
HAL Id: hal-03389504
https://hal.science/hal-03389504v1

Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending Referring Expression Generation through
shared knowledge about past Human-Robot

collaborative activity
Guillaume Sarthou, Guilhem Buisan, Aurélie Clodic, Rachid Alami

To cite this version:
Guillaume Sarthou, Guilhem Buisan, Aurélie Clodic, Rachid Alami. Extending Referring Expression
Generation through shared knowledge about past Human-Robot collaborative activity. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Sep 2021, Prague (online), Czech
Republic. �10.1109/IROS51168.2021.9636796�. �hal-03389504�

https://hal.science/hal-03389504v1
https://hal.archives-ouvertes.fr


Extending Referring Expression Generation through shared knowledge
about past Human-Robot collaborative activity

Guillaume Sarthou1, Guilhem Buisan1, Aurélie Clodic1 and Rachid Alami1

Abstract— Being able to refer to an object, a person, or a
place in a non-ambiguous manner is a need when one has to
achieve collaborative activities with a partner. This is the so-
called Referring Expression Generation (REG) problem. While
widely used for Human-Robot Interaction, state of the art
approaches restrict its use to the current environment. We pro-
pose a novel extension to the REG which takes full advantage
of the Human-Robot shared knowledge about past actions as
additional information to generate Referring Expressions. We
show that our approach is usable with a domain-independent
ontology as a knowledge base and that it can also use a semantic
representation of past activity to generate RE. We illustrate our
method through simulated situations and discuss its efficiency
and pertinence.

I. INTRODUCTION

When two or more agents perform a collaborative task in
a shared environment, although they may have a different
perception of this environment, they are able to estimate the
information they share and can thus use it to communicate
about some known entities. This assumption is commonly
used to develop and evaluate Referring Expression Gener-
ation (REG) methods through the use of snapshots of the
environment[8]. It has also been used when the REG has
been applied to Human-Robot Interaction (HRI). However,
the joint activity performed during a collaborative task can be
seen as additional knowledge shared by the involved agents.
During the interaction, the agents perform actions on entities
in the environment. We can thus refer to the entities through
these past actions in addition to their properties.

Consider the situation represented in Fig. 1b as the current
situation where the robot has to ask the human for the knife 2.
Since the robot is performing another action of the joint task,
it cannot see what is in front of the human and so it can
not know any spatial relations about it. Therefore, the robot
can only use knife 2 attributes (e.g. its color) to generate an
expression referring to it. However, there are two other blue
knives in the kitchen (1 and 3). Even if the one attached to the
wall (1) can be considered as out of context as being already
reachable by the robot and not by the human. The other knife
(3) still leads to ambiguity and has no other attribute that
differs from the one the robot has to refer to.

Until now, we only have considered the current situation
(i.e. b) and not the human-robot shared experience. By taking
into account a previous human action (Fig. 1a) which was
to cut a tomato, the robot can find a way to refer to knife 2.
A possible RE would be ”the knife with which you cut the
tomato”. The exploitation of shared knowledge about past

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
firstname.surname@laas.fr

Fig. 1. Referring to knife 2 in the current situation (b) is impossible if
the robot is performing an action that does not allow it to see what is in
front of the human. Considering a previous step of the human’s task, the
robot can refer to the knife through the action to cut a tomato (a).

activity in addition to the usual properties for REG allows
the generation of richer RE that could be easier to understand
by the human partner. Besides, it allows to extend REs use
to contexts where the previous method was not effective.

As explained in [12], the REG task is composed of two
parts. The content determination focuses on finding the set
of relations to use. The linguistic realization consists in
choosing the right words to communicate the content. This
paper only focuses on the content determination. However,
since the knowledge base we consider is not dedicated to
this specific task, the method we present still ensures that the
concepts used in the content determination (e.g. the actions
or the object types) have a name in natural language without
performing the linguistic realization.

This paper is an extension of our previous work [4]
proposing an algorithm to generate RE with an ontology as
a knowledge base. Moreover, this REG algorithm has been
integrated within a cost-based Human-Aware Task Planner to
estimate the feasibility and cost of REs during the planning
process [3]. The main contribution of this paper is an
extension of the ontology-based algorithm for the generation
of REs by considering past agents’ activities. A side
contribution of this paper is a formalism to represent Hi-
erarchical Execution Traces (executed HTN-based plans)
in an ontology. While our previous contribution considered
only cost functions on properties and relations to represent
the cognitive load required for a human to interpret the RE,
we propose here to add customizable cost functions, based
on time, to represent the cognitive load required for a human
to remember referred actions and tasks.

In §II, we discuss related work on REG and HTN rep-



resentation in ontologies, and how our method addresses
new challenges. The knowledge bases, their update, and
the representation of Shared Hierarchical Execution Trace
(HET) in an ontology are presented in §III. The proposed
algorithm is described in §IV. Comparison with our previous
work is presented in §V to show the performance impact of
the addition of the new feature. Finally, in the last section,
we present and discuss five different cases to illustrate the
solutions found by our algorithm depending on the agent’s
knowledge about past activities.

II. RELATED WORK

A. Referring Expression Generation

Referring Expression Generation (REG) has been formal-
ized as the concern of ”how we produce a description of
an entity that enables the hearer to identify that entity in a
given context” [26]. The criteria for a good RE have been
refined over time through multiple algorithm propositions.
In [5] a Depth First Search (DFS) approach was proposed
leading to non-optimal solutions with redundant information.
The Full Brevity approach [6] solved this first issue to fit
the Grice’s Maxim of Quantity [14] but at the cost of an
exhaustive search. With the Incremental Algorithm (IA) [7]
Dale introduced the notion of preference over features to
represent the fact that some entities’ features, such as the
color, are easier to understand than others.

