BAGR KNN dist-based generators feature the second lowest values of648

KS and CvM. The finding is supported by results for each test day (Appendix D.a) showing649

best performances for the targets by BAGRN KNN dist-based generators on 07 April 2018650

and by linSVR-based generators on 26 May and 31 July 2018. Some boxplots exhibit a651

wide range of outcomes. The range shows that all ML model types are sensitive to the652

configuration. The NDA of the best generator, i.e., linSVR num ext(a2), equals 0.28. The653

associated outcomes for flash duration and event number per flash statistics (AppendixD.b)654

confirm linSVR-based generators as most suitable to simulate GLM targets for the entire655

test period. Hence, results for the individul targets agree with the overall NDA analysis.656

1) Confidence in the results657

The confidence in the outcomes is evaluated for the two parts of the GEO lightning658

pseudo-observation generator. The uncertainty of the outcomes is expressed as the range of659

outcomes given the same configuration. First, (only) three selected generators with constant660

configuration are trained 10 times using the same full training dataset (for computational661

efficiency). Herewith, the training variability of the ML model is assessed. The selected662

generators are BAGR KNN dist num plus, MLP alpha8 num raw, and linSVR num ext(a)663
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plus. They are labeled by their ML model type as BAGR KNN dist, MLP, and linSVR,664

respectively. Figure 6 shows the distributions (boxplots) of targets for the full test data665

for the 3 generators (x-axis) each trained 10 times for pseudo-GLM flash duration (a),666

pseudo-GLM number of event per flash (b), and pseudo-GLM flash extent (c), respectively.667

The predicted target range of the 10 trained generators is smaller than the variability due668

to different ML model types and due to different configurations of one ML type. The 10669

BAGR KNN dist based simulations feature a very narrow range of outcomes for all statistics.670

The 10 trainings of both this linSVR and this MLP yield a range of values of 0.2 to 0.4671

normalized absolute difference for most statistics. The range of the minimum event number672

per flash (Figure 6b) and the minimum flash extent (Figure 6c) reaches about 0.5 and up673

to 0.7 for the linSVR and MLP -based generators, respectively. This range is in the order674

of magnitude as the variability enforced by using different ML model types. The range of675

normalized absolute difference for the maximum event number predicted based on 10 equally676

configured linSVR models is also about 0.6. In addition, the range of normalized absolute677

differences is always wider for the mean than for the median. Despite a relatively high678

uncertainty in some statistics, the overall trends as described in the previous section remain679

valid. Statistics sensitive to distribution outliers, i.e., the mean and minimum, exhibit higher680

uncertainties due to the GB than more robust statistics, i.e., the median, KS, and CvM.681

Some target generators, i.e., the BAGR KNN dist-based one, appear to provide very robust682

predictions. The uncertainty range is usually smaller than the overall range of values for683

each statistic.684

The test of the variability in the results enforced by the second part of the GEO light-685

ning pseudo-observation generator, i.e., generating pseudo-GLM events (not shown) is much686
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smaller than for the ML part. Hence, the overall range of targets for a given generator687

configuration is similar to those shown in Figure 6.688

b. Evaluating observed and simulated Flash extent density (FED)689

Hourly FED maps are calculated for both GLM observed and simulated flashes. They will690

be referred to as observed and simulated FED, respectively, in the following. The evaluation691

includes the hourly FED summed-up over the domain (termed FED sum), the electrified692

areas defined as pixels with positive FED (i.e., greater than 0 flashes per 5 km× 5 km pixel693

per hour), and a visual inspection of convective cores. As the choice of the ML model type694

has the highest impact on the overall performance of the GEO lightning pseudo-observation695

generator, the results are mainly discussed with respect to the ML model types.696

Figure 7 presents the observed FED (a) to the simulated FED of 3 selected generator697

configurations (b-d) for the example of 26 May 2018, 20:00 to 21:00 UTC. The 3 generator698

configurations represent a selection of the variety of tested generators with different ML699

model types, feature set selections, and scaling, as detailed below (see also Appendix B).700

Simulated FED fields capture the coarse geographical distribution of the observed FED.701

One can identify the most active regions (highest FED values), that are situated at similar702

locations for the observed and simulated FEDs. The numbers in the top corners of the703

panels (a)-(d) indicate the number of lightning pixels with FED>0 flashes per 5 km× 5 km704

pixel per hour on the left and the FED sum on the right. The product of the number of705

lightning pixels and the area per pixel yields the electrified area. The linSVR (num ext(a)706

plus, Table B2) in Figure 7b uses GLM duration as additional feature when simulating GLM707

number, and then GLM duration and GLM event number to simulate GLM extent. This708

linSVR-based generator performs among the best for the simulation of GLM targets overall,709
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and it appears to be among the best also for the FED sum. It underestimated the electrified710

area in most cases (as in the example in Figure 7a,b). The MLP -based simulation (num711

raw, Table B2) of the FED of Figure 7c uses unscaled features and targets. GLM flash712

extent and flash duration relate only to 4 NLDN features (without mean amplitude and CG713

stroke ratio). The attribute num means that pseudo-GLM flash duration and flash extent714

are obtained directly from ST approaches. Those simulated targets serve as pseudo-features715

to derive the pseudo-GLM event number. This MLP -based generator performs among the716

best for the electrified area, but overestimates GLM flash extent, GLM event number per717

flash, and eventually the FED sum. Figure 7d maps the FED as simulated by the BAGR718

KNN dist based generator (num plus, Table B2) that uses all six NLDN features and the719

num method (see above). It is the best performing generator using the BAGR KNN dist720

ML model type. Although this generator overestimates the target medians and the FED721

sum, it belongs to the best 25 % of generators for both FED sum and and electrified area. It722

performed best for 07 April 2018 test case with the dominant squall line that produced most723

of the large-extent lightning flashes. In general, all 3 generators overestimate the 1-hour724

FED sum in Figure 7. The linSVR-based generator simulates an FED sum significantly725

closer to the observed FED sum than using both the MLP and the BAGR KNN dist. The726

linSVR, however, underestimates the number of lightning pixels, that is best simulated by727

the MLP -based generator here.728

The results are further investigated for the 3-day test period by comparing pixel-to-pixel729

simulated and observed hourly FED. Figure 8 shows the 2D-histograms, computed for the730

entire 3-day test dataset, for the same linSVR (a), MLP (b), and BAGR KNN dist (c) based731

generators as used in Figure 7. In general, the Pearson correlation coefficients R of 0.91 to732

0.92 indicate well correlated distributions of observed and simulated FED. Figure 8 also733
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shows the range of simulated FED is wider than the range of observed FED (grey box). The734

corresponding trend to overestimate the FED in the simulation is proofed by the regression735

lines (light green) that feature steeper slopes than the equal-value line (black). In particular,736

the MLP -based (Figure 8b) and the BAGR KNN dist based generator (Figure 8c) overes-737

timate the FED usually more than the linSVR-based generator (Figure 8a). Y-intercepts738

near 0 indicate good agreement for regions without lightning activity. These findings agree739

with the example in Figure 7.740

To summarize and quantify the evaluation of both FED sum and electrified area, the741

metrics normalized difference Dreal and absolute normalized difference Dabs are defined:742

(a) Dreal =

∑H
n=1 Sn −On∑H

n=1 On

and (b) Dabs =

∑H
n=1 |Sn −On|∑H

n=1 On

(3)

where Sn is the simulated hourly FED sum or electrified area, On is the observed hourly743

FED sum or electrified area, and H is the total number of time steps (here 72 hours). Dreal744

and Dabs can be used to compare the different GEO lightning pseudo-observation generators745

and identify the generator with the lowest difference to the observation.746

All 196 generators are evaluated for Dreal and Dabs of both FED sum and electrified area.747

