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Abstract—Microservices transform monolithic applications
into simple, scalable, and interacting services. It allows for
faster development and fine-grained deployments. However, the
cooperation of several services leads to intricate dependencies,
hindering the detection of performance bottlenecks. Current
microservice performance analysis methods require real deploy-
ments, a costly process both in time and resources, while perfor-
mance prediction through simulation relies on models that are
complex to develop and instantiate. In this paper, we propose a
microservice performance analysis approach based on simulation.
Our contribution first introduces a microservice performance
model requiring few instantiation parameters. We then propose
a methodology to automatically derive model instantiation values
from a single execution trace. We evaluate this methodology on
two benchmarks from the literature. Our approach accurately
predicts the deployment performance of large-scale microservice
applications in various configurations from a single execution
trace. This provides valuable insights on the performance of an
application prior to its deployment on real platform.

Index Terms—Microservice, Modeling and simulation, Perfor-
mance evaluation, Web services

I. INTRODUCTION

Microservices allow for splitting large and complex appli-
cations into sets of simple, independent, and scalable ser-
vices. Microservice architecture has many advantages over
monolithic applications: separation of concerns allows disjoint
teams to develop independently part of an application without
complete system knowledge. When deployed, microservices
run in separate lightweight containers, allowing for better
reliability and adaptation to variable workloads thanks to fault
detection mechanisms and autoscaling policies at the scale
of individual services. Compared to microservices, monolithic
applications have to be managed as a whole, reducing their
scalability. As a result, microservices are used by some of the
largest internet actors, such as Twitter, Netflix, and Uber [21]].

Despite their advantages, microservices require complex
interactions to fulfill requests. This makes the analysis of
microservice applications on real infrastructures more complex
than monolithic applications. Microservice applications can be
composed of hundreds of services and serve huge workloads.
Because of this complexity, optimizing the deployment set-
tings of microservices is challenging: Given an application
and a constrained infrastructure budget, one must evaluate
and answer the following questions to obtain the best perfor-
mances: Q1. How will the execution times of a microservice
react to a variable load? Q2. How would a CPU upgrade
improve the maximum sustainable load? Q3. Will distributing

microservices on more than one node increase performances?
Q4. How to optimize the location of services in a computing
cluster to obtain the best performances?

Currently, microservice developers answer such questions
by deploying their applications on real platforms and mon-
itoring their performances. This requires a combination of
several tools. First, the application is deployed using container
orchestration systems, such as Kubernetes or Docker-swarm.
Using them allows defining resource and location constraints
on services, so that the experimenter can deploy the application
in a specific configuration. The deployed application then has
to be benchmarked to obtain information on its performance in
this setup. Gathering and processing applications metrics can
be done through the use of Distributed Tracing. This approach
is used in most microservice applications [16]], allowing to
obtain both service-specific and end-to-end execution metrics.
Standards such as OpenTracing [20] and OpenTelemetry [19]
help developers at instrumenting their application, while trace
visualization tools like Jaeger [14] and ZipKin [26] unify the
process of observing application bottlenecks.

Using orchestration systems and distributed tracing tools,
microservice developers can observe whether a set of de-
ployment settings meets their QoS requirements. However,
this approach requires combining complex tools, a costly
process both in time and resources. Also, the process must be
repeated for all configurations. Obtaining a priori performance
estimations for various configurations without real deploy-
ments would be useful. In this paper, we focus on simulation
techniques adapted to microservice performance studies. Our
analysis of previous contributions about microservice simula-
tion shows a costly process to transpose applications into their
simulated twins. There is a need for a methodology to ease
performance simulation of real applications.

Our contributions are the following:

« We propose a model for microservice-based applications.
This model is simple enough to be calibrated without
extensive work while being complete enough to simulate
real applications.

« We propose a methodology to instantiate our model and
accurately study the performances of real applications.

« We validate the accuracy and scalability of our approach
using a set of microbenchmarks as well as real use cases
based on existing microservice benchmarks.

Section introduces our microservice abstraction. Sec-

tion [I1I describes a methodology to simulate real applications



by using our service model. We validate our contribution in
Section [[V] while Section [V]compares our contribution to other
approaches from the literature. Finally, Section concludes
this work.