During the following decade, the Graph-Based Algorithm
(GBA) REG [18], based on a branch&bound algorithm, in-
troduced a labeled directed multi-graph representation known
as the REG graph. Keeping the notion of preference over
features through the assignation of costs to each edge of the
graph, the REG graph allows the use of relations between
entities in an easy way. The more notable extensions are the
Longest First (LF) algorithm [31] trying to over-specify the
description and [19] using the hierarchy of types.

Other approaches based on machine learning have been
developed such as [36] using belief networks or [10] using a
log-linear model trained from a corpus of the probability
distribution of REs. However, these kinds of approaches
suffer from a lack of genericity by being restricted to the
learned relations.

Two major approaches have been used in robotics ar-
chitectures. In one hand the DIST-PIA [33], a distributed
Incremental Algorithm, integrated in a robotic architecture in
[34]. It uses consultants on each of the distributed knowledge
bases of the architecture and has an IA querying these
consultants. In the other hand, an ontology-based REG has
been presented in [27]. However, while ontologies can be
viewed as a more complete REG graph, this method is not
able to use relations to other entities such as in the original
GBA REG. This issue has been solved by our work [4] in
which we proposed an ontology-based REG using a Uniform
Cost Search algorithm.

In all the previous works, the REG is only performed
on the current environment state. [32] is the first to add a
temporal aspect by considering a sequence of REG and trying
to re-use properties from previous descriptions along with a

forgetting model based on decay or interfering. This method
has been tested on a ”Guess Who”-style game implying
that the used properties hold between the REG and thus
can be re-used. However, this assumption can no longer
be maintained in a real dynamic interaction where objects
are manipulated. [24] showed that generating references to
eventualities (i.e. past actions) can be done in the same way
as generating references to physical entities but does not
generate references to entities through the use of past actions.
Finally, [35] uses RE involving past actions to identify the
referent in videos but does not generate them.

The determination of the properties’ costs will not be
discussed here but we can mention [2] and [17] which use
learning techniques to estimate the users’ preferences.

B. HTN-based tasks representation in ontology

In HRI, storing and reasoning about past activities is
needed both to learn from experience [25] and to speak
about what happened [21]. Some approaches represent the
past actions using structured sets of SQL tables [21], but
such a representation lacks of semantic information both on
the involved entities (e.g. a robotic agent is a specific type of
agent) and on the actions (e.g. a cut action is part of a salad
preparation task). Since ontologies are fully suitable to rep-
resent semantic information about entities and their relations,
they have been used to represent task planning knowledge.
In [29], a Robot Task Planning Ontology (RTPO) is proposed
but the model does not consider the rich semantics involved
by the hierarchical nature and intricacies of human-robot
joint activities.

HTN is a very popular way for representing, planning,
and controlling autonomous agents’ activities [13], [15].
They are widely used for robotic planning as they allow
to efficiently find complex plans by choosing between dif-
ferent task decompositions depending on the world state.
In HRI scenarios, their usefulness is even more apparent.
In [20], an HTN is used to generate human-robot joint
plans. Furthermore, the hierarchical structure can be used
to negotiate or communicate high-level plans when details
do not matter [22].

To the best of our knowledge, few works exist on the
representation of an HTN and their Hierarchical Execution
Trace (HET) in ontologies. [30] describes the notion of
complex tasks composed of simple tasks but does not go
further in the representation. In [11] only the planning
domain is represented. The major issue is that the ontology
classes are used to describe the general HTN concepts (i.e.
action, method) while the field concepts (e.g. the cut task)
are described using the ontology individuals. Hence, this
representation does not allow to represent sub-tasks and
actions instantiations leaving a gap between the domain as
a high-level knowledge and the HET as an instance of it.
Our work is closer to BOWL[16], an HTN ontology for
business process representation. Even if they have defined
some specific relations for the Business-to-Business field, the
general tasks, decomposition, and tasks links representation



are interesting. However, BOWL only represents the HTN
and not HETs, but does not preclude it.

III. STRUCTURING AND GATHERING THE KNOWLEDGE

In this section, we present first the main knowledge struc-
ture necessary to perform the extended REG through shared
knowledge about past Human-Robot collaborative activity.
We continue with an overview of the robotic architecture
allowing to acquire these knowledge and we end this section
with the semantic knowledge base internal structuring that
we propose to represent the HTN and the HETs.

A. The three knowledge representations

Three knowledge representations are used and can be
grouped into two categories: the dynamic and static ones.
The dynamic part is updated all along the course of action, it
is defined as K = 〈KS ,KE〉 with KS the semantic part and
KE the episodic one. The static knowledge base represents
the planning domain as a Hierarchical Task Network (HTN).

Since this work addresses HRI applications, we consider
that the robot maintains a semantic and episodic knowledge
base per human it is interacting with (KHi

S and KHi
E ) in

addition to its own (KR
S and KR

E ). This consideration allows
to implement theory of mind decisional mechanisms [1].
While the robot’s own knowledge base is its personal truth,
the agents’ knowledge bases represent its estimation of the
knowledge of its human partners.

1) The Hierarchical Task Network: An HTN is a way of
representing a task to be planned, i.e. to be fully refined and
instantiated. The following definitions are based on [9]. It is
defined as a set of tasks N . A task n is represented as a task
name with a list of arguments. For example, in Fig. 2, the
task cut has the arguments A, V, K, which are respectively
an agent, a vegetable, and a knife.

A task n can either be a primitive task (n ∈ Pt) or an
abstract task (n ∈ At), where Pt is the set of primitive
tasks (which do not need any refinement) and At the set
of abstract tasks (needing further decomposition). In Fig. 2,
PrepareSalad() ∈ At while cut(A,V,K) ∈ Pt.