As the ML part of the generator enforces significantly higher differences than the derivation748

of pseudo-GLM events (the second part), again results are mainly discussed regarding the749

different ML configurations.750

Dreal and Dabs are calculated for the 3-day test period. For the FED sum, the 28 linSVR-751

based generators tested are ranked as best 28 configurations in the comparison, i.e., lowest752

Dabs. Table 3 presents the results for the best 20 and worst 5 generators as ranked by Dabs of753

FED sum. The best GEO lightning pseudo-observation generators exhibit an Dabs of 22 %754

to 25 %, while Dreal is close to zero, i.e., balance between situations with over- and under-755
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estimated FED sum. The worst generators (some of MLP and ETR based configurations)756

lead to almost twice as high FED sum as the observed values. Similar, positive values of757

both Dreal and Dabs for the FED sum mean that most generators overestimate the FED758

sum. This agrees well with Figure 8. The exception is found for the linSVR type generators759

that often underestimate the FED sum with Dreal ranging from −22 % to +39 %. Figure 8a760

shows one example of a linSVR with positive Dreal.761

As mentioned, the best 28 generators for the FED sum are all of type linSVR. The best762

10 generators use the multi-step approach (num and num ext, Table 3). The use of mean763

LF amplitude and CG fraction (plus) as additional NLDN features has a minor effect on764

the simulation of FED sum.765

Results for the electrified area are in general closer to the observation than the FED sum.766

They are shown in Table 4 for the best 20 and worst 5 generators as ranked by Dabs of the767

electrified area. The generators with the lowest Dabs, HGBR type, differ absolutely by about768

7.5 % from the observed electrified area. The vast majority of all tested target generators769

underestimate the electrified area (negative Dreal). Multiple generators of various types770

feature Dabs of less than 10 %, e.g., using HGBR, Poly, BAGR KNN dist, ETR, or MLP771

models. The linSVR-based generators, that performed best for the FED sum, exhibit the772

highest differences to the observation here with Dabs from 15 % to 35 % (all with negative773

Dreal). For example, the best performer for the FED sum is ranked as third worst for the774

electrified area with a high underestimation of the area.775

The best 20 generators for the electrified area take advantage of the multi-step approach776

in 15 cases. Also 15 of those 20 ML-based generators use all NLDN features (Table 4).777

Comparing only the linSVR-based generators, all 10 leading generators use 6 rather than778
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only 4 NLDN features. This result strengthens the meaning of including all NLDN features779

and of the multi-step approach.780

The computational cost of our multi-step approach is still higher than the ST approach,781

however, only needed for the training of the generator. The application of trained multi-782

step generators is relatively fast, i.e., similar duration as applying ST generators. The783

best generator without multi-step approach (linSVR(a) raw) exhibits Dabs more than 14 %784

higher than the best generator for the FED sum (Table 3). In addition, Dreal exceeds 23 %785

indicating that the FED sum is mostly overestimated. FED sum simulation is most sensitive786

to the choice of the generator and, hence, particularly important to obtain realistic synthetic787

FED. The multi-step approach helps in particular to obtain more realistic FED sum than788

ST-based generators. For the electrified area, however, generators not using the multi-step789

approach can perform as well as the best generators (Table 4). If only electrified area is790

of interest, common ST models can be used. The multi-step generator linSVR num ext(a)791

plus is successfully applied to simulate GLM FED (Section 4) and also MTG-LI FED over792

France (not in the present paper).793

The recommended GEO lightning pseudo-observation generator balances the simulation794

of all pseudo-GLM target distributions, FED sum, and electrified area. It is named linSVR795

num ext(a) plus generator. This configuration features an overall NDA of 0.39, and an Dabs796

to observed FED sum and electrified area of 24.9 % and 21.3 %, respectively. This generator797

used all available features and utilizes the multi-step approach. First, GLM flash duration is798

predicted from all six NLDN features, and then used as additional pseudo-feature to predict799

the event number per flash. Finally, the pseudo-GLM flash extent is simulated from NLDN800

features and the pseudo-features GLM flash duration and event number. Both features and801

targets are scaled (Section 4). The linSVR ML technique is more time-efficient than the802
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MLP and bagging-based, e.g., BAGR KNN dist and ETR, techniques for the training and803

also needs less disk space to be stored. These are two other advantages of the linSVR num804

ext(a) plus generator.805

Figure 9 presents hourly FED sum (a) and electrified area (b) with the overall value (1) and806

the difference to the observation (2) for 31 July 2018 test case. The observed FED and results807

for the 10 generators with lowest Dabs are plotted. Figure 9(a) includes in addition results of808

the best generator for electrified area (lime), and Figure 9(b) the results of the best generator809

for FED sum (orange). The figure also shows the number of hourly simulated pseudo-GLM810

flashes (histogram). Similar figures for the other two test days are also evaluated but not811

shown here because identical conclusions are drawn. The absolute values (Figure 9 panels812

1) show that the FED sum (a) reacts directly to the number of (simulated) flashes. The813

electrified area curves (b) appear to have a time offset relative to changes in the flash number,814

suggesting that within 1 h a lower number of relatively large flashes can electrify a similar815

area as a higher number of smaller flashes. An increasing (decreasing) flash rate during the816

development (decay) of convective storms does not automatically mean a larger (smaller)817

electrified area, since even less flashes can still illuminate a large portion of the cloud via818

scattering. The simulated FED adapts this behavior very well. In particular, the simulated819

FED features similar hours with highest FED and electrified area as the observed FED.820

It is observed that the simulated FED sum usually exceeds the corresponding observa-821

tion during the phases of highest flash amounts within the region (Figure 9a). This could822

mean that NLDN detects significantly more flashes than GLM during these times, and thus823

the number of simulated flashes is significantly higher than the number of observed GLM824

flashes. These findings agree with Zhang and Cummins (2020), who found that the GLM825
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DE decreases for high flash rates and with shorter extent and duration flashes, which are826

observed during the mature phase of a thunderstorm.827

It should be noted that the absolute values (Figure 9a1 and b1) and difference to the828

observation (Figure 9a2 and b2) for the FED sum (Figure 9a) have the same order of829

magnitude. In contrast, the difference (9b2) is one order of magnitude smaller than the830

absolute values (Figure 9b1) for the electrified area. Hence, the difference to observed FED831

and also the spread between generators with different configurations are much greater for832

the FED sum than for the electrified area. Therefore, it is decided to put more weights833

on the ranking of the FED sum than on the ranking of generators by electrified area when834

choosing the recommended generator. Eventually, the linSVR-based generator returns as835

the recommendation in an overall evaluation context. If, however, for a certain objective836

the electrified area is most important, several HGBR, MLP or even ETR based generators837

perform better than the recommended linSVR-based generator.838

In a Monte Carlo approach, FEDs for 10 of in total 100 realizations of the recommended839

linSVR generator are calculated for the three test days. Figure 10 illustrate the median840

(line) and range (shaded) of FED sum and electrified area on 31 July 2021. The variability of841

both the FED sum and the electrified area has the same order of magnitude as the difference842

between the leading generators (Figure 9). Figure 10 also confirms that the linSVR-based843

generator tends to underestimate the electrified area. The vast majority of the time, all 10844

realizations simulate lower electrified area than the GLM observations indicate. However,845

all 10 realizations remain relatively close to the observed FED sum at most times (except846

for the cases with intense convection, as discussed earlier). It should be noted that this847

linSVR-based generator does not appear among the best 10 generators for the electrified848

area (Figure 9b).849
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5. Summary850