II. A SIMPLE MICROSERVICE MODEL

Modern applications are composed of many services in-
teracting together to fulfill requests. To understand the per-
formance of a complete microservice application, one must
first understand the behavior of single, isolated microservices.
A microservice offers a well-defined interface, constantly
listening for incoming requests. When a request is received,
it triggers internal functions computing a result that is then
returned to the initiator of the request.
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Fig. 1. Intra-service execution pipeline.

We introduce a model representing microservice request
executions. Our design goal for this model is to be as simple
as possible to enable fast calibrations while being accurate
enough to represent real microservices. We model the execu-
tion of requests within a microservice using a simple 3-stages
pipeline, as shown in Figure[T] A request executed by a service
spends some time in each execution stage depending on both
the state of the service when the request is received (queuing,
resource overload, etc.), and intrinsic service properties such
as its degree of parallelism. The total execution time of request
r in service s is given by:

Dezec(ra S) = dqueue (’I“) + dCPU(r) + dIO (T) + dcomm (T)

where dgyeue(r) is the queuing time of request r before
starting its execution, dcpy(r) is the CPU time to execute
request 7, djo(r) the amount of time waiting for I/O op-
erations, and dgomm () the time spent communicating with
external services. We now detail these factors.

(a) Queuing time: When a request is sent to a service, it can
experience variable queuing times depending on the service’s
state. Most services limit their maximum amount of concurrent
requests to avoid resource overloads and performance degrada-
tion due to system’s context switches. In our model, a service
comprises a waiting queue where incoming requests are stored
until their execution starts. The time spent by a request in the
reception queue is dependent on both the input load and the
scale of the deployed application. Through vertical scaling,
the service is deployed on more efficient resources, leading to
reduced execution times during step (b.1), and an increased
maximum load capacity. Horizontal scaling does not improve
the execution time of single requests, but allows for more
requests to be executed in parallel through the use of several
service instances in parallel during step (b).

(b.1) CPU usage: A request can start being executed once
a free execution slot is available in an instance of the service.
We describe the execution of a request by its CPU usage:
the machine executing the request has a limited amount of
CPU resources (in flops/s) and shares them between all active
requests in one of the execution slots of the host. The time
spent processing a request dopy(r) is dependent on both
the cost of executing r and the amount of requests that
are executed concurrently. The cost associated to a request
execution further depends on its type. A single microservice
can offer more than one function through its interface, each of
them leading to different execution times. Because of this, the
CPU usage of a service is described by the following values:
the provisioned capacity of the executing node, a mapping
of request type to CPU costs, and the maximum amount of
concurrent executions.

(b.2) I/O idle time: A service execution does not only
consist in CPU processing but also in I/O operations. In some
cases, I/O can be overlapped with CPU executions. In other
cases, I/O can result in periods where the CPU remains /IDLE.
We define the time spent in I/O by using an active ratio that
represents the time spent doing I/O compared to pure CPU
execution. Currently, we model I/O as a simple delay, thus we
do not take disk contention into account.

(c) Service output: Most microservices request data from
other services to compute a final result. Using our model, a
request can be forwarded to other services once it has finished
both executing the request during (b.1) and waiting for I/O
to finish in (b.2). The type of the request defines the list of
services to be invoked. If the output services called during
this step are running on different computing nodes than the
current service, a network communication is initiated to for-
ward the request. This enables the observation of performance
bottlenecks due to network limitations. Microservices linked
through inter-service communications form a Directed Acyclic
Graph (DAG) for each request type, where nodes are service
executions and edges communications between services. As
shown in Figure [I] we separate the execution of a request
from outer communications. It is a simplification compared to
real microservices that often interleave executions and com-
munications. Our approach does not represent the execution
of a request at such a fine grain but conserves the overall
execution time as well as communication dependencies.

This model splits the execution of a microservice request
in no more than the 3 steps described above. Table [I| gives a
summary of the values used to instantiate our model.