Then, we define the set of decompositions D. A decompo-
sition is a pair (υ,N) ∈ D where υ ∈ At is an abstract task
and N a task network describing one way of decomposing
υ. In Fig. 2, the abstract task PrepareVegetable(A,K,V) has
two decompositions d8 and d9.

Given an initial state and an initial task network, a planner
(such as HATP [20]) elaborates a plan. A plan is a sequence
of primitive tasks such as they result from successive de-
compositions of the initial task network while respecting the
constraints issued by the initial state. The planner thus tries
to recursively select a decomposition for each abstract task
in the task network until it reaches primitive tasks. Besides,
the planner has to ground every argument of the tasks into
entities of A (the Abox of the knowledge base KS) while
respecting constraints on them (e.g. types of arguments).

Fig. 2. The domain of the high-level task PrepareMeal. It is used by
the planner (HATP) to elaborate an HR shared plan through a context-
based decomposition and parameter instantiation process (which vegetable
V, which knife K, ...) including the selection of which agent A (Alex the
human, or PR2 the robot) subtasks and/or actions will be allocated.

2) The semantic knowledge base - KS: Keeping the
definition used in [4], the semantic knowledge base KS

is defined by KS = 〈A,T,R〉 with A, T and R being
respectively an ABox, TBox and RBox. The detail of the
structure of the semantic knowledge base is detailed in [4].
The list of symbols used is presented bellow.

A ABox entities/indiv T TBox classes/concepts
A: set of entities T : set of classes
C0: entities’ direct types H: classes inheritance links
R: relations between entities E: relations between classes
La: entities labeling function Lt: classes labeling function
R RBox roles/properties
P : set of properties
Incl: properties inheritance links Inv: properties inverses
Dom: properties’ domains sets Ran: properties’ ranges sets

We store in the ontology both the facts representing the
current state of the world (e.g. the knife is on the table) and
the descriptions of the executed tasks, as presented in §III-C.

3) The episodic knowledge base - KE: The episodic
knowledge base KE is a timeline defined as KE = {〈α, T 〉}.
It is a set of pairs with α an instance of a task and T a
temporal interval composed of two numerical values. The
tasks defined in KE are also represented as entities of KS

(α ∈ A). Since they are semantically represented in KS we
can, inter alia, retrieve their types or arguments.

B. The knowledge gathering scheme

In the previous subsection, we saw the three knowledge
bases. We now describe how they are interconnected and how
the semantic and episodic ones are updated. The minimal
robotic architecture we use is represented in Fig. 3.

The biggest box at the center represents the ontology com-
ponent which maintains the semantic and episodic knowl-
edge bases: an estimated knowledge base per each human
(KHi

S and KHi
E ) in addition to the robot own knowledge

base (KR
S and KR

E ).
First of all, the HTN-based task decomposition description

is parsed and stored offline (dotted arrow on Fig. 3) to store
its abstract and primitive tasks as well as their parameters



and their hierarchical links as concepts and properties of
the ontology (see next section for details). The other ar-
rows represent the online interactions between components.
The situation assessment continuously updates the semantic
knowledge base of each agent, which themselves temporally
stamp these data in their respective episodic knowledge
base. On request, the HTN planner generates a plan for
the supervision (1). During plan execution, the supervision
describes the performed tasks semantically (detailed in the
following subsection) (2a) and stamps them in the timeline
(2b) with their respective begin and end times. At task
execution, the supervision also gathers data from the episodic
knowledge base of the human partner (2c), to monitor their
tasks. Upon a REG request from the supervision, the REG
component explores the listener’s knowledge bases (3) and
returns the generated RE (4).

When the supervision component inserts the executed
tasks in the semantic knowledge base, it creates a hierarchical
execution trace (HET). The execution trace can differ from
the initial plan since it can be the result of plan repair or re-
planning steps within the same global task achievement. The
HET thus contains the actions which have been performed
and their link to the higher level of abstraction. No forgetting
mechanism has been implemented yet since we focus on
”short” interactions (few hours) but adding one would avoid
the knowledge bases to grow indefinitely and also represent
the human forgetting mechanism. This is for future work.

C. Building the ontology

The aim of the following representation is not for planning
per se (since this is done by the human-aware task planner)
but rather to allow to store and manipulate a description
of the execution of the human-robot shared plans together
with their hierarchical structure and the information provided
by the situation assessment component. What is provided
is the hierarchical task decomposition together with a se-
mantic description of the entities used as tasks and action
parameters, their properties, and relations to other entities in

Fig. 3. A ”minimal” robotic architecture allowing to acquire and store
the knowledge necessary to perform a REG using the past HR activities.
The dotted arrow represents an offline acquisition. The other arrows are
online interactions between the components. The numbering represents the
execution order during the execution of a task, as explained in §III-B. The
robot knowledge bases (KR

S and KR
E ) and the estimated mental states of

its two human partners (KHi
S and KHi

E ) are updated permanently by the
Situation Assessment component which tracks changes in the environment
and by the robot supervisor which controls robot planning and execution
activities and monitors humans actions.

the environment. Moreover, the descriptions presented below
are automatically generated from an HATP domain and plan
description [20].

1) HTN in ontology: An HTN represents the general
knowledge about how to decompose high-level abstract tasks
into executable primitive tasks. Since it is a piece of general
knowledge, the domain is represented in the TBox and the
RBox of the ontology.