This study analyzed in detail the simulation of GEO lightning pseudo-observations in two851

parts: First pseudo-GLM flash characteristics are simulated and then pseudo-GLM events852

are derived. The data generator uses only LF ground-based data. There is no additional853

cloud information used in the generator. The entire process is non-trivial because relations854

(correlations) between characteristics of coincident LF ground-based and optical satellite855

lightning observations are often weak at the flash scale.856

A multivariate analysis using several features and targets is conducted to achieve more857

robust flash characteristics. Simulated GEO flash characteristics (targets) are obtained via858

machine learning (ML) models. Targets include GLM flash extent, GLM flash duration,859

GLM event number per flash. An independent test data set is then introduced to compare860

the statistics of simulated pseudo-GEO flashes to the observed GEO, i.e., GLM, flash char-861

acteristics. In a second part, the simulated targets are used to mimic individual GEO events862

on a regular latitude longitude grid.863

After testing different ML models used in the first part of our generator, a linear SVR864

(linSVR) based GEO lightning pseudo-observation generator is recommended. The results of865

multiple linSVR configurations turned out to be similar. In more detail, our recommendation866

is to use a linSVR with feature and target scaling, that uses all NLDN and pseudo-GLM867

features in a multi-step approach.868

The type of the ML model chosen in the first part of our GEO lightning pseudo-observation869

generated has a major impact on the simulated flashes. In fact, the performance ranking870

of tested target generators reveals clusters per ML model type. Whereas the vast major-871

ity of generators produces pseudo-GLM flashes with flash characteristic means close to the872
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observed ones, they simultaneously overestimate the medians of flash characteristics. There-873

fore, they produce insufficient small flashes as compared to the GLM observations. Only874

linSVR-based generators were able to simulate pseudo-GLM flash characteristics with dis-875

tribution medians close to the observation for the 3-day test dataset. This gain is achieved876

at the expense of slightly underestimating the target means. It is then found that FED877

sums from linSVR-based generators are closer to the observed FED sum than for all other878

generators, however, the electrified area is at least 10 % smaller than the observed electrified879

area.880

Besides the type of the ML model, the set of features and the feature scaling impact the881

results. In particular, including (pseudo) GLM flash characteristics in the set of features882

improved the predictions of most ML models as target generators and thus the overall883

performance of the GEO lightning pseudo-observation generator.884

In general, generators that perform well for the FED sum exhibit high Dabs for the electri-885

fied area and vice versa. For example, the best generator for the electrified area with Dabs886

(Dreal) of 7 % (−2 %) highly overestimates the FED in most cases with Dabs and Dreal of887

75 % and 72 %, respectively. On the other hand, the best generator for the FED sum with888

Dabs (Dreal) of 22 % (2 %) always underestimates the electrified area with Dabs (Dreal) of889

27 % (−27 %). Figure 9 illustrates this finding on the example of test day 31 July 2020.890

The developed GEO lightning pseudo-observation generator provides exactly one pseudo-891

GEO flash for each LF flash. It does not distinguish whether an LF flash, i.e., an NLDN892

flash, is detected by the GEO LLS, i.e., GLM. During the application of the generator,893

there is no information whether a given NLDN flash could be detected by the GEO LLS.894

Additional assumptions, e.g., using flash characteristics, would then be needed to distinguish895

the LF flashes with and without GEO match. In addition, our GEO lightning data generator896
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does not include a specific part to simulate GEO flashes that are not directly coincident to897

any LF flash. Here, the pragmatic approach of using all LF flashes as input is justified898

with similar flash DE of the LF (i.e., NLDN) and the GEO (i.e., GLM) LLS thus giving899

overall similar amounts of GLM and NLDN flashes. Then, NLDN and GLM flashes without900

any coincident observation are analyzed. They are referred to as NLDN-only and GLM-901

only flashes, respectively. It was observed that both the NLDN-only and GLM-only flashes902

occurred mostly in proximity to the convective cores and regions of overall high flash rates.903

The number of observed GLM-only and NLDN-only flashes was in general of the same order904

of magnitude. It is assumed that pseudo-GLM flashes simulated from the NLDN-only flashes905

substitute the observed GLM-only flashes. It should be mentioned that some simulated906

pseudo-GLM flashes might overlap as the pseudo-GLM flash extent is usually greater than907

the NLDN flash extent. Overlapping pseudo-GLM should actually be merged, however, this908

is not further studied here. As one possible consequence, the simulated pseudo-GLM FED909

can be somewhat higher than the observed GLM FED (as seen for most configurations of910

generators). In particular, the simulated hourly FED values are often higher than observed911

in situations when many NLDN flashes were observed. On the other hand, lower simulated912

than observed FED at the rim of cells indicate that NLDN flashes cannot represent the913

scattering of light as seen by GLM. Peterson et al. (2020) showed that optically detected914

flashes can appear large near storm edges due to light reflected off nearby clouds. Simulated915

FED (based on NLDN observations) could then be closer to the actual flash channel extent916

as derived from LMA-type observations than the observed FED, especially at the rim of917

cells. Nevertheless, the simulation might differ from what the satellite sensor sees.918

Our methodology is configured and refined for NLDN Vaisala sensors. NLDN flash statis-919

tics were compared to coincident GLM flashes and their extent, duration, and event number.920

41



For an application in other regions than the US and/or with different LF networks, NLDN921

operational specification and observations might be compared with the ones of the other LF922

network in order to identify the necessity for adapting the input data. This comparison can923

be of direct (e.g., NLDN and GLD360) or indirect (e.g., NLDN and Meteorage compared to924

ISS-LIS as common reference) nature.925

The studied dataset is limited to a region in the SE USA and for the months of March926

to September. GLM features high flash DE (e.g., Marchand et al. 2019; Murphy and Said927

2020) in this region satisfying our objective to build a high-fidelity generator to simulate GEO928

lightning data. However, the limited dataset lacks winter storms that may have different929

characteristics. For the application of our generator in Europe, this should be a minor930

limitation as winter storms rarely occur here. Taszarek et al. (2020) found that 3.6 %931

of flashes over Europe occurred during the European winter. Wintertime flashes might932

be important over SE Europe and the Mediterranean Sea. The performance of the data933

generator will depend on the LF network performance, e.g., flash DE. Realistic data can934

only be expected in regions where the LF network provides good coverage. The simulated935

data are, thus, restricted by the quality and range of the LF data input. The SE US region936

features mostly normal polarity storms while storms with different charge structure occur937

more often in other parts of the US. For example, Rutledge et al. (2020) show that flash938

characteristics and GLM flash DE are altered for storms with anomalous charge structure.939

In addition, the data used to train our GEO lightning data generator were recorded in940

this region well covered and far from the edges of the GLM’s (on GOES-16) field of view.941

Simulating data of a GEO LLS near the edges of the field of view needs caution regarding942

parallax effects and an increase in the area one event covers.943
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The GLM data includes a parallax correction. Our GEO lightning pseudo-observation944

generator assumes that GLM observations are correctly located. The simulated flashes are945

placed according to the LF lightning data. If the GEO LLS that should be mimicked uses946

a different parallax correction than GLM, an adaption may become necessary to obtain947

realistic data of this LLS.948

A comparison of GLM and NLDN during day and night, and for intra-cloud (IC) and949

cloud-to-ground (CG) flashes revealed similar relationships between NLDN and GLM flash950

characteristics. The dataset for the ML includes all observed flashes, without a separation of951

these flash types. In addition, all applied ML models aim to optimize average characteristics.952

This study uses deterministic approaches without a definition of a confidence interval of the953

outcomes. As one result, the tails of the characteristics’ distributions, e.g., exceptionally954

small flashes, are underrepresented in the simulation compared to the observation.955