We implemented our model on top of the SimGrid sim-
ulation framework. Our implementation (available online [)
allows to define a microservice application using a simple
interface with the parameters from Table [I} It can be used
to manually define real applications in order to study and
evaluate their performances in various configurations. It is also
possible to define autoscaling policies, dynamically adapting
the amount of resource of each service depending on the

Uhttps://github.com/klementc/microservices_simgrid_reproducibility
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Fig. 2. Transformation of an execution trace in an executable simulator.

TABLE I
SUMMARY OF INTER-SERVICE AND INTRA-SERVICE PROPERTIES USED TO
CALIBRATE OUR MICROSERVICE MODEL.

Granularity Parameters

Request - Type of the request
- CPU costs

Intra-service properties | - I/O ratios

- Parallelization degree

- Output services (a DAG
for each type of request)
- Network requests sizes

Inter-service properties

input load. Even if possible, the manual instantiation of the
models for all services of large applications with the correct
values remains a challenging task. Both service interactions
and individual service behaviors need to be taken into account
for possibly hundreds of services. We thus introduce a method-
ology to simplify the transformation of real applications into
simulation models.

III. MODELING REAL MICROSERVICE APPLICATIONS

We propose a methodology to simulate the performance of
real microservice applications without extensive efforts. Previ-
ous works on microservice simulation such as [25]] recommend
modifying the code of the application to log additional infor-
mation that are used as calibration values. However, manual
code modification remains burdensome and error-prone for
large applications. It is also not evolutive since it has to be
made again when the structure of the code is modified. Our
goal is to allow developers of microservice applications using
state-of-the-art service monitoring techniques to automatically
obtain both the description of the structure of their application
along with the calibration values for our microservice model.
Our approach does not require code modifications provided
that the targeted application uses one of the standard service
monitoring solutions, as detailed hereafter.

To instantiate our microservice model, we need to gather
values for the parameters given in Table [l The request types
to study depend on the application and on the goal of the
experiment. One can study either a specific request or observe
several types of request executable in the application.

Intra-service properties need to be observed at both
application- and system-levels. Indeed, overall service execu-
tion times can be observed easily from the application, but

the ratio of active and IDLE CPU times requires lower-level
information.

Inter-service information can be obtained by observing the
network interactions between services running in separate
containers.

The required accuracy for the calibration values depends on
the target of the simulation. For example, approximate values
of network request sizes can be adequate for an experiment
studying the performance of an application under limited
computing resources, as the network does not constitute the
bottleneck of the experiment.

The model parameters can be obtained via various methods.
From our experience, distributed tracing can provide these
values at a low cost. Most real microservice applications
are already instrumented to export metrics and information
about the state of each of their services. Whereas the typical
use case of distributed tracing is to help identifying the
services inducing performance issues, leveraging it to calibrate
our model is an interesting solution. Traces entails the path
followed by requests and the amount of time spent in each
service. Each service execution is called a span, and the set
of all spans linked to the same request forms the DAG of
the overall execution. The collected data provide both inter-
service property DAGs and intra-service execution times. In
the following, we use the information contained in these traces
to instantiate our microservice models.

As summarized in Figure |2} our goal is to build a simulator
exploiting the information contained in a single execution
trace per type of studied request. The resulting simulator
can then predict the performance of the application under
various configurations. Figures [3] and ] show an execution
trace automatically extracted from an application of the litera-
ture [9]. In Figure [3| a partial execution trace can be observed,
directly taken from the web interface of Jaeger [14], whereas
Figure [ is a DAG representation of the same request. Based
on this example, we now show how to calibrate our model by
following the steps of Figure [2|

Step 1: Obtain calibration traces. The application modeler
first needs to gather execution traces of the requests to study.
These traces are created upon request executions, once the
application is instrumented with a tracing system such as
OpenTracing [20], OpenTelemetry [19], or Kieker [24]]. The
user can then run the instrumented application on a machine
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Fig. 4. Graph representation of the request sample from Figure [3]

representative of the targeted platform. Finally, the traces are
used to calibrate our model. They contain information that
will be used in the following steps. A particular care must
be taken in the selection of the traces to ensure that they
are representative of the behavior of the application. Using
average execution times helps at avoiding outliers. In the
case of Figure 3| the application from DeathStarBench [9] is
natively instrumented with OpenTracing and we run it with a
medium workload for several minutes to ensure that we select
a trace corresponding to the application’s behavior in steady-
state: none of the services are overloaded, the caches are warm,
databases are populated, etc.