We first define the classes and relations common to
any HTN representation. The upper class in the TBox is
HtnConcept from which inherit the classes HtnDecom-
position and HtnTask. The HtnTask class is then refined
into HtnAbstractTask and HtnPrimitiveTask. The RBox is
composed without hierarchy of the properties hasDecompo-
sition, hasSubtask, hasParameter, and their inverse (e.g.
(hasParameter, isParameterOf) ∈ Inv). The property
hasDecomposition links an abstract task to its decomposi-
tions and the property hasSubtask a decomposition to its
sub-tasks (primitive or abstract).

Thus, to represent an HTN Pl = 〈Pt,At,D〉 we add to
our ontology a new class t for each : (1) primitive task n such
as n ∈ Pt⇔ t ∈ T ∧ (t,HtnPrimitiveTask) ∈ H (2) abstract
task υ such as υ ∈ At ⇔ t ∈ T ∧ (t,HtnAbstractTask) ∈
H (3) decomposition d such as d ∈ D ⇔ t ∈ T ∧
(t,HtnDecomposition) ∈ H . We then add to our ontology
new relations r for each decomposition d = (υ,N) such as:
(1) d ∈ D ⇔ (υ, hasDecomposition, d) ∈ E (2) n ∈ N ⇔
(d, hasSubtask, n) ∈ E.

:PrepareVegetable rdf:type owl:Class ;
:PrepareVegetable rdfs:subClassOf :HtnAbstractTask ;
:PrepareVegetable :hasDecomposition :PVDecomp_A ,
:PrepareVegetable :hasDecomposition :PVDecomp_B .

:PrepareVegetableDecomp rdf:type owl:Class ;
:PrepareVegetableDecomp rdfs:subClassOf :HtnDecomposition.

:PVDecomp_A rdf:type owl:Class ;
:PVDecomp_A rdfs:subClassOf :PrepareVegetableDecomp ;
:PVDecomp_A :hasSubtask :Cut_PvDecomp_A ,
:PVDecomp_A :hasSubtask :Peel_PvDecomp_A .

:Cut_PvDecomp_A rdf:type owl:Class ;
:Cut_PvDecomp_A rdfs:subClassOf :Cut ;

Description 1. Description of the abstract task PrepareVegetable and one
of its decomposition.

Let us consider the abstract task PrepareVegetable of the
domain illustrated in Fig. 2. The generated OWL represen-
tation (Desc. 1) is composed of the PrepareVegetable class
inheriting from the HtnAbstractTask concept. Through the
properties hasDecomposition, we state that the task has
two decompositions being PVDecomp A and PVDecomp B.
Then, the PrepareVegetableDecomp class, inheriting from
the HtnDecomposition concept, is the upper class of all
the PrepareVegetable task decompositions. Representing the
first of these decomposition, PVDecomp A, we state that
it has two subtasks (hasSubtask) Peel PVDecomp A and
Cut PVDecomp A. The sub-tasks are specified into the de-
composition they are performed in order to keep track of
their context. The tasks’ parameters are represented using the
hasParameter property. Unlike the previous properties, this
one is not directly applied to the classes but rather refined to



be used by the task instances. Indeed, this property is refined
into several ones, being hasParameter.i with i ∈ N (i.e.
hasParameter.0, hasParamter.1, ...) aiming at representing
the parameters by their position in the task parameters list.
These refinements are independent of the translated HTN.
Each of these properties is then refined and specified for
every task of the current HTN. This second specification
aims at representing the parameters by their name in the
task parameters list, and link them with their position (via
their inheritance link). Taking the example of the primitive
task Cut of Fig. 2, the generated description is presented in
Desc. 2 for the two first parameters. The parameter A is at
position 0, we thus define the property Cut hasParameter.A
that is a refinement of the property hasParameter.0. The task
parameter is then set as the property domain, and the type
of the argument (defined in the HTN) is set as the property
range. For example. the property Cut hasParameter.A has
for domain the Cut task class and for range the Agent class,
representing the agent performing the task. The same process
is performed for every parameter of each task.
:Cut_hasParameter.A rdf:type owl:ObjectProperty ;
:Cut_hasParameter.A rdfs:subPropertyOf :hasParameter.0 ;
:Cut_hasParameter.A rdfs:domain :Cut ;
:Cut_hasParameter.A rdfs:range :Agent .

:Cut_hasParameter.V rdf:type owl:ObjectProperty ;
:Cut_hasParameter.V rdfs:subPropertyOf :hasParameter.1 ;
:Cut_hasParameter.V rdfs:domain :Cut ;
:Cut_hasParameter.V rdfs:range :Vegetable .

Description 2. Description of hasParameter property specifications for the
first and second parameters (resp. the agent performing the task and the cut
vegetable) of the Cut primitive task

2) HET in ontology: The HTN planner (here HATP)
first generates a hierarchical plan for a given human-robot
collaborative task. This plan is then executed by the robot and
its human partner. Whenever a task (abstract or primitive)
is executed or its execution is perceived by an agent, its
description is inserted in the agent’s KB. The perceived tasks
are thus instances of tasks and have to be grounded to the
HTN ontology described above.

Let us take the example of an agent perceiving an instance
of a decomposition during the execution of a plan. We
show in Desc. 3 a partial representation of this instance in
our ontology. Decomp PV 3 (part of the plan) is of type
PVDecomp A (in the domain) the first decomposition of
the abstract task PrepareVegetable, described in Desc. 1.
Through the property DecompositionUsedBy we state that
this decomposition comes from the instance PV 3 of the ab-
stract task PrepareVegetable. With the property hasSubtask,
we then describe that it is composed of two instantiated
sub-tasks Peel 5 and Cut 7. The primitive task Cut 7 is
described as being an instance of Cut PVDecomp A (the task
Cut coming from the first decomposition of the abstract task
PrepareVegetable). The task parameters are also instantiated
with respect to the specifications of the hasParameter
properties. Here we see that the parameter A, representing
the agent, is grounded as Alex. By doing so, we successfully
represent the semantic of any executed task together with its
parameters and the link with higher level of plan execution
description.