Supplementary data might improve the present GEO lightning data generator. Cloud956

information and brightness temperature data could provide additional features for the ML,957

e.g., cloud top height, and also information about more likely scattering directions, e.g, in958

anvils of convective clouds or in stratiform cloud lightning. (Doppler-)Radar data would959

provide even more versatile possibilities to include cloud structures, dynamics and micro-960

physics.961
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APPENDIX A984

GEO pixel slicing for FED985

Deriving FED requires knowledge about flash locations or, in case of satellite observations,986

the positions of lightning data pixels. GLM products do not come with this necessary987

information. Therefore, the real GLM grid is reconstructed locating the centers of all events988
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of the full half-year dataset. This large dataset was used to ensure that the reconstruction989

of the GLM grid would be complete, i.e., there was at least one event at each GLM pixel. A990

time invariant real GLM grid is assumed. As individual pixels appear to wobble locally with991

time and do not appear on a regular grid; due to micro-vibrations of the satellite platform,992

spacecraft jitter, and variable pitch CCD; a k-means-clustering analysis is performed to993

identify the statistical mean location of each pixel center. Corner points of pixels are then994

defined as the mean locations between the centers of the 4 pixels adjacent to each point. It995

is assumed that corner points can be connected by straight lines in order to represent the996

pixel shapes. This assumption is not entirely true, as the regular CCD grid is projected on997

the Earth (more precisely, on the cloud top ellipsoid, Section 2.a), however, the FED should998

be less impacted by this assumption than by assuming a regular GLM grid. Shapes of GLM999

events do usually not match the FED grid pixel shapes. One GLM event with average side1000

length of 8.7 km can overlap multiple FED pixels with side length of 5 km to some part.1001

The fractions of the GLM event within each pixel of the FED grid are summed up while1002

integrating over the time period. This slicing of GLM events reduces the effect of producing1003

gaps or double counts of GLM pixel when transformed to the regular FED grid, as recently1004

described by Bruning et al. (2019).1005

APPENDIX B1006

Definitions of the machine learning (ML) algorithms1007

a. ML model types1008

This section defines the seven ML model types that are trained in the study. The basic1009

idea of each ML model type is introduced, and specifications and important parameters1010
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for their tuning are briefly described. As mentioned in Section 2, Python’s sklearn-package1011

is used. Model names are given as they appear in the sklearn library and documentation1012

(https://scikit-learn.org/stable/) that provides further details.1013

(i) Multivariate Linear Regression. The first approach is the most commonly used linear1014

regression sklearn.linear model.LinearRegression. It is applied simultaneously to all features1015

and targets and is, thus, a multivariate linear regression (LinReg). The algorithm seeks for1016

the minimum sum of squared errors between the features and the targets by using linear1017

functions. It is an ordinary least square fit in a space with dimensions equal to the number1018

of features times the number of targets.1019

(ii) Multivariate Polynomial Regression. The Polynomial Regression (Poly) is an adjust-1020

ment to the multivariate linear regression. It fits a polynomial of degree 3 (rather than1021

a linear function) to minimize the sum of squares between predicted targets and the cor-1022

responding observations in the validation dataset. The cubic polynomial model is chosen1023

based on the initial correlation analysis with relations between any one feature and one1024

target. The low polynomial degree allows fast computation.1025

(iii) Random Forest Regressor. A Random Forest (RF ) is a ML algorithm using boot-1026

strapping and applying single decision trees to each bootstrap sample. The overall result1027

is the average of the outcomes of all the decision trees. The minimum leaf size defines the1028

minimum size at the end of the decision tree. A specific form of the RF is called Extra Trees1029

sklearn.ensemble.ExtraTreesRegressor (ETR, Geurts et al. 2006). ETR enforces randomness1030

by not only selected random features in each subset but also splits depending on the best1031

randomly produced thresholds instead of looking for the most distinctive threshold (as in1032

RF ). ETR usually reduces the variance and increases the bias of the model compared to1033
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RF. In general, a higher number of trees improves the performance but also the computation1034

time. Our RF implementation uses a ETR model with 50 decision trees. The number of1035

decision trees results from a sensitivity test (ETRs with 5, 10, 20, 50, 100, and 500 trees were1036

tested) between performance as R2-score (see skilearn documentation) and computational1037

effort. Here, the GB dataset with independent ML training and validation (i.e., calculating1038

the R2-scores) data (see Section 1) is used. The minimum leaf size is set to two, i.e., a1039

remaining sample of two data points defines the end of the branch. Single point leaf size1040

would increase the variability of the trees and would lead to a higher likelihood of overfitting.1041

(iv) Bagging Regressor with k-Nearest Neighbor Regressor. Bootstrap Aggregation, short1042

Bagging (Breiman 1996), uses subsamples drawn by bootstrapping from the entire dataset.1043

This step is similar to the RF regressor. The algorithm used to treat the subsamples can,1044

however, be chosen (not always a decision tree). This paper applies the bagging regressor1045

sklearn.ensemble.BaggingRegressor combined with a K-Nearest Neighbor (KNN ) regressor1046

(e.g., Altman 1992) sklearn.neighbors.KNeighborsRegressor on each of 50 subsamples. The1047

number of neighbors to use by default is set to the 5 closest points and distance weighting is1048

applied for Euclidean distances. The KNN finds closest neighbors with a K-dimensional tree1049

(KD tree) method (Bentley 1975). It reduces the number of distance calculations compared1050

to a brute-force approach calculating distances between all data points. The KNN regressor1051

in combination with distance weighting should represent the actual range of the subsample1052

training data better than a decision tree (as used in RF and ETR). The expense might be1053

an increase in overfitting of the data.1054

(v) Multilayer Perceptron Neural Network. MultiLayer Perceptrons (MLPs) are a form1055

of Neural Networks in supervised ML (Glorot and Bengio 2010). They consist of differ-1056

47



ent layers of neurons, where the input layer neurons represent the features and the output1057

layer neurons represent the simulated targets. An adjustable number of hidden layers can1058

connect the input and output layers. Each neuron initially transforms the values from the1059

previous layer in a weighted linear summation. Then, a (non-)linear activation function1060

is used. Parameters of our MLP model sklearn.neural network.MLPRegressor were deter-1061

mined after testing different configurations to balance computation time and accuracy. It1062

uses one hidden layer with 50 neurons. The activation function is the rectified linear unit1063

function. Additionally, an early stopping criterion is applied if there is no improvement1064

over 20 consecutive iterations. The early stopping requires splitting the training dataset1065

randomly, whereby 10 % are used to verify the improvement of the model and 90 % remain1066

as actual training dataset. The tolerance for the stopping criteria is reduced from default1067

10−4 to 10−8 to allow a higher number of iterations. The alpha parameter for the L2 penalty1068

was also reduced from default 10−4 to 10−8 after testing different values. The lower alpha1069

led to faster training while maintaining the model skill. This change is indicated by naming1070

alpha8 of the MLP-based generators. Furthermore, the default Adam solver (Kingma and1071

Ba 2014) and a constant learning rate are used, along with adjusted parameters beta1 (0.7),1072

beta2 (0.9), and epsilon (10−10) for the decay rates and the numerical stability in the Adam1073

solver.1074

(vi) Support Vector Regressor. The Support Vector Regressor (SVR) is based on Support1075

Vector Machine (SVM ) algorithms. A set of hyper-planes is constructed. Therefore, a de-1076

fined kernel function is applied to achieve a separation of data clusters (by the hyper-planes)1077

for the regression. The kernel function can be a linear or non-linear function (i.e., polyno-1078

mial or Radial Basis Function). Linear SVR (linSVR) is faster and uses less memory than1079
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SVR with non-linear kernel-functions. Non-linear SVR provides usually better separation1080

of different clusters in the data and thus a higher score than linear SVR. The distances of1081

the nearest data points to the hyper-planes (so-called functional margins) are maximized.1082