Step 2: Process the traces to obtain calibration values.
The second step consists in obtaining the values required for
the instantiation of our microservice model. Tracing systems
used in Step 1 are usually combined with generic trace
processing tools such as Jaeger [14||, Zipkin [26], or Kieker’s
tools [24]. These tools collect application traces and process
them to obtain metrics about the performance of end-to-end
executions. They provide enough information to calibrate our
model even if low-level metrics may be missing. As shown in
Figure 4] using Jaeger, we obtain from the OpenTracing trace
a DAG of services execution connected to each other. Thus,
we can infer how services interact during request executions.
The size of network requests is not provided in this case, but
an instrumentation with OpenTelemetry [|19]] could for example
allow us to send request sizes to Prometheus [22]. Intra-service

properties are also partially included in our trace. We obtain
an accurate estimation of the duration of the request for each
service execution. Still, our example trace must be extended
regarding the ratio of I/0. Complementary solutions such as
Docker monitoring could be used to retrieve I/O ratios.

Step 3: Building and configuring the simulator. The
values obtained during the previous step allow instantiating
one microservice model for each service of the target ap-
plication. We can then observe the duration of end-to-end
request executions through simulation. Simulations can be
configured to explore the performance of the application under
various deployment settings. Because obtaining calibration
values is relatively easy thanks to existing monitoring systems,
it becomes possible to adjust calibration values after the
modification of a service’s implementation.

To profit from the ability of distributed tracing at providing
the intra and inter-service properties of an application, we de-
signed a tool to automatically produce the code of a simulator
with calibrated microservices given Jaeger traces. This allows
for a semi-automatic performance simulation of compatible
instrumented applications.

IV. EXPERIMENTAL VALIDATION

To evaluate the accuracy and scalability of our contribution,
we rely on both a set of microbenchmarks and published
microservice benchmarks use cases. We compare the perfor-
mance predicted by models instantiated using our approach
to real application executions. Based on those results, we
show that our contribution can help microservice performance
analysis by answering the four questions we stated in Section[l]

Experimental setup: All experiments have been launched
on the Grid’5000 testbed [2]. We run our experiments on a
cluster composed of nodes with 2 x Intel Xeon E5-2630 v3
with 8 cores/CPU, 128 GiB of memory, and 2 x 10 Gbps
network interfaces. They run Debian 10 under kernel 4.19.0-
16-amd64. Services run within Docker containers and multi-
node deployments are done with Docker-swarm.

Source code and reproducibility: The source code of our
contribution is available online at https://github.com/klementc/
microservices_simgrid_reproducibility along with the scripts
used to obtain the results. We also provide notebooks with the
code used to generate the figures of this paper and additional
experimental results not presented here.

A. Microbenchmarks

Before predicting the performance of real large microservice
applications, we need to ensure that our microservice model
allows for accurate execution time predictions at the scale
of single services. This first experiment aims at showing
the ability of our microservice model to reproduce request
execution times accurately under a dynamic load.

We launch a microservice application that executes a fixed
amount of CPU work for each request. The microservice
fetches incoming requests through a RabbitMQ queue, and
it is possible to chain multiple services to obtain multi-
steps executions. The results detailed hereafter consist of a
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single service sending its results directly to a sink. We ran
microbenchmarks using 2 chained services leading to similar
results but not shown here due to space constraints.

To simulate this application using our model, we proceed
in two steps. First, we obtain the execution time of a request
given its CPU cost by sending calibration requests. These cali-
bration values represent the execution duration when a service
is not overloaded. Through linear regression, we estimate the
duration of request executions for any CPU cost assigned to
the service. We then calibrate the service model to use these
values before running simulations and comparing the results
to an execution on a real platform.

We generate a synthetic load using LIMBO, an HTTP load
model and generator [23]]. It consists of requests spanning over
5 minutes with between 1 and 40 requests per second and three
activity spikes for a total amount of around 4,500 requests as
shown in Figure [5] We launch this experiment 5 times for each
configuration. Configurations vary by the quantity of work to
be executed and the maximum amount of parallel executions.