:Decomp_PV_3 rdf:type owl:NamedIndividual ,
:Decomp_PV_3 rdf:type :PVDecomp_A ;
:Decomp_PV_3 :DecompositionUsedBy :PV_3 ;
:Decomp_PV_3 :hasSubtask :Peel_5 ,
:Decomp_PV_3 :hasSubtask :Cut_7 .

:Cut_7 rdf:type owl:NamedIndividual ,
:Cut_7 rdf:type :Cut_PVDecomp_A ;
:Cut_7 :Cut_hasParameter.A :Alex ;
:Cut_7 :Cut_hasParameter.V :cucumber1 ;
:Cut_7 :Cut_hasParameter.K :knife1 ;

Description 3. Description of the initiation of a decomposition of a
PrepareVegetable task and a primitive Cut task resulting from a plan and
linked to the description of the domain.

IV. ALGORITHM

On the basis of the newly introduced knowledge available
to the system (i.e. the agents’ past actions), in this section, we
present an extension of the Uniform Cost Search (UCS) REG
algorithm that we introduced in [4]. We first briefly recall the
key aspects of the REG problem and of our algorithm and
then, we present the modifications which have been made to
deal with the agents’ past actions (the HET).

A. Problem definition

In its simplest form, the REG problem is a pair P =
〈at,K〉 where at ∈ A ⊂ K is an entity we are aiming to
designate in an unambiguous way through its relation to other
entities. A solution to the REG problem is a set of relations,
in the form of triplets, which could be verbalized. In the
case of an entity with no label (i.e. an anonymous entity),
this entity cannot be verbalized and thus cannot be referred to
directly. For example, in the simple sentence ”the cucumber”
where the entity to refer to has no name. We thus refer to
it through its type Cucumber which has a verbalizable label.
In the triplets of the solution, these anonymous entities are
prefixed with a question mark (e.g. ?c isA Cucumber) and
represented as variables in the set of variables X .

To be valid, a RE E must satisfy three constraints. C1)
Nameability of entities: each entity a ∈ A used in any
relation of E must have a label (La(a) 6= ⊥). C2) Name-
ability of the variables; each anonymous entity (variable)
x ∈ X , used in any relation of E, must be involved in a
typing relation ((x, ”isA”, t) ∈ E with t ∈ T in a way
that the entity’s type has a label (Lt(t) 6= ⊥). C3) Correct
instantiation of variables; for each variable x ∈ X used in
E, there must exist a substitution function f : X → A. This
means that there must exist at least one instantiation of each
variable for which all the relations of E must exist in KS .

To be a solution, a reference must be valid and the variable
xt representing the target entity must have only one possible
substitution that is at.

B. Algorithm extension

Our original REG algorithm is based on an Uniform
Cost Search algorithm. It constructs bigger and bigger RE
candidates until a valid one is found. A node in the search
tree is composed of a cost and a candidate RE, i.e. a set
of relations T ⊆ R ∪ C. The cost Cs of a node s is
the sum of the cost of the property of each relation of



T (cs =
∑Ts C(rj)). At each loop, the unexplored node

with the lowest cost is selected to be explored. The first
step of the algorithm is to test if this node is a goal node
thanks to the GOALTEST function. To do so, a SPARQL
query is constructed to test the correct variables instantiation.
When such a query is submitted to an ontology, it will
return all the combinations of variable substitutions. All these
substitutions are stored for each node in a map M linking
each variable to the entities that could be substituted to it
(e.g. M(xt) = {knife1, knife2, knife3}). A node is thus
a goal node if it respects the three constraints and if at is
the only substitution in M for the target variable xt (e.g.
M(xt) = {knife2}). Then, if the node is not a goal node,
meaning that the corresponding RE is flawed or ambiguous,
we attempt to improve it by inserting a new relation to
T thanks to the CREATEADDITION function. The relations
costs assignation are not defined here. One can refer to [17]
or [2] for property cost determination.

CREATEADDITION is the function that aims to create
additions in order to generate new nodes. It has two dedi-
cated sub-functions. The first one is the TYPINGADDITIONS
function. For each subject and object ai of every relation r of
T being anonymous entities, if it does not exist any relation
of the form (ai, isA, t), we add such relation. The second
sub-function is the DIFFERENCEADDITIONS function. This
function is performed only if the first one could not create
an addition for the current node (i.e. all relations already
have a type). For each variable stored in M, it searches the
divergent relations between all the possible substitutions and
the entity represented by the variable. While the first function
ensures that the RE will be verbalizable, the second ensures
a reduction of the ambiguity at each loop.

To be able to refer to agents’ past tasks, the GOALTEST
function which assesses if a node is a goal node has to be
modified. Now, in addition to test if M(xt) = at, it checks
if every past tasks used in T are assigned with all their
parameters. This constraint to get all the parameters of a task
is important for the linguistic realization. If this constraint
were not satisfied, we could have results where even the
agent having performed the task would not be referred.