Points with a larger functional margin lead to less uncertainty for the prediction than data1083

close to the hyper-planes. SVM in general analyzes all data while the cost function (L11084

loss) depends on a subset of the training data, referred to as support vectors. Support1085

vectors are a set of data points with some distance from the target values that still allow1086

the correct prediction. The systematic reduction of the training data makes this model type1087

fundamentally different from the remaining model types of this study. Further information1088

is also provided by Smola and Schölkopf (2004).1089

Due to our large sample size (672,794 flashes), only the linSVR sklearn.svm.LinearSVR is1090

used in this study in its default configuration. As for the MLP, an early stopping criterion1091

is used for a lack of improvement between consecutive iterations.1092

(vii) Histogram-based Gradient Boosting Regression Tree. Boosting is, besides bagging,1093

another approach to reduce overfitting of ML models. It combines an ensemble of1094

weak learners to one strong learner. The Histogram Gradient Boosting Regression1095

sklearn.ensemble.HistGradientBoostingRegressor (HGBR) is much faster than regular Gra-1096

dient Boosting Regressors. Data is first binned into 256 integer-valued bins. The algorithm1097

can then leverage histograms instead of relying on sorted continuous values when building1098

the decision trees. The number of splitting points is reduced and the algorithm becomes1099

time efficient, inspired by LightGBM (Ke et al. 2017). The first step of the HGBR averages1100

the target values and calculates residuals (average difference of observation to prediction)1101

with a least-squares loss function. Based on these residuals, a small decision tree is built,1102
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along with a learning rate. The learning rate limits the influence of a single small decision1103

tree in the final ensemble to avoid overfitting. Then, new predictions are computed using1104

the averages and the decision tree for residuals. Based on new predictions, new residuals1105

are calculated and a new decision tree is created. The final model combines several of these1106

decision trees to pull the target averages towards the observations. The used maximum1107

number of iteration is 500 and the early stopping criteria kicks in after 50 iterations without1108

significant improvement of the loss value.1109

b. Naming convention for the GEO lightning pseudo-observation generator configurations1110

This section defines the meaning of names given to different configurations of a target1111

generator. The names and abbreviations of the ML model types can be found in Table B1.1112

The given ML model types are used in the first part of the GEO lightning pseudo-observation1113

generator referred to as target generator3. Table B2 summarizes the feature usage that is1114

available for each ML model type available for the target generator. The feature set selections1115

indicate whether a single-target or multi-step approach is used. The feature set selection1116

called NLDN is the default configuration as described. Generators with extension of only1117

default, plus, raw, or raw plus are single-step approaches, i.e., using 3 times the model of class1118

(1) in Figure 3. Multi-step simulations always simulate the GLM flash duration in the first1119

step here. The order of the targets number of events per flash and the GLM flash extent is1120

not fixed. The extension num indicates one additional step only for the pseudo-GLM event1121

number per flash using the pseudo-GLM flash duration as pseudo-feature. GEO lightning1122

pseudo-observation generator configurations with extension num ext and num ext(a) have1123

two additional steps using different pseudo-features as shown in Table B2. The num ext(a2)1124

3RF is included in the table for completeness. Only ETR as a special RF model is used in the study.
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generators use only the GLM flash duration as pseudo-feature, thus two models of class (2)1125

as of Figure 3.1126

The attributes define a modification of the feature set selections with binary character.1127

The plus attribute indicates that NLDN LF amplitude and CG fraction are added to the list1128

of features. Attribute raw means that no feature and target scaling were used. Combinations1129

of the given feature set selections and attributes are possible, e.g., an unscaled model with1130

NLDN mean LF amplitude and CG stroke ratio as additional features that uses the GLM1131

flash duration as pseudo-feature for the event number per flash gets the extension num(a)1132

raw plus. The total number of generator configurations equals 196: There are 7 ML model1133

types (Table B1 except RF ). For each ML model type there are 7 feature set selections1134

resulting from the single and multi-step approaches, and for each combination of ML model1135

and feature set selection again 4 different attribute usages (Table B2), i.e., none, plus, raw,1136

or raw plus. The 196 generator configurations (28 for each ML model type) define the base1137

for the statistical results presented in Section 4.1138

APPENDIX C1139

The multi-target multi-step approach1140

This section describes a multi-target regression that simplifies the idea of the stacked single1141

target (SST) approach (Spyromitros-Xioufis et al. 2016). In this study, there are six NLDN1142

features (as physical input) and three GLM targets (as physical simulated variables) per1143

sample, i.e., per flash. The three GLM targets are denoted Ti, Tj, and Tk. Ti can represent1144

any of the 3 targets. The indexes i, j, k indicate the order of obtaining the final targets.1145

Targets that are used like features are referred to as pseudo-features, i.e., Tj and Tk in1146

Figure 3a. With this dataset, there are in general 4 different ways to simulate the target Ti.1147
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The 4 ST models are shown as the training part in Figure 3a. There are 3 classes of models:1148

Yellow is the model class (1) without pseudo-features, gray indicates model class (2) using1149

1 pseudo-feature, and the red for model class (3) uses 2 pseudo-features. The model M→i1150

constitutes the common ML model, i.e., class (1), with only the NLDN features as input.1151

One (i.e., Tj or Tk) or two (i.e., Tj and Tk) of the three targets can be added to the input as1152

pseudo-features in order to simulate the target Ti. The resulting models Mj→i (using Tj as1153

pseudo-feature), Mk→i (using Tk with the features), and Mj,k→i (using Tj and Tk with the1154

features) may indeed take advantage of correlations between the predicted target and the1155

targets that are used as pseudo-features.1156

The application case only uses the NLDN features as first input. Therefore, a multi-step1157

approach is required. Figure 3b presents the example application for a 3-step approach1158

that first predicts the pseudo-GLM flash duration, then the pseudo-GLM event number1159

per flash, and finally the pseudo-GLM flash extent. This configuration is denoted num1160

ext(a) (see Table B2 for details on the configuration naming). The first step, M→i, uses1161

the NLDN features and predicts the first pseudo-GLM characteristic M→i (NLDN), i.e.,1162

pseudo-GLM flash duration. The second step, Mi→j, uses the NLDN features and the result1163

of the first step, M→i (NLDN), i.e., the pseudo-feature GLM flash duration. This model of1164

class (2) predicts the second pseudo-GLM characteristic Mi→j [NLDN,M→i (NLDN)], i.e.,1165

the pseudo-GLM event number per flash. Both predicted pseudo-GLM characteristics (i.e.,1166

GLM flash duration and event number per flash) can then be used as pseudo-features to1167

predict the third target with the class (3) model Mi,j→k. Hence, the final target prediction1168

Mi,j→k 〈NLDN,Mi→j [NLDN,M→i (NLDN)]〉 depends on the NLDN features and both1169

previous predictions for this configuration. In general, a model of class (3) can also use two1170

pseudo-features produced by two models of class (1). Also, 2 models of class (2) could be1171
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used to simulate the remaining 2 targets after the first step. Utilizing 3 times a model of1172

class (1) is equal to the common ML ST approach. Hence, several combinations of models1173

of different classes are possible and have been investigated here.1174

The ML training for the multi-step approach can be performed in parallel for the models1175