Figure [6] shows the results obtained during the microbench-
mark execution with one service, an execution time of approx-
imately 25ms per request and a concurrency degree of either
five or ten. The concurrency degree refers to the maximum
number of parallel requests for a given service. For each
request executed during the experiment, Figure [f] shows the
estimated execution time of request obtained using our model
in SimGrid and the execution times of a real deployment.

We make two observations. First, both SimGrid predictions
and real-world results have higher execution times during
request arrival spikes, which happen at 20s, 150s, and 250s.
This is caused by the processing of several requests in parallel
and queuing. This shows the ability of our service model to
reproduce processing times of requests under a dynamic load.

Second, we observe that the execution time per request
changes with the concurrency degree of the application. With a
concurrency degree of 5, the maximum request execution time
(125ms) is approximately two times lower than the maximum
request execution time with 10 parallel requests. A smaller
concurrency degree decreases single requests execution times
at the cost of increased queuing times. Executing an important
amount of parallel requests on a single CPU core will also
lead to overheads due to operating system thread switching.
The execution model of SimGrid does not take into account
context switching costs, thus it might underestimate execution
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Fig. 6. Comparison between our model’s prediction and a real execution with
two different concurrency degrees under a synthetic load.

times when the number of parallel requests is much higher than
the number of CPU cores to execute them. Yet, in the results
of this paper, this effect does not impact our observations.
These results show that our microservice model implemen-
tation in SimGrid can accurately predict the performance of
simple CPU-intensive microservices under variable loads, and
thus it answers the first question:
Q1. How will the execution times of a microservice react to
a variable load?

B. Use-case 1 : TeaStore login requests

We now observe the performance when modifying the
resources (i.e. number of cores) dedicated to the execution of
an application within a single computing node. This question
is of importance for real deployments to estimate the cost/gain
ratio of different hardware options. Our goal is to obtain the
same results between real observations and our simulations
when changing the number of resources to be used. To evaluate
the versatility of our approach, we only rely on one calibration
experiment detailed hereafter to instantiate our service models.

For this evaluation, we run TeaStore [8|], a microservice
application benchmark used in microservice performance eval-
uation literature [[11]. We focus on the LOGIN request of
this application. This request involves 4 different services
running in separate Docker containers. We study the maximum
sustainable load (in Requests Per Second, RPS) of the applica-
tion under different resource configurations and compare real
results to simulated predictions.

TeaStore is natively instrumented with Kieker [24]. We
use the average request execution duration of each service to
calibrate our service models within SimGrid by doing a real
execution under a low load-profile. From this execution we
extract a trace with Kieker, providing us the calibration values.
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Fig. 7. Comparison of teastore’s LOGIN performance between SimGrid

predictions (black line) and real world executions (colored dots) for 4, 8 and
16 cores dedicated to the execution of the application.

As recommended by TeaStore’s documentation, the load is
generated by LIMBO [23]. We benchmark the application
under 3 different configurations. For the real experiments, the
application is deployed on a machine with either 4, 8, or 16
cores dedicated to the execution of the services. We execute
each configuration 20 times. A summary of the results is
shown in Figure

The goal of this experiment is to detect the breaking point
after which the application is overloaded. This breaking point
is detected by our model, for example around 320 requests
per second in the 4 core configuration, as shown in Figure
Regarding the accuracy of our model, we observe the mean
relative error (MRE) between SimGrid predictions and real
world values. Over the different workloads shown in Figure 7]
we observe an average MRE of 11.8%, 4.9% and 3.6% with
maximum values of 21%, 17% and 14.9% in the 4, 8 and
16 cores configurations respectively. While the maximum
error observed is non-negligible, especially in the 4 cores
configuration, the predictions of our model allow observing
trends, and comparing the advantages of one configuration
over another. This experiment allowed us to answer the second
question:
Q2. How would a CPU upgrade improve the maximum
sustainable load?

C. Use-case 2 : DeathStarBench’s social network

The next step consists in evaluating the performance of an
application taking advantage of several physical servers, one
of the main assets of the microservice architecture. Yet, finding
the best partitioning of services is a complex task.