Now we can test if a goal node involves all the pa-
rameters of a task, we expand the CREATEADDITION
function to explore these parameters (Alg. 1). While
the DIFFERENCEADDITIONS aims at exploring rela-
tions that differ from other ambiguous entities, the

Algorithm 1 The modified CREATEADDITION function
function CREATEADDITION(node)
additions← TYPINGADDITIONS(node)
if additions 6= ∅ then return additions

additions← COMPLETIONADDITIONS(node)
if additions 6= ∅ then return additions

additions← DIFFERENCEADDITIONS(node)
additions← additions ∪ ACTINGADDITIONS(node)

return additions

ACTINGADDITIONS complements it by exploring the tasks
in which the entities involved in the candidate RE are part of.
With ACTINGADDITIONS, for each variable xi ofM having
several substitutions, we search in KS all relations involving
the anonymous entity ai and a task. With regard to the rep-
resentation of §III-C, we are searching all the relations r =
(ai, isParameterOf, atask) ∈ R∧ (atask, HtnTask) ∈ C.

The second added function, COMPLETIONADDITIONS,
aims to ensure that any task used in a candidate RE
has all its parameter inserted in that RE. For every task
atask used in T , if a relation of R having for subject
atask and for property hasParameter is not present in
T , this relation is added to the possible additions of the
current node. The ACTINGADDITIONS function, as well
as the DIFFERENCEADDITIONS, is performed only if the
TYPINGADDITIONS and the COMPLETIONADDITIONS have
not generated any possible addition. Through this condition,
we ensure that every inserted task has all its arguments
before adding other kinds of relation and that every inserted
parameter has been typed before inserting a new one.

The cost of an addition representing a task (i.e. an addition
involving the property hasParameter or isParameterOf )
is the cost of the task itself divided by the number of
parameters. We chose to process in this way to avoid zero-
cost addition and because every inserted parameter will
already have a cost due to at least their typing. Thanks to the
episodic KB, the cost of these additions can also be weighted
depending on the amount of time passed since the task has
been performed. This meets the decay theory used in [32]
and makes a preference over the more recent which could
be easier to remember for the RE receiver.

V. RESULTS

We present hereafter the solutions found by our algorithm
on an illustrative example. Then, we discuss execution time
measures to analyze the impact of such an extension.

A. Test cases

Let us take activities related to the HTN of Fig. 2.
Based on them, a planner elaborates a shared hierarchical
plan illustrated in Fig. 4. The primitive tasks are listed
and organized according to a timeline. The abstract tasks
hierarchy is shown in the tree on the right. The planner
has assigned the tasks to two agents; the robot (Pr2) and
a human (Alex). We introduce a third agent, the human Bob.
We define five cases depending on the moments when Bob
is in the kitchen where Pr2 and Alex are collaborating for
the meal preparation. The colored lines, next to the timeline,
represent the moments where Bob is in the kitchen for each
case. For example, in case 1, Bob is only aware of the
last Cut(Alex,tomato2,knife2) task and the CookSauce(Pr2,
tomato2) task. The primitive tasks of which Bob is aware
are thus added to his knowledge bases, both semantic and
episodic. We consider that Bob is the spectator and is aware
of the abstract tasks for which he is aware of all the tasks
of their decomposition. Again in case 1, Bob is thus aware
of the executed abstract tasks under PrepareSauce().



Fig. 4. The hierarchical execution trace to prepare the meal and a trace
for another subsequent high-level task, organized according to a timeline. In
the current instant, PR2 is asking Bob, a second human, for knife1. The five
cases are represented by five colors at the left of the tasks and correspond
to tasks seen by Bob, the human spectator. In case 1, Bob did not see any
tasks involved in the preparation of the salad but was present during the
sauce preparation. In the second case, he observed all the activities.

In all five cases, the goal is for PR2 to refer to the knife
knife1 to Bob. We assume that the communication about
it occurs out of the kitchen. This means that no spatial
knowledge is available to generate the RE. In such a scenario,
the robot would estimate that the Bob’s semantic knowledge
base does not contain any relations between knife1 and other
objects. Thus, the approach presented in [4] would not find
any solution for any of the five presented cases. However,
thanks to the contribution presented in this paper, a referring
expression is found for four out of five cases.

Case 1) The algorithm first types knife1 as being a Knife.
After this step, no additions about past tasks can be found by
ACTINGADDITIONS since no task implying knife1 is known
by Bob. Other relations, such as its color, can be added by
the DIFFERENCEADDITIONS but do not solve the ambiguity.
No solution is thus found.

Case 2) knife1 is first typed. This time all the tasks
(primitive and abstract) are known by Bob. The three
primitive tasks and two abstract tasks involve knife1 in
their parameters. Five additions are thus generated in the
form of (knife1, isParameterOf, at), where at are the
instances of the tasks. DIFFERENCEADDITIONS still not
find additions here. In the five new nodes, the tasks
are not labeled and are thus typed. Because every can-
didate RE under exploration here involves a task, the
COMPLETIONADDITIONS function adds one new parame-
ter for each through the hasParameter property. These
parameters are then typed if needed at the next step.
Because the abstract task PrepareVegetableForSalad has
only two parameters, the node exploring it is valid at this
step, since the parameter of the knife has been added
by the relation (knife1, isParameterOf, at) and the pa-
rameter of the agent has been added by the relation
(at, hasParameter,Alex). Besides, for these two param-
eters, Knife1 is typed and Alex is not an anonymous entity.
The candidate RE is: (?0 isA Knife), (?0 isParameterOf ?1),
(?1 isA PrepareVegetableForSalad), (?1 hasParameter Alex).
Matching it in the knowledge base gives only one substitution
for the variable ?0 being the target entity knife1. It is thus a
solution. The verbalization1 would be ”the knife with which

1The proposed verbalization is automatically generated as proof of
usability but the algorithm is not presented in this paper

Alex prepared the salad vegetables”.
Case 3) Bob is only aware of two primitive tasks

involving knife1 being cutting tasks. The beginning of the
process is the same as the previous case. The third parameter
of each task is also explored and typed in a second time. At
this step both active nodes are valid. Because both have the
same number of parameters, their cost difference depends on
the time. The node with the lowest cost is the one with the
more recent task (i.e. the second cutting task). The candidate
RE is : (?0 isA Knife), (?0 isParameterOf ?1), (?1 isA
Cut), (?1 hasParameter Alex), (?1 hasParameter ?2), (?2 isA
tomato). Only one substitution for the variable ?0 being the
target entity. The node is thus a goal node. The verbalization
would be ”the knife with which Alex cut the tomato”.