M→i, Mj→i, and Mj,k→i. The approach can use all ML model types as the training creates1176

independent learners. Our multi-step approach adapts the idea of the SST, but uses GLM1177

observations instead of simulated pseudo-GLM targets during the ML training. A trained1178

generator can be applied even if the observations are not available using the corresponding1179

pseudo-observation in their place. This method assumes similarity between observations and1180

pseudo-observations, however, the pseudo-observations only approximate the real observa-1181

tions. Our approach does not propagate errors in successive steps. However, the training is1182

more efficient than for an SST approach as all generator parts can be trained simultaneously1183

rather than waiting for the pseudo-observations to be created. Computational efficiency was1184

necessary due to the large number of generators tested in this paper and in the perspective1185

of an operational-like application. The results (Section 4) showed that our multi-step ap-1186

proach aids in simulating realistic pseudo-GLM observations and the performance is often1187

better than with using common ST models without pseudo-features.1188

Although the correlations between the NLDN features and both GLM flash extent and1189

event number per flash are relatively weak, the NLDN features improve the prediction during1190

each step as seen through feature drop tests (not shown). Indeed, all features have a positive1191

effect on the model score. Due to strong correlations between GLM flash duration and NLDN1192

features flash duration and pulse/stroke number, and to reduce the number of ML-based1193

target generators, only the multi-step approaches which predict the GLM flash duration in1194

the first step (M→i) are considered. There remains only one model of class (2) in Figure 3a1195
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and three ways to simulate a target Ti. The GLM flash duration is also weakly correlated1196

to both GLM flash extent and event number (R of about 0.10 and 0.17), and GLM flash1197

extent and event number per flash are well correlated (R of about 0.74). Thus, the first1198

step always provides the pseudo-GLM flash duration from the NLDN flash characteristics1199

as features. The second step uses the simulated flash duration in addition to the NLDN1200

features to simulate one or both of pseudo-GLM flash extent and event number per flash.1201

The pseudo-feature used in model class (2) (Figure 3) is fixed in this paper to be flash1202

duration leaving only one realization of model class (2) to simulate a second target. To1203

further reduce the number of multi-step configurations, the approaches that simulate the1204

flash extent but not the event number per flash through a multi-step process are not further1205

considered since (i) GLM flash duration shows weaker correlation with GLM flash extent1206

than with the event number per flash and (ii) the ST approach for event number per flash1207

from NLDN features exhibits the lowest skill of the three targets. A potential third step may1208

simulate the last GLM target based on NLDN features and the two remaining simulated1209

pseudo-GLM characteristics as additional pseudo-features. The paper describes generator1210

configurations using only the GLM duration (strongest correlations) or using GLM duration1211

and a second target as additional pseudo-features to simulate the remaining target (GLM1212

flash extent or event number per flash).1213

Our multi-step approach aims at producing more realistic pseudo-GLM flash extent and1214

event number per flash than using the NLDN features alone. The NLDN features also remain1215

important as the correlations between some targets are weak.1216

APPENDIX D1217

Supplementary results for each test day and target distribution statistic1218
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This section contains detailed results for each test day that are presented in the main1219

paper for the combined 3-day period. The second part includes the Figures and analysis1220

of the normalized difference between distribution statistics of observed and simulated GLM1221

flash duration and event per flash. The results are presented in a similar way as for the flash1222

extent statistics in the main paper.1223

a. Target generator results for each test day1224

Tables D1, D2, and D3 present the results for 07 April 2018, 26 May 2018, and 31 July1225

2018, respectively. As explained for Table 2 with results for the 3 days combined, the1226

tables show the observed statistics for each target distribution, the outcomes using the1227

best performing generator, and statistics of data simulated with the linSVR num ext(a)1228

plus recommended generator. The most common behavior of the target generators exibihts1229

simulated mean values close to the observation statisitcs of the three target distribution.1230

Median values are usually underestimated by the target generators as seen in Tables D2 and1231

D3. Results for the 07 April 2018 test case differ from the general behavior (Table D1). That1232

day saw exceptionally large flashes with high event numbers per flash that likely occurred1233

within the MCS and the squall line. As a consequence, the ML-based target generators1234

underestimated the means of the observed flash characteristics for that test case, but the1235

medians of simulated and observed targets are similar.1236

The results for each test day resample the results for the combined 3-day test data (see1237

Table 2) overall. Minimum values are often only slightly overestimated for the three targets,1238

while the simulated maxima cannot reach the observed maxima for none of the targets and1239

on none of the 3 test days (Tables D1 to D3). linSVR-based target generator outperform1240

all other generator types on 26 May an on 31 July 2020. On April 07 with extensively1241
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large flashes, different BAGR KNN dist-based generators are found as best performers for1242

all three targets (Table D1). The choice of the most suitable generator appears to be1243

situational, i.e., there is no generator that performs better than all other generators in all1244

cases. The recommended linSVR num ext(a) plus (bold in Tables D1 to D3) performs on1245

one level with best generator for the event number per flash and flash extent on 26 May1246

an on 31 July 2020. The event number per flash is significantly underestimated by this1247

linSVR-based generator on 07 April 2020 for the mentioned reason. The flash extent, as1248

most important target for the FED, is also underestimated on that day, however, the CvM1249

is only about half of the CvM for event number per flash meaning a more realistic simulation1250

of the flash extent distribution than the event number per flash distribution.1251

b. Normalized statistics for difference between observation and simualation for GLM flash1252

duration and event number per flash1253

Figures D1 and D2 group the results for each statistic by the seven ML model types. As1254

explained in Section 4.a, each distribution contains the results of 28 generators (see also1255

Appendix B.b, Table B2).1256

Figure D1 shows the normalized differences and scores of different target generators for1257

the GLM flash duration for the 3 test days combined. The GLM flash duration distribution1258

is equally well simulated by a variety of ML-based target generators as the narrow spread1259

of the medians (green line) indicates. In detail, a linSVR-based generator and a MLP -1260

based generator can predict the mean well, a MLP -based generator and an ETR-based1261

generator are best for the maximum, while a linSVR-based generator exhibits the lowest1262

differences for the median as well as both KS and CvM scores. In total, a linSVR-based1263
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target generator (linSVR num ext raw) best approximates the observed distribution of the1264

GLM flash duration in this comparison with an NDA value of 0.30.1265

For the GLM event number per flash in Figure D2, linSVR and BAGR KNN dist models1266

make the best target generators. The lowest NDA of 0.45 is obtained for several linSVR1267

and BAGR KNN dist-based generators, e.g., linSVR num ext(a) raw plus and BAGR KNN1268

dist num ext raw. For test day 07 April 2018 (a dominant mesoscale system with above-1269

average mean and median GLM event numbers per flash), all generators underestimated the1270

event number per flash. As generators using a linSVR usually predict lower values than the1271

other generators, they underestimate the observed statistics even more on 07 April 2018.1272

Nevertheless, for the full test data, there are linSVR-based generators that predict the mean1273

event number equally well as the best target generator, i.e., MLP -based, as demonstrated1274

by the lower whiskers in Figure D2. LinSVR-based generators are again most suitable to1275

predict the event number distribution median.1276
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Table 1. Study dates (year 2018) with the amounts of GLM and NLDN data. The three

rightmost columns indicate whether the data are used for ML-based generator building (GB) or

the generator test (GT) part, the time of most lightning activity in the region (D: local daytime,

N: local nighttime), and the primary forcing (Trigger) for storm development and lightning.