We chose to study one of the most realistic published
microservice benchmarks to our knowledge, the social network
from DeathStarBench [9]. We reproduce the most complex
request of this application, the COMPOSE request that submits
a publication to the social network. It consists of more than

TABLE II
SERVICE CONFIGURATIONS FOR THE SOCIAL-NETWORK APPLICATION.

Node 1 Node 2

nginx_web_server,
compost_post_service,
unique_id, media_service,
user_service, text_service,
user_mention, home_timeline,
social_graph, user_timeline,
post_storage_service,
url_shorten

Config 1

nginx_web_server,
compose_post, unique_id,
user_service, text_service,
user_mention, home_timeline,
social_graph, url_shorten,
user_timeline

media_service,

Config 2.a .
post_storage_service

nginx_web_server,
compost_post, home_timeline,
social_graph, user_timeline,
post_storage_service

unique_id, media_service,
user_service, text_service,
user_mention, url_shorten

Config 2.b

30 spans across 12 different services. We deploy the social
network using Docker-swarm, and vary the location of each
service and the number of replicas. We compare the maximum
sustainable request throughput obtained with our simulator
against real executions with 10 real runs per configuration.

Table [l shows the server allocations for the microservices
required to execute the COMPOSE request in each of the
three studied configurations. With configuration 1, all services
are using the resources of a single node. It should be the
least efficient configuration due to fewer resources available
for each service. Configurations 2.a and 2.b divide the 12
services into two randomly selected groups, each running on
different nodes. For all configurations, other services of the
application, not involved in executing the COMPOSE request,
are running on a separate node not considered here. The
SimGrid calibrated simulator is generated using the Jaeger
trace partially shown in Figure[3]and the code generation script
described in Section We run the experiment with various
CPU constraints. Figure [§] shows the result obtained with 10
cores per node to execute the application.

We observe one limitation of our approach during this
experiment as our model does not capture the communication
overhead due to Apache Thrift under high load. We choose to
reduce this overhead (that is known to the authors of [9]) by
executing two instances of each service, as would be done in a
real deployment to improve the application throughput. Such
fine-grain overheads could be considered in future work.

Figure [§] shows the maximum request throughput estimated
by SimGrid and obtained through real-world executions. We
observe that SimGrid accurately detects the breaking point
where the application becomes saturated, at around 1,500 RPS
with Ix 10 cores for configuration 1, and 1,750 RPS and 2,200
RPS under configurations 2.a and 2.b with 2x10 cores. We
observe similar results when comparing the average latency
of requests. A non-proportional maximum throughput between
the configurations can be observed. Indeed, configuration 2.a
presents an unbalanced grouping of services among the nodes
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which leads to the overloading of one node while the other
is still able to process requests. A very naive service model
would predict an improvement factor of two between the con-
figurations 1 and 2.a, and would predict identical performance
for configurations 2.a and 2.b. Since our model takes into
account the processing cost of each service, it is thus able to
show that configuration 2.b performs better than configuration
2.a, as in the real executions.

Regarding the accuracy of our predictions, the configura-
tions 1, 2.a and 2.b have an average MRE of respectively
3.5%, 3.7% and 1.4%, whereas the maximum measured errors
are 21%, 20% and 6.6%. The maximum error values can be
explained, as with the TeaStore experiment, by a different
behavior of our model compared to the real application once
the breaking point is reached. Before that point, the error
remains very low between the simulated predictions and
real measurements, while the breaking point is observable
in Figure [§] at 1500, 1700 and 2250 requests per second in
scenarios 1, 2.b and 2.b.

These experimental results show that our approach, based on
a microservice model and code tracing tools, provides accurate
estimations of the performance of microservice applications
with different configurations, thus answering both questions:
Q3. Will distributing microservices on more than one node
increase performance?
Q4. How to optimize the location of services in a computing
cluster to obtain the best performance?

V. RELATED WORK

To improve the performance of their applications, microser-
vice developers can, among others: use automatic scaling
policies based either on system thresholds [[13]] or application
metrics [10]], detect and correct application faults [7|] or
optimize service placements [[1].