Case 4) Previously, even if Alex had cut another tomato
with another knife, it did not lead to any ambiguity since
it was not known by Bob. This time, Bob knows that Alex
cut two different tomatoes with two knives so the previous
solution is not a goal node anymore. The algorithm thus
refers to the knife through the cut task on the cucumber (i.e.
the first cutting task). The verbalization would be ”the knife
with which Alex cut the cucumber”.

Case 5) The only task known by Bob and involving the
knife1 is to cut a tomato. However, it leads to ambiguity with
the other cut task with knife2. Despite this, our algorithm
is able to find a solution in the way described previously,
by choosing anyway the cut task and trying to specify the
diverging argument that is the tomato. The tomato 1 being
involved in the MixSalad task. The algorithm is able to use
this second task to specify the argument of the first one and
finally gives the RE: (?0 isA Knife), (?0 isParameterOf ?1),
(?1 isA Cut), (?1 hasParameter Alex), (?1 hasParameter ?2),
(?2 isA tomato), (?2 isParameterOf ?3), (?3 isA MixSalad),
(?3 hasParameter Pr2), (?3 hasParameter ?4), (?4 isA Cu-
cumber). The verbalization would be ”the knife with which
Alex cut the tomato that I mixed with the cucumber”.

B. Performance analysis

To assess the impact of the proposed extension, we have
chosen a realistically-sized knowledge base (101 entities, 36
classes, 40 properties, and 497 relations) already used in [4].
It describes an apartment with three rooms including several
pieces of furniture (tables, shelves) and objects (cups, boxes)
linked through spatial relations (atLeftOf, onTopOf) and
attributes (color, weight). However, no tasks are described
in it. The original algorithm and its extended version have
been run over all the 77 entities inheriting from the ”Object”
class, representing physical entities. The knowledge base is
managed using the Ontologenius system[28]. The extension
has a negligible impact when no task is described in the
ontology, with an average execution time of 1.04ms for the
original algorithm versus 1.16ms for the extension. Even the
most complex case, only changes from 6.25ms to 6.86ms.

In order to estimate the impact when tasks are present
in the ontology, we chose to put ourselves in the worst case
where tasks are described but not useful to find a solution. We
add two actions with three parameters each for each object



described in the apartment. This leads to an addition of 144
entities to the ontology (the 144 tasks) and 432 relations
(three parameters per task). Such an amount of tasks could
be the result of several hours of interaction. The added tasks
have been designed such as not to help in the RE generation
and just overload the algorithm. In this way, we have to find
the same solutions as in the previous test. Here the impact of
the extension is much more noticeable going, for the most
complex entity, from 6.25ms to 245.25ms. We note that 75%
of the entities are solved in 20.51ms versus 1.29ms, 50% in
5.08ms versus 0.51ms, and 25% in 0.58ms versus 0.18ms.
We thus observe that, the longer the RE is to compute with
the original algorithm the more noticeable the impact of the
extension is. However, in an HRI context, even the worst
case is still acceptable and will not spoil the interaction, as
the response time is still under the user’s flow of thought
interruption time, and almost under the instantaneous feeling
time [23]. Moreover, we are here in the worst case where
the added tasks are not useful to generate the RE. In more
realistic cases, the use of past tasks in the REG may allow
to reduce the solution length and hence the execution time.

VI. CONCLUSION AND FUTURE WORK

The main contribution of this paper is an extension to
the original ontology-based REG which allows the robot
to exploit the shared knowledge about past activities stored
in a properly designed execution trace in order to produce
RE involving an entity. The corollary contribution is a
formalization of the representation, in an ontology, of any
HTN and the execution trace of a plan built upon it.

We have already integrated the original algorithm within
a cost-based human-aware task planner to allow it to assess
the cost and feasibility of communication actions containing
references to entities. We intend now to devise a planner
which will use this new capability to generate pertinent com-
munication actions involving “future past tasks” contexts.

Acknowledgement: This work has been funded by the
Agence Nationale de la Recherche JointAction4HRI project
ANR-16-CE33-0017 and the Artificial and Natural Intelli-
gence Toulouse Institute (ANITI).

REFERENCES

[1] S. Baron-Cohen, A. M. Leslie, and U. Frith, “Does the autistic child
have a “theory of mind” ?” Cognition, 1985.

[2] E. Belke and A. S. Meyer, “Tracking the time course of multi-
dimensional stimulus discrimination: Analyses of viewing patterns
and processing times during “same”-“different “decisions,” European
Journal of Cognitive Psychology, 2002.

[3] G. Buisan, G. Sarthou, and R. Alami, “Human aware task planning
using verbal communication feasibility and costs,” in ICSR, 2020.

[4] G. Buisan, G. Sarthou, A. Bit-Monnot, A. Clodic, and R. Alami,
“Efficient, situated and ontology based referring expression generation
for human-robot collaboration,” in IEEE RO-MAN, 2020.

[5] R. Dale, “Cooking up referring expressions,” in Meeting of the
association for Computational Linguistics, 1989.

[6] ——, Generating referring expressions: Constructing descriptions in
a domain of objects and processes. The MIT Press, 1992.