1561

1562

1563

1564

Date number
of GLM
events

number
of GLM
flashes

number
of NLDN
pulses,
strokes

number
of NLDN
flashes

Usage Time Trigger

19 Mar 4,053,599 79,420 315,854 78,351 GB D+N cyclone,
cold front

29 Mar 2,611,064 35,822 122,772 37,931 GB D+N stationary
front,
MCS

07 Apr 5,854,407 94,447 494,686 113,978 GT D+N short wave
trough,
front

14 Apr 8,610,567 142,587 729,622 169,181 GB D+N cold front

26 May 4,364,985 130,632 422,193 120,608 GT D thermal
convection

03 Jun 6,103,693 204,295 825,601 188,330 GB D+N cold front

21 Jul 5,541,425 150,363 943,644 142,023 GB D+N squall line,
outflow
boundary

31 Jul 4,885,532 114,133 391,602 106,142 GT D dry line,
thermal
convection

07 Aug 5,283,358 153,671 472,369 137,963 GB D thermal
convection

13 Sep 1,015,483 28,301 61,124 21,168 GB D Hurricane
Florence
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Table 2. Comparison of distribution statistics for observed GLM data and the best generator

for each target during the full test period. The recommended linSVR-based generator is shown in

bold. Details about the target generator names are provided in the Appendix B.b.

1565

1566

1567

Generator Mean Median Minimum Maximum RMSE per flash KS CvM

GLM flash duration [s]

Observed 0.43 0.31 0.00 16.44 0.00 0.00 0.0

linSVR num
ext raw

0.46 0.30 0.00 9.41 0.77 0.15 656.5

linSVR
num ext(a)
plus

0.41 0.31 0.02 10.0 0.68 0.32 3770.3

GLM event number per flash [-]

Observed 49.3 25.0 2 1395 0.0 0.00 0.0

linSVR num
ext(a) raw
plus

35.3 30.0 2 411 79.8 0.38 6687.6

linSVR
num ext(a)
plus

34.7 30.0 14 457 80.0 0.40 6989.5

GLM flash extent [km]

Observed 32.9 27.5 0.0 277.0 0.0 0.00 0.0

linSVR num
ext(a2)

30.1 26.3 0.0 157.3 30.9 0.24 3479.2

linSVR
num ext(a)
plus

29.0 26.2 8.5 305.5 31.5 0.24 2738.4
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Table 3. Comparison of Dreal and Dabs in percent of observed value for the FED sum during the

full test period. The best 20 and the worst 5 of the 196 generators (ranked by Dabs) are included.

The recommended linSVR-based generator is shown in bold. Details about the target generator

names are provided in the Appendix B.b.

1568

1569

1570

1571

Generator Dabs [%] Dreal [%]

linSVR num ext(a2) raw 22.2 2.3

linSVR num ext(a) raw 22.7 -22.5

linSVR num ext(a) 22.9 3.6

linSVR num ext(a) plus 24.9 9.8

linSVR num ext raw 25.7 11.4

linSVR num ext default 26.5 11.0

linSVR num ext(a2) 27.4 12.6

linSVR num ext(a) raw plus 28.8 15.4

linSVR plus num ext 29.6 17.0

linSVR num(a) raw 31.0 18.5

linSVR num ext(a2) plus 32.3 20.9

linSVR(a) raw 34.4 23.2

linSVR raw 35.1 24.2

linSVR num ext(a2) raw plus 35.6 24.9

linSVR num raw 36.0 25.4

linSVR default 36.1 25.3

linSVR num(a) raw plus 36.2 26.0

linSVR num(a) 36.4 25.6

linSVR(a) 36.7 26.0

linSVR num default 36.9 26.3

MLP alpha8 num ext(a) raw plus 95.0 93.6

ETR num ext(a) raw 95.3 93.8

MLP alpha8 num ext(a2) raw 96.7 95.6

ETR num ext(a) 97.8 96.3

MLP alpha8 num ext(a) raw 107.6 106.7
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Table 4. Comparison of Dreal and Dabs in percent of observed value for the electrified area

during the full test period. The best 20 and the worst 5 of the 196 generators (ranked by Dabs) are

included. In addition, the recommended linSVR-based generator is shown in bold. Details about

the target generator names are provided in the Appendix B.b.

1572

1573

1574

1575

Generator Dabs [%] Dreal [%]

HGBR num ext(a2) plus 7.4 -2.3

HGBR num ext(a2) raw plus 7.4 -2.4

HGBR num ext(a2) raw 7.4 -3.0

HGBR num ext(a2) 7.5 -2.8

Poly plus num ext 7.5 -2.5

Poly num ext raw plus 7.5 -2.5

BAGR KNN dist raw plus 7.6 -1.4

BAGR KNN dist num raw plus 7.6 -1.5

BAGR KNN dist num(a) raw plus 7.6 -1.4

BAGR KNN dist(a) raw plus 7.6 -1.3

ETR plus num 7.7 -3.7

HGBR num ext default 7.7 -1.4

ETR plus 7.7 -3.7

ETR(a) plus 7.7 -3.5

MLP alpha8 num ext plus 7.7 -1.8

ETR raw plus 7.7 -3.9

ETR num(a) plus 7.7 -3.6

ETR num raw plus 7.7 -3.9

BAGR KNN dist num(a) 7.8 -2.1

MLP alpha8 num ext default 7.8 -4.0

linSVR num ext(a) plus 21.3 -21.3

Poly num ext raw 26.0 10.4

Poly num ext default 26.1 10.6

linSVR num ext(a2) raw 27.4 -27.4

linSVR num ext(a) 28.0 -28.0

linSVR num ext(a) raw 35.4 -35.4
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Table B1. ML model types with abbreviation.

ML model type Abbreviation

Multivariate Linear Regression LinReg

Multivariate Polynomial Regression Poly

Random Forest Regressor1 RF

Random Forest Extra Trees Regressor ETR

Bagging Regressor with k-Nearest Neighbor Regressor
(distance weighting)

BAGN KNN dist

Multilayer Perceptron Neural Network MLP

(Linear) Support Vector Regressor SVR (linSVR)

Histogram-based Gradient Boosting Regression Tree HGBR

1This study uses ETR as a special form of RF.
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Table B2. Naming conventions of used target generator configurations. The name extensions

as of column 1 are used following the ML model type. The three columns indicate the utilized

features during the ML training for each of the three targets GLM flash duration (Flash Duration),

number of events per flash (Event Number), and GLM flash extent (Flash Extent). NLDN indicates

that NLDN flash duration, the number of pulses/strokes per flash, NLDN flash extent, and the

maximum LF amplitude are used as features. The GLM pseudo-features Flash Duration, Flash

Extent and/or Event Number can complement the NLDN features for some configurations. Feature

set selections define how one target (header) is generated, i.e., ST or multi-step approach. The

attributes can or cannot be applied and may replace default in the generator name. Combinations

of a feature set selection with 0, 1, or 2 attributes are possible.

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

Name extension Flash Duration Event Number Flash Extent

Feature set selections

default NLDN NLDN NLDN

(a) Training with default configuration. Model predictions within the
training uncertainty of the default model
(Initial training step for applying the multi-step approach)

num NLDN NLDN
+ Flash Duration
+ Flash Extent

NLDN

num(a) NLDN NLDN
+ Flash Duration

NLDN

num ext NLDN NLDN
+ Flash Duration
+ Flash Extent

NLDN
+ Flash Duration
+ Event Number

num ext(a) NLDN NLDN
+ Flash Duration

NLDN
+ Flash Duration
+ Event Number

num ext(a2) NLDN NLDN
+ Flash Duration

NLDN
+ Flash Duration

Attributes

plus NLDN with mean LF
amplitude and CG
fraction

NLDN with mean LF
amplitude and CG
fraction

NLDN with mean LF
amplitude and CG
fraction

raw features and target not
scaled

features and target not
scaled

features and target not
scaled

1586
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Table D1. Comparison of distribution statistics for observed GLM data and the best generator

for each target on 07 April 2018. The recommended linSVR-based generator is shown in bold.

Details about the target generator names are provided in the Appendix B.b.