To evaluate the advantages of using such methods, two main
approaches exist in the literature around microservice perfor-
mance evaluation. On one hand, real-world experiments [4],
[13]. Despite giving meaningful insights on the behavior of
an application, because of time and real platform constraints,
these methods often limits the validity of their results to a
narrow set of contexts. They also do not allow for easily
reproducible results. The second approach uses purely ana-
Iytical models [3[], [7]. This approach allows observing some
theoretical properties of an application but is not adapted to
study complex applications composed of many services.

To overcome the lack of evaluation in various contexts
through real experiments and the difficulty of adapting formal
methods to real systems, a third approach resorts to simulation.
With simulation, one can observe the behavior of an appli-
cation under several configurations without real deployments
and reproduce the obtained results using only commodity
hardware. We propose a brief overview of existing simulation
software for microservice applications and their limits.

The authors of BigHouse have obtained performance pre-
dictions of cloud applications using statistical methods based
on a discrete-event simulator [18]]. Unfortunately, more recent
works have shown that the accuracy of BigHouse is limited
when applications are composed of several services due to its
very high-level representation of applications, not taking into
account some specificities of microservices [25].

Based on the limits of BigHouse, the authors of [25]] used a
finer-grained representation of microservice applications with
pgsim. pgsim allows for a detailed representation of internal
microservice executions using sets of execution stages for
each type of request a microservice can receive along with
communication dependencies between the different services.
The relation between services is modeled as a DAG where
nodes are services and edges represent the path followed by
individual requests processed by the application. With a correct
calibration of the different execution stages of each service and
their interactions for different types of requests, the authors
managed to reproduce the behavior of a complex microservice
benchmark [9]]. With pqgsim, the accuracy of the simulation
depends on the description of the different processing stages
inside microservices and of service dependencies. Whereas
this calibration can be done easily by hand with small appli-
cations, the lack of a proper calibration methodology leads to
a tedious and error-prone process with large applications. This
approach also requires to re-instrument a service each time its
code is modified in order to fit its new behavior. Compared to
pqsim, our approach introduces a simplified representation of
intra-microservice processing by using a fixed set of execution
stages (i.e. 3 stages as shown on Figure [T). But, these stages



are automatically calibrated using standard execution traces
obtained through well-known distributed tracing systems.
Other tools allow for microservice simulation studies. Sim-
ulators dedicated to Fog and edge computing systems often
model their applications as DAGs of tasks, like YAFS [15],
fogTorch [5], and IFogSim [12]. Yet, these simulators are very
specific to the context of Fog, and still require to manually
describe most of the dependencies and properties of the
simulated applications. For instance, the authors of [[6] provide
a code generation pipeline with Fog specific properties, such
as geographical coordinates, and Fog applications, such as
dataflow processing which do not correspond to microservice
architectures although both employ DAG representations.
Evaluating the performance of an application based on
execution traces is not a new approach [[17]. Our approach
is a new step towards the seamless transposition of real ap-
plications into simulations. Similar approaches require manual
descriptions of intra-service and inter-service properties that is
both costly and error-prone, especially for large applications.

VI. CONCLUSION AND FUTURE WORK

Microservice applications trade monolithic complexity for
intricate interactions between simple services, hindering the
system performance evaluation.

In this article, we introduced a microservice simulation
model based on a reduced number of calibration values to de-
scribe microservice applications. Our contribution is more pre-
cise than large grain models, while being easier to instantiate
than precise models. We proposed a methodology leveraging
distributed tracing systems to instantiate the simulation models
of real applications using standard instrumentation solutions.

We implemented this model on top of SimGrid, and ap-
plied our methodology on applications instrumented with
Jaeger and Kieker. These contributions were evaluated on
microservice benchmarks, demonstrating their ability to an-
swer the operational questions Q.1-4 introduced in Section []
on such applications. This could be used in various what-if
analyses such as the exploration of performance trade-offs
under scarce resources that are common in fog infrastructures.
More interestingly, it could even be used to dimension a Fog
infrastructure given an application and a workload to serve,
an intractable problem with other solutions.

In the future, we will provide models of features that
are common among microservice applications, such as the
Kubernetes autoscaling policies. We also plan to give access to
detailed resource usage values, including energy dissipation,
through classical instrumentation systems.
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