[7] R. Dale and E. Reiter, “Computational interpretations of the Gricean
maxims in the generation of referring expressions,” Cognitive Science,
1995.

[8] P. A. Duboue, M. A. Domı́nguez, and P. Estrella, “Evaluating robust-
ness of referring expression generation algorithms,” in IEEE MICAI,
2015.

[9] K. Erol, J. Hendler, and D. Nau, “Htn planning: Complexity and
expressivity,” National Conference on Artificial Intelligence, 1994.

[10] N. FitzGerald, Y. Artzi, and L. Zettlemoyer, “Learning distributions
over logical forms for referring expression generation,” in Conf. on
Empirical Methods in Natural Language Processing, 2013.

[11] A. Freitas, D. Schmidt, F. Meneguzzi, R. Vieira, and R. H. Bordini,
“Using ontologies as semantic representations of hierarchical task
network planning domains,” in Proceedings of WWW, 2014.

[12] A. Gatt and E. Krahmer, “Survey of the state of the art in natural
language generation: Core tasks, applications and evaluation,” Journal
of Artificial Intelligence Research, 2018.

[13] M. Ghallab, D. S. Nau, and P. Traverso, Automated planning - theory
and practice. Elsevier, 2004.

[14] H. P. Grice, “Logic and conversation,” in Speech acts. Brill, 1975.
[15] F. Ingrand and M. Ghallab, “Deliberation for autonomous robots: A

survey,” Artif. Intell., 2017.
[16] R. K. Ko, E. W. Lee, and S. Lee, “Business-owl (bowl)—a hierarchical

task network ontology for dynamic business process decomposition
and formulation,” IEEE Transactions on Services Computing, 2011.

[17] R. Koolen, E. Krahmer, and M. Theune, “Learning preferences for
referring expression generation: Effects of domain, language and
algorithm,” in INLG, 2012.

[18] E. Krahmer, S. v. Erk, and A. Verleg, “Graph-based generation of
referring expressions,” Computational Linguistics, 2003.

[19] E. Krahmer and K. van Deemter, “Computational generation of
referring expressions: A survey,” Computational Linguistics, 2012.

[20] R. Lallement, L. De Silva, and R. Alami, “HATP: An HTN Planner
for Robotics,” in ICAPS Workshop on Planning and Robotics, 2014.

[21] A.-L. Mealier, G. Pointeau, S. Mirliaz, K. Ogawa, M. Finlayson, and
P. F. Dominey, “Narrative constructions for the organization of self
experience: Proof of concept via embodied robotics,” Frontiers in
psychology, 2017.

[22] G. Milliez, R. Lallement, M. Fiore, and R. Alami, “Using human
knowledge awareness to adapt collaborative plan generation, explana-
tion and monitoring,” in ACM/IEEE HRI, 2016.

[23] J. Nielsen, Usability engineering. Morgan Kaufmann, 1994.
[24] J. Oberlander and R. Dale, “Generating expressions referring to even-

tualities,” in Conference of the Cognitive Science Society. Erlbaum
Hillsdale, NJ, 1991.

[25] M. Petit, G. Pointeau, and P. F. Dominey, “Reasoning based on
consolidated real world experience acquired by a humanoid robot,”
Interaction Studies, 2016.

[26] E. Reiter and R. Dale, Building natural language generation systems.
Cambridge University Press, 2000.

[27] R. Ros, E. A. Sisbot, R. Alami, J. Steinwender, K. Hamann,
and F. Warneken, “Solving ambiguities with perspective taking,” in
ACM/IEEE HRI, 2010.

[28] G. Sarthou, A. Clodic, and R. Alami, “Ontologenius : A long-term
semantic memory for robotic agents,” in IEEE RO-MAN, 2019.

[29] X. Sun, Y. Zhang, and J. Chen, “Rtpo: a domain knowledge base for
robot task planning,” Electronics, 2019.

[30] A. Umbrico, A. Orlandini, and A. Cesta, “An ontology for human-
robot collaboration,” Procedia CIRP, 2020.

[31] J. Viethen, M. Mitchell, and E. Krahmer, “Graphs and spatial relations
in the generation of referring expressions,” in European Workshop on
Natural Language Generation, 2013.

[32] T. Williams, T. Johnson, W. Culpepper, and K. Larson, “Toward
forgetting-sensitive referring expression generationfor integrated robot
architectures,” CoRR, 2020.

[33] T. Williams and M. Scheutz, “Referring expression generation under
uncertainty: Algorithm and evaluation framework,” in INLG, 2017.

[34] T. Williams, F. Yazdani, P. Suresh, M. Scheutz, and M. Beetz,
“Dempster-Shafer theoretic resolution of referential ambiguity,” Au-
tonomous Robots, 2019.

[35] P. Wiriyathammabhum, A. Shrivastava, V. I. Morariu, and L. S.
Davis, “Referring to objects in videos using spatio-temporal identi-
fying descriptions,” NAACL Workshop on Shortcomings in Vision and
Language, 2019.

[36] Y. Yamakata, T. Kawahara, H. G. Okuno, and M. Minoh, “Belief
Network based Disambiguation of Object Reference in Spoken Di-
alogue System,” Transactions of the Japanese Society for Artificial
Intelligence, 2004.


	Introduction
	Related Work
	Referring Expression Generation
	HTN-based tasks representation in ontology

	Structuring and gathering the knowledge
	The three knowledge representations
	The Hierarchical Task Network
	The semantic knowledge base - KS
	The episodic knowledge base - KE

	The knowledge gathering scheme
	Building the ontology
	HTN in ontology
	HET in ontology


	Algorithm
	Problem definition
	Algorithm extension

	Results
	Test cases
	Performance analysis

	Conclusion and future work
	References