1587

1588

1589

Generator Mean Median Minimum Maximum RMSE per flash KS CvM

GLM flash duration [s]

Observed 0.62 0.45 0.00 16.44 0.00 0.00 0.0

BAGR KNN dist
num ext default

0.57 0.46 0.01 10.56 0.92 0.25 949.2

linSVR num
ext(a) plus

0.46 0.34 0.02 10.01 0.93 0.21 810.3

GLM event number per flash [-]

Observed 73.5 46.0 2 1395 0.0 0.00 0.0

BAGR KNN dist
num raw

57.8 48.0 3 467 99.7 0.24 996.6

linSVR num
ext(a) plus

37.9 33.0 15 457 103.6 0.32 2066.6

GLM flash extent [km]

Observed 38.5 34.8 0.0 277.0 0.0 0.00 0.0

BAGR KNN dist
num ext(a2) raw
plus

41.24 35.1 0.0 166.0 33.7 0.24 582.7

linSVR num
ext(a) plus

31.1 26.3 8.7 182.6 34.6 0.27 1068.3

1590
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Table D2. Comparison of distribution statistics for observed GLM data and the best generator

for each target on 26 May 2018. The recommended linSVR-based generator is shown in bold.

Details about the target generator names are provided in the Appendix B.b.

1591

1592

1593

Generator Mean Median Minimum Maximum RMSE per flash KS CvM

GLM flash duration [s]

Observed 0.34 0.26 0.00 7.42 0.00 0.00 0.0

linSVR raw 0.41 0.25 0.01 4.73 0.56 0.21 599.9

linSVR num
ext(a) plus

0.38 0.31 0.02 5.44 0.46 0.41 2451.3

GLM event number per flash [-]

Observed 34.8 19.0 2 775 0.0 0.00 0.0

linSVR num
ext(a) raw plus

32.2 29.0 3 341 54.0 0.45 3593.1

linSVR num
ext(a) plus

31.8 28.0 14 249 54.1 0.48 3670.5

GLM flash extent [km]

Observed 28.0 20.2 0.0 218.6 0.0 0.00 0.0

linSVR num ext
raw

27.4 26.1 0.0 154.8 27.8 0.28 1029.2

linSVR num
ext(a) plus

26.7 26.1 8.5 157.6 27.2 0.29 1130.4

1594

78



Table D3. Comparison of distribution statistics for observed GLM data and the best generator

for each target on 31 July 2018. The recommended linSVR-based generator is shown in bold.

Details about the target generator names are provided in the Appendix B.b.

1595

1596

1597

Generator Mean Median Minimum Maximum RMSE per flash KS CvM

GLM flash duration [s]

Observed 0.39 0.29 0.00 9.21 0.00 0.00 0.0

linSVR num
ext(a) plus

0.39 0.30 0.02 5.34 0.58 0.32 1307.9

GLM event number per flash [-]

Observed 45.7 23.0 2 883 0.0 0.00 0.0

linSVR num
ext(a) raw plus

33.9 30.0 2 316 76.4 0.40 2441.8

linSVR num
ext(a) plus

34.4 30.0 16 315 76.1 0.42 2505.0

GLM flash extent [km]

Observed 33.8 27.5 0.0 242.2 0.0 0.00 0.0

linSVR raw 29.6 26.2 0.0 180.6 33.5 0.22 745.2

linSVR num
ext(a) plus

29.5 26.2 8.5 305.5 32.6 0.24 871.4

1598
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LIST OF FIGURES1599
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Fig. 1. Relative flash detection efficiency per 1◦× 1◦ pixel (color) for the full 10-day dataset. In

(a) for GLM and in (b) for NLDN. Grey-scale lines contour the flash number at the 0th (1 flash),

50th, 80th, and 95th percentile of the flash number distribution per 0.25◦ × 0.25◦ pixel (only for

pixels with flash activity). The corresponding percentile values are stated on the right-side color

bar.
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Fig. 2. Illustration of splitting the 10-day dataset with GLM and NLDN flashes in 7-day gener-

ator building (GB) and 3-day generator testing (GT) data. The GB data is further processed for

the machine learning (ML) part.
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(a)

(b)

Fig. 3. Flow chart of the multi-step approach illustrating the possible predictions of a given

target using different combinations of features and pseudo-features (a, Training). The Application

(b) shows the example of the num ext(a) configuration (Appendix B.b).
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Fig. 4. An example of one simulated flash with corresponding GLM and NLDN observations on

26 May 2018. The final GEO lightning pseudo-observation generator is used including a linear SVR

model, i.e., linSVR num ext(a) plus. Time series of latitudes (a), longitudes (b), and a map (c).

The map (c) includes characteristics of the observed and simulated GLM flash. The time interval

shown matches the simulated flash duration of 640 ms.
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Fig. 5. Normalized absolute difference of statistics and scores (titles) between distributions of

observed and simulated GLM flash extent (0 means equal to observation, 1 represents the worst

simulation). The boxplots represent the distributions of 28 target generator results per ML type

(x-axis) including the Inter-Quartile-Range (IQR, blue box), 1.5 times the IQR (whiskers), and

outliers (black cross). The horizontal green line give the median. Results for the full test dataset.

ML type abbreviations provided in Table B1.
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(a) (b)

(c)

Fig. 6. Normalized absolute difference of statistics and scores (titles) between distributions of

observed and simulated GLM flash duration (a), event number per flash (b), and flash extent (c);

y-range (0 to 1) as in Figures D1 (for a), D2 (for b), and 5 (for c). Boxplots (as in 5) represent the

distribution for training the same model (x-axis) 10 times during the first step of the simulation.

ML type abbreviations provided in Table B1.
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(a) (b)

(c) (d)

Fig. 7. Observed (a) and simulated hourly FED using linSVR num ext(a) plus (b), MLP alpha8

num raw (c), and BAGR KNN dist num plus (d) generator on 26 May 2018, 20:00 to 21:00 UTC.

The FED grid uses pixels of 5 km× 5 km. ML type abbreviations provided in Table B1.
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(a) (b)

(c)

Fig. 8. Pixel-to-pixel (5 km × 5 km) simulated versus observed hourly FED for the 3-day test

period using the same linSVR (a), MLP (b), and BAGR KNN dist (c) based generators as in

Figure 7. The gray box and white margins indicate the upper limits of distributions on each axis.

ML type abbreviations provided in Table B1.
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(a) (b)

Fig. 9. Hourly sum of FED (a) and hourly electrified area (b) within the region of interest.

Top (1): Absolute values and number of simulated flashes per hour. Bottom (2): Difference of

simulation minus observation. The observation is plotted in blue, the remaining colors represent

the 10 best generators for FED sum (a) and electrified area (b), respectively. The best generator

of FED sum (a) is also included in (b) [orange], and the best generator from (b) is included in (a)

[lime]. Results for 31 July 2018. Details about the generator names are provided in Appendix B.b.
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(a) (b)

Fig. 10. As Figure 9 with 10 repetitions of the recommended linSVR num ext(a) plus generator.

Median (line) and range (shaded) of 10 generator repetitions for 31 July 2018.
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Fig. D1. Normalized absolute difference of statistics and scores (titles) between distributions of

observed and simulated GLM flash duration (0 means equal to observation, 1 represents the worst

simulation). The boxplots represent the distributions of 28 target generator results per ML type

(x-axis) including the Inter-Quartile-Range (IQR, blue box), 1.5 times the IQR (whiskers), and

outliers (black cross). The horizontal green line give the median. Results for the full test dataset.

ML type abbreviations provided in Table B1.
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Fig. D2. As Figure D1 but for the normalized absolute difference of statistics and scores (titles)

between distributions of observed and simulated GLM event number per flash (0 means equal to

observation, 1 represents the worst simulation).
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